Properties

Label 2912.2.c.a.1457.16
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.16
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.275879i q^{3} +3.61620i q^{5} +1.00000 q^{7} +2.92389 q^{9} -5.52552i q^{11} +1.00000i q^{13} +0.997636 q^{15} +3.52124 q^{17} +1.10679i q^{19} -0.275879i q^{21} +7.91353 q^{23} -8.07691 q^{25} -1.63428i q^{27} -10.0364i q^{29} +5.12736 q^{31} -1.52438 q^{33} +3.61620i q^{35} -3.62244i q^{37} +0.275879 q^{39} +1.03995 q^{41} -8.73661i q^{43} +10.5734i q^{45} -13.4664 q^{47} +1.00000 q^{49} -0.971439i q^{51} +2.23708i q^{53} +19.9814 q^{55} +0.305341 q^{57} +4.78728i q^{59} -0.861749i q^{61} +2.92389 q^{63} -3.61620 q^{65} -4.23522i q^{67} -2.18318i q^{69} -0.866345 q^{71} -5.70186 q^{73} +2.22825i q^{75} -5.52552i q^{77} +7.29555 q^{79} +8.32081 q^{81} -7.27650i q^{83} +12.7335i q^{85} -2.76883 q^{87} +7.66208 q^{89} +1.00000i q^{91} -1.41453i q^{93} -4.00238 q^{95} +12.7857 q^{97} -16.1560i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.275879i − 0.159279i −0.996824 0.0796395i \(-0.974623\pi\)
0.996824 0.0796395i \(-0.0253769\pi\)
\(4\) 0 0
\(5\) 3.61620i 1.61721i 0.588349 + 0.808607i \(0.299778\pi\)
−0.588349 + 0.808607i \(0.700222\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 2.92389 0.974630
\(10\) 0 0
\(11\) − 5.52552i − 1.66601i −0.553269 0.833003i \(-0.686620\pi\)
0.553269 0.833003i \(-0.313380\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0.997636 0.257588
\(16\) 0 0
\(17\) 3.52124 0.854027 0.427014 0.904245i \(-0.359566\pi\)
0.427014 + 0.904245i \(0.359566\pi\)
\(18\) 0 0
\(19\) 1.10679i 0.253915i 0.991908 + 0.126958i \(0.0405212\pi\)
−0.991908 + 0.126958i \(0.959479\pi\)
\(20\) 0 0
\(21\) − 0.275879i − 0.0602018i
\(22\) 0 0
\(23\) 7.91353 1.65009 0.825043 0.565070i \(-0.191151\pi\)
0.825043 + 0.565070i \(0.191151\pi\)
\(24\) 0 0
\(25\) −8.07691 −1.61538
\(26\) 0 0
\(27\) − 1.63428i − 0.314517i
\(28\) 0 0
\(29\) − 10.0364i − 1.86371i −0.362833 0.931854i \(-0.618191\pi\)
0.362833 0.931854i \(-0.381809\pi\)
\(30\) 0 0
\(31\) 5.12736 0.920901 0.460450 0.887685i \(-0.347688\pi\)
0.460450 + 0.887685i \(0.347688\pi\)
\(32\) 0 0
\(33\) −1.52438 −0.265360
\(34\) 0 0
\(35\) 3.61620i 0.611249i
\(36\) 0 0
\(37\) − 3.62244i − 0.595526i −0.954640 0.297763i \(-0.903760\pi\)
0.954640 0.297763i \(-0.0962405\pi\)
\(38\) 0 0
\(39\) 0.275879 0.0441761
\(40\) 0 0
\(41\) 1.03995 0.162413 0.0812064 0.996697i \(-0.474123\pi\)
0.0812064 + 0.996697i \(0.474123\pi\)
\(42\) 0 0
\(43\) − 8.73661i − 1.33232i −0.745809 0.666160i \(-0.767937\pi\)
0.745809 0.666160i \(-0.232063\pi\)
\(44\) 0 0
\(45\) 10.5734i 1.57619i
\(46\) 0 0
\(47\) −13.4664 −1.96427 −0.982136 0.188171i \(-0.939744\pi\)
−0.982136 + 0.188171i \(0.939744\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) − 0.971439i − 0.136029i
\(52\) 0 0
\(53\) 2.23708i 0.307286i 0.988126 + 0.153643i \(0.0491006\pi\)
−0.988126 + 0.153643i \(0.950899\pi\)
\(54\) 0 0
\(55\) 19.9814 2.69429
\(56\) 0 0
\(57\) 0.305341 0.0404434
\(58\) 0 0
\(59\) 4.78728i 0.623251i 0.950205 + 0.311626i \(0.100873\pi\)
−0.950205 + 0.311626i \(0.899127\pi\)
\(60\) 0 0
\(61\) − 0.861749i − 0.110336i −0.998477 0.0551678i \(-0.982431\pi\)
0.998477 0.0551678i \(-0.0175694\pi\)
\(62\) 0 0
\(63\) 2.92389 0.368376
\(64\) 0 0
\(65\) −3.61620 −0.448534
\(66\) 0 0
\(67\) − 4.23522i − 0.517414i −0.965956 0.258707i \(-0.916704\pi\)
0.965956 0.258707i \(-0.0832965\pi\)
\(68\) 0 0
\(69\) − 2.18318i − 0.262824i
\(70\) 0 0
\(71\) −0.866345 −0.102816 −0.0514081 0.998678i \(-0.516371\pi\)
−0.0514081 + 0.998678i \(0.516371\pi\)
\(72\) 0 0
\(73\) −5.70186 −0.667352 −0.333676 0.942688i \(-0.608289\pi\)
−0.333676 + 0.942688i \(0.608289\pi\)
\(74\) 0 0
\(75\) 2.22825i 0.257297i
\(76\) 0 0
\(77\) − 5.52552i − 0.629691i
\(78\) 0 0
\(79\) 7.29555 0.820814 0.410407 0.911902i \(-0.365387\pi\)
0.410407 + 0.911902i \(0.365387\pi\)
\(80\) 0 0
\(81\) 8.32081 0.924534
\(82\) 0 0
\(83\) − 7.27650i − 0.798700i −0.916799 0.399350i \(-0.869236\pi\)
0.916799 0.399350i \(-0.130764\pi\)
\(84\) 0 0
\(85\) 12.7335i 1.38115i
\(86\) 0 0
\(87\) −2.76883 −0.296850
\(88\) 0 0
\(89\) 7.66208 0.812178 0.406089 0.913833i \(-0.366892\pi\)
0.406089 + 0.913833i \(0.366892\pi\)
\(90\) 0 0
\(91\) 1.00000i 0.104828i
\(92\) 0 0
\(93\) − 1.41453i − 0.146680i
\(94\) 0 0
\(95\) −4.00238 −0.410635
\(96\) 0 0
\(97\) 12.7857 1.29819 0.649097 0.760706i \(-0.275147\pi\)
0.649097 + 0.760706i \(0.275147\pi\)
\(98\) 0 0
\(99\) − 16.1560i − 1.62374i
\(100\) 0 0
\(101\) 9.46158i 0.941462i 0.882277 + 0.470731i \(0.156010\pi\)
−0.882277 + 0.470731i \(0.843990\pi\)
\(102\) 0 0
\(103\) −0.503322 −0.0495938 −0.0247969 0.999693i \(-0.507894\pi\)
−0.0247969 + 0.999693i \(0.507894\pi\)
\(104\) 0 0
\(105\) 0.997636 0.0973593
\(106\) 0 0
\(107\) 3.29814i 0.318843i 0.987211 + 0.159422i \(0.0509629\pi\)
−0.987211 + 0.159422i \(0.949037\pi\)
\(108\) 0 0
\(109\) 17.1603i 1.64366i 0.569735 + 0.821829i \(0.307046\pi\)
−0.569735 + 0.821829i \(0.692954\pi\)
\(110\) 0 0
\(111\) −0.999358 −0.0948548
\(112\) 0 0
\(113\) 4.38117 0.412146 0.206073 0.978537i \(-0.433932\pi\)
0.206073 + 0.978537i \(0.433932\pi\)
\(114\) 0 0
\(115\) 28.6169i 2.66854i
\(116\) 0 0
\(117\) 2.92389i 0.270314i
\(118\) 0 0
\(119\) 3.52124 0.322792
\(120\) 0 0
\(121\) −19.5313 −1.77558
\(122\) 0 0
\(123\) − 0.286901i − 0.0258689i
\(124\) 0 0
\(125\) − 11.1267i − 0.995204i
\(126\) 0 0
\(127\) 0.951245 0.0844094 0.0422047 0.999109i \(-0.486562\pi\)
0.0422047 + 0.999109i \(0.486562\pi\)
\(128\) 0 0
\(129\) −2.41025 −0.212211
\(130\) 0 0
\(131\) 6.18131i 0.540063i 0.962851 + 0.270032i \(0.0870342\pi\)
−0.962851 + 0.270032i \(0.912966\pi\)
\(132\) 0 0
\(133\) 1.10679i 0.0959709i
\(134\) 0 0
\(135\) 5.90988 0.508642
\(136\) 0 0
\(137\) 2.69492 0.230242 0.115121 0.993351i \(-0.463274\pi\)
0.115121 + 0.993351i \(0.463274\pi\)
\(138\) 0 0
\(139\) 10.0486i 0.852314i 0.904649 + 0.426157i \(0.140133\pi\)
−0.904649 + 0.426157i \(0.859867\pi\)
\(140\) 0 0
\(141\) 3.71510i 0.312868i
\(142\) 0 0
\(143\) 5.52552 0.462067
\(144\) 0 0
\(145\) 36.2936 3.01402
\(146\) 0 0
\(147\) − 0.275879i − 0.0227542i
\(148\) 0 0
\(149\) 11.6165i 0.951664i 0.879536 + 0.475832i \(0.157853\pi\)
−0.879536 + 0.475832i \(0.842147\pi\)
\(150\) 0 0
\(151\) −4.16990 −0.339342 −0.169671 0.985501i \(-0.554270\pi\)
−0.169671 + 0.985501i \(0.554270\pi\)
\(152\) 0 0
\(153\) 10.2957 0.832361
\(154\) 0 0
\(155\) 18.5416i 1.48929i
\(156\) 0 0
\(157\) 19.3608i 1.54516i 0.634918 + 0.772580i \(0.281034\pi\)
−0.634918 + 0.772580i \(0.718966\pi\)
\(158\) 0 0
\(159\) 0.617164 0.0489443
\(160\) 0 0
\(161\) 7.91353 0.623674
\(162\) 0 0
\(163\) − 10.0263i − 0.785320i −0.919684 0.392660i \(-0.871555\pi\)
0.919684 0.392660i \(-0.128445\pi\)
\(164\) 0 0
\(165\) − 5.51245i − 0.429144i
\(166\) 0 0
\(167\) −15.3016 −1.18407 −0.592037 0.805911i \(-0.701676\pi\)
−0.592037 + 0.805911i \(0.701676\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 3.23613i 0.247473i
\(172\) 0 0
\(173\) 12.8175i 0.974498i 0.873263 + 0.487249i \(0.162000\pi\)
−0.873263 + 0.487249i \(0.838000\pi\)
\(174\) 0 0
\(175\) −8.07691 −0.610557
\(176\) 0 0
\(177\) 1.32071 0.0992709
\(178\) 0 0
\(179\) 7.47709i 0.558864i 0.960165 + 0.279432i \(0.0901462\pi\)
−0.960165 + 0.279432i \(0.909854\pi\)
\(180\) 0 0
\(181\) − 22.4833i − 1.67117i −0.549360 0.835585i \(-0.685129\pi\)
0.549360 0.835585i \(-0.314871\pi\)
\(182\) 0 0
\(183\) −0.237739 −0.0175742
\(184\) 0 0
\(185\) 13.0995 0.963093
\(186\) 0 0
\(187\) − 19.4567i − 1.42281i
\(188\) 0 0
\(189\) − 1.63428i − 0.118876i
\(190\) 0 0
\(191\) 11.6789 0.845057 0.422528 0.906350i \(-0.361143\pi\)
0.422528 + 0.906350i \(0.361143\pi\)
\(192\) 0 0
\(193\) −11.6391 −0.837800 −0.418900 0.908032i \(-0.637584\pi\)
−0.418900 + 0.908032i \(0.637584\pi\)
\(194\) 0 0
\(195\) 0.997636i 0.0714422i
\(196\) 0 0
\(197\) − 5.59686i − 0.398760i −0.979922 0.199380i \(-0.936107\pi\)
0.979922 0.199380i \(-0.0638927\pi\)
\(198\) 0 0
\(199\) −20.2542 −1.43578 −0.717890 0.696156i \(-0.754892\pi\)
−0.717890 + 0.696156i \(0.754892\pi\)
\(200\) 0 0
\(201\) −1.16841 −0.0824133
\(202\) 0 0
\(203\) − 10.0364i − 0.704415i
\(204\) 0 0
\(205\) 3.76066i 0.262656i
\(206\) 0 0
\(207\) 23.1383 1.60822
\(208\) 0 0
\(209\) 6.11559 0.423024
\(210\) 0 0
\(211\) − 12.3571i − 0.850695i −0.905030 0.425347i \(-0.860152\pi\)
0.905030 0.425347i \(-0.139848\pi\)
\(212\) 0 0
\(213\) 0.239007i 0.0163765i
\(214\) 0 0
\(215\) 31.5933 2.15465
\(216\) 0 0
\(217\) 5.12736 0.348068
\(218\) 0 0
\(219\) 1.57303i 0.106295i
\(220\) 0 0
\(221\) 3.52124i 0.236865i
\(222\) 0 0
\(223\) −14.7408 −0.987120 −0.493560 0.869712i \(-0.664305\pi\)
−0.493560 + 0.869712i \(0.664305\pi\)
\(224\) 0 0
\(225\) −23.6160 −1.57440
\(226\) 0 0
\(227\) − 0.323771i − 0.0214894i −0.999942 0.0107447i \(-0.996580\pi\)
0.999942 0.0107447i \(-0.00342021\pi\)
\(228\) 0 0
\(229\) 22.2035i 1.46725i 0.679556 + 0.733624i \(0.262173\pi\)
−0.679556 + 0.733624i \(0.737827\pi\)
\(230\) 0 0
\(231\) −1.52438 −0.100297
\(232\) 0 0
\(233\) 17.2053 1.12716 0.563579 0.826062i \(-0.309424\pi\)
0.563579 + 0.826062i \(0.309424\pi\)
\(234\) 0 0
\(235\) − 48.6971i − 3.17665i
\(236\) 0 0
\(237\) − 2.01269i − 0.130738i
\(238\) 0 0
\(239\) 14.0545 0.909112 0.454556 0.890718i \(-0.349798\pi\)
0.454556 + 0.890718i \(0.349798\pi\)
\(240\) 0 0
\(241\) 14.8607 0.957262 0.478631 0.878016i \(-0.341133\pi\)
0.478631 + 0.878016i \(0.341133\pi\)
\(242\) 0 0
\(243\) − 7.19838i − 0.461776i
\(244\) 0 0
\(245\) 3.61620i 0.231031i
\(246\) 0 0
\(247\) −1.10679 −0.0704234
\(248\) 0 0
\(249\) −2.00744 −0.127216
\(250\) 0 0
\(251\) 25.9434i 1.63753i 0.574128 + 0.818766i \(0.305341\pi\)
−0.574128 + 0.818766i \(0.694659\pi\)
\(252\) 0 0
\(253\) − 43.7263i − 2.74905i
\(254\) 0 0
\(255\) 3.51292 0.219988
\(256\) 0 0
\(257\) 18.1892 1.13461 0.567306 0.823507i \(-0.307985\pi\)
0.567306 + 0.823507i \(0.307985\pi\)
\(258\) 0 0
\(259\) − 3.62244i − 0.225088i
\(260\) 0 0
\(261\) − 29.3453i − 1.81643i
\(262\) 0 0
\(263\) 26.5683 1.63827 0.819135 0.573601i \(-0.194454\pi\)
0.819135 + 0.573601i \(0.194454\pi\)
\(264\) 0 0
\(265\) −8.08972 −0.496948
\(266\) 0 0
\(267\) − 2.11381i − 0.129363i
\(268\) 0 0
\(269\) − 25.0750i − 1.52885i −0.644713 0.764425i \(-0.723023\pi\)
0.644713 0.764425i \(-0.276977\pi\)
\(270\) 0 0
\(271\) −2.65065 −0.161016 −0.0805079 0.996754i \(-0.525654\pi\)
−0.0805079 + 0.996754i \(0.525654\pi\)
\(272\) 0 0
\(273\) 0.275879 0.0166970
\(274\) 0 0
\(275\) 44.6291i 2.69123i
\(276\) 0 0
\(277\) − 18.7189i − 1.12471i −0.826895 0.562356i \(-0.809895\pi\)
0.826895 0.562356i \(-0.190105\pi\)
\(278\) 0 0
\(279\) 14.9918 0.897538
\(280\) 0 0
\(281\) −14.3291 −0.854803 −0.427402 0.904062i \(-0.640571\pi\)
−0.427402 + 0.904062i \(0.640571\pi\)
\(282\) 0 0
\(283\) − 14.4237i − 0.857400i −0.903447 0.428700i \(-0.858972\pi\)
0.903447 0.428700i \(-0.141028\pi\)
\(284\) 0 0
\(285\) 1.10417i 0.0654056i
\(286\) 0 0
\(287\) 1.03995 0.0613862
\(288\) 0 0
\(289\) −4.60084 −0.270637
\(290\) 0 0
\(291\) − 3.52732i − 0.206775i
\(292\) 0 0
\(293\) − 4.97250i − 0.290497i −0.989395 0.145248i \(-0.953602\pi\)
0.989395 0.145248i \(-0.0463981\pi\)
\(294\) 0 0
\(295\) −17.3118 −1.00793
\(296\) 0 0
\(297\) −9.03024 −0.523988
\(298\) 0 0
\(299\) 7.91353i 0.457651i
\(300\) 0 0
\(301\) − 8.73661i − 0.503570i
\(302\) 0 0
\(303\) 2.61026 0.149955
\(304\) 0 0
\(305\) 3.11626 0.178436
\(306\) 0 0
\(307\) 2.53252i 0.144539i 0.997385 + 0.0722693i \(0.0230241\pi\)
−0.997385 + 0.0722693i \(0.976976\pi\)
\(308\) 0 0
\(309\) 0.138856i 0.00789925i
\(310\) 0 0
\(311\) −21.4305 −1.21521 −0.607607 0.794238i \(-0.707871\pi\)
−0.607607 + 0.794238i \(0.707871\pi\)
\(312\) 0 0
\(313\) −31.4457 −1.77742 −0.888708 0.458473i \(-0.848397\pi\)
−0.888708 + 0.458473i \(0.848397\pi\)
\(314\) 0 0
\(315\) 10.5734i 0.595742i
\(316\) 0 0
\(317\) 20.0491i 1.12607i 0.826433 + 0.563036i \(0.190367\pi\)
−0.826433 + 0.563036i \(0.809633\pi\)
\(318\) 0 0
\(319\) −55.4562 −3.10495
\(320\) 0 0
\(321\) 0.909889 0.0507851
\(322\) 0 0
\(323\) 3.89728i 0.216850i
\(324\) 0 0
\(325\) − 8.07691i − 0.448026i
\(326\) 0 0
\(327\) 4.73417 0.261800
\(328\) 0 0
\(329\) −13.4664 −0.742425
\(330\) 0 0
\(331\) 25.2112i 1.38573i 0.721065 + 0.692867i \(0.243653\pi\)
−0.721065 + 0.692867i \(0.756347\pi\)
\(332\) 0 0
\(333\) − 10.5916i − 0.580417i
\(334\) 0 0
\(335\) 15.3154 0.836770
\(336\) 0 0
\(337\) −16.0856 −0.876236 −0.438118 0.898918i \(-0.644355\pi\)
−0.438118 + 0.898918i \(0.644355\pi\)
\(338\) 0 0
\(339\) − 1.20868i − 0.0656463i
\(340\) 0 0
\(341\) − 28.3313i − 1.53423i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 7.89482 0.425043
\(346\) 0 0
\(347\) − 5.29694i − 0.284355i −0.989841 0.142177i \(-0.954590\pi\)
0.989841 0.142177i \(-0.0454104\pi\)
\(348\) 0 0
\(349\) − 19.0084i − 1.01749i −0.860916 0.508747i \(-0.830109\pi\)
0.860916 0.508747i \(-0.169891\pi\)
\(350\) 0 0
\(351\) 1.63428 0.0872314
\(352\) 0 0
\(353\) 2.67801 0.142536 0.0712680 0.997457i \(-0.477295\pi\)
0.0712680 + 0.997457i \(0.477295\pi\)
\(354\) 0 0
\(355\) − 3.13288i − 0.166276i
\(356\) 0 0
\(357\) − 0.971439i − 0.0514140i
\(358\) 0 0
\(359\) −22.7147 −1.19884 −0.599418 0.800436i \(-0.704601\pi\)
−0.599418 + 0.800436i \(0.704601\pi\)
\(360\) 0 0
\(361\) 17.7750 0.935527
\(362\) 0 0
\(363\) 5.38829i 0.282812i
\(364\) 0 0
\(365\) − 20.6191i − 1.07925i
\(366\) 0 0
\(367\) 3.18895 0.166462 0.0832310 0.996530i \(-0.473476\pi\)
0.0832310 + 0.996530i \(0.473476\pi\)
\(368\) 0 0
\(369\) 3.04070 0.158292
\(370\) 0 0
\(371\) 2.23708i 0.116143i
\(372\) 0 0
\(373\) 22.8764i 1.18450i 0.805756 + 0.592248i \(0.201760\pi\)
−0.805756 + 0.592248i \(0.798240\pi\)
\(374\) 0 0
\(375\) −3.06963 −0.158515
\(376\) 0 0
\(377\) 10.0364 0.516900
\(378\) 0 0
\(379\) 14.0537i 0.721891i 0.932587 + 0.360946i \(0.117546\pi\)
−0.932587 + 0.360946i \(0.882454\pi\)
\(380\) 0 0
\(381\) − 0.262429i − 0.0134446i
\(382\) 0 0
\(383\) 5.29338 0.270479 0.135239 0.990813i \(-0.456820\pi\)
0.135239 + 0.990813i \(0.456820\pi\)
\(384\) 0 0
\(385\) 19.9814 1.01835
\(386\) 0 0
\(387\) − 25.5449i − 1.29852i
\(388\) 0 0
\(389\) 21.1015i 1.06989i 0.844887 + 0.534945i \(0.179668\pi\)
−0.844887 + 0.534945i \(0.820332\pi\)
\(390\) 0 0
\(391\) 27.8655 1.40922
\(392\) 0 0
\(393\) 1.70530 0.0860208
\(394\) 0 0
\(395\) 26.3822i 1.32743i
\(396\) 0 0
\(397\) − 28.3687i − 1.42378i −0.702289 0.711892i \(-0.747838\pi\)
0.702289 0.711892i \(-0.252162\pi\)
\(398\) 0 0
\(399\) 0.305341 0.0152862
\(400\) 0 0
\(401\) −29.0290 −1.44964 −0.724819 0.688940i \(-0.758077\pi\)
−0.724819 + 0.688940i \(0.758077\pi\)
\(402\) 0 0
\(403\) 5.12736i 0.255412i
\(404\) 0 0
\(405\) 30.0897i 1.49517i
\(406\) 0 0
\(407\) −20.0159 −0.992150
\(408\) 0 0
\(409\) −34.4641 −1.70414 −0.852069 0.523429i \(-0.824652\pi\)
−0.852069 + 0.523429i \(0.824652\pi\)
\(410\) 0 0
\(411\) − 0.743472i − 0.0366728i
\(412\) 0 0
\(413\) 4.78728i 0.235567i
\(414\) 0 0
\(415\) 26.3133 1.29167
\(416\) 0 0
\(417\) 2.77221 0.135756
\(418\) 0 0
\(419\) − 4.27902i − 0.209044i −0.994523 0.104522i \(-0.966669\pi\)
0.994523 0.104522i \(-0.0333312\pi\)
\(420\) 0 0
\(421\) 7.01406i 0.341844i 0.985285 + 0.170922i \(0.0546747\pi\)
−0.985285 + 0.170922i \(0.945325\pi\)
\(422\) 0 0
\(423\) −39.3742 −1.91444
\(424\) 0 0
\(425\) −28.4408 −1.37958
\(426\) 0 0
\(427\) − 0.861749i − 0.0417029i
\(428\) 0 0
\(429\) − 1.52438i − 0.0735976i
\(430\) 0 0
\(431\) 29.6150 1.42651 0.713253 0.700906i \(-0.247221\pi\)
0.713253 + 0.700906i \(0.247221\pi\)
\(432\) 0 0
\(433\) 11.8181 0.567939 0.283970 0.958833i \(-0.408348\pi\)
0.283970 + 0.958833i \(0.408348\pi\)
\(434\) 0 0
\(435\) − 10.0126i − 0.480070i
\(436\) 0 0
\(437\) 8.75862i 0.418982i
\(438\) 0 0
\(439\) −15.2077 −0.725822 −0.362911 0.931824i \(-0.618217\pi\)
−0.362911 + 0.931824i \(0.618217\pi\)
\(440\) 0 0
\(441\) 2.92389 0.139233
\(442\) 0 0
\(443\) 14.9404i 0.709842i 0.934896 + 0.354921i \(0.115492\pi\)
−0.934896 + 0.354921i \(0.884508\pi\)
\(444\) 0 0
\(445\) 27.7076i 1.31347i
\(446\) 0 0
\(447\) 3.20477 0.151580
\(448\) 0 0
\(449\) 29.9678 1.41427 0.707133 0.707081i \(-0.249988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(450\) 0 0
\(451\) − 5.74625i − 0.270581i
\(452\) 0 0
\(453\) 1.15039i 0.0540500i
\(454\) 0 0
\(455\) −3.61620 −0.169530
\(456\) 0 0
\(457\) 11.0522 0.517001 0.258501 0.966011i \(-0.416772\pi\)
0.258501 + 0.966011i \(0.416772\pi\)
\(458\) 0 0
\(459\) − 5.75470i − 0.268606i
\(460\) 0 0
\(461\) − 41.6333i − 1.93906i −0.244977 0.969529i \(-0.578780\pi\)
0.244977 0.969529i \(-0.421220\pi\)
\(462\) 0 0
\(463\) −36.3379 −1.68877 −0.844384 0.535739i \(-0.820033\pi\)
−0.844384 + 0.535739i \(0.820033\pi\)
\(464\) 0 0
\(465\) 5.11524 0.237213
\(466\) 0 0
\(467\) 8.62570i 0.399150i 0.979883 + 0.199575i \(0.0639561\pi\)
−0.979883 + 0.199575i \(0.936044\pi\)
\(468\) 0 0
\(469\) − 4.23522i − 0.195564i
\(470\) 0 0
\(471\) 5.34124 0.246112
\(472\) 0 0
\(473\) −48.2743 −2.21965
\(474\) 0 0
\(475\) − 8.93944i − 0.410170i
\(476\) 0 0
\(477\) 6.54097i 0.299490i
\(478\) 0 0
\(479\) −14.0769 −0.643191 −0.321595 0.946877i \(-0.604219\pi\)
−0.321595 + 0.946877i \(0.604219\pi\)
\(480\) 0 0
\(481\) 3.62244 0.165169
\(482\) 0 0
\(483\) − 2.18318i − 0.0993382i
\(484\) 0 0
\(485\) 46.2358i 2.09946i
\(486\) 0 0
\(487\) −30.9096 −1.40065 −0.700324 0.713826i \(-0.746961\pi\)
−0.700324 + 0.713826i \(0.746961\pi\)
\(488\) 0 0
\(489\) −2.76605 −0.125085
\(490\) 0 0
\(491\) 30.4626i 1.37476i 0.726300 + 0.687378i \(0.241238\pi\)
−0.726300 + 0.687378i \(0.758762\pi\)
\(492\) 0 0
\(493\) − 35.3405i − 1.59166i
\(494\) 0 0
\(495\) 58.4234 2.62593
\(496\) 0 0
\(497\) −0.866345 −0.0388609
\(498\) 0 0
\(499\) 9.18401i 0.411133i 0.978643 + 0.205566i \(0.0659036\pi\)
−0.978643 + 0.205566i \(0.934096\pi\)
\(500\) 0 0
\(501\) 4.22140i 0.188598i
\(502\) 0 0
\(503\) −3.80294 −0.169565 −0.0847824 0.996399i \(-0.527020\pi\)
−0.0847824 + 0.996399i \(0.527020\pi\)
\(504\) 0 0
\(505\) −34.2150 −1.52255
\(506\) 0 0
\(507\) 0.275879i 0.0122522i
\(508\) 0 0
\(509\) 28.6024i 1.26778i 0.773423 + 0.633890i \(0.218543\pi\)
−0.773423 + 0.633890i \(0.781457\pi\)
\(510\) 0 0
\(511\) −5.70186 −0.252235
\(512\) 0 0
\(513\) 1.80880 0.0798607
\(514\) 0 0
\(515\) − 1.82011i − 0.0802038i
\(516\) 0 0
\(517\) 74.4087i 3.27249i
\(518\) 0 0
\(519\) 3.53609 0.155217
\(520\) 0 0
\(521\) 20.2308 0.886327 0.443164 0.896441i \(-0.353856\pi\)
0.443164 + 0.896441i \(0.353856\pi\)
\(522\) 0 0
\(523\) − 25.8242i − 1.12921i −0.825360 0.564607i \(-0.809028\pi\)
0.825360 0.564607i \(-0.190972\pi\)
\(524\) 0 0
\(525\) 2.22825i 0.0972489i
\(526\) 0 0
\(527\) 18.0547 0.786475
\(528\) 0 0
\(529\) 39.6240 1.72278
\(530\) 0 0
\(531\) 13.9975i 0.607439i
\(532\) 0 0
\(533\) 1.03995i 0.0450452i
\(534\) 0 0
\(535\) −11.9267 −0.515638
\(536\) 0 0
\(537\) 2.06278 0.0890154
\(538\) 0 0
\(539\) − 5.52552i − 0.238001i
\(540\) 0 0
\(541\) − 7.96843i − 0.342589i −0.985220 0.171295i \(-0.945205\pi\)
0.985220 0.171295i \(-0.0547950\pi\)
\(542\) 0 0
\(543\) −6.20268 −0.266183
\(544\) 0 0
\(545\) −62.0550 −2.65815
\(546\) 0 0
\(547\) 14.9906i 0.640953i 0.947256 + 0.320477i \(0.103843\pi\)
−0.947256 + 0.320477i \(0.896157\pi\)
\(548\) 0 0
\(549\) − 2.51966i − 0.107536i
\(550\) 0 0
\(551\) 11.1082 0.473224
\(552\) 0 0
\(553\) 7.29555 0.310238
\(554\) 0 0
\(555\) − 3.61388i − 0.153401i
\(556\) 0 0
\(557\) 4.35114i 0.184364i 0.995742 + 0.0921819i \(0.0293841\pi\)
−0.995742 + 0.0921819i \(0.970616\pi\)
\(558\) 0 0
\(559\) 8.73661 0.369519
\(560\) 0 0
\(561\) −5.36770 −0.226625
\(562\) 0 0
\(563\) − 19.3697i − 0.816334i −0.912907 0.408167i \(-0.866168\pi\)
0.912907 0.408167i \(-0.133832\pi\)
\(564\) 0 0
\(565\) 15.8432i 0.666529i
\(566\) 0 0
\(567\) 8.32081 0.349441
\(568\) 0 0
\(569\) 37.1682 1.55817 0.779087 0.626916i \(-0.215683\pi\)
0.779087 + 0.626916i \(0.215683\pi\)
\(570\) 0 0
\(571\) − 21.5095i − 0.900143i −0.892992 0.450072i \(-0.851398\pi\)
0.892992 0.450072i \(-0.148602\pi\)
\(572\) 0 0
\(573\) − 3.22197i − 0.134600i
\(574\) 0 0
\(575\) −63.9169 −2.66552
\(576\) 0 0
\(577\) −15.0168 −0.625159 −0.312579 0.949892i \(-0.601193\pi\)
−0.312579 + 0.949892i \(0.601193\pi\)
\(578\) 0 0
\(579\) 3.21099i 0.133444i
\(580\) 0 0
\(581\) − 7.27650i − 0.301880i
\(582\) 0 0
\(583\) 12.3610 0.511941
\(584\) 0 0
\(585\) −10.5734 −0.437155
\(586\) 0 0
\(587\) − 16.8666i − 0.696161i −0.937465 0.348080i \(-0.886834\pi\)
0.937465 0.348080i \(-0.113166\pi\)
\(588\) 0 0
\(589\) 5.67491i 0.233831i
\(590\) 0 0
\(591\) −1.54406 −0.0635141
\(592\) 0 0
\(593\) −24.9466 −1.02443 −0.512217 0.858856i \(-0.671176\pi\)
−0.512217 + 0.858856i \(0.671176\pi\)
\(594\) 0 0
\(595\) 12.7335i 0.522024i
\(596\) 0 0
\(597\) 5.58771i 0.228690i
\(598\) 0 0
\(599\) −18.5685 −0.758687 −0.379343 0.925256i \(-0.623850\pi\)
−0.379343 + 0.925256i \(0.623850\pi\)
\(600\) 0 0
\(601\) −1.28859 −0.0525625 −0.0262813 0.999655i \(-0.508367\pi\)
−0.0262813 + 0.999655i \(0.508367\pi\)
\(602\) 0 0
\(603\) − 12.3833i − 0.504288i
\(604\) 0 0
\(605\) − 70.6292i − 2.87149i
\(606\) 0 0
\(607\) −4.75102 −0.192838 −0.0964190 0.995341i \(-0.530739\pi\)
−0.0964190 + 0.995341i \(0.530739\pi\)
\(608\) 0 0
\(609\) −2.76883 −0.112199
\(610\) 0 0
\(611\) − 13.4664i − 0.544791i
\(612\) 0 0
\(613\) 10.0018i 0.403967i 0.979389 + 0.201984i \(0.0647388\pi\)
−0.979389 + 0.201984i \(0.935261\pi\)
\(614\) 0 0
\(615\) 1.03749 0.0418356
\(616\) 0 0
\(617\) −13.2245 −0.532396 −0.266198 0.963918i \(-0.585768\pi\)
−0.266198 + 0.963918i \(0.585768\pi\)
\(618\) 0 0
\(619\) 23.6609i 0.951011i 0.879713 + 0.475506i \(0.157735\pi\)
−0.879713 + 0.475506i \(0.842265\pi\)
\(620\) 0 0
\(621\) − 12.9329i − 0.518980i
\(622\) 0 0
\(623\) 7.66208 0.306975
\(624\) 0 0
\(625\) −0.148100 −0.00592399
\(626\) 0 0
\(627\) − 1.68716i − 0.0673789i
\(628\) 0 0
\(629\) − 12.7555i − 0.508595i
\(630\) 0 0
\(631\) −14.7571 −0.587469 −0.293735 0.955887i \(-0.594898\pi\)
−0.293735 + 0.955887i \(0.594898\pi\)
\(632\) 0 0
\(633\) −3.40906 −0.135498
\(634\) 0 0
\(635\) 3.43989i 0.136508i
\(636\) 0 0
\(637\) 1.00000i 0.0396214i
\(638\) 0 0
\(639\) −2.53310 −0.100208
\(640\) 0 0
\(641\) −13.7361 −0.542542 −0.271271 0.962503i \(-0.587444\pi\)
−0.271271 + 0.962503i \(0.587444\pi\)
\(642\) 0 0
\(643\) 25.9351i 1.02278i 0.859349 + 0.511390i \(0.170869\pi\)
−0.859349 + 0.511390i \(0.829131\pi\)
\(644\) 0 0
\(645\) − 8.71595i − 0.343190i
\(646\) 0 0
\(647\) −12.2027 −0.479737 −0.239868 0.970805i \(-0.577104\pi\)
−0.239868 + 0.970805i \(0.577104\pi\)
\(648\) 0 0
\(649\) 26.4522 1.03834
\(650\) 0 0
\(651\) − 1.41453i − 0.0554399i
\(652\) 0 0
\(653\) − 11.5584i − 0.452316i −0.974091 0.226158i \(-0.927383\pi\)
0.974091 0.226158i \(-0.0726166\pi\)
\(654\) 0 0
\(655\) −22.3528 −0.873398
\(656\) 0 0
\(657\) −16.6716 −0.650422
\(658\) 0 0
\(659\) 30.8839i 1.20307i 0.798848 + 0.601533i \(0.205443\pi\)
−0.798848 + 0.601533i \(0.794557\pi\)
\(660\) 0 0
\(661\) 29.5707i 1.15017i 0.818094 + 0.575084i \(0.195031\pi\)
−0.818094 + 0.575084i \(0.804969\pi\)
\(662\) 0 0
\(663\) 0.971439 0.0377276
\(664\) 0 0
\(665\) −4.00238 −0.155205
\(666\) 0 0
\(667\) − 79.4232i − 3.07528i
\(668\) 0 0
\(669\) 4.06670i 0.157228i
\(670\) 0 0
\(671\) −4.76161 −0.183820
\(672\) 0 0
\(673\) −40.3299 −1.55460 −0.777301 0.629128i \(-0.783412\pi\)
−0.777301 + 0.629128i \(0.783412\pi\)
\(674\) 0 0
\(675\) 13.1999i 0.508065i
\(676\) 0 0
\(677\) 29.4826i 1.13311i 0.824025 + 0.566553i \(0.191723\pi\)
−0.824025 + 0.566553i \(0.808277\pi\)
\(678\) 0 0
\(679\) 12.7857 0.490671
\(680\) 0 0
\(681\) −0.0893217 −0.00342282
\(682\) 0 0
\(683\) − 6.90366i − 0.264161i −0.991239 0.132081i \(-0.957834\pi\)
0.991239 0.132081i \(-0.0421658\pi\)
\(684\) 0 0
\(685\) 9.74535i 0.372351i
\(686\) 0 0
\(687\) 6.12549 0.233702
\(688\) 0 0
\(689\) −2.23708 −0.0852258
\(690\) 0 0
\(691\) − 48.0500i − 1.82791i −0.405816 0.913955i \(-0.633012\pi\)
0.405816 0.913955i \(-0.366988\pi\)
\(692\) 0 0
\(693\) − 16.1560i − 0.613716i
\(694\) 0 0
\(695\) −36.3379 −1.37837
\(696\) 0 0
\(697\) 3.66191 0.138705
\(698\) 0 0
\(699\) − 4.74659i − 0.179533i
\(700\) 0 0
\(701\) 1.98674i 0.0750381i 0.999296 + 0.0375190i \(0.0119455\pi\)
−0.999296 + 0.0375190i \(0.988055\pi\)
\(702\) 0 0
\(703\) 4.00928 0.151213
\(704\) 0 0
\(705\) −13.4345 −0.505974
\(706\) 0 0
\(707\) 9.46158i 0.355839i
\(708\) 0 0
\(709\) − 16.3537i − 0.614175i −0.951681 0.307087i \(-0.900646\pi\)
0.951681 0.307087i \(-0.0993544\pi\)
\(710\) 0 0
\(711\) 21.3314 0.799990
\(712\) 0 0
\(713\) 40.5755 1.51957
\(714\) 0 0
\(715\) 19.9814i 0.747261i
\(716\) 0 0
\(717\) − 3.87736i − 0.144803i
\(718\) 0 0
\(719\) 42.8271 1.59718 0.798590 0.601875i \(-0.205579\pi\)
0.798590 + 0.601875i \(0.205579\pi\)
\(720\) 0 0
\(721\) −0.503322 −0.0187447
\(722\) 0 0
\(723\) − 4.09976i − 0.152472i
\(724\) 0 0
\(725\) 81.0629i 3.01060i
\(726\) 0 0
\(727\) −13.1739 −0.488594 −0.244297 0.969700i \(-0.578557\pi\)
−0.244297 + 0.969700i \(0.578557\pi\)
\(728\) 0 0
\(729\) 22.9765 0.850983
\(730\) 0 0
\(731\) − 30.7637i − 1.13784i
\(732\) 0 0
\(733\) 6.15717i 0.227420i 0.993514 + 0.113710i \(0.0362735\pi\)
−0.993514 + 0.113710i \(0.963726\pi\)
\(734\) 0 0
\(735\) 0.997636 0.0367983
\(736\) 0 0
\(737\) −23.4018 −0.862015
\(738\) 0 0
\(739\) 10.2396i 0.376669i 0.982105 + 0.188334i \(0.0603088\pi\)
−0.982105 + 0.188334i \(0.939691\pi\)
\(740\) 0 0
\(741\) 0.305341i 0.0112170i
\(742\) 0 0
\(743\) −19.4710 −0.714321 −0.357161 0.934043i \(-0.616255\pi\)
−0.357161 + 0.934043i \(0.616255\pi\)
\(744\) 0 0
\(745\) −42.0077 −1.53904
\(746\) 0 0
\(747\) − 21.2757i − 0.778437i
\(748\) 0 0
\(749\) 3.29814i 0.120511i
\(750\) 0 0
\(751\) −22.0975 −0.806350 −0.403175 0.915123i \(-0.632093\pi\)
−0.403175 + 0.915123i \(0.632093\pi\)
\(752\) 0 0
\(753\) 7.15725 0.260825
\(754\) 0 0
\(755\) − 15.0792i − 0.548788i
\(756\) 0 0
\(757\) 1.15259i 0.0418916i 0.999781 + 0.0209458i \(0.00666775\pi\)
−0.999781 + 0.0209458i \(0.993332\pi\)
\(758\) 0 0
\(759\) −12.0632 −0.437866
\(760\) 0 0
\(761\) 52.0968 1.88851 0.944253 0.329220i \(-0.106786\pi\)
0.944253 + 0.329220i \(0.106786\pi\)
\(762\) 0 0
\(763\) 17.1603i 0.621244i
\(764\) 0 0
\(765\) 37.2314i 1.34611i
\(766\) 0 0
\(767\) −4.78728 −0.172859
\(768\) 0 0
\(769\) −3.53413 −0.127444 −0.0637220 0.997968i \(-0.520297\pi\)
−0.0637220 + 0.997968i \(0.520297\pi\)
\(770\) 0 0
\(771\) − 5.01804i − 0.180720i
\(772\) 0 0
\(773\) 32.9280i 1.18434i 0.805814 + 0.592168i \(0.201728\pi\)
−0.805814 + 0.592168i \(0.798272\pi\)
\(774\) 0 0
\(775\) −41.4132 −1.48761
\(776\) 0 0
\(777\) −0.999358 −0.0358518
\(778\) 0 0
\(779\) 1.15101i 0.0412390i
\(780\) 0 0
\(781\) 4.78700i 0.171292i
\(782\) 0 0
\(783\) −16.4022 −0.586168
\(784\) 0 0
\(785\) −70.0125 −2.49885
\(786\) 0 0
\(787\) − 17.5105i − 0.624182i −0.950052 0.312091i \(-0.898971\pi\)
0.950052 0.312091i \(-0.101029\pi\)
\(788\) 0 0
\(789\) − 7.32964i − 0.260942i
\(790\) 0 0
\(791\) 4.38117 0.155777
\(792\) 0 0
\(793\) 0.861749 0.0306016
\(794\) 0 0
\(795\) 2.23179i 0.0791534i
\(796\) 0 0
\(797\) − 33.4031i − 1.18320i −0.806232 0.591600i \(-0.798497\pi\)
0.806232 0.591600i \(-0.201503\pi\)
\(798\) 0 0
\(799\) −47.4184 −1.67754
\(800\) 0 0
\(801\) 22.4031 0.791574
\(802\) 0 0
\(803\) 31.5057i 1.11181i
\(804\) 0 0
\(805\) 28.6169i 1.00861i
\(806\) 0 0
\(807\) −6.91768 −0.243514
\(808\) 0 0
\(809\) 11.3668 0.399636 0.199818 0.979833i \(-0.435965\pi\)
0.199818 + 0.979833i \(0.435965\pi\)
\(810\) 0 0
\(811\) 32.5379i 1.14256i 0.820756 + 0.571279i \(0.193553\pi\)
−0.820756 + 0.571279i \(0.806447\pi\)
\(812\) 0 0
\(813\) 0.731261i 0.0256465i
\(814\) 0 0
\(815\) 36.2571 1.27003
\(816\) 0 0
\(817\) 9.66959 0.338296
\(818\) 0 0
\(819\) 2.92389i 0.102169i
\(820\) 0 0
\(821\) − 34.1067i − 1.19033i −0.803603 0.595166i \(-0.797086\pi\)
0.803603 0.595166i \(-0.202914\pi\)
\(822\) 0 0
\(823\) 35.0649 1.22229 0.611143 0.791520i \(-0.290710\pi\)
0.611143 + 0.791520i \(0.290710\pi\)
\(824\) 0 0
\(825\) 12.3122 0.428657
\(826\) 0 0
\(827\) 22.8625i 0.795006i 0.917601 + 0.397503i \(0.130123\pi\)
−0.917601 + 0.397503i \(0.869877\pi\)
\(828\) 0 0
\(829\) − 45.9793i − 1.59693i −0.602042 0.798464i \(-0.705646\pi\)
0.602042 0.798464i \(-0.294354\pi\)
\(830\) 0 0
\(831\) −5.16417 −0.179143
\(832\) 0 0
\(833\) 3.52124 0.122004
\(834\) 0 0
\(835\) − 55.3337i − 1.91490i
\(836\) 0 0
\(837\) − 8.37954i − 0.289639i
\(838\) 0 0
\(839\) 23.4652 0.810108 0.405054 0.914293i \(-0.367253\pi\)
0.405054 + 0.914293i \(0.367253\pi\)
\(840\) 0 0
\(841\) −71.7288 −2.47341
\(842\) 0 0
\(843\) 3.95311i 0.136152i
\(844\) 0 0
\(845\) − 3.61620i − 0.124401i
\(846\) 0 0
\(847\) −19.5313 −0.671104
\(848\) 0 0
\(849\) −3.97920 −0.136566
\(850\) 0 0
\(851\) − 28.6663i − 0.982669i
\(852\) 0 0
\(853\) 1.79276i 0.0613831i 0.999529 + 0.0306915i \(0.00977095\pi\)
−0.999529 + 0.0306915i \(0.990229\pi\)
\(854\) 0 0
\(855\) −11.7025 −0.400217
\(856\) 0 0
\(857\) −22.0714 −0.753943 −0.376972 0.926225i \(-0.623035\pi\)
−0.376972 + 0.926225i \(0.623035\pi\)
\(858\) 0 0
\(859\) − 4.52672i − 0.154450i −0.997014 0.0772248i \(-0.975394\pi\)
0.997014 0.0772248i \(-0.0246059\pi\)
\(860\) 0 0
\(861\) − 0.286901i − 0.00977754i
\(862\) 0 0
\(863\) −51.4286 −1.75065 −0.875325 0.483534i \(-0.839353\pi\)
−0.875325 + 0.483534i \(0.839353\pi\)
\(864\) 0 0
\(865\) −46.3507 −1.57597
\(866\) 0 0
\(867\) 1.26928i 0.0431069i
\(868\) 0 0
\(869\) − 40.3117i − 1.36748i
\(870\) 0 0
\(871\) 4.23522 0.143505
\(872\) 0 0
\(873\) 37.3841 1.26526
\(874\) 0 0
\(875\) − 11.1267i − 0.376152i
\(876\) 0 0
\(877\) − 38.9877i − 1.31652i −0.752791 0.658260i \(-0.771293\pi\)
0.752791 0.658260i \(-0.228707\pi\)
\(878\) 0 0
\(879\) −1.37181 −0.0462700
\(880\) 0 0
\(881\) 36.2082 1.21989 0.609943 0.792445i \(-0.291192\pi\)
0.609943 + 0.792445i \(0.291192\pi\)
\(882\) 0 0
\(883\) − 49.4027i − 1.66253i −0.555875 0.831266i \(-0.687617\pi\)
0.555875 0.831266i \(-0.312383\pi\)
\(884\) 0 0
\(885\) 4.77596i 0.160542i
\(886\) 0 0
\(887\) −27.1660 −0.912146 −0.456073 0.889942i \(-0.650744\pi\)
−0.456073 + 0.889942i \(0.650744\pi\)
\(888\) 0 0
\(889\) 0.951245 0.0319037
\(890\) 0 0
\(891\) − 45.9768i − 1.54028i
\(892\) 0 0
\(893\) − 14.9044i − 0.498758i
\(894\) 0 0
\(895\) −27.0387 −0.903803
\(896\) 0 0
\(897\) 2.18318 0.0728943
\(898\) 0 0
\(899\) − 51.4601i − 1.71629i
\(900\) 0 0
\(901\) 7.87730i 0.262431i
\(902\) 0 0
\(903\) −2.41025 −0.0802081
\(904\) 0 0
\(905\) 81.3041 2.70264
\(906\) 0 0
\(907\) 22.3716i 0.742838i 0.928465 + 0.371419i \(0.121129\pi\)
−0.928465 + 0.371419i \(0.878871\pi\)
\(908\) 0 0
\(909\) 27.6646i 0.917577i
\(910\) 0 0
\(911\) −9.55929 −0.316713 −0.158357 0.987382i \(-0.550620\pi\)
−0.158357 + 0.987382i \(0.550620\pi\)
\(912\) 0 0
\(913\) −40.2064 −1.33064
\(914\) 0 0
\(915\) − 0.859711i − 0.0284212i
\(916\) 0 0
\(917\) 6.18131i 0.204125i
\(918\) 0 0
\(919\) 60.0820 1.98192 0.990961 0.134148i \(-0.0428298\pi\)
0.990961 + 0.134148i \(0.0428298\pi\)
\(920\) 0 0
\(921\) 0.698671 0.0230220
\(922\) 0 0
\(923\) − 0.866345i − 0.0285161i
\(924\) 0 0
\(925\) 29.2581i 0.962002i
\(926\) 0 0
\(927\) −1.47166 −0.0483356
\(928\) 0 0
\(929\) 10.2401 0.335966 0.167983 0.985790i \(-0.446275\pi\)
0.167983 + 0.985790i \(0.446275\pi\)
\(930\) 0 0
\(931\) 1.10679i 0.0362736i
\(932\) 0 0
\(933\) 5.91225i 0.193558i
\(934\) 0 0
\(935\) 70.3593 2.30100
\(936\) 0 0
\(937\) 34.9995 1.14338 0.571692 0.820469i \(-0.306287\pi\)
0.571692 + 0.820469i \(0.306287\pi\)
\(938\) 0 0
\(939\) 8.67523i 0.283105i
\(940\) 0 0
\(941\) − 20.3362i − 0.662941i −0.943466 0.331471i \(-0.892455\pi\)
0.943466 0.331471i \(-0.107545\pi\)
\(942\) 0 0
\(943\) 8.22967 0.267995
\(944\) 0 0
\(945\) 5.90988 0.192249
\(946\) 0 0
\(947\) 19.1433i 0.622073i 0.950398 + 0.311036i \(0.100676\pi\)
−0.950398 + 0.311036i \(0.899324\pi\)
\(948\) 0 0
\(949\) − 5.70186i − 0.185090i
\(950\) 0 0
\(951\) 5.53114 0.179360
\(952\) 0 0
\(953\) 41.8842 1.35676 0.678382 0.734710i \(-0.262682\pi\)
0.678382 + 0.734710i \(0.262682\pi\)
\(954\) 0 0
\(955\) 42.2333i 1.36664i
\(956\) 0 0
\(957\) 15.2992i 0.494553i
\(958\) 0 0
\(959\) 2.69492 0.0870234
\(960\) 0 0
\(961\) −4.71019 −0.151941
\(962\) 0 0
\(963\) 9.64340i 0.310754i
\(964\) 0 0
\(965\) − 42.0893i − 1.35490i
\(966\) 0 0
\(967\) 48.0006 1.54360 0.771798 0.635868i \(-0.219358\pi\)
0.771798 + 0.635868i \(0.219358\pi\)
\(968\) 0 0
\(969\) 1.07518 0.0345397
\(970\) 0 0
\(971\) − 2.14847i − 0.0689477i −0.999406 0.0344739i \(-0.989024\pi\)
0.999406 0.0344739i \(-0.0109755\pi\)
\(972\) 0 0
\(973\) 10.0486i 0.322145i
\(974\) 0 0
\(975\) −2.22825 −0.0713612
\(976\) 0 0
\(977\) 8.19821 0.262284 0.131142 0.991364i \(-0.458136\pi\)
0.131142 + 0.991364i \(0.458136\pi\)
\(978\) 0 0
\(979\) − 42.3369i − 1.35309i
\(980\) 0 0
\(981\) 50.1748i 1.60196i
\(982\) 0 0
\(983\) −7.16077 −0.228393 −0.114196 0.993458i \(-0.536429\pi\)
−0.114196 + 0.993458i \(0.536429\pi\)
\(984\) 0 0
\(985\) 20.2394 0.644880
\(986\) 0 0
\(987\) 3.71510i 0.118253i
\(988\) 0 0
\(989\) − 69.1374i − 2.19844i
\(990\) 0 0
\(991\) −22.3913 −0.711284 −0.355642 0.934622i \(-0.615738\pi\)
−0.355642 + 0.934622i \(0.615738\pi\)
\(992\) 0 0
\(993\) 6.95526 0.220719
\(994\) 0 0
\(995\) − 73.2432i − 2.32196i
\(996\) 0 0
\(997\) − 57.3479i − 1.81623i −0.418725 0.908113i \(-0.637523\pi\)
0.418725 0.908113i \(-0.362477\pi\)
\(998\) 0 0
\(999\) −5.92008 −0.187303
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.16 34
4.3 odd 2 728.2.c.a.365.18 yes 34
8.3 odd 2 728.2.c.a.365.17 34
8.5 even 2 inner 2912.2.c.a.1457.19 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.17 34 8.3 odd 2
728.2.c.a.365.18 yes 34 4.3 odd 2
2912.2.c.a.1457.16 34 1.1 even 1 trivial
2912.2.c.a.1457.19 34 8.5 even 2 inner