Properties

Label 2912.2.c.a.1457.1
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.1
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.16783i q^{3} -1.11795i q^{5} +1.00000 q^{7} -7.03512 q^{9} +4.51562i q^{11} -1.00000i q^{13} -3.54146 q^{15} -4.44816 q^{17} +6.89036i q^{19} -3.16783i q^{21} +2.66314 q^{23} +3.75020 q^{25} +12.7825i q^{27} +6.01139i q^{29} -10.4802 q^{31} +14.3047 q^{33} -1.11795i q^{35} -2.80922i q^{37} -3.16783 q^{39} -4.93559 q^{41} +4.88533i q^{43} +7.86489i q^{45} +6.35415 q^{47} +1.00000 q^{49} +14.0910i q^{51} +6.02877i q^{53} +5.04822 q^{55} +21.8275 q^{57} +15.1683i q^{59} -6.44954i q^{61} -7.03512 q^{63} -1.11795 q^{65} +5.98352i q^{67} -8.43637i q^{69} -0.527201 q^{71} -7.57660 q^{73} -11.8800i q^{75} +4.51562i q^{77} -4.85576 q^{79} +19.3875 q^{81} +2.98647i q^{83} +4.97281i q^{85} +19.0430 q^{87} +5.07956 q^{89} -1.00000i q^{91} +33.1995i q^{93} +7.70306 q^{95} -17.4191 q^{97} -31.7679i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.16783i − 1.82894i −0.404648 0.914472i \(-0.632606\pi\)
0.404648 0.914472i \(-0.367394\pi\)
\(4\) 0 0
\(5\) − 1.11795i − 0.499961i −0.968251 0.249980i \(-0.919576\pi\)
0.968251 0.249980i \(-0.0804242\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −7.03512 −2.34504
\(10\) 0 0
\(11\) 4.51562i 1.36151i 0.732511 + 0.680756i \(0.238348\pi\)
−0.732511 + 0.680756i \(0.761652\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) −3.54146 −0.914401
\(16\) 0 0
\(17\) −4.44816 −1.07884 −0.539419 0.842038i \(-0.681356\pi\)
−0.539419 + 0.842038i \(0.681356\pi\)
\(18\) 0 0
\(19\) 6.89036i 1.58076i 0.612619 + 0.790379i \(0.290116\pi\)
−0.612619 + 0.790379i \(0.709884\pi\)
\(20\) 0 0
\(21\) − 3.16783i − 0.691276i
\(22\) 0 0
\(23\) 2.66314 0.555303 0.277652 0.960682i \(-0.410444\pi\)
0.277652 + 0.960682i \(0.410444\pi\)
\(24\) 0 0
\(25\) 3.75020 0.750039
\(26\) 0 0
\(27\) 12.7825i 2.46000i
\(28\) 0 0
\(29\) 6.01139i 1.11629i 0.829745 + 0.558143i \(0.188486\pi\)
−0.829745 + 0.558143i \(0.811514\pi\)
\(30\) 0 0
\(31\) −10.4802 −1.88230 −0.941152 0.337983i \(-0.890255\pi\)
−0.941152 + 0.337983i \(0.890255\pi\)
\(32\) 0 0
\(33\) 14.3047 2.49013
\(34\) 0 0
\(35\) − 1.11795i − 0.188967i
\(36\) 0 0
\(37\) − 2.80922i − 0.461833i −0.972974 0.230916i \(-0.925828\pi\)
0.972974 0.230916i \(-0.0741724\pi\)
\(38\) 0 0
\(39\) −3.16783 −0.507258
\(40\) 0 0
\(41\) −4.93559 −0.770810 −0.385405 0.922748i \(-0.625938\pi\)
−0.385405 + 0.922748i \(0.625938\pi\)
\(42\) 0 0
\(43\) 4.88533i 0.745006i 0.928031 + 0.372503i \(0.121500\pi\)
−0.928031 + 0.372503i \(0.878500\pi\)
\(44\) 0 0
\(45\) 7.86489i 1.17243i
\(46\) 0 0
\(47\) 6.35415 0.926849 0.463424 0.886136i \(-0.346621\pi\)
0.463424 + 0.886136i \(0.346621\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 14.0910i 1.97314i
\(52\) 0 0
\(53\) 6.02877i 0.828116i 0.910251 + 0.414058i \(0.135889\pi\)
−0.910251 + 0.414058i \(0.864111\pi\)
\(54\) 0 0
\(55\) 5.04822 0.680702
\(56\) 0 0
\(57\) 21.8275 2.89112
\(58\) 0 0
\(59\) 15.1683i 1.97475i 0.158400 + 0.987375i \(0.449367\pi\)
−0.158400 + 0.987375i \(0.550633\pi\)
\(60\) 0 0
\(61\) − 6.44954i − 0.825779i −0.910781 0.412890i \(-0.864520\pi\)
0.910781 0.412890i \(-0.135480\pi\)
\(62\) 0 0
\(63\) −7.03512 −0.886341
\(64\) 0 0
\(65\) −1.11795 −0.138664
\(66\) 0 0
\(67\) 5.98352i 0.731004i 0.930811 + 0.365502i \(0.119103\pi\)
−0.930811 + 0.365502i \(0.880897\pi\)
\(68\) 0 0
\(69\) − 8.43637i − 1.01562i
\(70\) 0 0
\(71\) −0.527201 −0.0625672 −0.0312836 0.999511i \(-0.509960\pi\)
−0.0312836 + 0.999511i \(0.509960\pi\)
\(72\) 0 0
\(73\) −7.57660 −0.886774 −0.443387 0.896330i \(-0.646223\pi\)
−0.443387 + 0.896330i \(0.646223\pi\)
\(74\) 0 0
\(75\) − 11.8800i − 1.37178i
\(76\) 0 0
\(77\) 4.51562i 0.514603i
\(78\) 0 0
\(79\) −4.85576 −0.546316 −0.273158 0.961969i \(-0.588068\pi\)
−0.273158 + 0.961969i \(0.588068\pi\)
\(80\) 0 0
\(81\) 19.3875 2.15417
\(82\) 0 0
\(83\) 2.98647i 0.327808i 0.986476 + 0.163904i \(0.0524087\pi\)
−0.986476 + 0.163904i \(0.947591\pi\)
\(84\) 0 0
\(85\) 4.97281i 0.539377i
\(86\) 0 0
\(87\) 19.0430 2.04163
\(88\) 0 0
\(89\) 5.07956 0.538432 0.269216 0.963080i \(-0.413235\pi\)
0.269216 + 0.963080i \(0.413235\pi\)
\(90\) 0 0
\(91\) − 1.00000i − 0.104828i
\(92\) 0 0
\(93\) 33.1995i 3.44263i
\(94\) 0 0
\(95\) 7.70306 0.790317
\(96\) 0 0
\(97\) −17.4191 −1.76864 −0.884320 0.466881i \(-0.845378\pi\)
−0.884320 + 0.466881i \(0.845378\pi\)
\(98\) 0 0
\(99\) − 31.7679i − 3.19280i
\(100\) 0 0
\(101\) − 12.0937i − 1.20337i −0.798733 0.601685i \(-0.794496\pi\)
0.798733 0.601685i \(-0.205504\pi\)
\(102\) 0 0
\(103\) 10.2847 1.01338 0.506689 0.862129i \(-0.330869\pi\)
0.506689 + 0.862129i \(0.330869\pi\)
\(104\) 0 0
\(105\) −3.54146 −0.345611
\(106\) 0 0
\(107\) − 3.16408i − 0.305883i −0.988235 0.152942i \(-0.951125\pi\)
0.988235 0.152942i \(-0.0488746\pi\)
\(108\) 0 0
\(109\) 9.48432i 0.908433i 0.890891 + 0.454216i \(0.150081\pi\)
−0.890891 + 0.454216i \(0.849919\pi\)
\(110\) 0 0
\(111\) −8.89912 −0.844667
\(112\) 0 0
\(113\) −10.2704 −0.966163 −0.483081 0.875575i \(-0.660482\pi\)
−0.483081 + 0.875575i \(0.660482\pi\)
\(114\) 0 0
\(115\) − 2.97725i − 0.277630i
\(116\) 0 0
\(117\) 7.03512i 0.650397i
\(118\) 0 0
\(119\) −4.44816 −0.407762
\(120\) 0 0
\(121\) −9.39084 −0.853713
\(122\) 0 0
\(123\) 15.6351i 1.40977i
\(124\) 0 0
\(125\) − 9.78225i − 0.874951i
\(126\) 0 0
\(127\) −21.8163 −1.93588 −0.967941 0.251179i \(-0.919182\pi\)
−0.967941 + 0.251179i \(0.919182\pi\)
\(128\) 0 0
\(129\) 15.4759 1.36258
\(130\) 0 0
\(131\) − 15.7094i − 1.37253i −0.727350 0.686266i \(-0.759249\pi\)
0.727350 0.686266i \(-0.240751\pi\)
\(132\) 0 0
\(133\) 6.89036i 0.597470i
\(134\) 0 0
\(135\) 14.2902 1.22990
\(136\) 0 0
\(137\) 0.178216 0.0152260 0.00761299 0.999971i \(-0.497577\pi\)
0.00761299 + 0.999971i \(0.497577\pi\)
\(138\) 0 0
\(139\) − 12.0375i − 1.02100i −0.859877 0.510502i \(-0.829460\pi\)
0.859877 0.510502i \(-0.170540\pi\)
\(140\) 0 0
\(141\) − 20.1289i − 1.69516i
\(142\) 0 0
\(143\) 4.51562 0.377615
\(144\) 0 0
\(145\) 6.72041 0.558100
\(146\) 0 0
\(147\) − 3.16783i − 0.261278i
\(148\) 0 0
\(149\) − 2.45649i − 0.201243i −0.994925 0.100622i \(-0.967917\pi\)
0.994925 0.100622i \(-0.0320832\pi\)
\(150\) 0 0
\(151\) 7.03048 0.572133 0.286066 0.958210i \(-0.407652\pi\)
0.286066 + 0.958210i \(0.407652\pi\)
\(152\) 0 0
\(153\) 31.2933 2.52992
\(154\) 0 0
\(155\) 11.7163i 0.941079i
\(156\) 0 0
\(157\) − 3.93708i − 0.314213i −0.987582 0.157107i \(-0.949783\pi\)
0.987582 0.157107i \(-0.0502166\pi\)
\(158\) 0 0
\(159\) 19.0981 1.51458
\(160\) 0 0
\(161\) 2.66314 0.209885
\(162\) 0 0
\(163\) 13.7052i 1.07347i 0.843750 + 0.536736i \(0.180343\pi\)
−0.843750 + 0.536736i \(0.819657\pi\)
\(164\) 0 0
\(165\) − 15.9919i − 1.24497i
\(166\) 0 0
\(167\) 10.1840 0.788061 0.394031 0.919097i \(-0.371080\pi\)
0.394031 + 0.919097i \(0.371080\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 48.4745i − 3.70694i
\(172\) 0 0
\(173\) 6.19802i 0.471227i 0.971847 + 0.235614i \(0.0757099\pi\)
−0.971847 + 0.235614i \(0.924290\pi\)
\(174\) 0 0
\(175\) 3.75020 0.283488
\(176\) 0 0
\(177\) 48.0507 3.61171
\(178\) 0 0
\(179\) 11.4822i 0.858220i 0.903252 + 0.429110i \(0.141173\pi\)
−0.903252 + 0.429110i \(0.858827\pi\)
\(180\) 0 0
\(181\) − 26.3811i − 1.96089i −0.196787 0.980446i \(-0.563051\pi\)
0.196787 0.980446i \(-0.436949\pi\)
\(182\) 0 0
\(183\) −20.4310 −1.51030
\(184\) 0 0
\(185\) −3.14056 −0.230898
\(186\) 0 0
\(187\) − 20.0862i − 1.46885i
\(188\) 0 0
\(189\) 12.7825i 0.929793i
\(190\) 0 0
\(191\) −8.81111 −0.637549 −0.318775 0.947831i \(-0.603271\pi\)
−0.318775 + 0.947831i \(0.603271\pi\)
\(192\) 0 0
\(193\) −0.353957 −0.0254784 −0.0127392 0.999919i \(-0.504055\pi\)
−0.0127392 + 0.999919i \(0.504055\pi\)
\(194\) 0 0
\(195\) 3.54146i 0.253609i
\(196\) 0 0
\(197\) 5.33967i 0.380436i 0.981742 + 0.190218i \(0.0609195\pi\)
−0.981742 + 0.190218i \(0.939081\pi\)
\(198\) 0 0
\(199\) −13.5233 −0.958642 −0.479321 0.877640i \(-0.659117\pi\)
−0.479321 + 0.877640i \(0.659117\pi\)
\(200\) 0 0
\(201\) 18.9548 1.33697
\(202\) 0 0
\(203\) 6.01139i 0.421917i
\(204\) 0 0
\(205\) 5.51773i 0.385375i
\(206\) 0 0
\(207\) −18.7355 −1.30221
\(208\) 0 0
\(209\) −31.1143 −2.15222
\(210\) 0 0
\(211\) − 7.02940i − 0.483924i −0.970286 0.241962i \(-0.922209\pi\)
0.970286 0.241962i \(-0.0777909\pi\)
\(212\) 0 0
\(213\) 1.67008i 0.114432i
\(214\) 0 0
\(215\) 5.46154 0.372474
\(216\) 0 0
\(217\) −10.4802 −0.711444
\(218\) 0 0
\(219\) 24.0013i 1.62186i
\(220\) 0 0
\(221\) 4.44816i 0.299216i
\(222\) 0 0
\(223\) 15.1940 1.01747 0.508734 0.860924i \(-0.330114\pi\)
0.508734 + 0.860924i \(0.330114\pi\)
\(224\) 0 0
\(225\) −26.3831 −1.75887
\(226\) 0 0
\(227\) 3.08660i 0.204865i 0.994740 + 0.102432i \(0.0326625\pi\)
−0.994740 + 0.102432i \(0.967337\pi\)
\(228\) 0 0
\(229\) 8.10820i 0.535805i 0.963446 + 0.267902i \(0.0863305\pi\)
−0.963446 + 0.267902i \(0.913669\pi\)
\(230\) 0 0
\(231\) 14.3047 0.941180
\(232\) 0 0
\(233\) 11.7007 0.766541 0.383270 0.923636i \(-0.374798\pi\)
0.383270 + 0.923636i \(0.374798\pi\)
\(234\) 0 0
\(235\) − 7.10361i − 0.463388i
\(236\) 0 0
\(237\) 15.3822i 0.999181i
\(238\) 0 0
\(239\) 26.1557 1.69187 0.845935 0.533286i \(-0.179043\pi\)
0.845935 + 0.533286i \(0.179043\pi\)
\(240\) 0 0
\(241\) −13.3340 −0.858916 −0.429458 0.903087i \(-0.641295\pi\)
−0.429458 + 0.903087i \(0.641295\pi\)
\(242\) 0 0
\(243\) − 23.0686i − 1.47985i
\(244\) 0 0
\(245\) − 1.11795i − 0.0714230i
\(246\) 0 0
\(247\) 6.89036 0.438423
\(248\) 0 0
\(249\) 9.46061 0.599542
\(250\) 0 0
\(251\) 15.0492i 0.949896i 0.880014 + 0.474948i \(0.157533\pi\)
−0.880014 + 0.474948i \(0.842467\pi\)
\(252\) 0 0
\(253\) 12.0257i 0.756052i
\(254\) 0 0
\(255\) 15.7530 0.986490
\(256\) 0 0
\(257\) 1.36042 0.0848609 0.0424305 0.999099i \(-0.486490\pi\)
0.0424305 + 0.999099i \(0.486490\pi\)
\(258\) 0 0
\(259\) − 2.80922i − 0.174556i
\(260\) 0 0
\(261\) − 42.2908i − 2.61774i
\(262\) 0 0
\(263\) 11.1149 0.685373 0.342687 0.939450i \(-0.388663\pi\)
0.342687 + 0.939450i \(0.388663\pi\)
\(264\) 0 0
\(265\) 6.73985 0.414026
\(266\) 0 0
\(267\) − 16.0912i − 0.984763i
\(268\) 0 0
\(269\) 7.18479i 0.438064i 0.975718 + 0.219032i \(0.0702900\pi\)
−0.975718 + 0.219032i \(0.929710\pi\)
\(270\) 0 0
\(271\) −26.3646 −1.60154 −0.800769 0.598974i \(-0.795575\pi\)
−0.800769 + 0.598974i \(0.795575\pi\)
\(272\) 0 0
\(273\) −3.16783 −0.191726
\(274\) 0 0
\(275\) 16.9345i 1.02119i
\(276\) 0 0
\(277\) 9.62372i 0.578233i 0.957294 + 0.289116i \(0.0933615\pi\)
−0.957294 + 0.289116i \(0.906639\pi\)
\(278\) 0 0
\(279\) 73.7296 4.41408
\(280\) 0 0
\(281\) −13.8037 −0.823460 −0.411730 0.911306i \(-0.635075\pi\)
−0.411730 + 0.911306i \(0.635075\pi\)
\(282\) 0 0
\(283\) − 7.76345i − 0.461489i −0.973014 0.230744i \(-0.925884\pi\)
0.973014 0.230744i \(-0.0741161\pi\)
\(284\) 0 0
\(285\) − 24.4019i − 1.44545i
\(286\) 0 0
\(287\) −4.93559 −0.291339
\(288\) 0 0
\(289\) 2.78615 0.163891
\(290\) 0 0
\(291\) 55.1806i 3.23475i
\(292\) 0 0
\(293\) 23.4220i 1.36833i 0.729329 + 0.684163i \(0.239832\pi\)
−0.729329 + 0.684163i \(0.760168\pi\)
\(294\) 0 0
\(295\) 16.9574 0.987298
\(296\) 0 0
\(297\) −57.7211 −3.34932
\(298\) 0 0
\(299\) − 2.66314i − 0.154013i
\(300\) 0 0
\(301\) 4.88533i 0.281586i
\(302\) 0 0
\(303\) −38.3108 −2.20090
\(304\) 0 0
\(305\) −7.21024 −0.412857
\(306\) 0 0
\(307\) − 7.12411i − 0.406594i −0.979117 0.203297i \(-0.934834\pi\)
0.979117 0.203297i \(-0.0651657\pi\)
\(308\) 0 0
\(309\) − 32.5800i − 1.85341i
\(310\) 0 0
\(311\) 16.3917 0.929486 0.464743 0.885446i \(-0.346147\pi\)
0.464743 + 0.885446i \(0.346147\pi\)
\(312\) 0 0
\(313\) 14.5603 0.822998 0.411499 0.911410i \(-0.365005\pi\)
0.411499 + 0.911410i \(0.365005\pi\)
\(314\) 0 0
\(315\) 7.86489i 0.443136i
\(316\) 0 0
\(317\) − 24.5206i − 1.37721i −0.725135 0.688607i \(-0.758223\pi\)
0.725135 0.688607i \(-0.241777\pi\)
\(318\) 0 0
\(319\) −27.1452 −1.51984
\(320\) 0 0
\(321\) −10.0233 −0.559443
\(322\) 0 0
\(323\) − 30.6494i − 1.70538i
\(324\) 0 0
\(325\) − 3.75020i − 0.208023i
\(326\) 0 0
\(327\) 30.0447 1.66147
\(328\) 0 0
\(329\) 6.35415 0.350316
\(330\) 0 0
\(331\) 1.15297i 0.0633727i 0.999498 + 0.0316864i \(0.0100878\pi\)
−0.999498 + 0.0316864i \(0.989912\pi\)
\(332\) 0 0
\(333\) 19.7632i 1.08302i
\(334\) 0 0
\(335\) 6.68926 0.365473
\(336\) 0 0
\(337\) 34.0718 1.85601 0.928004 0.372569i \(-0.121523\pi\)
0.928004 + 0.372569i \(0.121523\pi\)
\(338\) 0 0
\(339\) 32.5350i 1.76706i
\(340\) 0 0
\(341\) − 47.3247i − 2.56278i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −9.43141 −0.507770
\(346\) 0 0
\(347\) − 10.9924i − 0.590103i −0.955481 0.295051i \(-0.904663\pi\)
0.955481 0.295051i \(-0.0953367\pi\)
\(348\) 0 0
\(349\) − 6.05336i − 0.324029i −0.986788 0.162014i \(-0.948201\pi\)
0.986788 0.162014i \(-0.0517991\pi\)
\(350\) 0 0
\(351\) 12.7825 0.682282
\(352\) 0 0
\(353\) 6.11657 0.325552 0.162776 0.986663i \(-0.447955\pi\)
0.162776 + 0.986663i \(0.447955\pi\)
\(354\) 0 0
\(355\) 0.589382i 0.0312812i
\(356\) 0 0
\(357\) 14.0910i 0.745775i
\(358\) 0 0
\(359\) −1.19941 −0.0633027 −0.0316513 0.999499i \(-0.510077\pi\)
−0.0316513 + 0.999499i \(0.510077\pi\)
\(360\) 0 0
\(361\) −28.4771 −1.49879
\(362\) 0 0
\(363\) 29.7485i 1.56139i
\(364\) 0 0
\(365\) 8.47023i 0.443352i
\(366\) 0 0
\(367\) −6.89769 −0.360056 −0.180028 0.983661i \(-0.557619\pi\)
−0.180028 + 0.983661i \(0.557619\pi\)
\(368\) 0 0
\(369\) 34.7225 1.80758
\(370\) 0 0
\(371\) 6.02877i 0.312998i
\(372\) 0 0
\(373\) 11.8425i 0.613180i 0.951842 + 0.306590i \(0.0991881\pi\)
−0.951842 + 0.306590i \(0.900812\pi\)
\(374\) 0 0
\(375\) −30.9885 −1.60024
\(376\) 0 0
\(377\) 6.01139 0.309602
\(378\) 0 0
\(379\) 25.1816i 1.29349i 0.762705 + 0.646746i \(0.223871\pi\)
−0.762705 + 0.646746i \(0.776129\pi\)
\(380\) 0 0
\(381\) 69.1101i 3.54062i
\(382\) 0 0
\(383\) 5.10219 0.260710 0.130355 0.991467i \(-0.458388\pi\)
0.130355 + 0.991467i \(0.458388\pi\)
\(384\) 0 0
\(385\) 5.04822 0.257281
\(386\) 0 0
\(387\) − 34.3689i − 1.74707i
\(388\) 0 0
\(389\) 10.1680i 0.515536i 0.966207 + 0.257768i \(0.0829871\pi\)
−0.966207 + 0.257768i \(0.917013\pi\)
\(390\) 0 0
\(391\) −11.8461 −0.599082
\(392\) 0 0
\(393\) −49.7645 −2.51029
\(394\) 0 0
\(395\) 5.42848i 0.273137i
\(396\) 0 0
\(397\) 18.3066i 0.918779i 0.888235 + 0.459390i \(0.151932\pi\)
−0.888235 + 0.459390i \(0.848068\pi\)
\(398\) 0 0
\(399\) 21.8275 1.09274
\(400\) 0 0
\(401\) 17.2034 0.859099 0.429549 0.903043i \(-0.358672\pi\)
0.429549 + 0.903043i \(0.358672\pi\)
\(402\) 0 0
\(403\) 10.4802i 0.522057i
\(404\) 0 0
\(405\) − 21.6742i − 1.07700i
\(406\) 0 0
\(407\) 12.6854 0.628791
\(408\) 0 0
\(409\) 8.95836 0.442962 0.221481 0.975165i \(-0.428911\pi\)
0.221481 + 0.975165i \(0.428911\pi\)
\(410\) 0 0
\(411\) − 0.564556i − 0.0278475i
\(412\) 0 0
\(413\) 15.1683i 0.746385i
\(414\) 0 0
\(415\) 3.33871 0.163891
\(416\) 0 0
\(417\) −38.1325 −1.86736
\(418\) 0 0
\(419\) 0.476426i 0.0232749i 0.999932 + 0.0116375i \(0.00370440\pi\)
−0.999932 + 0.0116375i \(0.996296\pi\)
\(420\) 0 0
\(421\) 4.92425i 0.239993i 0.992774 + 0.119997i \(0.0382884\pi\)
−0.992774 + 0.119997i \(0.961712\pi\)
\(422\) 0 0
\(423\) −44.7022 −2.17350
\(424\) 0 0
\(425\) −16.6815 −0.809171
\(426\) 0 0
\(427\) − 6.44954i − 0.312115i
\(428\) 0 0
\(429\) − 14.3047i − 0.690638i
\(430\) 0 0
\(431\) −17.7040 −0.852770 −0.426385 0.904542i \(-0.640213\pi\)
−0.426385 + 0.904542i \(0.640213\pi\)
\(432\) 0 0
\(433\) −13.1961 −0.634165 −0.317083 0.948398i \(-0.602703\pi\)
−0.317083 + 0.948398i \(0.602703\pi\)
\(434\) 0 0
\(435\) − 21.2891i − 1.02073i
\(436\) 0 0
\(437\) 18.3500i 0.877800i
\(438\) 0 0
\(439\) 18.7265 0.893767 0.446884 0.894592i \(-0.352534\pi\)
0.446884 + 0.894592i \(0.352534\pi\)
\(440\) 0 0
\(441\) −7.03512 −0.335006
\(442\) 0 0
\(443\) − 20.1309i − 0.956450i −0.878237 0.478225i \(-0.841280\pi\)
0.878237 0.478225i \(-0.158720\pi\)
\(444\) 0 0
\(445\) − 5.67868i − 0.269195i
\(446\) 0 0
\(447\) −7.78173 −0.368063
\(448\) 0 0
\(449\) −10.7517 −0.507403 −0.253702 0.967283i \(-0.581648\pi\)
−0.253702 + 0.967283i \(0.581648\pi\)
\(450\) 0 0
\(451\) − 22.2873i − 1.04947i
\(452\) 0 0
\(453\) − 22.2713i − 1.04640i
\(454\) 0 0
\(455\) −1.11795 −0.0524101
\(456\) 0 0
\(457\) 3.24345 0.151722 0.0758610 0.997118i \(-0.475829\pi\)
0.0758610 + 0.997118i \(0.475829\pi\)
\(458\) 0 0
\(459\) − 56.8588i − 2.65394i
\(460\) 0 0
\(461\) 27.3854i 1.27546i 0.770258 + 0.637732i \(0.220127\pi\)
−0.770258 + 0.637732i \(0.779873\pi\)
\(462\) 0 0
\(463\) −41.5405 −1.93055 −0.965276 0.261233i \(-0.915871\pi\)
−0.965276 + 0.261233i \(0.915871\pi\)
\(464\) 0 0
\(465\) 37.1153 1.72118
\(466\) 0 0
\(467\) 22.2758i 1.03080i 0.856949 + 0.515400i \(0.172357\pi\)
−0.856949 + 0.515400i \(0.827643\pi\)
\(468\) 0 0
\(469\) 5.98352i 0.276293i
\(470\) 0 0
\(471\) −12.4720 −0.574678
\(472\) 0 0
\(473\) −22.0603 −1.01433
\(474\) 0 0
\(475\) 25.8402i 1.18563i
\(476\) 0 0
\(477\) − 42.4131i − 1.94196i
\(478\) 0 0
\(479\) −33.6848 −1.53910 −0.769549 0.638588i \(-0.779519\pi\)
−0.769549 + 0.638588i \(0.779519\pi\)
\(480\) 0 0
\(481\) −2.80922 −0.128089
\(482\) 0 0
\(483\) − 8.43637i − 0.383868i
\(484\) 0 0
\(485\) 19.4736i 0.884251i
\(486\) 0 0
\(487\) −8.82614 −0.399951 −0.199975 0.979801i \(-0.564086\pi\)
−0.199975 + 0.979801i \(0.564086\pi\)
\(488\) 0 0
\(489\) 43.4156 1.96332
\(490\) 0 0
\(491\) − 8.33126i − 0.375984i −0.982171 0.187992i \(-0.939802\pi\)
0.982171 0.187992i \(-0.0601980\pi\)
\(492\) 0 0
\(493\) − 26.7396i − 1.20429i
\(494\) 0 0
\(495\) −35.5149 −1.59627
\(496\) 0 0
\(497\) −0.527201 −0.0236482
\(498\) 0 0
\(499\) 24.1391i 1.08061i 0.841468 + 0.540306i \(0.181692\pi\)
−0.841468 + 0.540306i \(0.818308\pi\)
\(500\) 0 0
\(501\) − 32.2611i − 1.44132i
\(502\) 0 0
\(503\) −23.5917 −1.05190 −0.525952 0.850514i \(-0.676291\pi\)
−0.525952 + 0.850514i \(0.676291\pi\)
\(504\) 0 0
\(505\) −13.5201 −0.601638
\(506\) 0 0
\(507\) 3.16783i 0.140688i
\(508\) 0 0
\(509\) − 28.5768i − 1.26664i −0.773889 0.633322i \(-0.781691\pi\)
0.773889 0.633322i \(-0.218309\pi\)
\(510\) 0 0
\(511\) −7.57660 −0.335169
\(512\) 0 0
\(513\) −88.0764 −3.88867
\(514\) 0 0
\(515\) − 11.4977i − 0.506650i
\(516\) 0 0
\(517\) 28.6930i 1.26192i
\(518\) 0 0
\(519\) 19.6343 0.861848
\(520\) 0 0
\(521\) −13.2632 −0.581070 −0.290535 0.956864i \(-0.593833\pi\)
−0.290535 + 0.956864i \(0.593833\pi\)
\(522\) 0 0
\(523\) 21.7999i 0.953243i 0.879109 + 0.476621i \(0.158139\pi\)
−0.879109 + 0.476621i \(0.841861\pi\)
\(524\) 0 0
\(525\) − 11.8800i − 0.518484i
\(526\) 0 0
\(527\) 46.6178 2.03070
\(528\) 0 0
\(529\) −15.9077 −0.691638
\(530\) 0 0
\(531\) − 106.711i − 4.63087i
\(532\) 0 0
\(533\) 4.93559i 0.213784i
\(534\) 0 0
\(535\) −3.53727 −0.152930
\(536\) 0 0
\(537\) 36.3736 1.56964
\(538\) 0 0
\(539\) 4.51562i 0.194502i
\(540\) 0 0
\(541\) 35.2967i 1.51753i 0.651367 + 0.758763i \(0.274196\pi\)
−0.651367 + 0.758763i \(0.725804\pi\)
\(542\) 0 0
\(543\) −83.5707 −3.58636
\(544\) 0 0
\(545\) 10.6030 0.454181
\(546\) 0 0
\(547\) 25.6660i 1.09740i 0.836020 + 0.548699i \(0.184877\pi\)
−0.836020 + 0.548699i \(0.815123\pi\)
\(548\) 0 0
\(549\) 45.3733i 1.93648i
\(550\) 0 0
\(551\) −41.4206 −1.76458
\(552\) 0 0
\(553\) −4.85576 −0.206488
\(554\) 0 0
\(555\) 9.94874i 0.422301i
\(556\) 0 0
\(557\) − 23.9095i − 1.01308i −0.862218 0.506538i \(-0.830925\pi\)
0.862218 0.506538i \(-0.169075\pi\)
\(558\) 0 0
\(559\) 4.88533 0.206628
\(560\) 0 0
\(561\) −63.6296 −2.68645
\(562\) 0 0
\(563\) 4.23760i 0.178594i 0.996005 + 0.0892969i \(0.0284620\pi\)
−0.996005 + 0.0892969i \(0.971538\pi\)
\(564\) 0 0
\(565\) 11.4818i 0.483044i
\(566\) 0 0
\(567\) 19.3875 0.814199
\(568\) 0 0
\(569\) 14.1681 0.593958 0.296979 0.954884i \(-0.404021\pi\)
0.296979 + 0.954884i \(0.404021\pi\)
\(570\) 0 0
\(571\) − 27.7699i − 1.16213i −0.813856 0.581066i \(-0.802636\pi\)
0.813856 0.581066i \(-0.197364\pi\)
\(572\) 0 0
\(573\) 27.9120i 1.16604i
\(574\) 0 0
\(575\) 9.98730 0.416499
\(576\) 0 0
\(577\) 10.7261 0.446534 0.223267 0.974757i \(-0.428328\pi\)
0.223267 + 0.974757i \(0.428328\pi\)
\(578\) 0 0
\(579\) 1.12128i 0.0465986i
\(580\) 0 0
\(581\) 2.98647i 0.123900i
\(582\) 0 0
\(583\) −27.2237 −1.12749
\(584\) 0 0
\(585\) 7.86489 0.325173
\(586\) 0 0
\(587\) 38.0092i 1.56881i 0.620251 + 0.784403i \(0.287031\pi\)
−0.620251 + 0.784403i \(0.712969\pi\)
\(588\) 0 0
\(589\) − 72.2125i − 2.97547i
\(590\) 0 0
\(591\) 16.9151 0.695796
\(592\) 0 0
\(593\) 16.4663 0.676190 0.338095 0.941112i \(-0.390217\pi\)
0.338095 + 0.941112i \(0.390217\pi\)
\(594\) 0 0
\(595\) 4.97281i 0.203865i
\(596\) 0 0
\(597\) 42.8395i 1.75330i
\(598\) 0 0
\(599\) −28.8517 −1.17885 −0.589425 0.807823i \(-0.700646\pi\)
−0.589425 + 0.807823i \(0.700646\pi\)
\(600\) 0 0
\(601\) 6.29534 0.256792 0.128396 0.991723i \(-0.459017\pi\)
0.128396 + 0.991723i \(0.459017\pi\)
\(602\) 0 0
\(603\) − 42.0948i − 1.71423i
\(604\) 0 0
\(605\) 10.4985i 0.426823i
\(606\) 0 0
\(607\) −15.7914 −0.640954 −0.320477 0.947256i \(-0.603843\pi\)
−0.320477 + 0.947256i \(0.603843\pi\)
\(608\) 0 0
\(609\) 19.0430 0.771662
\(610\) 0 0
\(611\) − 6.35415i − 0.257062i
\(612\) 0 0
\(613\) 44.8229i 1.81038i 0.425008 + 0.905189i \(0.360271\pi\)
−0.425008 + 0.905189i \(0.639729\pi\)
\(614\) 0 0
\(615\) 17.4792 0.704829
\(616\) 0 0
\(617\) 41.5256 1.67176 0.835879 0.548913i \(-0.184958\pi\)
0.835879 + 0.548913i \(0.184958\pi\)
\(618\) 0 0
\(619\) 40.6374i 1.63335i 0.577095 + 0.816677i \(0.304186\pi\)
−0.577095 + 0.816677i \(0.695814\pi\)
\(620\) 0 0
\(621\) 34.0417i 1.36605i
\(622\) 0 0
\(623\) 5.07956 0.203508
\(624\) 0 0
\(625\) 7.81494 0.312598
\(626\) 0 0
\(627\) 98.5646i 3.93629i
\(628\) 0 0
\(629\) 12.4959i 0.498243i
\(630\) 0 0
\(631\) −19.3579 −0.770624 −0.385312 0.922786i \(-0.625906\pi\)
−0.385312 + 0.922786i \(0.625906\pi\)
\(632\) 0 0
\(633\) −22.2679 −0.885069
\(634\) 0 0
\(635\) 24.3894i 0.967865i
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 0 0
\(639\) 3.70892 0.146723
\(640\) 0 0
\(641\) 23.1842 0.915719 0.457860 0.889024i \(-0.348616\pi\)
0.457860 + 0.889024i \(0.348616\pi\)
\(642\) 0 0
\(643\) − 36.1071i − 1.42393i −0.702217 0.711963i \(-0.747806\pi\)
0.702217 0.711963i \(-0.252194\pi\)
\(644\) 0 0
\(645\) − 17.3012i − 0.681235i
\(646\) 0 0
\(647\) −23.0515 −0.906248 −0.453124 0.891447i \(-0.649691\pi\)
−0.453124 + 0.891447i \(0.649691\pi\)
\(648\) 0 0
\(649\) −68.4945 −2.68864
\(650\) 0 0
\(651\) 33.1995i 1.30119i
\(652\) 0 0
\(653\) 10.6277i 0.415893i 0.978140 + 0.207946i \(0.0666780\pi\)
−0.978140 + 0.207946i \(0.933322\pi\)
\(654\) 0 0
\(655\) −17.5622 −0.686213
\(656\) 0 0
\(657\) 53.3023 2.07952
\(658\) 0 0
\(659\) 31.8733i 1.24161i 0.783965 + 0.620804i \(0.213194\pi\)
−0.783965 + 0.620804i \(0.786806\pi\)
\(660\) 0 0
\(661\) − 32.4525i − 1.26225i −0.775679 0.631127i \(-0.782593\pi\)
0.775679 0.631127i \(-0.217407\pi\)
\(662\) 0 0
\(663\) 14.0910 0.547249
\(664\) 0 0
\(665\) 7.70306 0.298712
\(666\) 0 0
\(667\) 16.0092i 0.619878i
\(668\) 0 0
\(669\) − 48.1321i − 1.86089i
\(670\) 0 0
\(671\) 29.1237 1.12431
\(672\) 0 0
\(673\) −26.9401 −1.03846 −0.519232 0.854633i \(-0.673782\pi\)
−0.519232 + 0.854633i \(0.673782\pi\)
\(674\) 0 0
\(675\) 47.9370i 1.84510i
\(676\) 0 0
\(677\) 27.8214i 1.06926i 0.845085 + 0.534632i \(0.179550\pi\)
−0.845085 + 0.534632i \(0.820450\pi\)
\(678\) 0 0
\(679\) −17.4191 −0.668483
\(680\) 0 0
\(681\) 9.77780 0.374686
\(682\) 0 0
\(683\) − 36.9656i − 1.41445i −0.706990 0.707224i \(-0.749947\pi\)
0.706990 0.707224i \(-0.250053\pi\)
\(684\) 0 0
\(685\) − 0.199235i − 0.00761240i
\(686\) 0 0
\(687\) 25.6854 0.979958
\(688\) 0 0
\(689\) 6.02877 0.229678
\(690\) 0 0
\(691\) 23.6432i 0.899428i 0.893173 + 0.449714i \(0.148474\pi\)
−0.893173 + 0.449714i \(0.851526\pi\)
\(692\) 0 0
\(693\) − 31.7679i − 1.20676i
\(694\) 0 0
\(695\) −13.4572 −0.510462
\(696\) 0 0
\(697\) 21.9543 0.831579
\(698\) 0 0
\(699\) − 37.0659i − 1.40196i
\(700\) 0 0
\(701\) − 7.24572i − 0.273667i −0.990594 0.136833i \(-0.956307\pi\)
0.990594 0.136833i \(-0.0436925\pi\)
\(702\) 0 0
\(703\) 19.3565 0.730046
\(704\) 0 0
\(705\) −22.5030 −0.847511
\(706\) 0 0
\(707\) − 12.0937i − 0.454831i
\(708\) 0 0
\(709\) − 6.77224i − 0.254337i −0.991881 0.127168i \(-0.959411\pi\)
0.991881 0.127168i \(-0.0405889\pi\)
\(710\) 0 0
\(711\) 34.1608 1.28113
\(712\) 0 0
\(713\) −27.9103 −1.04525
\(714\) 0 0
\(715\) − 5.04822i − 0.188793i
\(716\) 0 0
\(717\) − 82.8566i − 3.09434i
\(718\) 0 0
\(719\) 49.7201 1.85425 0.927124 0.374756i \(-0.122273\pi\)
0.927124 + 0.374756i \(0.122273\pi\)
\(720\) 0 0
\(721\) 10.2847 0.383021
\(722\) 0 0
\(723\) 42.2397i 1.57091i
\(724\) 0 0
\(725\) 22.5439i 0.837259i
\(726\) 0 0
\(727\) 12.0287 0.446121 0.223060 0.974805i \(-0.428395\pi\)
0.223060 + 0.974805i \(0.428395\pi\)
\(728\) 0 0
\(729\) −14.9149 −0.552402
\(730\) 0 0
\(731\) − 21.7308i − 0.803741i
\(732\) 0 0
\(733\) − 31.1191i − 1.14941i −0.818360 0.574706i \(-0.805117\pi\)
0.818360 0.574706i \(-0.194883\pi\)
\(734\) 0 0
\(735\) −3.54146 −0.130629
\(736\) 0 0
\(737\) −27.0193 −0.995270
\(738\) 0 0
\(739\) − 44.6644i − 1.64301i −0.570204 0.821503i \(-0.693136\pi\)
0.570204 0.821503i \(-0.306864\pi\)
\(740\) 0 0
\(741\) − 21.8275i − 0.801852i
\(742\) 0 0
\(743\) 17.5023 0.642099 0.321049 0.947062i \(-0.395964\pi\)
0.321049 + 0.947062i \(0.395964\pi\)
\(744\) 0 0
\(745\) −2.74622 −0.100614
\(746\) 0 0
\(747\) − 21.0102i − 0.768722i
\(748\) 0 0
\(749\) − 3.16408i − 0.115613i
\(750\) 0 0
\(751\) 26.6034 0.970774 0.485387 0.874300i \(-0.338679\pi\)
0.485387 + 0.874300i \(0.338679\pi\)
\(752\) 0 0
\(753\) 47.6732 1.73731
\(754\) 0 0
\(755\) − 7.85971i − 0.286044i
\(756\) 0 0
\(757\) 28.6275i 1.04048i 0.854019 + 0.520242i \(0.174158\pi\)
−0.854019 + 0.520242i \(0.825842\pi\)
\(758\) 0 0
\(759\) 38.0954 1.38278
\(760\) 0 0
\(761\) 23.5126 0.852332 0.426166 0.904645i \(-0.359864\pi\)
0.426166 + 0.904645i \(0.359864\pi\)
\(762\) 0 0
\(763\) 9.48432i 0.343355i
\(764\) 0 0
\(765\) − 34.9843i − 1.26486i
\(766\) 0 0
\(767\) 15.1683 0.547697
\(768\) 0 0
\(769\) 1.86478 0.0672456 0.0336228 0.999435i \(-0.489296\pi\)
0.0336228 + 0.999435i \(0.489296\pi\)
\(770\) 0 0
\(771\) − 4.30959i − 0.155206i
\(772\) 0 0
\(773\) 30.6421i 1.10212i 0.834466 + 0.551060i \(0.185776\pi\)
−0.834466 + 0.551060i \(0.814224\pi\)
\(774\) 0 0
\(775\) −39.3029 −1.41180
\(776\) 0 0
\(777\) −8.89912 −0.319254
\(778\) 0 0
\(779\) − 34.0080i − 1.21846i
\(780\) 0 0
\(781\) − 2.38064i − 0.0851860i
\(782\) 0 0
\(783\) −76.8408 −2.74607
\(784\) 0 0
\(785\) −4.40144 −0.157094
\(786\) 0 0
\(787\) − 52.8326i − 1.88328i −0.336622 0.941640i \(-0.609285\pi\)
0.336622 0.941640i \(-0.390715\pi\)
\(788\) 0 0
\(789\) − 35.2100i − 1.25351i
\(790\) 0 0
\(791\) −10.2704 −0.365175
\(792\) 0 0
\(793\) −6.44954 −0.229030
\(794\) 0 0
\(795\) − 21.3507i − 0.757230i
\(796\) 0 0
\(797\) 1.45717i 0.0516158i 0.999667 + 0.0258079i \(0.00821582\pi\)
−0.999667 + 0.0258079i \(0.991784\pi\)
\(798\) 0 0
\(799\) −28.2643 −0.999920
\(800\) 0 0
\(801\) −35.7353 −1.26264
\(802\) 0 0
\(803\) − 34.2131i − 1.20735i
\(804\) 0 0
\(805\) − 2.97725i − 0.104934i
\(806\) 0 0
\(807\) 22.7602 0.801196
\(808\) 0 0
\(809\) 12.8081 0.450308 0.225154 0.974323i \(-0.427712\pi\)
0.225154 + 0.974323i \(0.427712\pi\)
\(810\) 0 0
\(811\) − 25.1200i − 0.882083i −0.897487 0.441042i \(-0.854609\pi\)
0.897487 0.441042i \(-0.145391\pi\)
\(812\) 0 0
\(813\) 83.5185i 2.92912i
\(814\) 0 0
\(815\) 15.3217 0.536694
\(816\) 0 0
\(817\) −33.6617 −1.17767
\(818\) 0 0
\(819\) 7.03512i 0.245827i
\(820\) 0 0
\(821\) − 38.6333i − 1.34831i −0.738590 0.674155i \(-0.764508\pi\)
0.738590 0.674155i \(-0.235492\pi\)
\(822\) 0 0
\(823\) −23.7386 −0.827476 −0.413738 0.910396i \(-0.635777\pi\)
−0.413738 + 0.910396i \(0.635777\pi\)
\(824\) 0 0
\(825\) 53.6454 1.86769
\(826\) 0 0
\(827\) − 7.45758i − 0.259325i −0.991558 0.129663i \(-0.958611\pi\)
0.991558 0.129663i \(-0.0413895\pi\)
\(828\) 0 0
\(829\) − 13.2732i − 0.460998i −0.973073 0.230499i \(-0.925964\pi\)
0.973073 0.230499i \(-0.0740358\pi\)
\(830\) 0 0
\(831\) 30.4862 1.05756
\(832\) 0 0
\(833\) −4.44816 −0.154120
\(834\) 0 0
\(835\) − 11.3852i − 0.394000i
\(836\) 0 0
\(837\) − 133.964i − 4.63047i
\(838\) 0 0
\(839\) 33.6190 1.16066 0.580328 0.814383i \(-0.302924\pi\)
0.580328 + 0.814383i \(0.302924\pi\)
\(840\) 0 0
\(841\) −7.13678 −0.246096
\(842\) 0 0
\(843\) 43.7277i 1.50606i
\(844\) 0 0
\(845\) 1.11795i 0.0384585i
\(846\) 0 0
\(847\) −9.39084 −0.322673
\(848\) 0 0
\(849\) −24.5932 −0.844038
\(850\) 0 0
\(851\) − 7.48135i − 0.256457i
\(852\) 0 0
\(853\) 5.30251i 0.181554i 0.995871 + 0.0907772i \(0.0289351\pi\)
−0.995871 + 0.0907772i \(0.971065\pi\)
\(854\) 0 0
\(855\) −54.1919 −1.85332
\(856\) 0 0
\(857\) −44.8103 −1.53069 −0.765346 0.643619i \(-0.777432\pi\)
−0.765346 + 0.643619i \(0.777432\pi\)
\(858\) 0 0
\(859\) − 25.3400i − 0.864590i −0.901732 0.432295i \(-0.857704\pi\)
0.901732 0.432295i \(-0.142296\pi\)
\(860\) 0 0
\(861\) 15.6351i 0.532843i
\(862\) 0 0
\(863\) 22.2518 0.757462 0.378731 0.925507i \(-0.376361\pi\)
0.378731 + 0.925507i \(0.376361\pi\)
\(864\) 0 0
\(865\) 6.92906 0.235595
\(866\) 0 0
\(867\) − 8.82604i − 0.299748i
\(868\) 0 0
\(869\) − 21.9268i − 0.743815i
\(870\) 0 0
\(871\) 5.98352 0.202744
\(872\) 0 0
\(873\) 122.545 4.14753
\(874\) 0 0
\(875\) − 9.78225i − 0.330700i
\(876\) 0 0
\(877\) 16.4120i 0.554194i 0.960842 + 0.277097i \(0.0893723\pi\)
−0.960842 + 0.277097i \(0.910628\pi\)
\(878\) 0 0
\(879\) 74.1967 2.50259
\(880\) 0 0
\(881\) −13.3626 −0.450197 −0.225098 0.974336i \(-0.572270\pi\)
−0.225098 + 0.974336i \(0.572270\pi\)
\(882\) 0 0
\(883\) 49.7871i 1.67547i 0.546077 + 0.837735i \(0.316120\pi\)
−0.546077 + 0.837735i \(0.683880\pi\)
\(884\) 0 0
\(885\) − 53.7181i − 1.80571i
\(886\) 0 0
\(887\) 4.91098 0.164895 0.0824473 0.996595i \(-0.473726\pi\)
0.0824473 + 0.996595i \(0.473726\pi\)
\(888\) 0 0
\(889\) −21.8163 −0.731694
\(890\) 0 0
\(891\) 87.5467i 2.93293i
\(892\) 0 0
\(893\) 43.7824i 1.46512i
\(894\) 0 0
\(895\) 12.8365 0.429076
\(896\) 0 0
\(897\) −8.43637 −0.281682
\(898\) 0 0
\(899\) − 63.0007i − 2.10119i
\(900\) 0 0
\(901\) − 26.8170i − 0.893403i
\(902\) 0 0
\(903\) 15.4759 0.515005
\(904\) 0 0
\(905\) −29.4927 −0.980370
\(906\) 0 0
\(907\) − 14.1867i − 0.471062i −0.971867 0.235531i \(-0.924317\pi\)
0.971867 0.235531i \(-0.0756829\pi\)
\(908\) 0 0
\(909\) 85.0808i 2.82195i
\(910\) 0 0
\(911\) 5.49425 0.182033 0.0910163 0.995849i \(-0.470988\pi\)
0.0910163 + 0.995849i \(0.470988\pi\)
\(912\) 0 0
\(913\) −13.4858 −0.446314
\(914\) 0 0
\(915\) 22.8408i 0.755093i
\(916\) 0 0
\(917\) − 15.7094i − 0.518768i
\(918\) 0 0
\(919\) −53.9477 −1.77957 −0.889785 0.456379i \(-0.849146\pi\)
−0.889785 + 0.456379i \(0.849146\pi\)
\(920\) 0 0
\(921\) −22.5679 −0.743638
\(922\) 0 0
\(923\) 0.527201i 0.0173530i
\(924\) 0 0
\(925\) − 10.5351i − 0.346393i
\(926\) 0 0
\(927\) −72.3539 −2.37641
\(928\) 0 0
\(929\) −4.12817 −0.135441 −0.0677204 0.997704i \(-0.521573\pi\)
−0.0677204 + 0.997704i \(0.521573\pi\)
\(930\) 0 0
\(931\) 6.89036i 0.225822i
\(932\) 0 0
\(933\) − 51.9259i − 1.69998i
\(934\) 0 0
\(935\) −22.4553 −0.734368
\(936\) 0 0
\(937\) 6.95266 0.227134 0.113567 0.993530i \(-0.463772\pi\)
0.113567 + 0.993530i \(0.463772\pi\)
\(938\) 0 0
\(939\) − 46.1245i − 1.50522i
\(940\) 0 0
\(941\) 20.5079i 0.668539i 0.942478 + 0.334270i \(0.108490\pi\)
−0.942478 + 0.334270i \(0.891510\pi\)
\(942\) 0 0
\(943\) −13.1442 −0.428033
\(944\) 0 0
\(945\) 14.2902 0.464860
\(946\) 0 0
\(947\) 20.6521i 0.671102i 0.942022 + 0.335551i \(0.108923\pi\)
−0.942022 + 0.335551i \(0.891077\pi\)
\(948\) 0 0
\(949\) 7.57660i 0.245947i
\(950\) 0 0
\(951\) −77.6769 −2.51885
\(952\) 0 0
\(953\) 61.2746 1.98488 0.992440 0.122730i \(-0.0391649\pi\)
0.992440 + 0.122730i \(0.0391649\pi\)
\(954\) 0 0
\(955\) 9.85035i 0.318750i
\(956\) 0 0
\(957\) 85.9911i 2.77970i
\(958\) 0 0
\(959\) 0.178216 0.00575488
\(960\) 0 0
\(961\) 78.8351 2.54307
\(962\) 0 0
\(963\) 22.2597i 0.717308i
\(964\) 0 0
\(965\) 0.395705i 0.0127382i
\(966\) 0 0
\(967\) −19.5810 −0.629683 −0.314842 0.949144i \(-0.601951\pi\)
−0.314842 + 0.949144i \(0.601951\pi\)
\(968\) 0 0
\(969\) −97.0921 −3.11905
\(970\) 0 0
\(971\) 38.5437i 1.23693i 0.785814 + 0.618463i \(0.212244\pi\)
−0.785814 + 0.618463i \(0.787756\pi\)
\(972\) 0 0
\(973\) − 12.0375i − 0.385903i
\(974\) 0 0
\(975\) −11.8800 −0.380463
\(976\) 0 0
\(977\) 27.8078 0.889651 0.444825 0.895617i \(-0.353266\pi\)
0.444825 + 0.895617i \(0.353266\pi\)
\(978\) 0 0
\(979\) 22.9374i 0.733082i
\(980\) 0 0
\(981\) − 66.7233i − 2.13031i
\(982\) 0 0
\(983\) −3.36489 −0.107323 −0.0536616 0.998559i \(-0.517089\pi\)
−0.0536616 + 0.998559i \(0.517089\pi\)
\(984\) 0 0
\(985\) 5.96947 0.190203
\(986\) 0 0
\(987\) − 20.1289i − 0.640708i
\(988\) 0 0
\(989\) 13.0103i 0.413705i
\(990\) 0 0
\(991\) −22.7862 −0.723826 −0.361913 0.932212i \(-0.617876\pi\)
−0.361913 + 0.932212i \(0.617876\pi\)
\(992\) 0 0
\(993\) 3.65239 0.115905
\(994\) 0 0
\(995\) 15.1183i 0.479284i
\(996\) 0 0
\(997\) − 41.0678i − 1.30063i −0.759664 0.650315i \(-0.774637\pi\)
0.759664 0.650315i \(-0.225363\pi\)
\(998\) 0 0
\(999\) 35.9090 1.13611
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.1 34
4.3 odd 2 728.2.c.a.365.11 34
8.3 odd 2 728.2.c.a.365.12 yes 34
8.5 even 2 inner 2912.2.c.a.1457.34 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.11 34 4.3 odd 2
728.2.c.a.365.12 yes 34 8.3 odd 2
2912.2.c.a.1457.1 34 1.1 even 1 trivial
2912.2.c.a.1457.34 34 8.5 even 2 inner