Properties

Label 728.2.c.a.365.11
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.11
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.687700 - 1.23575i) q^{2} +3.16783i q^{3} +(-1.05414 + 1.69965i) q^{4} -1.11795i q^{5} +(3.91463 - 2.17851i) q^{6} -1.00000 q^{7} +(2.82526 + 0.133800i) q^{8} -7.03512 q^{9} +(-1.38150 + 0.768812i) q^{10} -4.51562i q^{11} +(-5.38418 - 3.33932i) q^{12} -1.00000i q^{13} +(0.687700 + 1.23575i) q^{14} +3.54146 q^{15} +(-1.77759 - 3.58332i) q^{16} -4.44816 q^{17} +(4.83805 + 8.69362i) q^{18} -6.89036i q^{19} +(1.90011 + 1.17847i) q^{20} -3.16783i q^{21} +(-5.58016 + 3.10539i) q^{22} -2.66314 q^{23} +(-0.423854 + 8.94993i) q^{24} +3.75020 q^{25} +(-1.23575 + 0.687700i) q^{26} -12.7825i q^{27} +(1.05414 - 1.69965i) q^{28} +6.01139i q^{29} +(-2.43546 - 4.37635i) q^{30} +10.4802 q^{31} +(-3.20562 + 4.66090i) q^{32} +14.3047 q^{33} +(3.05900 + 5.49680i) q^{34} +1.11795i q^{35} +(7.41598 - 11.9572i) q^{36} -2.80922i q^{37} +(-8.51474 + 4.73850i) q^{38} +3.16783 q^{39} +(0.149581 - 3.15849i) q^{40} -4.93559 q^{41} +(-3.91463 + 2.17851i) q^{42} -4.88533i q^{43} +(7.67496 + 4.76009i) q^{44} +7.86489i q^{45} +(1.83144 + 3.29097i) q^{46} -6.35415 q^{47} +(11.3513 - 5.63109i) q^{48} +1.00000 q^{49} +(-2.57901 - 4.63429i) q^{50} -14.0910i q^{51} +(1.69965 + 1.05414i) q^{52} +6.02877i q^{53} +(-15.7960 + 8.79056i) q^{54} -5.04822 q^{55} +(-2.82526 - 0.133800i) q^{56} +21.8275 q^{57} +(7.42855 - 4.13403i) q^{58} -15.1683i q^{59} +(-3.73318 + 6.01923i) q^{60} -6.44954i q^{61} +(-7.20725 - 12.9509i) q^{62} +7.03512 q^{63} +(7.96420 + 0.756038i) q^{64} -1.11795 q^{65} +(-9.83734 - 17.6770i) q^{66} -5.98352i q^{67} +(4.68897 - 7.56030i) q^{68} -8.43637i q^{69} +(1.38150 - 0.768812i) q^{70} +0.527201 q^{71} +(-19.8760 - 0.941297i) q^{72} -7.57660 q^{73} +(-3.47148 + 1.93190i) q^{74} +11.8800i q^{75} +(11.7112 + 7.26339i) q^{76} +4.51562i q^{77} +(-2.17851 - 3.91463i) q^{78} +4.85576 q^{79} +(-4.00596 + 1.98725i) q^{80} +19.3875 q^{81} +(3.39421 + 6.09914i) q^{82} -2.98647i q^{83} +(5.38418 + 3.33932i) q^{84} +4.97281i q^{85} +(-6.03703 + 3.35964i) q^{86} -19.0430 q^{87} +(0.604189 - 12.7578i) q^{88} +5.07956 q^{89} +(9.71900 - 5.40868i) q^{90} +1.00000i q^{91} +(2.80732 - 4.52640i) q^{92} +33.1995i q^{93} +(4.36975 + 7.85212i) q^{94} -7.70306 q^{95} +(-14.7649 - 10.1549i) q^{96} -17.4191 q^{97} +(-0.687700 - 1.23575i) q^{98} +31.7679i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.687700 1.23575i −0.486277 0.873804i
\(3\) 3.16783i 1.82894i 0.404648 + 0.914472i \(0.367394\pi\)
−0.404648 + 0.914472i \(0.632606\pi\)
\(4\) −1.05414 + 1.69965i −0.527069 + 0.849823i
\(5\) 1.11795i 0.499961i −0.968251 0.249980i \(-0.919576\pi\)
0.968251 0.249980i \(-0.0804242\pi\)
\(6\) 3.91463 2.17851i 1.59814 0.889374i
\(7\) −1.00000 −0.377964
\(8\) 2.82526 + 0.133800i 0.998880 + 0.0473053i
\(9\) −7.03512 −2.34504
\(10\) −1.38150 + 0.768812i −0.436868 + 0.243120i
\(11\) 4.51562i 1.36151i −0.732511 0.680756i \(-0.761652\pi\)
0.732511 0.680756i \(-0.238348\pi\)
\(12\) −5.38418 3.33932i −1.55428 0.963979i
\(13\) 1.00000i 0.277350i
\(14\) 0.687700 + 1.23575i 0.183796 + 0.330267i
\(15\) 3.54146 0.914401
\(16\) −1.77759 3.58332i −0.444397 0.895830i
\(17\) −4.44816 −1.07884 −0.539419 0.842038i \(-0.681356\pi\)
−0.539419 + 0.842038i \(0.681356\pi\)
\(18\) 4.83805 + 8.69362i 1.14034 + 2.04911i
\(19\) 6.89036i 1.58076i −0.612619 0.790379i \(-0.709884\pi\)
0.612619 0.790379i \(-0.290116\pi\)
\(20\) 1.90011 + 1.17847i 0.424878 + 0.263514i
\(21\) 3.16783i 0.691276i
\(22\) −5.58016 + 3.10539i −1.18969 + 0.662072i
\(23\) −2.66314 −0.555303 −0.277652 0.960682i \(-0.589556\pi\)
−0.277652 + 0.960682i \(0.589556\pi\)
\(24\) −0.423854 + 8.94993i −0.0865189 + 1.82690i
\(25\) 3.75020 0.750039
\(26\) −1.23575 + 0.687700i −0.242350 + 0.134869i
\(27\) 12.7825i 2.46000i
\(28\) 1.05414 1.69965i 0.199213 0.321203i
\(29\) 6.01139i 1.11629i 0.829745 + 0.558143i \(0.188486\pi\)
−0.829745 + 0.558143i \(0.811514\pi\)
\(30\) −2.43546 4.37635i −0.444653 0.799008i
\(31\) 10.4802 1.88230 0.941152 0.337983i \(-0.109745\pi\)
0.941152 + 0.337983i \(0.109745\pi\)
\(32\) −3.20562 + 4.66090i −0.566680 + 0.823938i
\(33\) 14.3047 2.49013
\(34\) 3.05900 + 5.49680i 0.524615 + 0.942693i
\(35\) 1.11795i 0.188967i
\(36\) 7.41598 11.9572i 1.23600 1.99287i
\(37\) 2.80922i 0.461833i −0.972974 0.230916i \(-0.925828\pi\)
0.972974 0.230916i \(-0.0741724\pi\)
\(38\) −8.51474 + 4.73850i −1.38127 + 0.768686i
\(39\) 3.16783 0.507258
\(40\) 0.149581 3.15849i 0.0236508 0.499401i
\(41\) −4.93559 −0.770810 −0.385405 0.922748i \(-0.625938\pi\)
−0.385405 + 0.922748i \(0.625938\pi\)
\(42\) −3.91463 + 2.17851i −0.604040 + 0.336152i
\(43\) 4.88533i 0.745006i −0.928031 0.372503i \(-0.878500\pi\)
0.928031 0.372503i \(-0.121500\pi\)
\(44\) 7.67496 + 4.76009i 1.15704 + 0.717610i
\(45\) 7.86489i 1.17243i
\(46\) 1.83144 + 3.29097i 0.270031 + 0.485227i
\(47\) −6.35415 −0.926849 −0.463424 0.886136i \(-0.653379\pi\)
−0.463424 + 0.886136i \(0.653379\pi\)
\(48\) 11.3513 5.63109i 1.63842 0.812778i
\(49\) 1.00000 0.142857
\(50\) −2.57901 4.63429i −0.364727 0.655388i
\(51\) 14.0910i 1.97314i
\(52\) 1.69965 + 1.05414i 0.235698 + 0.146183i
\(53\) 6.02877i 0.828116i 0.910251 + 0.414058i \(0.135889\pi\)
−0.910251 + 0.414058i \(0.864111\pi\)
\(54\) −15.7960 + 8.79056i −2.14956 + 1.19624i
\(55\) −5.04822 −0.680702
\(56\) −2.82526 0.133800i −0.377541 0.0178797i
\(57\) 21.8275 2.89112
\(58\) 7.42855 4.13403i 0.975416 0.542825i
\(59\) 15.1683i 1.97475i −0.158400 0.987375i \(-0.550633\pi\)
0.158400 0.987375i \(-0.449367\pi\)
\(60\) −3.73318 + 6.01923i −0.481952 + 0.777079i
\(61\) 6.44954i 0.825779i −0.910781 0.412890i \(-0.864520\pi\)
0.910781 0.412890i \(-0.135480\pi\)
\(62\) −7.20725 12.9509i −0.915322 1.64477i
\(63\) 7.03512 0.886341
\(64\) 7.96420 + 0.756038i 0.995524 + 0.0945048i
\(65\) −1.11795 −0.138664
\(66\) −9.83734 17.6770i −1.21089 2.17589i
\(67\) 5.98352i 0.731004i −0.930811 0.365502i \(-0.880897\pi\)
0.930811 0.365502i \(-0.119103\pi\)
\(68\) 4.68897 7.56030i 0.568622 0.916821i
\(69\) 8.43637i 1.01562i
\(70\) 1.38150 0.768812i 0.165121 0.0918906i
\(71\) 0.527201 0.0625672 0.0312836 0.999511i \(-0.490040\pi\)
0.0312836 + 0.999511i \(0.490040\pi\)
\(72\) −19.8760 0.941297i −2.34241 0.110933i
\(73\) −7.57660 −0.886774 −0.443387 0.896330i \(-0.646223\pi\)
−0.443387 + 0.896330i \(0.646223\pi\)
\(74\) −3.47148 + 1.93190i −0.403552 + 0.224579i
\(75\) 11.8800i 1.37178i
\(76\) 11.7112 + 7.26339i 1.34336 + 0.833167i
\(77\) 4.51562i 0.514603i
\(78\) −2.17851 3.91463i −0.246668 0.443244i
\(79\) 4.85576 0.546316 0.273158 0.961969i \(-0.411932\pi\)
0.273158 + 0.961969i \(0.411932\pi\)
\(80\) −4.00596 + 1.98725i −0.447880 + 0.222181i
\(81\) 19.3875 2.15417
\(82\) 3.39421 + 6.09914i 0.374827 + 0.673537i
\(83\) 2.98647i 0.327808i −0.986476 0.163904i \(-0.947591\pi\)
0.986476 0.163904i \(-0.0524087\pi\)
\(84\) 5.38418 + 3.33932i 0.587462 + 0.364350i
\(85\) 4.97281i 0.539377i
\(86\) −6.03703 + 3.35964i −0.650990 + 0.362280i
\(87\) −19.0430 −2.04163
\(88\) 0.604189 12.7578i 0.0644068 1.35999i
\(89\) 5.07956 0.538432 0.269216 0.963080i \(-0.413235\pi\)
0.269216 + 0.963080i \(0.413235\pi\)
\(90\) 9.71900 5.40868i 1.02447 0.570125i
\(91\) 1.00000i 0.104828i
\(92\) 2.80732 4.52640i 0.292683 0.471909i
\(93\) 33.1995i 3.44263i
\(94\) 4.36975 + 7.85212i 0.450706 + 0.809885i
\(95\) −7.70306 −0.790317
\(96\) −14.7649 10.1549i −1.50694 1.03643i
\(97\) −17.4191 −1.76864 −0.884320 0.466881i \(-0.845378\pi\)
−0.884320 + 0.466881i \(0.845378\pi\)
\(98\) −0.687700 1.23575i −0.0694682 0.124829i
\(99\) 31.7679i 3.19280i
\(100\) −3.95322 + 6.37400i −0.395322 + 0.637400i
\(101\) 12.0937i 1.20337i −0.798733 0.601685i \(-0.794496\pi\)
0.798733 0.601685i \(-0.205504\pi\)
\(102\) −17.4129 + 9.69038i −1.72413 + 0.959491i
\(103\) −10.2847 −1.01338 −0.506689 0.862129i \(-0.669131\pi\)
−0.506689 + 0.862129i \(0.669131\pi\)
\(104\) 0.133800 2.82526i 0.0131201 0.277040i
\(105\) −3.54146 −0.345611
\(106\) 7.45003 4.14599i 0.723611 0.402694i
\(107\) 3.16408i 0.305883i 0.988235 + 0.152942i \(0.0488746\pi\)
−0.988235 + 0.152942i \(0.951125\pi\)
\(108\) 21.7258 + 13.4746i 2.09057 + 1.29659i
\(109\) 9.48432i 0.908433i 0.890891 + 0.454216i \(0.150081\pi\)
−0.890891 + 0.454216i \(0.849919\pi\)
\(110\) 3.47166 + 6.23832i 0.331010 + 0.594801i
\(111\) 8.89912 0.844667
\(112\) 1.77759 + 3.58332i 0.167966 + 0.338592i
\(113\) −10.2704 −0.966163 −0.483081 0.875575i \(-0.660482\pi\)
−0.483081 + 0.875575i \(0.660482\pi\)
\(114\) −15.0107 26.9732i −1.40589 2.52627i
\(115\) 2.97725i 0.277630i
\(116\) −10.2172 6.33683i −0.948646 0.588360i
\(117\) 7.03512i 0.650397i
\(118\) −18.7442 + 10.4313i −1.72555 + 0.960276i
\(119\) 4.44816 0.407762
\(120\) 10.0055 + 0.473846i 0.913377 + 0.0432561i
\(121\) −9.39084 −0.853713
\(122\) −7.97000 + 4.43535i −0.721570 + 0.401558i
\(123\) 15.6351i 1.40977i
\(124\) −11.0476 + 17.8127i −0.992103 + 1.59962i
\(125\) 9.78225i 0.874951i
\(126\) −4.83805 8.69362i −0.431008 0.774489i
\(127\) 21.8163 1.93588 0.967941 0.251179i \(-0.0808182\pi\)
0.967941 + 0.251179i \(0.0808182\pi\)
\(128\) −4.54271 10.3617i −0.401522 0.915849i
\(129\) 15.4759 1.36258
\(130\) 0.768812 + 1.38150i 0.0674293 + 0.121165i
\(131\) 15.7094i 1.37253i 0.727350 + 0.686266i \(0.240751\pi\)
−0.727350 + 0.686266i \(0.759249\pi\)
\(132\) −15.0791 + 24.3129i −1.31247 + 2.11617i
\(133\) 6.89036i 0.597470i
\(134\) −7.39412 + 4.11487i −0.638754 + 0.355471i
\(135\) −14.2902 −1.22990
\(136\) −12.5672 0.595163i −1.07763 0.0510348i
\(137\) 0.178216 0.0152260 0.00761299 0.999971i \(-0.497577\pi\)
0.00761299 + 0.999971i \(0.497577\pi\)
\(138\) −10.4252 + 5.80169i −0.887453 + 0.493873i
\(139\) 12.0375i 1.02100i 0.859877 + 0.510502i \(0.170540\pi\)
−0.859877 + 0.510502i \(0.829460\pi\)
\(140\) −1.90011 1.17847i −0.160589 0.0995988i
\(141\) 20.1289i 1.69516i
\(142\) −0.362556 0.651486i −0.0304250 0.0546715i
\(143\) −4.51562 −0.377615
\(144\) 12.5055 + 25.2091i 1.04213 + 2.10076i
\(145\) 6.72041 0.558100
\(146\) 5.21043 + 9.36275i 0.431218 + 0.774867i
\(147\) 3.16783i 0.261278i
\(148\) 4.77468 + 2.96130i 0.392476 + 0.243418i
\(149\) 2.45649i 0.201243i −0.994925 0.100622i \(-0.967917\pi\)
0.994925 0.100622i \(-0.0320832\pi\)
\(150\) 14.6806 8.16985i 1.19867 0.667066i
\(151\) −7.03048 −0.572133 −0.286066 0.958210i \(-0.592348\pi\)
−0.286066 + 0.958210i \(0.592348\pi\)
\(152\) 0.921928 19.4671i 0.0747783 1.57899i
\(153\) 31.2933 2.52992
\(154\) 5.58016 3.10539i 0.449662 0.250240i
\(155\) 11.7163i 0.941079i
\(156\) −3.33932 + 5.38418i −0.267360 + 0.431079i
\(157\) 3.93708i 0.314213i −0.987582 0.157107i \(-0.949783\pi\)
0.987582 0.157107i \(-0.0502166\pi\)
\(158\) −3.33931 6.00049i −0.265661 0.477373i
\(159\) −19.0981 −1.51458
\(160\) 5.21064 + 3.58372i 0.411937 + 0.283318i
\(161\) 2.66314 0.209885
\(162\) −13.3328 23.9581i −1.04752 1.88232i
\(163\) 13.7052i 1.07347i −0.843750 0.536736i \(-0.819657\pi\)
0.843750 0.536736i \(-0.180343\pi\)
\(164\) 5.20279 8.38876i 0.406270 0.655052i
\(165\) 15.9919i 1.24497i
\(166\) −3.69052 + 2.05380i −0.286440 + 0.159405i
\(167\) −10.1840 −0.788061 −0.394031 0.919097i \(-0.628920\pi\)
−0.394031 + 0.919097i \(0.628920\pi\)
\(168\) 0.423854 8.94993i 0.0327011 0.690502i
\(169\) −1.00000 −0.0769231
\(170\) 6.14513 3.41980i 0.471310 0.262287i
\(171\) 48.4745i 3.70694i
\(172\) 8.30334 + 5.14981i 0.633123 + 0.392670i
\(173\) 6.19802i 0.471227i 0.971847 + 0.235614i \(0.0757099\pi\)
−0.971847 + 0.235614i \(0.924290\pi\)
\(174\) 13.0959 + 23.5323i 0.992797 + 1.78398i
\(175\) −3.75020 −0.283488
\(176\) −16.1809 + 8.02692i −1.21968 + 0.605052i
\(177\) 48.0507 3.61171
\(178\) −3.49321 6.27705i −0.261827 0.470485i
\(179\) 11.4822i 0.858220i −0.903252 0.429110i \(-0.858827\pi\)
0.903252 0.429110i \(-0.141173\pi\)
\(180\) −13.3675 8.29067i −0.996356 0.617950i
\(181\) 26.3811i 1.96089i −0.196787 0.980446i \(-0.563051\pi\)
0.196787 0.980446i \(-0.436949\pi\)
\(182\) 1.23575 0.687700i 0.0915996 0.0509757i
\(183\) 20.4310 1.51030
\(184\) −7.52407 0.356328i −0.554682 0.0262688i
\(185\) −3.14056 −0.230898
\(186\) 41.0262 22.8313i 3.00819 1.67407i
\(187\) 20.0862i 1.46885i
\(188\) 6.69815 10.7998i 0.488513 0.787657i
\(189\) 12.7825i 0.929793i
\(190\) 5.29739 + 9.51902i 0.384313 + 0.690582i
\(191\) 8.81111 0.637549 0.318775 0.947831i \(-0.396729\pi\)
0.318775 + 0.947831i \(0.396729\pi\)
\(192\) −2.39500 + 25.2292i −0.172844 + 1.82076i
\(193\) −0.353957 −0.0254784 −0.0127392 0.999919i \(-0.504055\pi\)
−0.0127392 + 0.999919i \(0.504055\pi\)
\(194\) 11.9791 + 21.5256i 0.860050 + 1.54545i
\(195\) 3.54146i 0.253609i
\(196\) −1.05414 + 1.69965i −0.0752955 + 0.121403i
\(197\) 5.33967i 0.380436i 0.981742 + 0.190218i \(0.0609195\pi\)
−0.981742 + 0.190218i \(0.939081\pi\)
\(198\) 39.2571 21.8468i 2.78988 1.55259i
\(199\) 13.5233 0.958642 0.479321 0.877640i \(-0.340883\pi\)
0.479321 + 0.877640i \(0.340883\pi\)
\(200\) 10.5953 + 0.501775i 0.749199 + 0.0354809i
\(201\) 18.9548 1.33697
\(202\) −14.9448 + 8.31686i −1.05151 + 0.585172i
\(203\) 6.01139i 0.421917i
\(204\) 23.9497 + 14.8539i 1.67682 + 1.03998i
\(205\) 5.51773i 0.385375i
\(206\) 7.07277 + 12.7092i 0.492783 + 0.885495i
\(207\) 18.7355 1.30221
\(208\) −3.58332 + 1.77759i −0.248458 + 0.123254i
\(209\) −31.1143 −2.15222
\(210\) 2.43546 + 4.37635i 0.168063 + 0.301997i
\(211\) 7.02940i 0.483924i 0.970286 + 0.241962i \(0.0777909\pi\)
−0.970286 + 0.241962i \(0.922209\pi\)
\(212\) −10.2468 6.35516i −0.703752 0.436474i
\(213\) 1.67008i 0.114432i
\(214\) 3.91000 2.17594i 0.267282 0.148744i
\(215\) −5.46154 −0.372474
\(216\) 1.71030 36.1140i 0.116371 2.45725i
\(217\) −10.4802 −0.711444
\(218\) 11.7202 6.52236i 0.793793 0.441750i
\(219\) 24.0013i 1.62186i
\(220\) 5.32152 8.58019i 0.358777 0.578476i
\(221\) 4.44816i 0.299216i
\(222\) −6.11992 10.9971i −0.410742 0.738074i
\(223\) −15.1940 −1.01747 −0.508734 0.860924i \(-0.669886\pi\)
−0.508734 + 0.860924i \(0.669886\pi\)
\(224\) 3.20562 4.66090i 0.214185 0.311419i
\(225\) −26.3831 −1.75887
\(226\) 7.06299 + 12.6917i 0.469823 + 0.844237i
\(227\) 3.08660i 0.204865i −0.994740 0.102432i \(-0.967337\pi\)
0.994740 0.102432i \(-0.0326625\pi\)
\(228\) −23.0091 + 37.0989i −1.52382 + 2.45694i
\(229\) 8.10820i 0.535805i 0.963446 + 0.267902i \(0.0863305\pi\)
−0.963446 + 0.267902i \(0.913669\pi\)
\(230\) 3.67912 2.04745i 0.242594 0.135005i
\(231\) −14.3047 −0.941180
\(232\) −0.804322 + 16.9837i −0.0528063 + 1.11504i
\(233\) 11.7007 0.766541 0.383270 0.923636i \(-0.374798\pi\)
0.383270 + 0.923636i \(0.374798\pi\)
\(234\) 8.69362 4.83805i 0.568320 0.316273i
\(235\) 7.10361i 0.463388i
\(236\) 25.7808 + 15.9895i 1.67819 + 1.04083i
\(237\) 15.3822i 0.999181i
\(238\) −3.05900 5.49680i −0.198286 0.356305i
\(239\) −26.1557 −1.69187 −0.845935 0.533286i \(-0.820957\pi\)
−0.845935 + 0.533286i \(0.820957\pi\)
\(240\) −6.29526 12.6902i −0.406357 0.819148i
\(241\) −13.3340 −0.858916 −0.429458 0.903087i \(-0.641295\pi\)
−0.429458 + 0.903087i \(0.641295\pi\)
\(242\) 6.45808 + 11.6047i 0.415141 + 0.745978i
\(243\) 23.0686i 1.47985i
\(244\) 10.9619 + 6.79870i 0.701766 + 0.435242i
\(245\) 1.11795i 0.0714230i
\(246\) −19.3210 + 10.7523i −1.23186 + 0.685539i
\(247\) −6.89036 −0.438423
\(248\) 29.6094 + 1.40225i 1.88020 + 0.0890430i
\(249\) 9.46061 0.599542
\(250\) −12.0884 + 6.72726i −0.764536 + 0.425469i
\(251\) 15.0492i 0.949896i −0.880014 0.474948i \(-0.842467\pi\)
0.880014 0.474948i \(-0.157533\pi\)
\(252\) −7.41598 + 11.9572i −0.467163 + 0.753233i
\(253\) 12.0257i 0.756052i
\(254\) −15.0031 26.9594i −0.941375 1.69158i
\(255\) −15.7530 −0.986490
\(256\) −9.68035 + 12.7393i −0.605022 + 0.796209i
\(257\) 1.36042 0.0848609 0.0424305 0.999099i \(-0.486490\pi\)
0.0424305 + 0.999099i \(0.486490\pi\)
\(258\) −10.6428 19.1243i −0.662590 1.19062i
\(259\) 2.80922i 0.174556i
\(260\) 1.17847 1.90011i 0.0730856 0.117840i
\(261\) 42.2908i 2.61774i
\(262\) 19.4128 10.8033i 1.19932 0.667431i
\(263\) −11.1149 −0.685373 −0.342687 0.939450i \(-0.611337\pi\)
−0.342687 + 0.939450i \(0.611337\pi\)
\(264\) 40.4145 + 1.91397i 2.48734 + 0.117796i
\(265\) 6.73985 0.414026
\(266\) 8.51474 4.73850i 0.522072 0.290536i
\(267\) 16.0912i 0.984763i
\(268\) 10.1699 + 6.30745i 0.621224 + 0.385289i
\(269\) 7.18479i 0.438064i 0.975718 + 0.219032i \(0.0702900\pi\)
−0.975718 + 0.219032i \(0.929710\pi\)
\(270\) 9.82737 + 17.6591i 0.598075 + 1.07470i
\(271\) 26.3646 1.60154 0.800769 0.598974i \(-0.204425\pi\)
0.800769 + 0.598974i \(0.204425\pi\)
\(272\) 7.90701 + 15.9392i 0.479433 + 0.966455i
\(273\) −3.16783 −0.191726
\(274\) −0.122559 0.220229i −0.00740405 0.0133045i
\(275\) 16.9345i 1.02119i
\(276\) 14.3388 + 8.89309i 0.863096 + 0.535301i
\(277\) 9.62372i 0.578233i 0.957294 + 0.289116i \(0.0933615\pi\)
−0.957294 + 0.289116i \(0.906639\pi\)
\(278\) 14.8752 8.27816i 0.892157 0.496491i
\(279\) −73.7296 −4.41408
\(280\) −0.149581 + 3.15849i −0.00893917 + 0.188756i
\(281\) −13.8037 −0.823460 −0.411730 0.911306i \(-0.635075\pi\)
−0.411730 + 0.911306i \(0.635075\pi\)
\(282\) −24.8742 + 13.8426i −1.48123 + 0.824316i
\(283\) 7.76345i 0.461489i 0.973014 + 0.230744i \(0.0741161\pi\)
−0.973014 + 0.230744i \(0.925884\pi\)
\(284\) −0.555742 + 0.896054i −0.0329772 + 0.0531710i
\(285\) 24.4019i 1.44545i
\(286\) 3.10539 + 5.58016i 0.183626 + 0.329962i
\(287\) 4.93559 0.291339
\(288\) 22.5519 32.7900i 1.32889 1.93217i
\(289\) 2.78615 0.163891
\(290\) −4.62163 8.30472i −0.271391 0.487670i
\(291\) 55.1806i 3.23475i
\(292\) 7.98677 12.8775i 0.467391 0.753600i
\(293\) 23.4220i 1.36833i 0.729329 + 0.684163i \(0.239832\pi\)
−0.729329 + 0.684163i \(0.760168\pi\)
\(294\) 3.91463 2.17851i 0.228306 0.127053i
\(295\) −16.9574 −0.987298
\(296\) 0.375873 7.93678i 0.0218472 0.461316i
\(297\) −57.7211 −3.34932
\(298\) −3.03560 + 1.68933i −0.175847 + 0.0978602i
\(299\) 2.66314i 0.154013i
\(300\) −20.1917 12.5231i −1.16577 0.723022i
\(301\) 4.88533i 0.281586i
\(302\) 4.83486 + 8.68789i 0.278215 + 0.499932i
\(303\) 38.3108 2.20090
\(304\) −24.6904 + 12.2482i −1.41609 + 0.702484i
\(305\) −7.21024 −0.412857
\(306\) −21.5204 38.6706i −1.23024 2.21065i
\(307\) 7.12411i 0.406594i 0.979117 + 0.203297i \(0.0651657\pi\)
−0.979117 + 0.203297i \(0.934834\pi\)
\(308\) −7.67496 4.76009i −0.437321 0.271231i
\(309\) 32.5800i 1.85341i
\(310\) −14.4784 + 8.05732i −0.822319 + 0.457625i
\(311\) −16.3917 −0.929486 −0.464743 0.885446i \(-0.653853\pi\)
−0.464743 + 0.885446i \(0.653853\pi\)
\(312\) 8.94993 + 0.423854i 0.506690 + 0.0239960i
\(313\) 14.5603 0.822998 0.411499 0.911410i \(-0.365005\pi\)
0.411499 + 0.911410i \(0.365005\pi\)
\(314\) −4.86523 + 2.70753i −0.274561 + 0.152795i
\(315\) 7.86489i 0.443136i
\(316\) −5.11864 + 8.25307i −0.287946 + 0.464272i
\(317\) 24.5206i 1.37721i −0.725135 0.688607i \(-0.758223\pi\)
0.725135 0.688607i \(-0.241777\pi\)
\(318\) 13.1338 + 23.6004i 0.736505 + 1.32345i
\(319\) 27.1452 1.51984
\(320\) 0.845210 8.90355i 0.0472487 0.497723i
\(321\) −10.0233 −0.559443
\(322\) −1.83144 3.29097i −0.102062 0.183398i
\(323\) 30.6494i 1.70538i
\(324\) −20.4371 + 32.9519i −1.13539 + 1.83066i
\(325\) 3.75020i 0.208023i
\(326\) −16.9361 + 9.42505i −0.938005 + 0.522005i
\(327\) −30.0447 −1.66147
\(328\) −13.9443 0.660381i −0.769947 0.0364634i
\(329\) 6.35415 0.350316
\(330\) −19.7619 + 10.9976i −1.08786 + 0.605399i
\(331\) 1.15297i 0.0633727i −0.999498 0.0316864i \(-0.989912\pi\)
0.999498 0.0316864i \(-0.0100878\pi\)
\(332\) 5.07594 + 3.14815i 0.278578 + 0.172777i
\(333\) 19.7632i 1.08302i
\(334\) 7.00353 + 12.5848i 0.383216 + 0.688611i
\(335\) −6.68926 −0.365473
\(336\) −11.3513 + 5.63109i −0.619266 + 0.307201i
\(337\) 34.0718 1.85601 0.928004 0.372569i \(-0.121523\pi\)
0.928004 + 0.372569i \(0.121523\pi\)
\(338\) 0.687700 + 1.23575i 0.0374060 + 0.0672157i
\(339\) 32.5350i 1.76706i
\(340\) −8.45201 5.24202i −0.458375 0.284289i
\(341\) 47.3247i 2.56278i
\(342\) 59.9022 33.3359i 3.23914 1.80260i
\(343\) −1.00000 −0.0539949
\(344\) 0.653656 13.8023i 0.0352428 0.744172i
\(345\) −9.43141 −0.507770
\(346\) 7.65918 4.26238i 0.411760 0.229147i
\(347\) 10.9924i 0.590103i 0.955481 + 0.295051i \(0.0953367\pi\)
−0.955481 + 0.295051i \(0.904663\pi\)
\(348\) 20.0740 32.3664i 1.07608 1.73502i
\(349\) 6.05336i 0.324029i −0.986788 0.162014i \(-0.948201\pi\)
0.986788 0.162014i \(-0.0517991\pi\)
\(350\) 2.57901 + 4.63429i 0.137854 + 0.247713i
\(351\) −12.7825 −0.682282
\(352\) 21.0469 + 14.4754i 1.12180 + 0.771541i
\(353\) 6.11657 0.325552 0.162776 0.986663i \(-0.447955\pi\)
0.162776 + 0.986663i \(0.447955\pi\)
\(354\) −33.0444 59.3784i −1.75629 3.15593i
\(355\) 0.589382i 0.0312812i
\(356\) −5.35455 + 8.63345i −0.283791 + 0.457572i
\(357\) 14.0910i 0.745775i
\(358\) −14.1891 + 7.89631i −0.749916 + 0.417333i
\(359\) 1.19941 0.0633027 0.0316513 0.999499i \(-0.489923\pi\)
0.0316513 + 0.999499i \(0.489923\pi\)
\(360\) −1.05232 + 22.2204i −0.0554621 + 1.17112i
\(361\) −28.4771 −1.49879
\(362\) −32.6004 + 18.1423i −1.71344 + 0.953538i
\(363\) 29.7485i 1.56139i
\(364\) −1.69965 1.05414i −0.0890856 0.0552518i
\(365\) 8.47023i 0.443352i
\(366\) −14.0504 25.2476i −0.734427 1.31971i
\(367\) 6.89769 0.360056 0.180028 0.983661i \(-0.442381\pi\)
0.180028 + 0.983661i \(0.442381\pi\)
\(368\) 4.73397 + 9.54288i 0.246775 + 0.497457i
\(369\) 34.7225 1.80758
\(370\) 2.15976 + 3.88093i 0.112281 + 0.201760i
\(371\) 6.02877i 0.312998i
\(372\) −56.4274 34.9969i −2.92563 1.81450i
\(373\) 11.8425i 0.613180i 0.951842 + 0.306590i \(0.0991881\pi\)
−0.951842 + 0.306590i \(0.900812\pi\)
\(374\) 24.8215 13.8133i 1.28349 0.714269i
\(375\) 30.9885 1.60024
\(376\) −17.9521 0.850184i −0.925811 0.0438449i
\(377\) 6.01139 0.309602
\(378\) 15.7960 8.79056i 0.812458 0.452138i
\(379\) 25.1816i 1.29349i −0.762705 0.646746i \(-0.776129\pi\)
0.762705 0.646746i \(-0.223871\pi\)
\(380\) 8.12008 13.0925i 0.416551 0.671629i
\(381\) 69.1101i 3.54062i
\(382\) −6.05940 10.8883i −0.310026 0.557093i
\(383\) −5.10219 −0.260710 −0.130355 0.991467i \(-0.541612\pi\)
−0.130355 + 0.991467i \(0.541612\pi\)
\(384\) 32.8239 14.3905i 1.67504 0.734362i
\(385\) 5.04822 0.257281
\(386\) 0.243416 + 0.437401i 0.0123896 + 0.0222631i
\(387\) 34.3689i 1.74707i
\(388\) 18.3621 29.6063i 0.932195 1.50303i
\(389\) 10.1680i 0.515536i 0.966207 + 0.257768i \(0.0829871\pi\)
−0.966207 + 0.257768i \(0.917013\pi\)
\(390\) −4.37635 + 2.43546i −0.221605 + 0.123324i
\(391\) 11.8461 0.599082
\(392\) 2.82526 + 0.133800i 0.142697 + 0.00675791i
\(393\) −49.7645 −2.51029
\(394\) 6.59848 3.67209i 0.332427 0.184997i
\(395\) 5.42848i 0.273137i
\(396\) −53.9942 33.4878i −2.71331 1.68282i
\(397\) 18.3066i 0.918779i 0.888235 + 0.459390i \(0.151932\pi\)
−0.888235 + 0.459390i \(0.848068\pi\)
\(398\) −9.29998 16.7114i −0.466166 0.837666i
\(399\) −21.8275 −1.09274
\(400\) −6.66631 13.4381i −0.333315 0.671907i
\(401\) 17.2034 0.859099 0.429549 0.903043i \(-0.358672\pi\)
0.429549 + 0.903043i \(0.358672\pi\)
\(402\) −13.0352 23.4233i −0.650136 1.16825i
\(403\) 10.4802i 0.522057i
\(404\) 20.5550 + 12.7484i 1.02265 + 0.634259i
\(405\) 21.6742i 1.07700i
\(406\) −7.42855 + 4.13403i −0.368673 + 0.205169i
\(407\) −12.6854 −0.628791
\(408\) 1.88537 39.8108i 0.0933398 1.97093i
\(409\) 8.95836 0.442962 0.221481 0.975165i \(-0.428911\pi\)
0.221481 + 0.975165i \(0.428911\pi\)
\(410\) 6.81851 3.79454i 0.336742 0.187399i
\(411\) 0.564556i 0.0278475i
\(412\) 10.8415 17.4803i 0.534120 0.861192i
\(413\) 15.1683i 0.746385i
\(414\) −12.8844 23.1523i −0.633234 1.13788i
\(415\) −3.33871 −0.163891
\(416\) 4.66090 + 3.20562i 0.228519 + 0.157169i
\(417\) −38.1325 −1.86736
\(418\) 21.3973 + 38.4493i 1.04658 + 1.88062i
\(419\) 0.476426i 0.0232749i −0.999932 0.0116375i \(-0.996296\pi\)
0.999932 0.0116375i \(-0.00370440\pi\)
\(420\) 3.73318 6.01923i 0.182161 0.293708i
\(421\) 4.92425i 0.239993i 0.992774 + 0.119997i \(0.0382884\pi\)
−0.992774 + 0.119997i \(0.961712\pi\)
\(422\) 8.68655 4.83412i 0.422855 0.235321i
\(423\) 44.7022 2.17350
\(424\) −0.806648 + 17.0329i −0.0391743 + 0.827189i
\(425\) −16.6815 −0.809171
\(426\) 2.06379 1.14851i 0.0999912 0.0556457i
\(427\) 6.44954i 0.312115i
\(428\) −5.37781 3.33537i −0.259946 0.161221i
\(429\) 14.3047i 0.690638i
\(430\) 3.75590 + 6.74908i 0.181126 + 0.325470i
\(431\) 17.7040 0.852770 0.426385 0.904542i \(-0.359787\pi\)
0.426385 + 0.904542i \(0.359787\pi\)
\(432\) −45.8039 + 22.7221i −2.20374 + 1.09322i
\(433\) −13.1961 −0.634165 −0.317083 0.948398i \(-0.602703\pi\)
−0.317083 + 0.948398i \(0.602703\pi\)
\(434\) 7.20725 + 12.9509i 0.345959 + 0.621663i
\(435\) 21.2891i 1.02073i
\(436\) −16.1200 9.99777i −0.772007 0.478806i
\(437\) 18.3500i 0.877800i
\(438\) −29.6596 + 16.5057i −1.41719 + 0.788674i
\(439\) −18.7265 −0.893767 −0.446884 0.894592i \(-0.647466\pi\)
−0.446884 + 0.894592i \(0.647466\pi\)
\(440\) −14.2626 0.675451i −0.679940 0.0322009i
\(441\) −7.03512 −0.335006
\(442\) 5.49680 3.05900i 0.261456 0.145502i
\(443\) 20.1309i 0.956450i 0.878237 + 0.478225i \(0.158720\pi\)
−0.878237 + 0.478225i \(0.841280\pi\)
\(444\) −9.38089 + 15.1253i −0.445197 + 0.717817i
\(445\) 5.67868i 0.269195i
\(446\) 10.4489 + 18.7760i 0.494772 + 0.889068i
\(447\) 7.78173 0.368063
\(448\) −7.96420 0.756038i −0.376273 0.0357194i
\(449\) −10.7517 −0.507403 −0.253702 0.967283i \(-0.581648\pi\)
−0.253702 + 0.967283i \(0.581648\pi\)
\(450\) 18.1436 + 32.6028i 0.855299 + 1.53691i
\(451\) 22.2873i 1.04947i
\(452\) 10.8265 17.4561i 0.509234 0.821067i
\(453\) 22.2713i 1.04640i
\(454\) −3.81425 + 2.12265i −0.179012 + 0.0996210i
\(455\) 1.11795 0.0524101
\(456\) 61.6683 + 2.92051i 2.88788 + 0.136765i
\(457\) 3.24345 0.151722 0.0758610 0.997118i \(-0.475829\pi\)
0.0758610 + 0.997118i \(0.475829\pi\)
\(458\) 10.0197 5.57601i 0.468189 0.260550i
\(459\) 56.8588i 2.65394i
\(460\) −5.06027 3.13843i −0.235936 0.146330i
\(461\) 27.3854i 1.27546i 0.770258 + 0.637732i \(0.220127\pi\)
−0.770258 + 0.637732i \(0.779873\pi\)
\(462\) 9.83734 + 17.6770i 0.457675 + 0.822408i
\(463\) 41.5405 1.93055 0.965276 0.261233i \(-0.0841291\pi\)
0.965276 + 0.261233i \(0.0841291\pi\)
\(464\) 21.5407 10.6858i 1.00000 0.496075i
\(465\) 37.1153 1.72118
\(466\) −8.04660 14.4591i −0.372751 0.669807i
\(467\) 22.2758i 1.03080i −0.856949 0.515400i \(-0.827643\pi\)
0.856949 0.515400i \(-0.172357\pi\)
\(468\) −11.9572 7.41598i −0.552722 0.342804i
\(469\) 5.98352i 0.276293i
\(470\) 8.77825 4.88515i 0.404911 0.225335i
\(471\) 12.4720 0.574678
\(472\) 2.02952 42.8545i 0.0934162 1.97254i
\(473\) −22.0603 −1.01433
\(474\) 19.0085 10.5783i 0.873089 0.485879i
\(475\) 25.8402i 1.18563i
\(476\) −4.68897 + 7.56030i −0.214919 + 0.346526i
\(477\) 42.4131i 1.94196i
\(478\) 17.9873 + 32.3218i 0.822718 + 1.47836i
\(479\) 33.6848 1.53910 0.769549 0.638588i \(-0.220481\pi\)
0.769549 + 0.638588i \(0.220481\pi\)
\(480\) −11.3526 + 16.5064i −0.518172 + 0.753410i
\(481\) −2.80922 −0.128089
\(482\) 9.16977 + 16.4774i 0.417671 + 0.750525i
\(483\) 8.43637i 0.383868i
\(484\) 9.89924 15.9611i 0.449965 0.725505i
\(485\) 19.4736i 0.884251i
\(486\) 28.5070 15.8643i 1.29310 0.719620i
\(487\) 8.82614 0.399951 0.199975 0.979801i \(-0.435914\pi\)
0.199975 + 0.979801i \(0.435914\pi\)
\(488\) 0.862947 18.2216i 0.0390638 0.824855i
\(489\) 43.4156 1.96332
\(490\) −1.38150 + 0.768812i −0.0624097 + 0.0347314i
\(491\) 8.33126i 0.375984i 0.982171 + 0.187992i \(0.0601980\pi\)
−0.982171 + 0.187992i \(0.939802\pi\)
\(492\) 26.5741 + 16.4815i 1.19805 + 0.743045i
\(493\) 26.7396i 1.20429i
\(494\) 4.73850 + 8.51474i 0.213195 + 0.383096i
\(495\) 35.5149 1.59627
\(496\) −18.6295 37.5540i −0.836491 1.68622i
\(497\) −0.527201 −0.0236482
\(498\) −6.50606 11.6909i −0.291544 0.523882i
\(499\) 24.1391i 1.08061i −0.841468 0.540306i \(-0.818308\pi\)
0.841468 0.540306i \(-0.181692\pi\)
\(500\) 16.6264 + 10.3118i 0.743553 + 0.461159i
\(501\) 32.2611i 1.44132i
\(502\) −18.5970 + 10.3493i −0.830024 + 0.461913i
\(503\) 23.5917 1.05190 0.525952 0.850514i \(-0.323709\pi\)
0.525952 + 0.850514i \(0.323709\pi\)
\(504\) 19.8760 + 0.941297i 0.885349 + 0.0419287i
\(505\) −13.5201 −0.601638
\(506\) 14.8608 8.27010i 0.660641 0.367651i
\(507\) 3.16783i 0.140688i
\(508\) −22.9973 + 37.0799i −1.02034 + 1.64516i
\(509\) 28.5768i 1.26664i −0.773889 0.633322i \(-0.781691\pi\)
0.773889 0.633322i \(-0.218309\pi\)
\(510\) 10.8333 + 19.4667i 0.479708 + 0.862000i
\(511\) 7.57660 0.335169
\(512\) 22.3998 + 3.20161i 0.989939 + 0.141493i
\(513\) −88.0764 −3.88867
\(514\) −0.935564 1.68114i −0.0412660 0.0741519i
\(515\) 11.4977i 0.506650i
\(516\) −16.3137 + 26.3035i −0.718171 + 1.15795i
\(517\) 28.6930i 1.26192i
\(518\) 3.47148 1.93190i 0.152528 0.0848829i
\(519\) −19.6343 −0.861848
\(520\) −3.15849 0.149581i −0.138509 0.00655956i
\(521\) −13.2632 −0.581070 −0.290535 0.956864i \(-0.593833\pi\)
−0.290535 + 0.956864i \(0.593833\pi\)
\(522\) −52.2607 + 29.0834i −2.28739 + 1.27295i
\(523\) 21.7999i 0.953243i −0.879109 0.476621i \(-0.841861\pi\)
0.879109 0.476621i \(-0.158139\pi\)
\(524\) −26.7003 16.5598i −1.16641 0.723419i
\(525\) 11.8800i 0.518484i
\(526\) 7.64371 + 13.7352i 0.333282 + 0.598882i
\(527\) −46.6178 −2.03070
\(528\) −25.4279 51.2583i −1.10661 2.23073i
\(529\) −15.9077 −0.691638
\(530\) −4.63499 8.32874i −0.201331 0.361777i
\(531\) 106.711i 4.63087i
\(532\) −11.7112 7.26339i −0.507744 0.314908i
\(533\) 4.93559i 0.213784i
\(534\) 19.8846 11.0659i 0.860490 0.478868i
\(535\) 3.53727 0.152930
\(536\) 0.800594 16.9050i 0.0345804 0.730185i
\(537\) 36.3736 1.56964
\(538\) 8.87858 4.94098i 0.382783 0.213021i
\(539\) 4.51562i 0.194502i
\(540\) 15.0638 24.2883i 0.648244 1.04520i
\(541\) 35.2967i 1.51753i 0.651367 + 0.758763i \(0.274196\pi\)
−0.651367 + 0.758763i \(0.725804\pi\)
\(542\) −18.1310 32.5800i −0.778791 1.39943i
\(543\) 83.5707 3.58636
\(544\) 14.2591 20.7324i 0.611356 0.888896i
\(545\) 10.6030 0.454181
\(546\) 2.17851 + 3.91463i 0.0932318 + 0.167531i
\(547\) 25.6660i 1.09740i −0.836020 0.548699i \(-0.815123\pi\)
0.836020 0.548699i \(-0.184877\pi\)
\(548\) −0.187864 + 0.302903i −0.00802514 + 0.0129394i
\(549\) 45.3733i 1.93648i
\(550\) −20.9267 + 11.6458i −0.892317 + 0.496580i
\(551\) 41.4206 1.76458
\(552\) 1.12878 23.8349i 0.0480442 1.01448i
\(553\) −4.85576 −0.206488
\(554\) 11.8925 6.61823i 0.505263 0.281182i
\(555\) 9.94874i 0.422301i
\(556\) −20.4594 12.6891i −0.867672 0.538139i
\(557\) 23.9095i 1.01308i −0.862218 0.506538i \(-0.830925\pi\)
0.862218 0.506538i \(-0.169075\pi\)
\(558\) 50.7039 + 91.1111i 2.14647 + 3.85704i
\(559\) −4.88533 −0.206628
\(560\) 4.00596 1.98725i 0.169283 0.0839766i
\(561\) −63.6296 −2.68645
\(562\) 9.49281 + 17.0579i 0.400430 + 0.719543i
\(563\) 4.23760i 0.178594i −0.996005 0.0892969i \(-0.971538\pi\)
0.996005 0.0892969i \(-0.0284620\pi\)
\(564\) 34.2119 + 21.2186i 1.44058 + 0.893463i
\(565\) 11.4818i 0.483044i
\(566\) 9.59365 5.33892i 0.403251 0.224412i
\(567\) −19.3875 −0.814199
\(568\) 1.48948 + 0.0705393i 0.0624972 + 0.00295976i
\(569\) 14.1681 0.593958 0.296979 0.954884i \(-0.404021\pi\)
0.296979 + 0.954884i \(0.404021\pi\)
\(570\) −30.1546 + 16.7812i −1.26304 + 0.702888i
\(571\) 27.7699i 1.16213i 0.813856 + 0.581066i \(0.197364\pi\)
−0.813856 + 0.581066i \(0.802636\pi\)
\(572\) 4.76009 7.67496i 0.199029 0.320906i
\(573\) 27.9120i 1.16604i
\(574\) −3.39421 6.09914i −0.141671 0.254573i
\(575\) −9.98730 −0.416499
\(576\) −56.0290 5.31882i −2.33454 0.221617i
\(577\) 10.7261 0.446534 0.223267 0.974757i \(-0.428328\pi\)
0.223267 + 0.974757i \(0.428328\pi\)
\(578\) −1.91604 3.44298i −0.0796966 0.143209i
\(579\) 1.12128i 0.0465986i
\(580\) −7.08424 + 11.4223i −0.294157 + 0.474286i
\(581\) 2.98647i 0.123900i
\(582\) −68.1892 + 37.9477i −2.82654 + 1.57298i
\(583\) 27.2237 1.12749
\(584\) −21.4059 1.01375i −0.885781 0.0419491i
\(585\) 7.86489 0.325173
\(586\) 28.9436 16.1073i 1.19565 0.665386i
\(587\) 38.0092i 1.56881i −0.620251 0.784403i \(-0.712969\pi\)
0.620251 0.784403i \(-0.287031\pi\)
\(588\) −5.38418 3.33932i −0.222040 0.137711i
\(589\) 72.2125i 2.97547i
\(590\) 11.6616 + 20.9550i 0.480101 + 0.862705i
\(591\) −16.9151 −0.695796
\(592\) −10.0663 + 4.99364i −0.413724 + 0.205237i
\(593\) 16.4663 0.676190 0.338095 0.941112i \(-0.390217\pi\)
0.338095 + 0.941112i \(0.390217\pi\)
\(594\) 39.6948 + 71.3287i 1.62870 + 2.92665i
\(595\) 4.97281i 0.203865i
\(596\) 4.17516 + 2.58948i 0.171021 + 0.106069i
\(597\) 42.8395i 1.75330i
\(598\) 3.29097 1.83144i 0.134578 0.0748932i
\(599\) 28.8517 1.17885 0.589425 0.807823i \(-0.299354\pi\)
0.589425 + 0.807823i \(0.299354\pi\)
\(600\) −1.58954 + 33.5640i −0.0648925 + 1.37024i
\(601\) 6.29534 0.256792 0.128396 0.991723i \(-0.459017\pi\)
0.128396 + 0.991723i \(0.459017\pi\)
\(602\) 6.03703 3.35964i 0.246051 0.136929i
\(603\) 42.0948i 1.71423i
\(604\) 7.41110 11.9493i 0.301553 0.486211i
\(605\) 10.4985i 0.426823i
\(606\) −26.3463 47.3424i −1.07025 1.92315i
\(607\) 15.7914 0.640954 0.320477 0.947256i \(-0.396157\pi\)
0.320477 + 0.947256i \(0.396157\pi\)
\(608\) 32.1153 + 22.0879i 1.30245 + 0.895783i
\(609\) 19.0430 0.771662
\(610\) 4.95849 + 8.91003i 0.200763 + 0.360757i
\(611\) 6.35415i 0.257062i
\(612\) −32.9875 + 53.1876i −1.33344 + 2.14998i
\(613\) 44.8229i 1.81038i 0.425008 + 0.905189i \(0.360271\pi\)
−0.425008 + 0.905189i \(0.639729\pi\)
\(614\) 8.80359 4.89925i 0.355284 0.197718i
\(615\) −17.4792 −0.704829
\(616\) −0.604189 + 12.7578i −0.0243435 + 0.514027i
\(617\) 41.5256 1.67176 0.835879 0.548913i \(-0.184958\pi\)
0.835879 + 0.548913i \(0.184958\pi\)
\(618\) −40.2607 + 22.4053i −1.61952 + 0.901273i
\(619\) 40.6374i 1.63335i −0.577095 0.816677i \(-0.695814\pi\)
0.577095 0.816677i \(-0.304186\pi\)
\(620\) 19.9136 + 12.3506i 0.799750 + 0.496013i
\(621\) 34.0417i 1.36605i
\(622\) 11.2725 + 20.2559i 0.451988 + 0.812189i
\(623\) −5.07956 −0.203508
\(624\) −5.63109 11.3513i −0.225424 0.454417i
\(625\) 7.81494 0.312598
\(626\) −10.0131 17.9929i −0.400205 0.719139i
\(627\) 98.5646i 3.93629i
\(628\) 6.69164 + 4.15022i 0.267025 + 0.165612i
\(629\) 12.4959i 0.498243i
\(630\) −9.71900 + 5.40868i −0.387214 + 0.215487i
\(631\) 19.3579 0.770624 0.385312 0.922786i \(-0.374094\pi\)
0.385312 + 0.922786i \(0.374094\pi\)
\(632\) 13.7188 + 0.649699i 0.545704 + 0.0258437i
\(633\) −22.2679 −0.885069
\(634\) −30.3012 + 16.8628i −1.20342 + 0.669708i
\(635\) 24.3894i 0.967865i
\(636\) 20.1320 32.4600i 0.798287 1.28712i
\(637\) 1.00000i 0.0396214i
\(638\) −18.6677 33.5445i −0.739062 1.32804i
\(639\) −3.70892 −0.146723
\(640\) −11.5838 + 5.07850i −0.457889 + 0.200745i
\(641\) 23.1842 0.915719 0.457860 0.889024i \(-0.348616\pi\)
0.457860 + 0.889024i \(0.348616\pi\)
\(642\) 6.89299 + 12.3862i 0.272045 + 0.488844i
\(643\) 36.1071i 1.42393i 0.702217 + 0.711963i \(0.252194\pi\)
−0.702217 + 0.711963i \(0.747806\pi\)
\(644\) −2.80732 + 4.52640i −0.110624 + 0.178365i
\(645\) 17.3012i 0.681235i
\(646\) 37.8749 21.0776i 1.49017 0.829288i
\(647\) 23.0515 0.906248 0.453124 0.891447i \(-0.350309\pi\)
0.453124 + 0.891447i \(0.350309\pi\)
\(648\) 54.7748 + 2.59404i 2.15176 + 0.101904i
\(649\) −68.4945 −2.68864
\(650\) −4.63429 + 2.57901i −0.181772 + 0.101157i
\(651\) 33.1995i 1.30119i
\(652\) 23.2939 + 14.4471i 0.912261 + 0.565794i
\(653\) 10.6277i 0.415893i 0.978140 + 0.207946i \(0.0666780\pi\)
−0.978140 + 0.207946i \(0.933322\pi\)
\(654\) 20.6617 + 37.1276i 0.807937 + 1.45180i
\(655\) 17.5622 0.686213
\(656\) 8.77346 + 17.6858i 0.342546 + 0.690515i
\(657\) 53.3023 2.07952
\(658\) −4.36975 7.85212i −0.170351 0.306108i
\(659\) 31.8733i 1.24161i −0.783965 0.620804i \(-0.786806\pi\)
0.783965 0.620804i \(-0.213194\pi\)
\(660\) 27.1805 + 16.8577i 1.05800 + 0.656183i
\(661\) 32.4525i 1.26225i −0.775679 0.631127i \(-0.782593\pi\)
0.775679 0.631127i \(-0.217407\pi\)
\(662\) −1.42477 + 0.792895i −0.0553754 + 0.0308167i
\(663\) −14.0910 −0.547249
\(664\) 0.399589 8.43755i 0.0155070 0.327441i
\(665\) 7.70306 0.298712
\(666\) 24.4223 13.5911i 0.946345 0.526646i
\(667\) 16.0092i 0.619878i
\(668\) 10.7353 17.3092i 0.415362 0.669712i
\(669\) 48.1321i 1.86089i
\(670\) 4.60020 + 8.26623i 0.177721 + 0.319352i
\(671\) −29.1237 −1.12431
\(672\) 14.7649 + 10.1549i 0.569569 + 0.391732i
\(673\) −26.9401 −1.03846 −0.519232 0.854633i \(-0.673782\pi\)
−0.519232 + 0.854633i \(0.673782\pi\)
\(674\) −23.4312 42.1041i −0.902535 1.62179i
\(675\) 47.9370i 1.84510i
\(676\) 1.05414 1.69965i 0.0405437 0.0653710i
\(677\) 27.8214i 1.06926i 0.845085 + 0.534632i \(0.179550\pi\)
−0.845085 + 0.534632i \(0.820450\pi\)
\(678\) −40.2050 + 22.3743i −1.54406 + 0.859280i
\(679\) 17.4191 0.668483
\(680\) −0.665360 + 14.0495i −0.0255154 + 0.538773i
\(681\) 9.77780 0.374686
\(682\) −58.4814 + 32.5452i −2.23937 + 1.24622i
\(683\) 36.9656i 1.41445i 0.706990 + 0.707224i \(0.250053\pi\)
−0.706990 + 0.707224i \(0.749947\pi\)
\(684\) −82.3895 51.0988i −3.15024 1.95381i
\(685\) 0.199235i 0.00761240i
\(686\) 0.687700 + 1.23575i 0.0262565 + 0.0471810i
\(687\) −25.6854 −0.979958
\(688\) −17.5057 + 8.68412i −0.667399 + 0.331079i
\(689\) 6.02877 0.229678
\(690\) 6.48598 + 11.6548i 0.246917 + 0.443692i
\(691\) 23.6432i 0.899428i −0.893173 0.449714i \(-0.851526\pi\)
0.893173 0.449714i \(-0.148474\pi\)
\(692\) −10.5344 6.53357i −0.400459 0.248369i
\(693\) 31.7679i 1.20676i
\(694\) 13.5838 7.55947i 0.515634 0.286954i
\(695\) 13.4572 0.510462
\(696\) −53.8015 2.54795i −2.03934 0.0965799i
\(697\) 21.9543 0.831579
\(698\) −7.48041 + 4.16289i −0.283138 + 0.157568i
\(699\) 37.0659i 1.40196i
\(700\) 3.95322 6.37400i 0.149418 0.240915i
\(701\) 7.24572i 0.273667i −0.990594 0.136833i \(-0.956307\pi\)
0.990594 0.136833i \(-0.0436925\pi\)
\(702\) 8.79056 + 15.7960i 0.331778 + 0.596181i
\(703\) −19.3565 −0.730046
\(704\) 3.41398 35.9633i 0.128669 1.35542i
\(705\) −22.5030 −0.847511
\(706\) −4.20636 7.55853i −0.158309 0.284469i
\(707\) 12.0937i 0.454831i
\(708\) −50.6520 + 81.6691i −1.90362 + 3.06931i
\(709\) 6.77224i 0.254337i −0.991881 0.127168i \(-0.959411\pi\)
0.991881 0.127168i \(-0.0405889\pi\)
\(710\) −0.728327 + 0.405318i −0.0273336 + 0.0152113i
\(711\) −34.1608 −1.28113
\(712\) 14.3511 + 0.679644i 0.537829 + 0.0254707i
\(713\) −27.9103 −1.04525
\(714\) 17.4129 9.69038i 0.651662 0.362653i
\(715\) 5.04822i 0.188793i
\(716\) 19.5157 + 12.1038i 0.729334 + 0.452341i
\(717\) 82.8566i 3.09434i
\(718\) −0.824837 1.48217i −0.0307827 0.0553142i
\(719\) −49.7201 −1.85425 −0.927124 0.374756i \(-0.877727\pi\)
−0.927124 + 0.374756i \(0.877727\pi\)
\(720\) 28.1824 13.9805i 1.05030 0.521024i
\(721\) 10.2847 0.383021
\(722\) 19.5837 + 35.1904i 0.728829 + 1.30965i
\(723\) 42.2397i 1.57091i
\(724\) 44.8385 + 27.8093i 1.66641 + 1.03352i
\(725\) 22.5439i 0.837259i
\(726\) −36.7617 + 20.4581i −1.36435 + 0.759271i
\(727\) −12.0287 −0.446121 −0.223060 0.974805i \(-0.571605\pi\)
−0.223060 + 0.974805i \(0.571605\pi\)
\(728\) −0.133800 + 2.82526i −0.00495895 + 0.104711i
\(729\) −14.9149 −0.552402
\(730\) 10.4671 5.82498i 0.387403 0.215592i
\(731\) 21.7308i 0.803741i
\(732\) −21.5371 + 34.7255i −0.796034 + 1.28349i
\(733\) 31.1191i 1.14941i −0.818360 0.574706i \(-0.805117\pi\)
0.818360 0.574706i \(-0.194883\pi\)
\(734\) −4.74354 8.52379i −0.175087 0.314619i
\(735\) 3.54146 0.130629
\(736\) 8.53703 12.4126i 0.314679 0.457536i
\(737\) −27.0193 −0.995270
\(738\) −23.8786 42.9082i −0.878985 1.57947i
\(739\) 44.6644i 1.64301i 0.570204 + 0.821503i \(0.306864\pi\)
−0.570204 + 0.821503i \(0.693136\pi\)
\(740\) 3.31058 5.33784i 0.121699 0.196223i
\(741\) 21.8275i 0.801852i
\(742\) −7.45003 + 4.14599i −0.273499 + 0.152204i
\(743\) −17.5023 −0.642099 −0.321049 0.947062i \(-0.604036\pi\)
−0.321049 + 0.947062i \(0.604036\pi\)
\(744\) −4.44209 + 93.7973i −0.162855 + 3.43878i
\(745\) −2.74622 −0.100614
\(746\) 14.6343 8.14407i 0.535800 0.298176i
\(747\) 21.0102i 0.768722i
\(748\) −34.1395 21.1736i −1.24826 0.774185i
\(749\) 3.16408i 0.115613i
\(750\) −21.3108 38.2939i −0.778159 1.39829i
\(751\) −26.6034 −0.970774 −0.485387 0.874300i \(-0.661321\pi\)
−0.485387 + 0.874300i \(0.661321\pi\)
\(752\) 11.2951 + 22.7690i 0.411889 + 0.830299i
\(753\) 47.6732 1.73731
\(754\) −4.13403 7.42855i −0.150553 0.270532i
\(755\) 7.85971i 0.286044i
\(756\) −21.7258 13.4746i −0.790160 0.490065i
\(757\) 28.6275i 1.04048i 0.854019 + 0.520242i \(0.174158\pi\)
−0.854019 + 0.520242i \(0.825842\pi\)
\(758\) −31.1181 + 17.3174i −1.13026 + 0.628996i
\(759\) −38.0954 −1.38278
\(760\) −21.7631 1.03067i −0.789432 0.0373862i
\(761\) 23.5126 0.852332 0.426166 0.904645i \(-0.359864\pi\)
0.426166 + 0.904645i \(0.359864\pi\)
\(762\) 85.4026 47.5271i 3.09381 1.72172i
\(763\) 9.48432i 0.343355i
\(764\) −9.28812 + 14.9758i −0.336032 + 0.541804i
\(765\) 34.9843i 1.26486i
\(766\) 3.50878 + 6.30502i 0.126777 + 0.227809i
\(767\) −15.1683 −0.547697
\(768\) −40.3560 30.6657i −1.45622 1.10655i
\(769\) 1.86478 0.0672456 0.0336228 0.999435i \(-0.489296\pi\)
0.0336228 + 0.999435i \(0.489296\pi\)
\(770\) −3.47166 6.23832i −0.125110 0.224814i
\(771\) 4.30959i 0.155206i
\(772\) 0.373120 0.601602i 0.0134289 0.0216521i
\(773\) 30.6421i 1.10212i 0.834466 + 0.551060i \(0.185776\pi\)
−0.834466 + 0.551060i \(0.814224\pi\)
\(774\) 42.4712 23.6355i 1.52660 0.849560i
\(775\) 39.3029 1.41180
\(776\) −49.2135 2.33067i −1.76666 0.0836661i
\(777\) −8.89912 −0.319254
\(778\) 12.5650 6.99251i 0.450478 0.250694i
\(779\) 34.0080i 1.21846i
\(780\) 6.01923 + 3.73318i 0.215523 + 0.133669i
\(781\) 2.38064i 0.0851860i
\(782\) −8.14655 14.6388i −0.291320 0.523481i
\(783\) 76.8408 2.74607
\(784\) −1.77759 3.58332i −0.0634853 0.127976i
\(785\) −4.40144 −0.157094
\(786\) 34.2230 + 61.4963i 1.22070 + 2.19350i
\(787\) 52.8326i 1.88328i 0.336622 + 0.941640i \(0.390715\pi\)
−0.336622 + 0.941640i \(0.609285\pi\)
\(788\) −9.07555 5.62875i −0.323303 0.200516i
\(789\) 35.2100i 1.25351i
\(790\) −6.70822 + 3.73317i −0.238668 + 0.132820i
\(791\) 10.2704 0.365175
\(792\) −4.25054 + 89.7527i −0.151036 + 3.18922i
\(793\) −6.44954 −0.229030
\(794\) 22.6223 12.5894i 0.802834 0.446782i
\(795\) 21.3507i 0.757230i
\(796\) −14.2554 + 22.9848i −0.505270 + 0.814676i
\(797\) 1.45717i 0.0516158i 0.999667 + 0.0258079i \(0.00821582\pi\)
−0.999667 + 0.0258079i \(0.991784\pi\)
\(798\) 15.0107 + 26.9732i 0.531375 + 0.954841i
\(799\) 28.2643 0.999920
\(800\) −12.0217 + 17.4793i −0.425032 + 0.617986i
\(801\) −35.7353 −1.26264
\(802\) −11.8308 21.2591i −0.417760 0.750685i
\(803\) 34.2131i 1.20735i
\(804\) −19.9809 + 32.2164i −0.704672 + 1.13618i
\(805\) 2.97725i 0.104934i
\(806\) −12.9509 + 7.20725i −0.456176 + 0.253865i
\(807\) −22.7602 −0.801196
\(808\) 1.61814 34.1679i 0.0569259 1.20202i
\(809\) 12.8081 0.450308 0.225154 0.974323i \(-0.427712\pi\)
0.225154 + 0.974323i \(0.427712\pi\)
\(810\) −26.7838 + 14.9054i −0.941088 + 0.523721i
\(811\) 25.1200i 0.882083i 0.897487 + 0.441042i \(0.145391\pi\)
−0.897487 + 0.441042i \(0.854609\pi\)
\(812\) 10.2172 + 6.33683i 0.358554 + 0.222379i
\(813\) 83.5185i 2.92912i
\(814\) 8.72373 + 15.6759i 0.305767 + 0.549440i
\(815\) −15.3217 −0.536694
\(816\) −50.4926 + 25.0480i −1.76759 + 0.876856i
\(817\) −33.6617 −1.17767
\(818\) −6.16066 11.0703i −0.215403 0.387062i
\(819\) 7.03512i 0.245827i
\(820\) −9.37818 5.81644i −0.327500 0.203119i
\(821\) 38.6333i 1.34831i −0.738590 0.674155i \(-0.764508\pi\)
0.738590 0.674155i \(-0.235492\pi\)
\(822\) 0.697648 0.388245i 0.0243333 0.0135416i
\(823\) 23.7386 0.827476 0.413738 0.910396i \(-0.364223\pi\)
0.413738 + 0.910396i \(0.364223\pi\)
\(824\) −29.0569 1.37609i −1.01224 0.0479382i
\(825\) 53.6454 1.86769
\(826\) 18.7442 10.4313i 0.652195 0.362950i
\(827\) 7.45758i 0.259325i 0.991558 + 0.129663i \(0.0413895\pi\)
−0.991558 + 0.129663i \(0.958611\pi\)
\(828\) −19.7498 + 31.8437i −0.686353 + 1.10665i
\(829\) 13.2732i 0.460998i −0.973073 0.230499i \(-0.925964\pi\)
0.973073 0.230499i \(-0.0740358\pi\)
\(830\) 2.29603 + 4.12580i 0.0796965 + 0.143209i
\(831\) −30.4862 −1.05756
\(832\) 0.756038 7.96420i 0.0262109 0.276109i
\(833\) −4.44816 −0.154120
\(834\) 26.2238 + 47.1221i 0.908054 + 1.63171i
\(835\) 11.3852i 0.394000i
\(836\) 32.7987 52.8832i 1.13437 1.82900i
\(837\) 133.964i 4.63047i
\(838\) −0.588742 + 0.327638i −0.0203377 + 0.0113181i
\(839\) −33.6190 −1.16066 −0.580328 0.814383i \(-0.697076\pi\)
−0.580328 + 0.814383i \(0.697076\pi\)
\(840\) −10.0055 0.473846i −0.345224 0.0163493i
\(841\) −7.13678 −0.246096
\(842\) 6.08512 3.38641i 0.209707 0.116703i
\(843\) 43.7277i 1.50606i
\(844\) −11.9475 7.40995i −0.411249 0.255061i
\(845\) 1.11795i 0.0384585i
\(846\) −30.7417 55.2406i −1.05692 1.89921i
\(847\) 9.39084 0.322673
\(848\) 21.6030 10.7167i 0.741851 0.368013i
\(849\) −24.5932 −0.844038
\(850\) 11.4719 + 20.6141i 0.393481 + 0.707057i
\(851\) 7.48135i 0.256457i
\(852\) −2.83854 1.76049i −0.0972469 0.0603135i
\(853\) 5.30251i 0.181554i 0.995871 + 0.0907772i \(0.0289351\pi\)
−0.995871 + 0.0907772i \(0.971065\pi\)
\(854\) 7.97000 4.43535i 0.272728 0.151775i
\(855\) 54.1919 1.85332
\(856\) −0.423353 + 8.93935i −0.0144699 + 0.305541i
\(857\) −44.8103 −1.53069 −0.765346 0.643619i \(-0.777432\pi\)
−0.765346 + 0.643619i \(0.777432\pi\)
\(858\) −17.6770 + 9.83734i −0.603482 + 0.335841i
\(859\) 25.3400i 0.864590i 0.901732 + 0.432295i \(0.142296\pi\)
−0.901732 + 0.432295i \(0.857704\pi\)
\(860\) 5.75722 9.28269i 0.196319 0.316537i
\(861\) 15.6351i 0.532843i
\(862\) −12.1750 21.8776i −0.414683 0.745154i
\(863\) −22.2518 −0.757462 −0.378731 0.925507i \(-0.623639\pi\)
−0.378731 + 0.925507i \(0.623639\pi\)
\(864\) 59.5781 + 40.9760i 2.02689 + 1.39403i
\(865\) 6.92906 0.235595
\(866\) 9.07498 + 16.3071i 0.308380 + 0.554137i
\(867\) 8.82604i 0.299748i
\(868\) 11.0476 17.8127i 0.374980 0.604601i
\(869\) 21.9268i 0.743815i
\(870\) 26.3079 14.6405i 0.891922 0.496360i
\(871\) −5.98352 −0.202744
\(872\) −1.26900 + 26.7957i −0.0429737 + 0.907416i
\(873\) 122.545 4.14753
\(874\) 22.6759 12.6193i 0.767025 0.426854i
\(875\) 9.78225i 0.330700i
\(876\) 40.7938 + 25.3007i 1.37829 + 0.854832i
\(877\) 16.4120i 0.554194i 0.960842 + 0.277097i \(0.0893723\pi\)
−0.960842 + 0.277097i \(0.910628\pi\)
\(878\) 12.8782 + 23.1412i 0.434619 + 0.780978i
\(879\) −74.1967 −2.50259
\(880\) 8.97367 + 18.0894i 0.302502 + 0.609794i
\(881\) −13.3626 −0.450197 −0.225098 0.974336i \(-0.572270\pi\)
−0.225098 + 0.974336i \(0.572270\pi\)
\(882\) 4.83805 + 8.69362i 0.162906 + 0.292729i
\(883\) 49.7871i 1.67547i −0.546077 0.837735i \(-0.683880\pi\)
0.546077 0.837735i \(-0.316120\pi\)
\(884\) −7.56030 4.68897i −0.254280 0.157707i
\(885\) 53.7181i 1.80571i
\(886\) 24.8767 13.8440i 0.835750 0.465100i
\(887\) −4.91098 −0.164895 −0.0824473 0.996595i \(-0.526274\pi\)
−0.0824473 + 0.996595i \(0.526274\pi\)
\(888\) 25.1423 + 1.19070i 0.843721 + 0.0399573i
\(889\) −21.8163 −0.731694
\(890\) −7.01740 + 3.90523i −0.235224 + 0.130903i
\(891\) 87.5467i 2.93293i
\(892\) 16.0166 25.8245i 0.536276 0.864668i
\(893\) 43.7824i 1.46512i
\(894\) −5.35150 9.61624i −0.178981 0.321615i
\(895\) −12.8365 −0.429076
\(896\) 4.54271 + 10.3617i 0.151761 + 0.346158i
\(897\) −8.43637 −0.281682
\(898\) 7.39393 + 13.2864i 0.246739 + 0.443371i
\(899\) 63.0007i 2.10119i
\(900\) 27.8114 44.8419i 0.927046 1.49473i
\(901\) 26.8170i 0.893403i
\(902\) 27.5414 15.3270i 0.917029 0.510332i
\(903\) −15.4759 −0.515005
\(904\) −29.0167 1.37418i −0.965081 0.0457047i
\(905\) −29.4927 −0.980370
\(906\) −27.5217 + 15.3160i −0.914348 + 0.508840i
\(907\) 14.1867i 0.471062i 0.971867 + 0.235531i \(0.0756829\pi\)
−0.971867 + 0.235531i \(0.924317\pi\)
\(908\) 5.24612 + 3.25370i 0.174099 + 0.107978i
\(909\) 85.0808i 2.82195i
\(910\) −0.768812 1.38150i −0.0254859 0.0457962i
\(911\) −5.49425 −0.182033 −0.0910163 0.995849i \(-0.529012\pi\)
−0.0910163 + 0.995849i \(0.529012\pi\)
\(912\) −38.8003 78.2148i −1.28481 2.58995i
\(913\) −13.4858 −0.446314
\(914\) −2.23052 4.00808i −0.0737790 0.132575i
\(915\) 22.8408i 0.755093i
\(916\) −13.7811 8.54716i −0.455339 0.282406i
\(917\) 15.7094i 0.518768i
\(918\) 70.2631 39.1018i 2.31903 1.29055i
\(919\) 53.9477 1.77957 0.889785 0.456379i \(-0.150854\pi\)
0.889785 + 0.456379i \(0.150854\pi\)
\(920\) −0.398355 + 8.41151i −0.0131334 + 0.277319i
\(921\) −22.5679 −0.743638
\(922\) 33.8414 18.8329i 1.11451 0.620229i
\(923\) 0.527201i 0.0173530i
\(924\) 15.0791 24.3129i 0.496067 0.799836i
\(925\) 10.5351i 0.346393i
\(926\) −28.5674 51.3335i −0.938784 1.68692i
\(927\) 72.3539 2.37641
\(928\) −28.0185 19.2703i −0.919751 0.632577i
\(929\) −4.12817 −0.135441 −0.0677204 0.997704i \(-0.521573\pi\)
−0.0677204 + 0.997704i \(0.521573\pi\)
\(930\) −25.5242 45.8651i −0.836971 1.50398i
\(931\) 6.89036i 0.225822i
\(932\) −12.3342 + 19.8871i −0.404020 + 0.651424i
\(933\) 51.9259i 1.69998i
\(934\) −27.5272 + 15.3191i −0.900718 + 0.501255i
\(935\) 22.4553 0.734368
\(936\) −0.941297 + 19.8760i −0.0307672 + 0.649669i
\(937\) 6.95266 0.227134 0.113567 0.993530i \(-0.463772\pi\)
0.113567 + 0.993530i \(0.463772\pi\)
\(938\) 7.39412 4.11487i 0.241426 0.134355i
\(939\) 46.1245i 1.50522i
\(940\) −12.0736 7.48818i −0.393798 0.244237i
\(941\) 20.5079i 0.668539i 0.942478 + 0.334270i \(0.108490\pi\)
−0.942478 + 0.334270i \(0.891510\pi\)
\(942\) −8.57698 15.4122i −0.279453 0.502157i
\(943\) 13.1442 0.428033
\(944\) −54.3530 + 26.9631i −1.76904 + 0.877574i
\(945\) 14.2902 0.464860
\(946\) 15.1709 + 27.2610i 0.493248 + 0.886330i
\(947\) 20.6521i 0.671102i −0.942022 0.335551i \(-0.891077\pi\)
0.942022 0.335551i \(-0.108923\pi\)
\(948\) −26.1443 16.2149i −0.849127 0.526637i
\(949\) 7.57660i 0.245947i
\(950\) −31.9319 + 17.7703i −1.03601 + 0.576545i
\(951\) 77.6769 2.51885
\(952\) 12.5672 + 0.595163i 0.407306 + 0.0192893i
\(953\) 61.2746 1.98488 0.992440 0.122730i \(-0.0391649\pi\)
0.992440 + 0.122730i \(0.0391649\pi\)
\(954\) −52.4119 + 29.1675i −1.69690 + 0.944333i
\(955\) 9.85035i 0.318750i
\(956\) 27.5717 44.4554i 0.891731 1.43779i
\(957\) 85.9911i 2.77970i
\(958\) −23.1650 41.6259i −0.748429 1.34487i
\(959\) −0.178216 −0.00575488
\(960\) 28.2049 + 2.67748i 0.910308 + 0.0864153i
\(961\) 78.8351 2.54307
\(962\) 1.93190 + 3.47148i 0.0622870 + 0.111925i
\(963\) 22.2597i 0.717308i
\(964\) 14.0558 22.6630i 0.452708 0.729926i
\(965\) 0.395705i 0.0127382i
\(966\) 10.4252 5.80169i 0.335426 0.186666i
\(967\) 19.5810 0.629683 0.314842 0.949144i \(-0.398049\pi\)
0.314842 + 0.949144i \(0.398049\pi\)
\(968\) −26.5316 1.25649i −0.852757 0.0403852i
\(969\) −97.0921 −3.11905
\(970\) 24.0644 13.3920i 0.772663 0.429991i
\(971\) 38.5437i 1.23693i −0.785814 0.618463i \(-0.787756\pi\)
0.785814 0.618463i \(-0.212244\pi\)
\(972\) −39.2085 24.3175i −1.25761 0.779985i
\(973\) 12.0375i 0.385903i
\(974\) −6.06974 10.9069i −0.194487 0.349479i
\(975\) 11.8800 0.380463
\(976\) −23.1108 + 11.4646i −0.739758 + 0.366974i
\(977\) 27.8078 0.889651 0.444825 0.895617i \(-0.353266\pi\)
0.444825 + 0.895617i \(0.353266\pi\)
\(978\) −29.8569 53.6507i −0.954719 1.71556i
\(979\) 22.9374i 0.733082i
\(980\) 1.90011 + 1.17847i 0.0606969 + 0.0376448i
\(981\) 66.7233i 2.13031i
\(982\) 10.2953 5.72941i 0.328537 0.182833i
\(983\) 3.36489 0.107323 0.0536616 0.998559i \(-0.482911\pi\)
0.0536616 + 0.998559i \(0.482911\pi\)
\(984\) 2.09197 44.1732i 0.0666896 1.40819i
\(985\) 5.96947 0.190203
\(986\) −33.0434 + 18.3888i −1.05232 + 0.585620i
\(987\) 20.1289i 0.640708i
\(988\) 7.26339 11.7112i 0.231079 0.372582i
\(989\) 13.0103i 0.413705i
\(990\) −24.4236 43.8873i −0.776232 1.39483i
\(991\) 22.7862 0.723826 0.361913 0.932212i \(-0.382124\pi\)
0.361913 + 0.932212i \(0.382124\pi\)
\(992\) −33.5957 + 48.8473i −1.06666 + 1.55090i
\(993\) 3.65239 0.115905
\(994\) 0.362556 + 0.651486i 0.0114996 + 0.0206639i
\(995\) 15.1183i 0.479284i
\(996\) −9.97278 + 16.0797i −0.316000 + 0.509504i
\(997\) 41.0678i 1.30063i −0.759664 0.650315i \(-0.774637\pi\)
0.759664 0.650315i \(-0.225363\pi\)
\(998\) −29.8297 + 16.6004i −0.944244 + 0.525477i
\(999\) −35.9090 −1.13611
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.11 34
4.3 odd 2 2912.2.c.a.1457.1 34
8.3 odd 2 2912.2.c.a.1457.34 34
8.5 even 2 inner 728.2.c.a.365.12 yes 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.11 34 1.1 even 1 trivial
728.2.c.a.365.12 yes 34 8.5 even 2 inner
2912.2.c.a.1457.1 34 4.3 odd 2
2912.2.c.a.1457.34 34 8.3 odd 2