Properties

Label 728.2.c.a.365.1
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.1
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.a.365.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41239 - 0.0717634i) q^{2} +1.60179i q^{3} +(1.98970 + 0.202716i) q^{4} -2.04118i q^{5} +(0.114950 - 2.26236i) q^{6} -1.00000 q^{7} +(-2.79569 - 0.429102i) q^{8} +0.434268 q^{9} +(-0.146482 + 2.88295i) q^{10} -3.30009i q^{11} +(-0.324709 + 3.18708i) q^{12} +1.00000i q^{13} +(1.41239 + 0.0717634i) q^{14} +3.26954 q^{15} +(3.91781 + 0.806688i) q^{16} -4.91083 q^{17} +(-0.613356 - 0.0311646i) q^{18} -4.94776i q^{19} +(0.413780 - 4.06134i) q^{20} -1.60179i q^{21} +(-0.236826 + 4.66102i) q^{22} -9.20320 q^{23} +(0.687332 - 4.47811i) q^{24} +0.833579 q^{25} +(0.0717634 - 1.41239i) q^{26} +5.50098i q^{27} +(-1.98970 - 0.202716i) q^{28} -7.07766i q^{29} +(-4.61788 - 0.234634i) q^{30} -7.44816 q^{31} +(-5.47559 - 1.42052i) q^{32} +5.28605 q^{33} +(6.93601 + 0.352418i) q^{34} +2.04118i q^{35} +(0.864063 + 0.0880331i) q^{36} -4.63185i q^{37} +(-0.355068 + 6.98818i) q^{38} -1.60179 q^{39} +(-0.875875 + 5.70651i) q^{40} +4.33522 q^{41} +(-0.114950 + 2.26236i) q^{42} +7.48166i q^{43} +(0.668981 - 6.56619i) q^{44} -0.886420i q^{45} +(12.9985 + 0.660453i) q^{46} +0.246211 q^{47} +(-1.29215 + 6.27551i) q^{48} +1.00000 q^{49} +(-1.17734 - 0.0598204i) q^{50} -7.86611i q^{51} +(-0.202716 + 1.98970i) q^{52} -9.84928i q^{53} +(0.394769 - 7.76953i) q^{54} -6.73608 q^{55} +(2.79569 + 0.429102i) q^{56} +7.92528 q^{57} +(-0.507917 + 9.99642i) q^{58} +4.04217i q^{59} +(6.50541 + 0.662789i) q^{60} -10.6561i q^{61} +(10.5197 + 0.534506i) q^{62} -0.434268 q^{63} +(7.63174 + 2.39927i) q^{64} +2.04118 q^{65} +(-7.46597 - 0.379345i) q^{66} -10.2757i q^{67} +(-9.77107 - 0.995503i) q^{68} -14.7416i q^{69} +(0.146482 - 2.88295i) q^{70} +11.1847 q^{71} +(-1.21408 - 0.186345i) q^{72} +5.93073 q^{73} +(-0.332397 + 6.54198i) q^{74} +1.33522i q^{75} +(1.00299 - 9.84456i) q^{76} +3.30009i q^{77} +(2.26236 + 0.114950i) q^{78} -6.84608 q^{79} +(1.64660 - 7.99697i) q^{80} -7.50861 q^{81} +(-6.12303 - 0.311110i) q^{82} -8.53099i q^{83} +(0.324709 - 3.18708i) q^{84} +10.0239i q^{85} +(0.536910 - 10.5670i) q^{86} +11.3369 q^{87} +(-1.41607 + 9.22602i) q^{88} -14.4730 q^{89} +(-0.0636125 + 1.25197i) q^{90} -1.00000i q^{91} +(-18.3116 - 1.86564i) q^{92} -11.9304i q^{93} +(-0.347747 - 0.0176690i) q^{94} -10.0993 q^{95} +(2.27537 - 8.77075i) q^{96} -3.61044 q^{97} +(-1.41239 - 0.0717634i) q^{98} -1.43312i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 2 q^{2} - 2 q^{4} - 6 q^{6} - 34 q^{7} + 8 q^{8} - 26 q^{9} - 4 q^{12} - 2 q^{14} - 8 q^{15} - 6 q^{16} - 20 q^{17} + 14 q^{18} - 4 q^{20} - 10 q^{22} - 20 q^{23} + 10 q^{24} - 22 q^{25} + 2 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41239 0.0717634i −0.998712 0.0507444i
\(3\) 1.60179i 0.924794i 0.886673 + 0.462397i \(0.153011\pi\)
−0.886673 + 0.462397i \(0.846989\pi\)
\(4\) 1.98970 + 0.202716i 0.994850 + 0.101358i
\(5\) 2.04118i 0.912844i −0.889763 0.456422i \(-0.849131\pi\)
0.889763 0.456422i \(-0.150869\pi\)
\(6\) 0.114950 2.26236i 0.0469281 0.923603i
\(7\) −1.00000 −0.377964
\(8\) −2.79569 0.429102i −0.988425 0.151711i
\(9\) 0.434268 0.144756
\(10\) −0.146482 + 2.88295i −0.0463217 + 0.911668i
\(11\) 3.30009i 0.995014i −0.867460 0.497507i \(-0.834249\pi\)
0.867460 0.497507i \(-0.165751\pi\)
\(12\) −0.324709 + 3.18708i −0.0937353 + 0.920031i
\(13\) 1.00000i 0.277350i
\(14\) 1.41239 + 0.0717634i 0.377478 + 0.0191796i
\(15\) 3.26954 0.844193
\(16\) 3.91781 + 0.806688i 0.979453 + 0.201672i
\(17\) −4.91083 −1.19105 −0.595525 0.803337i \(-0.703056\pi\)
−0.595525 + 0.803337i \(0.703056\pi\)
\(18\) −0.613356 0.0311646i −0.144570 0.00734556i
\(19\) 4.94776i 1.13509i −0.823341 0.567547i \(-0.807892\pi\)
0.823341 0.567547i \(-0.192108\pi\)
\(20\) 0.413780 4.06134i 0.0925241 0.908143i
\(21\) 1.60179i 0.349539i
\(22\) −0.236826 + 4.66102i −0.0504914 + 0.993732i
\(23\) −9.20320 −1.91900 −0.959500 0.281709i \(-0.909099\pi\)
−0.959500 + 0.281709i \(0.909099\pi\)
\(24\) 0.687332 4.47811i 0.140301 0.914090i
\(25\) 0.833579 0.166716
\(26\) 0.0717634 1.41239i 0.0140740 0.276993i
\(27\) 5.50098i 1.05866i
\(28\) −1.98970 0.202716i −0.376018 0.0383097i
\(29\) 7.07766i 1.31429i −0.753765 0.657144i \(-0.771764\pi\)
0.753765 0.657144i \(-0.228236\pi\)
\(30\) −4.61788 0.234634i −0.843105 0.0428380i
\(31\) −7.44816 −1.33773 −0.668865 0.743384i \(-0.733220\pi\)
−0.668865 + 0.743384i \(0.733220\pi\)
\(32\) −5.47559 1.42052i −0.967958 0.251114i
\(33\) 5.28605 0.920183
\(34\) 6.93601 + 0.352418i 1.18952 + 0.0604391i
\(35\) 2.04118i 0.345023i
\(36\) 0.864063 + 0.0880331i 0.144011 + 0.0146722i
\(37\) 4.63185i 0.761471i −0.924684 0.380735i \(-0.875671\pi\)
0.924684 0.380735i \(-0.124329\pi\)
\(38\) −0.355068 + 6.98818i −0.0575997 + 1.13363i
\(39\) −1.60179 −0.256492
\(40\) −0.875875 + 5.70651i −0.138488 + 0.902278i
\(41\) 4.33522 0.677047 0.338524 0.940958i \(-0.390072\pi\)
0.338524 + 0.940958i \(0.390072\pi\)
\(42\) −0.114950 + 2.26236i −0.0177372 + 0.349089i
\(43\) 7.48166i 1.14094i 0.821318 + 0.570471i \(0.193239\pi\)
−0.821318 + 0.570471i \(0.806761\pi\)
\(44\) 0.668981 6.56619i 0.100853 0.989890i
\(45\) 0.886420i 0.132140i
\(46\) 12.9985 + 0.660453i 1.91653 + 0.0973785i
\(47\) 0.246211 0.0359136 0.0179568 0.999839i \(-0.494284\pi\)
0.0179568 + 0.999839i \(0.494284\pi\)
\(48\) −1.29215 + 6.27551i −0.186505 + 0.905792i
\(49\) 1.00000 0.142857
\(50\) −1.17734 0.0598204i −0.166501 0.00845989i
\(51\) 7.86611i 1.10148i
\(52\) −0.202716 + 1.98970i −0.0281117 + 0.275922i
\(53\) 9.84928i 1.35290i −0.736487 0.676451i \(-0.763517\pi\)
0.736487 0.676451i \(-0.236483\pi\)
\(54\) 0.394769 7.76953i 0.0537212 1.05730i
\(55\) −6.73608 −0.908293
\(56\) 2.79569 + 0.429102i 0.373590 + 0.0573412i
\(57\) 7.92528 1.04973
\(58\) −0.507917 + 9.99642i −0.0666927 + 1.31259i
\(59\) 4.04217i 0.526246i 0.964762 + 0.263123i \(0.0847525\pi\)
−0.964762 + 0.263123i \(0.915248\pi\)
\(60\) 6.50541 + 0.662789i 0.839845 + 0.0855657i
\(61\) 10.6561i 1.36438i −0.731175 0.682190i \(-0.761028\pi\)
0.731175 0.682190i \(-0.238972\pi\)
\(62\) 10.5197 + 0.534506i 1.33601 + 0.0678823i
\(63\) −0.434268 −0.0547126
\(64\) 7.63174 + 2.39927i 0.953968 + 0.299909i
\(65\) 2.04118 0.253177
\(66\) −7.46597 0.379345i −0.918997 0.0466941i
\(67\) 10.2757i 1.25538i −0.778464 0.627689i \(-0.784001\pi\)
0.778464 0.627689i \(-0.215999\pi\)
\(68\) −9.77107 0.995503i −1.18492 0.120722i
\(69\) 14.7416i 1.77468i
\(70\) 0.146482 2.88295i 0.0175080 0.344578i
\(71\) 11.1847 1.32738 0.663691 0.748007i \(-0.268989\pi\)
0.663691 + 0.748007i \(0.268989\pi\)
\(72\) −1.21408 0.186345i −0.143080 0.0219610i
\(73\) 5.93073 0.694140 0.347070 0.937839i \(-0.387177\pi\)
0.347070 + 0.937839i \(0.387177\pi\)
\(74\) −0.332397 + 6.54198i −0.0386404 + 0.760490i
\(75\) 1.33522i 0.154178i
\(76\) 1.00299 9.84456i 0.115051 1.12925i
\(77\) 3.30009i 0.376080i
\(78\) 2.26236 + 0.114950i 0.256161 + 0.0130155i
\(79\) −6.84608 −0.770245 −0.385122 0.922866i \(-0.625841\pi\)
−0.385122 + 0.922866i \(0.625841\pi\)
\(80\) 1.64660 7.99697i 0.184095 0.894088i
\(81\) −7.50861 −0.834290
\(82\) −6.12303 0.311110i −0.676175 0.0343564i
\(83\) 8.53099i 0.936398i −0.883623 0.468199i \(-0.844903\pi\)
0.883623 0.468199i \(-0.155097\pi\)
\(84\) 0.324709 3.18708i 0.0354286 0.347739i
\(85\) 10.0239i 1.08724i
\(86\) 0.536910 10.5670i 0.0578964 1.13947i
\(87\) 11.3369 1.21545
\(88\) −1.41607 + 9.22602i −0.150954 + 0.983497i
\(89\) −14.4730 −1.53413 −0.767066 0.641568i \(-0.778284\pi\)
−0.767066 + 0.641568i \(0.778284\pi\)
\(90\) −0.0636125 + 1.25197i −0.00670535 + 0.131969i
\(91\) 1.00000i 0.104828i
\(92\) −18.3116 1.86564i −1.90912 0.194506i
\(93\) 11.9304i 1.23712i
\(94\) −0.347747 0.0176690i −0.0358674 0.00182242i
\(95\) −10.0993 −1.03616
\(96\) 2.27537 8.77075i 0.232229 0.895161i
\(97\) −3.61044 −0.366584 −0.183292 0.983058i \(-0.558675\pi\)
−0.183292 + 0.983058i \(0.558675\pi\)
\(98\) −1.41239 0.0717634i −0.142673 0.00724920i
\(99\) 1.43312i 0.144034i
\(100\) 1.65857 + 0.168980i 0.165857 + 0.0168980i
\(101\) 6.51050i 0.647819i 0.946088 + 0.323909i \(0.104997\pi\)
−0.946088 + 0.323909i \(0.895003\pi\)
\(102\) −0.564499 + 11.1100i −0.0558937 + 1.10006i
\(103\) 18.3047 1.80362 0.901809 0.432134i \(-0.142239\pi\)
0.901809 + 0.432134i \(0.142239\pi\)
\(104\) 0.429102 2.79569i 0.0420769 0.274140i
\(105\) −3.26954 −0.319075
\(106\) −0.706818 + 13.9110i −0.0686522 + 1.35116i
\(107\) 16.0316i 1.54983i −0.632064 0.774916i \(-0.717792\pi\)
0.632064 0.774916i \(-0.282208\pi\)
\(108\) −1.11514 + 10.9453i −0.107304 + 1.05321i
\(109\) 10.7704i 1.03162i 0.856703 + 0.515810i \(0.172509\pi\)
−0.856703 + 0.515810i \(0.827491\pi\)
\(110\) 9.51398 + 0.483404i 0.907122 + 0.0460908i
\(111\) 7.41925 0.704204
\(112\) −3.91781 0.806688i −0.370198 0.0762249i
\(113\) 5.36213 0.504426 0.252213 0.967672i \(-0.418842\pi\)
0.252213 + 0.967672i \(0.418842\pi\)
\(114\) −11.1936 0.568745i −1.04838 0.0532679i
\(115\) 18.7854i 1.75175i
\(116\) 1.43475 14.0824i 0.133214 1.30752i
\(117\) 0.434268i 0.0401481i
\(118\) 0.290080 5.70913i 0.0267040 0.525568i
\(119\) 4.91083 0.450175
\(120\) −9.14063 1.40297i −0.834421 0.128073i
\(121\) 0.109419 0.00994719
\(122\) −0.764721 + 15.0507i −0.0692346 + 1.36262i
\(123\) 6.94411i 0.626129i
\(124\) −14.8196 1.50986i −1.33084 0.135590i
\(125\) 11.9074i 1.06503i
\(126\) 0.613356 + 0.0311646i 0.0546421 + 0.00277636i
\(127\) −18.4402 −1.63630 −0.818152 0.575002i \(-0.805001\pi\)
−0.818152 + 0.575002i \(0.805001\pi\)
\(128\) −10.6068 3.93639i −0.937520 0.347931i
\(129\) −11.9841 −1.05514
\(130\) −2.88295 0.146482i −0.252851 0.0128473i
\(131\) 9.95924i 0.870143i 0.900396 + 0.435072i \(0.143277\pi\)
−0.900396 + 0.435072i \(0.856723\pi\)
\(132\) 10.5177 + 1.07157i 0.915444 + 0.0932679i
\(133\) 4.94776i 0.429025i
\(134\) −0.737421 + 14.5133i −0.0637034 + 1.25376i
\(135\) 11.2285 0.966395
\(136\) 13.7291 + 2.10725i 1.17726 + 0.180695i
\(137\) 11.7779 1.00626 0.503128 0.864212i \(-0.332182\pi\)
0.503128 + 0.864212i \(0.332182\pi\)
\(138\) −1.05791 + 20.8209i −0.0900550 + 1.77239i
\(139\) 6.87146i 0.582829i 0.956597 + 0.291415i \(0.0941259\pi\)
−0.956597 + 0.291415i \(0.905874\pi\)
\(140\) −0.413780 + 4.06134i −0.0349708 + 0.343246i
\(141\) 0.394379i 0.0332127i
\(142\) −15.7972 0.802654i −1.32567 0.0673572i
\(143\) 3.30009 0.275967
\(144\) 1.70138 + 0.350319i 0.141782 + 0.0291932i
\(145\) −14.4468 −1.19974
\(146\) −8.37652 0.425610i −0.693245 0.0352237i
\(147\) 1.60179i 0.132113i
\(148\) 0.938950 9.21599i 0.0771812 0.757549i
\(149\) 15.7608i 1.29118i −0.763686 0.645588i \(-0.776612\pi\)
0.763686 0.645588i \(-0.223388\pi\)
\(150\) 0.0958198 1.88585i 0.00782365 0.153979i
\(151\) −3.89237 −0.316757 −0.158378 0.987378i \(-0.550627\pi\)
−0.158378 + 0.987378i \(0.550627\pi\)
\(152\) −2.12310 + 13.8324i −0.172206 + 1.12196i
\(153\) −2.13261 −0.172412
\(154\) 0.236826 4.66102i 0.0190839 0.375595i
\(155\) 15.2031i 1.22114i
\(156\) −3.18708 0.324709i −0.255171 0.0259975i
\(157\) 10.5821i 0.844545i 0.906469 + 0.422273i \(0.138768\pi\)
−0.906469 + 0.422273i \(0.861232\pi\)
\(158\) 9.66935 + 0.491298i 0.769252 + 0.0390856i
\(159\) 15.7765 1.25116
\(160\) −2.89953 + 11.1767i −0.229228 + 0.883594i
\(161\) 9.20320 0.725314
\(162\) 10.6051 + 0.538843i 0.833215 + 0.0423355i
\(163\) 18.4249i 1.44315i 0.692338 + 0.721573i \(0.256581\pi\)
−0.692338 + 0.721573i \(0.743419\pi\)
\(164\) 8.62578 + 0.878818i 0.673561 + 0.0686242i
\(165\) 10.7898i 0.839984i
\(166\) −0.612213 + 12.0491i −0.0475169 + 0.935192i
\(167\) −13.1609 −1.01842 −0.509212 0.860641i \(-0.670063\pi\)
−0.509212 + 0.860641i \(0.670063\pi\)
\(168\) −0.687332 + 4.47811i −0.0530288 + 0.345493i
\(169\) −1.00000 −0.0769231
\(170\) 0.719348 14.1577i 0.0551715 1.08584i
\(171\) 2.14866i 0.164312i
\(172\) −1.51665 + 14.8863i −0.115644 + 1.13507i
\(173\) 7.42763i 0.564713i −0.959310 0.282356i \(-0.908884\pi\)
0.959310 0.282356i \(-0.0911160\pi\)
\(174\) −16.0122 0.813576i −1.21388 0.0616770i
\(175\) −0.833579 −0.0630126
\(176\) 2.66214 12.9291i 0.200667 0.974570i
\(177\) −6.47471 −0.486669
\(178\) 20.4415 + 1.03863i 1.53216 + 0.0778486i
\(179\) 18.5579i 1.38708i 0.720419 + 0.693540i \(0.243950\pi\)
−0.720419 + 0.693540i \(0.756050\pi\)
\(180\) 0.179692 1.76371i 0.0133934 0.131459i
\(181\) 18.9137i 1.40584i 0.711267 + 0.702922i \(0.248122\pi\)
−0.711267 + 0.702922i \(0.751878\pi\)
\(182\) −0.0717634 + 1.41239i −0.00531946 + 0.104693i
\(183\) 17.0689 1.26177
\(184\) 25.7293 + 3.94911i 1.89679 + 0.291132i
\(185\) −9.45444 −0.695104
\(186\) −0.856166 + 16.8504i −0.0627771 + 1.23553i
\(187\) 16.2062i 1.18511i
\(188\) 0.489887 + 0.0499110i 0.0357287 + 0.00364013i
\(189\) 5.50098i 0.400137i
\(190\) 14.2641 + 0.724759i 1.03483 + 0.0525795i
\(191\) 17.3720 1.25699 0.628496 0.777813i \(-0.283671\pi\)
0.628496 + 0.777813i \(0.283671\pi\)
\(192\) −3.84313 + 12.2245i −0.277354 + 0.882224i
\(193\) 10.9562 0.788647 0.394324 0.918972i \(-0.370979\pi\)
0.394324 + 0.918972i \(0.370979\pi\)
\(194\) 5.09935 + 0.259097i 0.366112 + 0.0186021i
\(195\) 3.26954i 0.234137i
\(196\) 1.98970 + 0.202716i 0.142121 + 0.0144797i
\(197\) 4.36246i 0.310812i 0.987851 + 0.155406i \(0.0496687\pi\)
−0.987851 + 0.155406i \(0.950331\pi\)
\(198\) −0.102846 + 2.02413i −0.00730893 + 0.143849i
\(199\) 10.1073 0.716484 0.358242 0.933629i \(-0.383376\pi\)
0.358242 + 0.933629i \(0.383376\pi\)
\(200\) −2.33043 0.357690i −0.164786 0.0252925i
\(201\) 16.4595 1.16097
\(202\) 0.467216 9.19538i 0.0328732 0.646984i
\(203\) 7.07766i 0.496754i
\(204\) 1.59459 15.6512i 0.111643 1.09580i
\(205\) 8.84897i 0.618039i
\(206\) −25.8534 1.31361i −1.80129 0.0915235i
\(207\) −3.99665 −0.277787
\(208\) −0.806688 + 3.91781i −0.0559338 + 0.271651i
\(209\) −16.3281 −1.12944
\(210\) 4.61788 + 0.234634i 0.318664 + 0.0161913i
\(211\) 24.7203i 1.70181i −0.525317 0.850906i \(-0.676053\pi\)
0.525317 0.850906i \(-0.323947\pi\)
\(212\) 1.99661 19.5971i 0.137128 1.34594i
\(213\) 17.9156i 1.22756i
\(214\) −1.15048 + 22.6429i −0.0786453 + 1.54784i
\(215\) 15.2714 1.04150
\(216\) 2.36048 15.3790i 0.160610 1.04641i
\(217\) 7.44816 0.505614
\(218\) 0.772923 15.2121i 0.0523489 1.03029i
\(219\) 9.49979i 0.641936i
\(220\) −13.4028 1.36551i −0.903615 0.0920628i
\(221\) 4.91083i 0.330338i
\(222\) −10.4789 0.532430i −0.703297 0.0357344i
\(223\) −9.86265 −0.660452 −0.330226 0.943902i \(-0.607125\pi\)
−0.330226 + 0.943902i \(0.607125\pi\)
\(224\) 5.47559 + 1.42052i 0.365854 + 0.0949122i
\(225\) 0.361997 0.0241331
\(226\) −7.57342 0.384804i −0.503776 0.0255968i
\(227\) 3.27410i 0.217310i 0.994080 + 0.108655i \(0.0346543\pi\)
−0.994080 + 0.108655i \(0.965346\pi\)
\(228\) 15.7689 + 1.60658i 1.04432 + 0.106398i
\(229\) 0.592074i 0.0391254i −0.999809 0.0195627i \(-0.993773\pi\)
0.999809 0.0195627i \(-0.00622739\pi\)
\(230\) 1.34810 26.5323i 0.0888914 1.74949i
\(231\) −5.28605 −0.347796
\(232\) −3.03704 + 19.7869i −0.199391 + 1.29907i
\(233\) 15.3194 1.00361 0.501804 0.864981i \(-0.332670\pi\)
0.501804 + 0.864981i \(0.332670\pi\)
\(234\) 0.0311646 0.613356i 0.00203729 0.0400964i
\(235\) 0.502562i 0.0327835i
\(236\) −0.819413 + 8.04271i −0.0533392 + 0.523536i
\(237\) 10.9660i 0.712318i
\(238\) −6.93601 0.352418i −0.449595 0.0228438i
\(239\) −8.41048 −0.544028 −0.272014 0.962293i \(-0.587690\pi\)
−0.272014 + 0.962293i \(0.587690\pi\)
\(240\) 12.8095 + 2.63750i 0.826847 + 0.170250i
\(241\) −21.7077 −1.39831 −0.699157 0.714968i \(-0.746441\pi\)
−0.699157 + 0.714968i \(0.746441\pi\)
\(242\) −0.154543 0.00785228i −0.00993437 0.000504764i
\(243\) 4.47572i 0.287117i
\(244\) 2.16017 21.2025i 0.138291 1.35735i
\(245\) 2.04118i 0.130406i
\(246\) 0.498333 9.80780i 0.0317726 0.625323i
\(247\) 4.94776 0.314819
\(248\) 20.8227 + 3.19602i 1.32225 + 0.202948i
\(249\) 13.6649 0.865975
\(250\) −0.854515 + 16.8179i −0.0540443 + 1.06366i
\(251\) 14.6293i 0.923394i 0.887038 + 0.461697i \(0.152759\pi\)
−0.887038 + 0.461697i \(0.847241\pi\)
\(252\) −0.864063 0.0880331i −0.0544309 0.00554556i
\(253\) 30.3714i 1.90943i
\(254\) 26.0448 + 1.32333i 1.63420 + 0.0830333i
\(255\) −16.0562 −1.00548
\(256\) 14.6985 + 6.32091i 0.918657 + 0.395057i
\(257\) −16.6321 −1.03748 −0.518740 0.854932i \(-0.673599\pi\)
−0.518740 + 0.854932i \(0.673599\pi\)
\(258\) 16.9262 + 0.860016i 1.05378 + 0.0535423i
\(259\) 4.63185i 0.287809i
\(260\) 4.06134 + 0.413780i 0.251874 + 0.0256616i
\(261\) 3.07360i 0.190251i
\(262\) 0.714709 14.0663i 0.0441549 0.869022i
\(263\) −15.6456 −0.964750 −0.482375 0.875965i \(-0.660226\pi\)
−0.482375 + 0.875965i \(0.660226\pi\)
\(264\) −14.7781 2.26825i −0.909532 0.139601i
\(265\) −20.1042 −1.23499
\(266\) 0.355068 6.98818i 0.0217706 0.428473i
\(267\) 23.1827i 1.41876i
\(268\) 2.08305 20.4456i 0.127243 1.24891i
\(269\) 11.9287i 0.727305i 0.931535 + 0.363652i \(0.118470\pi\)
−0.931535 + 0.363652i \(0.881530\pi\)
\(270\) −15.8590 0.805795i −0.965150 0.0490391i
\(271\) −5.99184 −0.363978 −0.181989 0.983301i \(-0.558254\pi\)
−0.181989 + 0.983301i \(0.558254\pi\)
\(272\) −19.2397 3.96151i −1.16658 0.240202i
\(273\) 1.60179 0.0969448
\(274\) −16.6351 0.845225i −1.00496 0.0510619i
\(275\) 2.75088i 0.165884i
\(276\) 2.98836 29.3313i 0.179878 1.76554i
\(277\) 12.9046i 0.775363i −0.921793 0.387682i \(-0.873276\pi\)
0.921793 0.387682i \(-0.126724\pi\)
\(278\) 0.493119 9.70519i 0.0295753 0.582078i
\(279\) −3.23450 −0.193644
\(280\) 0.875875 5.70651i 0.0523436 0.341029i
\(281\) −17.9330 −1.06979 −0.534896 0.844918i \(-0.679649\pi\)
−0.534896 + 0.844918i \(0.679649\pi\)
\(282\) 0.0283020 0.557018i 0.00168536 0.0331699i
\(283\) 12.8586i 0.764364i −0.924087 0.382182i \(-0.875173\pi\)
0.924087 0.382182i \(-0.124827\pi\)
\(284\) 22.2542 + 2.26732i 1.32055 + 0.134541i
\(285\) 16.1769i 0.958239i
\(286\) −4.66102 0.236826i −0.275612 0.0140038i
\(287\) −4.33522 −0.255900
\(288\) −2.37788 0.616884i −0.140118 0.0363503i
\(289\) 7.11620 0.418600
\(290\) 20.4045 + 1.03675i 1.19819 + 0.0608801i
\(291\) 5.78316i 0.339015i
\(292\) 11.8004 + 1.20225i 0.690565 + 0.0703566i
\(293\) 26.7615i 1.56342i 0.623641 + 0.781711i \(0.285653\pi\)
−0.623641 + 0.781711i \(0.714347\pi\)
\(294\) 0.114950 2.26236i 0.00670402 0.131943i
\(295\) 8.25080 0.480380
\(296\) −1.98754 + 12.9492i −0.115523 + 0.752657i
\(297\) 18.1537 1.05338
\(298\) −1.13105 + 22.2604i −0.0655199 + 1.28951i
\(299\) 9.20320i 0.532235i
\(300\) −0.270670 + 2.65668i −0.0156271 + 0.153384i
\(301\) 7.48166i 0.431236i
\(302\) 5.49756 + 0.279330i 0.316349 + 0.0160736i
\(303\) −10.4285 −0.599099
\(304\) 3.99130 19.3844i 0.228917 1.11177i
\(305\) −21.7511 −1.24547
\(306\) 3.01209 + 0.153044i 0.172190 + 0.00874892i
\(307\) 10.2784i 0.586622i 0.956017 + 0.293311i \(0.0947571\pi\)
−0.956017 + 0.293311i \(0.905243\pi\)
\(308\) −0.668981 + 6.56619i −0.0381187 + 0.374143i
\(309\) 29.3203i 1.66798i
\(310\) 1.09102 21.4727i 0.0619659 1.21957i
\(311\) −4.51151 −0.255824 −0.127912 0.991786i \(-0.540828\pi\)
−0.127912 + 0.991786i \(0.540828\pi\)
\(312\) 4.47811 + 0.687332i 0.253523 + 0.0389125i
\(313\) −2.90958 −0.164459 −0.0822296 0.996613i \(-0.526204\pi\)
−0.0822296 + 0.996613i \(0.526204\pi\)
\(314\) 0.759409 14.9461i 0.0428559 0.843457i
\(315\) 0.886420i 0.0499441i
\(316\) −13.6217 1.38781i −0.766278 0.0780705i
\(317\) 8.78517i 0.493424i −0.969089 0.246712i \(-0.920650\pi\)
0.969089 0.246712i \(-0.0793502\pi\)
\(318\) −22.2826 1.13217i −1.24954 0.0634892i
\(319\) −23.3569 −1.30773
\(320\) 4.89735 15.5778i 0.273770 0.870824i
\(321\) 25.6793 1.43328
\(322\) −12.9985 0.660453i −0.724379 0.0368056i
\(323\) 24.2976i 1.35195i
\(324\) −14.9399 1.52212i −0.829993 0.0845620i
\(325\) 0.833579i 0.0462386i
\(326\) 1.32223 26.0231i 0.0732316 1.44129i
\(327\) −17.2520 −0.954036
\(328\) −12.1199 1.86025i −0.669210 0.102715i
\(329\) −0.246211 −0.0135741
\(330\) −0.774312 + 15.2394i −0.0426245 + 0.838901i
\(331\) 11.5276i 0.633614i −0.948490 0.316807i \(-0.897389\pi\)
0.948490 0.316807i \(-0.102611\pi\)
\(332\) 1.72937 16.9741i 0.0949115 0.931575i
\(333\) 2.01146i 0.110227i
\(334\) 18.5884 + 0.944474i 1.01711 + 0.0516793i
\(335\) −20.9746 −1.14597
\(336\) 1.29215 6.27551i 0.0704923 0.342357i
\(337\) 17.7814 0.968615 0.484307 0.874898i \(-0.339072\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(338\) 1.41239 + 0.0717634i 0.0768240 + 0.00390341i
\(339\) 8.58900i 0.466490i
\(340\) −2.03200 + 19.9445i −0.110201 + 1.08164i
\(341\) 24.5796i 1.33106i
\(342\) −0.154195 + 3.03474i −0.00833790 + 0.164100i
\(343\) −1.00000 −0.0539949
\(344\) 3.21040 20.9164i 0.173093 1.12774i
\(345\) −30.0903 −1.62001
\(346\) −0.533032 + 10.4907i −0.0286560 + 0.563985i
\(347\) 14.2957i 0.767435i −0.923451 0.383717i \(-0.874644\pi\)
0.923451 0.383717i \(-0.125356\pi\)
\(348\) 22.5571 + 2.29818i 1.20919 + 0.123195i
\(349\) 27.0196i 1.44632i −0.690678 0.723162i \(-0.742688\pi\)
0.690678 0.723162i \(-0.257312\pi\)
\(350\) 1.17734 + 0.0598204i 0.0629314 + 0.00319754i
\(351\) −5.50098 −0.293620
\(352\) −4.68783 + 18.0699i −0.249862 + 0.963131i
\(353\) 21.9915 1.17049 0.585244 0.810857i \(-0.300999\pi\)
0.585244 + 0.810857i \(0.300999\pi\)
\(354\) 9.14482 + 0.464647i 0.486042 + 0.0246957i
\(355\) 22.8300i 1.21169i
\(356\) −28.7969 2.93390i −1.52623 0.155497i
\(357\) 7.86611i 0.416319i
\(358\) 1.33177 26.2110i 0.0703865 1.38529i
\(359\) 3.86395 0.203931 0.101966 0.994788i \(-0.467487\pi\)
0.101966 + 0.994788i \(0.467487\pi\)
\(360\) −0.380365 + 2.47815i −0.0200470 + 0.130610i
\(361\) −5.48036 −0.288440
\(362\) 1.35731 26.7136i 0.0713387 1.40403i
\(363\) 0.175266i 0.00919910i
\(364\) 0.202716 1.98970i 0.0106252 0.104289i
\(365\) 12.1057i 0.633641i
\(366\) −24.1080 1.22492i −1.26014 0.0640278i
\(367\) 29.1363 1.52090 0.760450 0.649396i \(-0.224978\pi\)
0.760450 + 0.649396i \(0.224978\pi\)
\(368\) −36.0564 7.42411i −1.87957 0.387009i
\(369\) 1.88265 0.0980067
\(370\) 13.3534 + 0.678483i 0.694209 + 0.0352726i
\(371\) 9.84928i 0.511349i
\(372\) 2.41848 23.7379i 0.125392 1.23075i
\(373\) 16.0903i 0.833123i −0.909107 0.416562i \(-0.863235\pi\)
0.909107 0.416562i \(-0.136765\pi\)
\(374\) 1.16301 22.8894i 0.0601378 1.18358i
\(375\) 19.0731 0.984933
\(376\) −0.688330 0.105650i −0.0354979 0.00544847i
\(377\) 7.07766 0.364518
\(378\) −0.394769 + 7.76953i −0.0203047 + 0.399622i
\(379\) 23.9974i 1.23266i −0.787487 0.616331i \(-0.788618\pi\)
0.787487 0.616331i \(-0.211382\pi\)
\(380\) −20.0945 2.04729i −1.03083 0.105024i
\(381\) 29.5374i 1.51324i
\(382\) −24.5360 1.24667i −1.25537 0.0637853i
\(383\) 18.3411 0.937186 0.468593 0.883414i \(-0.344761\pi\)
0.468593 + 0.883414i \(0.344761\pi\)
\(384\) 6.30527 16.9899i 0.321765 0.867013i
\(385\) 6.73608 0.343302
\(386\) −15.4745 0.786257i −0.787631 0.0400194i
\(387\) 3.24905i 0.165158i
\(388\) −7.18368 0.731893i −0.364696 0.0371563i
\(389\) 0.628023i 0.0318420i −0.999873 0.0159210i \(-0.994932\pi\)
0.999873 0.0159210i \(-0.00506803\pi\)
\(390\) 0.234634 4.61788i 0.0118811 0.233835i
\(391\) 45.1953 2.28562
\(392\) −2.79569 0.429102i −0.141204 0.0216729i
\(393\) −15.9526 −0.804703
\(394\) 0.313065 6.16150i 0.0157720 0.310412i
\(395\) 13.9741i 0.703113i
\(396\) 0.290517 2.85148i 0.0145990 0.143292i
\(397\) 5.60043i 0.281078i −0.990075 0.140539i \(-0.955117\pi\)
0.990075 0.140539i \(-0.0448835\pi\)
\(398\) −14.2754 0.725331i −0.715561 0.0363576i
\(399\) −7.92528 −0.396760
\(400\) 3.26580 + 0.672438i 0.163290 + 0.0336219i
\(401\) 16.1431 0.806147 0.403073 0.915168i \(-0.367942\pi\)
0.403073 + 0.915168i \(0.367942\pi\)
\(402\) −23.2473 1.18119i −1.15947 0.0589126i
\(403\) 7.44816i 0.371019i
\(404\) −1.31978 + 12.9539i −0.0656617 + 0.644483i
\(405\) 15.3264i 0.761576i
\(406\) 0.507917 9.99642i 0.0252075 0.496114i
\(407\) −15.2855 −0.757674
\(408\) −3.37537 + 21.9912i −0.167105 + 1.08873i
\(409\) 35.6500 1.76278 0.881390 0.472389i \(-0.156608\pi\)
0.881390 + 0.472389i \(0.156608\pi\)
\(410\) −0.635032 + 12.4982i −0.0313620 + 0.617242i
\(411\) 18.8658i 0.930580i
\(412\) 36.4209 + 3.71066i 1.79433 + 0.182811i
\(413\) 4.04217i 0.198902i
\(414\) 5.64484 + 0.286814i 0.277429 + 0.0140961i
\(415\) −17.4133 −0.854785
\(416\) 1.42052 5.47559i 0.0696465 0.268463i
\(417\) −11.0066 −0.538997
\(418\) 23.0616 + 1.17176i 1.12798 + 0.0573125i
\(419\) 31.0570i 1.51724i 0.651536 + 0.758618i \(0.274125\pi\)
−0.651536 + 0.758618i \(0.725875\pi\)
\(420\) −6.50541 0.662789i −0.317432 0.0323408i
\(421\) 1.20004i 0.0584864i 0.999572 + 0.0292432i \(0.00930972\pi\)
−0.999572 + 0.0292432i \(0.990690\pi\)
\(422\) −1.77401 + 34.9147i −0.0863575 + 1.69962i
\(423\) 0.106922 0.00519871
\(424\) −4.22635 + 27.5355i −0.205250 + 1.33724i
\(425\) −4.09356 −0.198567
\(426\) 1.28568 25.3038i 0.0622915 1.22597i
\(427\) 10.6561i 0.515687i
\(428\) 3.24986 31.8981i 0.157088 1.54185i
\(429\) 5.28605i 0.255213i
\(430\) −21.5692 1.09593i −1.04016 0.0528504i
\(431\) 22.6281 1.08996 0.544978 0.838450i \(-0.316538\pi\)
0.544978 + 0.838450i \(0.316538\pi\)
\(432\) −4.43757 + 21.5518i −0.213503 + 1.03691i
\(433\) −7.81312 −0.375475 −0.187737 0.982219i \(-0.560115\pi\)
−0.187737 + 0.982219i \(0.560115\pi\)
\(434\) −10.5197 0.534506i −0.504963 0.0256571i
\(435\) 23.1407i 1.10951i
\(436\) −2.18334 + 21.4299i −0.104563 + 1.02631i
\(437\) 45.5352i 2.17825i
\(438\) 0.681737 13.4174i 0.0325747 0.641109i
\(439\) −6.45379 −0.308023 −0.154011 0.988069i \(-0.549219\pi\)
−0.154011 + 0.988069i \(0.549219\pi\)
\(440\) 18.8320 + 2.89047i 0.897779 + 0.137798i
\(441\) 0.434268 0.0206794
\(442\) −0.352418 + 6.93601i −0.0167628 + 0.329912i
\(443\) 6.15949i 0.292646i −0.989237 0.146323i \(-0.953256\pi\)
0.989237 0.146323i \(-0.0467439\pi\)
\(444\) 14.7621 + 1.50400i 0.700577 + 0.0713767i
\(445\) 29.5420i 1.40042i
\(446\) 13.9299 + 0.707777i 0.659601 + 0.0335142i
\(447\) 25.2455 1.19407
\(448\) −7.63174 2.39927i −0.360566 0.113355i
\(449\) −3.77506 −0.178156 −0.0890781 0.996025i \(-0.528392\pi\)
−0.0890781 + 0.996025i \(0.528392\pi\)
\(450\) −0.511281 0.0259781i −0.0241020 0.00122462i
\(451\) 14.3066i 0.673672i
\(452\) 10.6690 + 1.08699i 0.501829 + 0.0511277i
\(453\) 6.23477i 0.292935i
\(454\) 0.234961 4.62431i 0.0110273 0.217030i
\(455\) −2.04118 −0.0956921
\(456\) −22.1566 3.40075i −1.03758 0.159255i
\(457\) 16.8871 0.789945 0.394972 0.918693i \(-0.370754\pi\)
0.394972 + 0.918693i \(0.370754\pi\)
\(458\) −0.0424893 + 0.836241i −0.00198539 + 0.0390750i
\(459\) 27.0143i 1.26092i
\(460\) −3.80810 + 37.3773i −0.177554 + 1.74273i
\(461\) 22.1909i 1.03353i −0.856127 0.516766i \(-0.827136\pi\)
0.856127 0.516766i \(-0.172864\pi\)
\(462\) 7.46597 + 0.379345i 0.347348 + 0.0176487i
\(463\) −0.870232 −0.0404431 −0.0202216 0.999796i \(-0.506437\pi\)
−0.0202216 + 0.999796i \(0.506437\pi\)
\(464\) 5.70946 27.7289i 0.265055 1.28728i
\(465\) −24.3521 −1.12930
\(466\) −21.6370 1.09937i −1.00231 0.0509275i
\(467\) 8.29553i 0.383871i −0.981408 0.191936i \(-0.938523\pi\)
0.981408 0.191936i \(-0.0614765\pi\)
\(468\) −0.0880331 + 0.864063i −0.00406933 + 0.0399413i
\(469\) 10.2757i 0.474489i
\(470\) −0.0360656 + 0.709815i −0.00166358 + 0.0327413i
\(471\) −16.9503 −0.781030
\(472\) 1.73450 11.3006i 0.0798370 0.520154i
\(473\) 24.6901 1.13525
\(474\) −0.786957 + 15.4883i −0.0361461 + 0.711400i
\(475\) 4.12435i 0.189238i
\(476\) 9.77107 + 0.995503i 0.447856 + 0.0456288i
\(477\) 4.27723i 0.195841i
\(478\) 11.8789 + 0.603564i 0.543328 + 0.0276064i
\(479\) 14.4135 0.658572 0.329286 0.944230i \(-0.393192\pi\)
0.329286 + 0.944230i \(0.393192\pi\)
\(480\) −17.9027 4.64444i −0.817143 0.211989i
\(481\) 4.63185 0.211194
\(482\) 30.6597 + 1.55782i 1.39651 + 0.0709566i
\(483\) 14.7416i 0.670766i
\(484\) 0.217711 + 0.0221810i 0.00989596 + 0.00100823i
\(485\) 7.36955i 0.334634i
\(486\) 0.321193 6.32146i 0.0145696 0.286747i
\(487\) −13.8036 −0.625503 −0.312751 0.949835i \(-0.601251\pi\)
−0.312751 + 0.949835i \(0.601251\pi\)
\(488\) −4.57257 + 29.7913i −0.206991 + 1.34859i
\(489\) −29.5128 −1.33461
\(490\) −0.146482 + 2.88295i −0.00661739 + 0.130238i
\(491\) 25.7469i 1.16194i −0.813925 0.580970i \(-0.802673\pi\)
0.813925 0.580970i \(-0.197327\pi\)
\(492\) −1.40768 + 13.8167i −0.0634632 + 0.622905i
\(493\) 34.7571i 1.56538i
\(494\) −6.98818 0.355068i −0.314413 0.0159753i
\(495\) −2.92526 −0.131481
\(496\) −29.1805 6.00835i −1.31024 0.269783i
\(497\) −11.1847 −0.501703
\(498\) −19.3001 0.980637i −0.864860 0.0439434i
\(499\) 12.7680i 0.571575i −0.958293 0.285788i \(-0.907745\pi\)
0.958293 0.285788i \(-0.0922552\pi\)
\(500\) 2.41382 23.6921i 0.107949 1.05954i
\(501\) 21.0811i 0.941832i
\(502\) 1.04985 20.6623i 0.0468571 0.922204i
\(503\) 11.8527 0.528486 0.264243 0.964456i \(-0.414878\pi\)
0.264243 + 0.964456i \(0.414878\pi\)
\(504\) 1.21408 + 0.186345i 0.0540793 + 0.00830048i
\(505\) 13.2891 0.591358
\(506\) 2.17955 42.8963i 0.0968929 1.90697i
\(507\) 1.60179i 0.0711380i
\(508\) −36.6905 3.73813i −1.62788 0.165853i
\(509\) 20.3465i 0.901841i 0.892564 + 0.450920i \(0.148904\pi\)
−0.892564 + 0.450920i \(0.851096\pi\)
\(510\) 22.6776 + 1.15224i 1.00418 + 0.0510223i
\(511\) −5.93073 −0.262360
\(512\) −20.3064 9.98241i −0.897426 0.441164i
\(513\) 27.2175 1.20168
\(514\) 23.4910 + 1.19357i 1.03614 + 0.0526462i
\(515\) 37.3633i 1.64642i
\(516\) −23.8447 2.42936i −1.04970 0.106947i
\(517\) 0.812519i 0.0357346i
\(518\) 0.332397 6.54198i 0.0146047 0.287438i
\(519\) 11.8975 0.522243
\(520\) −5.70651 0.875875i −0.250247 0.0384097i
\(521\) 38.3974 1.68222 0.841111 0.540863i \(-0.181902\pi\)
0.841111 + 0.540863i \(0.181902\pi\)
\(522\) −0.220572 + 4.34113i −0.00965417 + 0.190006i
\(523\) 23.6884i 1.03582i 0.855435 + 0.517911i \(0.173290\pi\)
−0.855435 + 0.517911i \(0.826710\pi\)
\(524\) −2.01890 + 19.8159i −0.0881960 + 0.865662i
\(525\) 1.33522i 0.0582737i
\(526\) 22.0977 + 1.12278i 0.963507 + 0.0489556i
\(527\) 36.5766 1.59330
\(528\) 20.7097 + 4.26419i 0.901276 + 0.185575i
\(529\) 61.6989 2.68256
\(530\) 28.3950 + 1.44274i 1.23340 + 0.0626688i
\(531\) 1.75539i 0.0761772i
\(532\) −1.00299 + 9.84456i −0.0434852 + 0.426816i
\(533\) 4.33522i 0.187779i
\(534\) −1.66367 + 32.7430i −0.0719939 + 1.41693i
\(535\) −32.7234 −1.41476
\(536\) −4.40933 + 28.7277i −0.190454 + 1.24085i
\(537\) −29.7258 −1.28276
\(538\) 0.856043 16.8480i 0.0369067 0.726368i
\(539\) 3.30009i 0.142145i
\(540\) 22.3413 + 2.27620i 0.961418 + 0.0979519i
\(541\) 3.94405i 0.169568i −0.996399 0.0847839i \(-0.972980\pi\)
0.996399 0.0847839i \(-0.0270200\pi\)
\(542\) 8.46282 + 0.429995i 0.363509 + 0.0184699i
\(543\) −30.2958 −1.30012
\(544\) 26.8897 + 6.97590i 1.15289 + 0.299089i
\(545\) 21.9844 0.941708
\(546\) −2.26236 0.114950i −0.0968199 0.00491940i
\(547\) 18.7051i 0.799771i −0.916565 0.399886i \(-0.869050\pi\)
0.916565 0.399886i \(-0.130950\pi\)
\(548\) 23.4346 + 2.38758i 1.00107 + 0.101992i
\(549\) 4.62762i 0.197502i
\(550\) −0.197413 + 3.88532i −0.00841771 + 0.165671i
\(551\) −35.0186 −1.49184
\(552\) −6.32565 + 41.2129i −0.269238 + 1.75414i
\(553\) 6.84608 0.291125
\(554\) −0.926079 + 18.2264i −0.0393453 + 0.774364i
\(555\) 15.1440i 0.642828i
\(556\) −1.39295 + 13.6721i −0.0590744 + 0.579828i
\(557\) 17.9717i 0.761487i −0.924681 0.380744i \(-0.875668\pi\)
0.924681 0.380744i \(-0.124332\pi\)
\(558\) 4.56838 + 0.232119i 0.193395 + 0.00982637i
\(559\) −7.48166 −0.316441
\(560\) −1.64660 + 7.99697i −0.0695814 + 0.337933i
\(561\) −25.9589 −1.09598
\(562\) 25.3284 + 1.28693i 1.06841 + 0.0542860i
\(563\) 3.54863i 0.149557i −0.997200 0.0747784i \(-0.976175\pi\)
0.997200 0.0747784i \(-0.0238249\pi\)
\(564\) −0.0799470 + 0.784696i −0.00336637 + 0.0330417i
\(565\) 10.9451i 0.460463i
\(566\) −0.922776 + 18.1614i −0.0387872 + 0.763379i
\(567\) 7.50861 0.315332
\(568\) −31.2690 4.79939i −1.31202 0.201378i
\(569\) −26.3743 −1.10567 −0.552835 0.833291i \(-0.686454\pi\)
−0.552835 + 0.833291i \(0.686454\pi\)
\(570\) −1.16091 + 22.8482i −0.0486252 + 0.957004i
\(571\) 28.8831i 1.20872i −0.796711 0.604361i \(-0.793429\pi\)
0.796711 0.604361i \(-0.206571\pi\)
\(572\) 6.56619 + 0.668981i 0.274546 + 0.0279715i
\(573\) 27.8263i 1.16246i
\(574\) 6.12303 + 0.311110i 0.255570 + 0.0129855i
\(575\) −7.67159 −0.319927
\(576\) 3.31422 + 1.04193i 0.138093 + 0.0434136i
\(577\) −2.90293 −0.120851 −0.0604253 0.998173i \(-0.519246\pi\)
−0.0604253 + 0.998173i \(0.519246\pi\)
\(578\) −10.0509 0.510683i −0.418061 0.0212416i
\(579\) 17.5496i 0.729336i
\(580\) −28.7448 2.92859i −1.19356 0.121603i
\(581\) 8.53099i 0.353925i
\(582\) −0.415019 + 8.16809i −0.0172031 + 0.338578i
\(583\) −32.5035 −1.34616
\(584\) −16.5805 2.54489i −0.686105 0.105308i
\(585\) 0.886420 0.0366489
\(586\) 1.92050 37.7977i 0.0793349 1.56141i
\(587\) 37.8683i 1.56299i 0.623909 + 0.781497i \(0.285544\pi\)
−0.623909 + 0.781497i \(0.714456\pi\)
\(588\) −0.324709 + 3.18708i −0.0133908 + 0.131433i
\(589\) 36.8517i 1.51845i
\(590\) −11.6534 0.592106i −0.479761 0.0243766i
\(591\) −6.98775 −0.287438
\(592\) 3.73646 18.1467i 0.153567 0.745825i
\(593\) −6.49295 −0.266634 −0.133317 0.991073i \(-0.542563\pi\)
−0.133317 + 0.991073i \(0.542563\pi\)
\(594\) −25.6401 1.30277i −1.05203 0.0534534i
\(595\) 10.0239i 0.410939i
\(596\) 3.19497 31.3593i 0.130871 1.28453i
\(597\) 16.1897i 0.662600i
\(598\) −0.660453 + 12.9985i −0.0270079 + 0.531549i
\(599\) 25.2803 1.03293 0.516463 0.856310i \(-0.327248\pi\)
0.516463 + 0.856310i \(0.327248\pi\)
\(600\) 0.572945 3.73285i 0.0233904 0.152393i
\(601\) −16.8805 −0.688571 −0.344285 0.938865i \(-0.611879\pi\)
−0.344285 + 0.938865i \(0.611879\pi\)
\(602\) −0.536910 + 10.5670i −0.0218828 + 0.430680i
\(603\) 4.46242i 0.181724i
\(604\) −7.74466 0.789047i −0.315126 0.0321059i
\(605\) 0.223344i 0.00908023i
\(606\) 14.7291 + 0.748381i 0.598327 + 0.0304009i
\(607\) −7.10773 −0.288494 −0.144247 0.989542i \(-0.546076\pi\)
−0.144247 + 0.989542i \(0.546076\pi\)
\(608\) −7.02837 + 27.0919i −0.285038 + 1.09872i
\(609\) −11.3369 −0.459395
\(610\) 30.7211 + 1.56093i 1.24386 + 0.0632004i
\(611\) 0.246211i 0.00996065i
\(612\) −4.24326 0.432315i −0.171524 0.0174753i
\(613\) 44.5259i 1.79838i 0.437554 + 0.899192i \(0.355845\pi\)
−0.437554 + 0.899192i \(0.644155\pi\)
\(614\) 0.737616 14.5172i 0.0297678 0.585866i
\(615\) 14.1742 0.571558
\(616\) 1.41607 9.22602i 0.0570553 0.371727i
\(617\) −38.8785 −1.56519 −0.782596 0.622530i \(-0.786105\pi\)
−0.782596 + 0.622530i \(0.786105\pi\)
\(618\) 2.10413 41.4118i 0.0846404 1.66583i
\(619\) 12.3262i 0.495431i −0.968833 0.247716i \(-0.920320\pi\)
0.968833 0.247716i \(-0.0796798\pi\)
\(620\) −3.08190 + 30.2495i −0.123772 + 1.21485i
\(621\) 50.6266i 2.03157i
\(622\) 6.37202 + 0.323761i 0.255495 + 0.0129816i
\(623\) 14.4730 0.579847
\(624\) −6.27551 1.29215i −0.251222 0.0517272i
\(625\) −20.1373 −0.805490
\(626\) 4.10947 + 0.208801i 0.164247 + 0.00834538i
\(627\) 26.1541i 1.04449i
\(628\) −2.14517 + 21.0552i −0.0856014 + 0.840196i
\(629\) 22.7462i 0.906950i
\(630\) 0.0636125 1.25197i 0.00253438 0.0498797i
\(631\) 20.7693 0.826815 0.413407 0.910546i \(-0.364339\pi\)
0.413407 + 0.910546i \(0.364339\pi\)
\(632\) 19.1395 + 2.93767i 0.761329 + 0.116854i
\(633\) 39.5967 1.57383
\(634\) −0.630454 + 12.4081i −0.0250385 + 0.492789i
\(635\) 37.6398i 1.49369i
\(636\) 31.3905 + 3.19815i 1.24471 + 0.126815i
\(637\) 1.00000i 0.0396214i
\(638\) 32.9891 + 1.67617i 1.30605 + 0.0663602i
\(639\) 4.85717 0.192147
\(640\) −8.03489 + 21.6505i −0.317607 + 0.855810i
\(641\) −19.0642 −0.752989 −0.376495 0.926419i \(-0.622871\pi\)
−0.376495 + 0.926419i \(0.622871\pi\)
\(642\) −36.2692 1.84283i −1.43143 0.0727307i
\(643\) 34.7530i 1.37052i −0.728297 0.685262i \(-0.759688\pi\)
0.728297 0.685262i \(-0.240312\pi\)
\(644\) 18.3116 + 1.86564i 0.721578 + 0.0735164i
\(645\) 24.4616i 0.963176i
\(646\) 1.74368 34.3177i 0.0686041 1.35021i
\(647\) −15.8459 −0.622967 −0.311483 0.950252i \(-0.600826\pi\)
−0.311483 + 0.950252i \(0.600826\pi\)
\(648\) 20.9917 + 3.22196i 0.824633 + 0.126571i
\(649\) 13.3395 0.523622
\(650\) 0.0598204 1.17734i 0.00234635 0.0461791i
\(651\) 11.9304i 0.467589i
\(652\) −3.73501 + 36.6599i −0.146274 + 1.43571i
\(653\) 7.69423i 0.301098i −0.988603 0.150549i \(-0.951896\pi\)
0.988603 0.150549i \(-0.0481042\pi\)
\(654\) 24.3665 + 1.23806i 0.952807 + 0.0484120i
\(655\) 20.3286 0.794305
\(656\) 16.9846 + 3.49717i 0.663136 + 0.136542i
\(657\) 2.57553 0.100481
\(658\) 0.347747 + 0.0176690i 0.0135566 + 0.000688808i
\(659\) 40.5243i 1.57860i 0.614006 + 0.789301i \(0.289557\pi\)
−0.614006 + 0.789301i \(0.710443\pi\)
\(660\) 2.18726 21.4684i 0.0851391 0.835658i
\(661\) 22.9742i 0.893594i −0.894635 0.446797i \(-0.852565\pi\)
0.894635 0.446797i \(-0.147435\pi\)
\(662\) −0.827259 + 16.2815i −0.0321523 + 0.632797i
\(663\) 7.86611 0.305494
\(664\) −3.66067 + 23.8500i −0.142061 + 0.925559i
\(665\) 10.0993 0.391633
\(666\) −0.144349 + 2.84097i −0.00559343 + 0.110085i
\(667\) 65.1371i 2.52212i
\(668\) −26.1863 2.66793i −1.01318 0.103225i
\(669\) 15.7979i 0.610782i
\(670\) 29.6244 + 1.50521i 1.14449 + 0.0581513i
\(671\) −35.1662 −1.35758
\(672\) −2.27537 + 8.77075i −0.0877742 + 0.338339i
\(673\) 23.7759 0.916494 0.458247 0.888825i \(-0.348477\pi\)
0.458247 + 0.888825i \(0.348477\pi\)
\(674\) −25.1143 1.27605i −0.967367 0.0491518i
\(675\) 4.58550i 0.176496i
\(676\) −1.98970 0.202716i −0.0765269 0.00779677i
\(677\) 28.8401i 1.10842i −0.832378 0.554208i \(-0.813021\pi\)
0.832378 0.554208i \(-0.186979\pi\)
\(678\) 0.616376 12.1310i 0.0236718 0.465889i
\(679\) 3.61044 0.138556
\(680\) 4.30127 28.0237i 0.164946 1.07466i
\(681\) −5.24442 −0.200967
\(682\) 1.76392 34.7160i 0.0675438 1.32934i
\(683\) 14.1254i 0.540492i −0.962791 0.270246i \(-0.912895\pi\)
0.962791 0.270246i \(-0.0871050\pi\)
\(684\) 0.435567 4.27518i 0.0166543 0.163466i
\(685\) 24.0409i 0.918555i
\(686\) 1.41239 + 0.0717634i 0.0539254 + 0.00273994i
\(687\) 0.948379 0.0361829
\(688\) −6.03537 + 29.3117i −0.230096 + 1.11750i
\(689\) 9.84928 0.375228
\(690\) 42.4992 + 2.15938i 1.61792 + 0.0822062i
\(691\) 21.5228i 0.818766i −0.912363 0.409383i \(-0.865744\pi\)
0.912363 0.409383i \(-0.134256\pi\)
\(692\) 1.50570 14.7788i 0.0572382 0.561804i
\(693\) 1.43312i 0.0544398i
\(694\) −1.02591 + 20.1912i −0.0389430 + 0.766446i
\(695\) 14.0259 0.532032
\(696\) −31.6945 4.86470i −1.20138 0.184396i
\(697\) −21.2895 −0.806397
\(698\) −1.93902 + 38.1622i −0.0733929 + 1.44446i
\(699\) 24.5385i 0.928131i
\(700\) −1.65857 0.168980i −0.0626881 0.00638684i
\(701\) 28.0267i 1.05855i 0.848449 + 0.529277i \(0.177537\pi\)
−0.848449 + 0.529277i \(0.822463\pi\)
\(702\) 7.76953 + 0.394769i 0.293242 + 0.0148996i
\(703\) −22.9173 −0.864342
\(704\) 7.91781 25.1854i 0.298414 0.949211i
\(705\) 0.804999 0.0303180
\(706\) −31.0606 1.57818i −1.16898 0.0593957i
\(707\) 6.51050i 0.244853i
\(708\) −12.8827 1.31253i −0.484163 0.0493278i
\(709\) 28.2833i 1.06220i 0.847308 + 0.531101i \(0.178222\pi\)
−0.847308 + 0.531101i \(0.821778\pi\)
\(710\) −1.63836 + 32.2450i −0.0614866 + 1.21013i
\(711\) −2.97303 −0.111498
\(712\) 40.4619 + 6.21038i 1.51637 + 0.232744i
\(713\) 68.5469 2.56710
\(714\) 0.564499 11.1100i 0.0211258 0.415782i
\(715\) 6.73608i 0.251915i
\(716\) −3.76197 + 36.9246i −0.140592 + 1.37994i
\(717\) 13.4718i 0.503114i
\(718\) −5.45740 0.277290i −0.203669 0.0103484i
\(719\) 13.6899 0.510545 0.255273 0.966869i \(-0.417835\pi\)
0.255273 + 0.966869i \(0.417835\pi\)
\(720\) 0.715064 3.47283i 0.0266489 0.129425i
\(721\) −18.3047 −0.681704
\(722\) 7.74041 + 0.393289i 0.288068 + 0.0146367i
\(723\) 34.7712i 1.29315i
\(724\) −3.83411 + 37.6326i −0.142494 + 1.39860i
\(725\) 5.89978i 0.219112i
\(726\) 0.0125777 0.247545i 0.000466803 0.00918725i
\(727\) 13.1391 0.487303 0.243651 0.969863i \(-0.421655\pi\)
0.243651 + 0.969863i \(0.421655\pi\)
\(728\) −0.429102 + 2.79569i −0.0159036 + 0.103615i
\(729\) −29.6950 −1.09981
\(730\) −0.868746 + 17.0980i −0.0321537 + 0.632825i
\(731\) 36.7411i 1.35892i
\(732\) 33.9620 + 3.46014i 1.25527 + 0.127891i
\(733\) 4.10881i 0.151762i 0.997117 + 0.0758812i \(0.0241770\pi\)
−0.997117 + 0.0758812i \(0.975823\pi\)
\(734\) −41.1518 2.09092i −1.51894 0.0771772i
\(735\) 3.26954 0.120599
\(736\) 50.3930 + 13.0733i 1.85751 + 0.481888i
\(737\) −33.9108 −1.24912
\(738\) −2.65903 0.135105i −0.0978804 0.00497329i
\(739\) 5.60947i 0.206348i 0.994663 + 0.103174i \(0.0328998\pi\)
−0.994663 + 0.103174i \(0.967100\pi\)
\(740\) −18.8115 1.91657i −0.691524 0.0704544i
\(741\) 7.92528i 0.291142i
\(742\) 0.706818 13.9110i 0.0259481 0.510690i
\(743\) −15.2173 −0.558268 −0.279134 0.960252i \(-0.590047\pi\)
−0.279134 + 0.960252i \(0.590047\pi\)
\(744\) −5.11936 + 33.3537i −0.187685 + 1.22280i
\(745\) −32.1707 −1.17864
\(746\) −1.15469 + 22.7258i −0.0422763 + 0.832050i
\(747\) 3.70474i 0.135549i
\(748\) −3.28525 + 32.2454i −0.120121 + 1.17901i
\(749\) 16.0316i 0.585782i
\(750\) −26.9387 1.36875i −0.983664 0.0499798i
\(751\) −30.0338 −1.09595 −0.547974 0.836495i \(-0.684601\pi\)
−0.547974 + 0.836495i \(0.684601\pi\)
\(752\) 0.964610 + 0.198616i 0.0351757 + 0.00724278i
\(753\) −23.4331 −0.853949
\(754\) −9.99642 0.507917i −0.364048 0.0184972i
\(755\) 7.94504i 0.289150i
\(756\) 1.11514 10.9453i 0.0405571 0.398076i
\(757\) 24.4007i 0.886858i −0.896310 0.443429i \(-0.853762\pi\)
0.896310 0.443429i \(-0.146238\pi\)
\(758\) −1.72213 + 33.8937i −0.0625507 + 1.23107i
\(759\) −48.6486 −1.76583
\(760\) 28.2344 + 4.33362i 1.02417 + 0.157197i
\(761\) −50.2706 −1.82231 −0.911153 0.412068i \(-0.864807\pi\)
−0.911153 + 0.412068i \(0.864807\pi\)
\(762\) −2.11970 + 41.7183i −0.0767887 + 1.51130i
\(763\) 10.7704i 0.389916i
\(764\) 34.5650 + 3.52158i 1.25052 + 0.127406i
\(765\) 4.35305i 0.157385i
\(766\) −25.9048 1.31622i −0.935979 0.0475569i
\(767\) −4.04217 −0.145954
\(768\) −10.1248 + 23.5439i −0.365346 + 0.849568i
\(769\) −20.7181 −0.747115 −0.373557 0.927607i \(-0.621862\pi\)
−0.373557 + 0.927607i \(0.621862\pi\)
\(770\) −9.51398 0.483404i −0.342860 0.0174207i
\(771\) 26.6411i 0.959454i
\(772\) 21.7996 + 2.22101i 0.784586 + 0.0799357i
\(773\) 46.0405i 1.65596i 0.560756 + 0.827981i \(0.310511\pi\)
−0.560756 + 0.827981i \(0.689489\pi\)
\(774\) 0.233163 4.58893i 0.00838086 0.164946i
\(775\) −6.20863 −0.223021
\(776\) 10.0937 + 1.54925i 0.362341 + 0.0556147i
\(777\) −7.41925 −0.266164
\(778\) −0.0450691 + 0.887015i −0.00161580 + 0.0318010i
\(779\) 21.4496i 0.768513i
\(780\) −0.662789 + 6.50541i −0.0237317 + 0.232931i
\(781\) 36.9106i 1.32076i
\(782\) −63.8335 3.24337i −2.28268 0.115983i
\(783\) 38.9340 1.39139
\(784\) 3.91781 + 0.806688i 0.139922 + 0.0288103i
\(785\) 21.6000 0.770938
\(786\) 22.5313 + 1.14481i 0.803666 + 0.0408342i
\(787\) 42.3137i 1.50832i −0.656691 0.754160i \(-0.728044\pi\)
0.656691 0.754160i \(-0.271956\pi\)
\(788\) −0.884341 + 8.67999i −0.0315033 + 0.309212i
\(789\) 25.0610i 0.892195i
\(790\) 1.00283 19.7369i 0.0356791 0.702207i
\(791\) −5.36213 −0.190655
\(792\) −0.614956 + 4.00656i −0.0218515 + 0.142367i
\(793\) 10.6561 0.378411
\(794\) −0.401906 + 7.91000i −0.0142631 + 0.280715i
\(795\) 32.2027i 1.14211i
\(796\) 20.1104 + 2.04890i 0.712794 + 0.0726214i
\(797\) 17.9127i 0.634502i 0.948342 + 0.317251i \(0.102760\pi\)
−0.948342 + 0.317251i \(0.897240\pi\)
\(798\) 11.1936 + 0.568745i 0.396249 + 0.0201334i
\(799\) −1.20910 −0.0427749
\(800\) −4.56434 1.18411i −0.161374 0.0418647i
\(801\) −6.28515 −0.222075
\(802\) −22.8003 1.15848i −0.805108 0.0409074i
\(803\) 19.5719i 0.690679i
\(804\) 32.7496 + 3.33661i 1.15499 + 0.117673i
\(805\) 18.7854i 0.662098i
\(806\) −0.534506 + 10.5197i −0.0188272 + 0.370541i
\(807\) −19.1073 −0.672607
\(808\) 2.79367 18.2013i 0.0982809 0.640320i
\(809\) −4.46270 −0.156900 −0.0784500 0.996918i \(-0.524997\pi\)
−0.0784500 + 0.996918i \(0.524997\pi\)
\(810\) 1.09988 21.6469i 0.0386457 0.760595i
\(811\) 30.1488i 1.05867i −0.848413 0.529334i \(-0.822442\pi\)
0.848413 0.529334i \(-0.177558\pi\)
\(812\) −1.43475 + 14.0824i −0.0503500 + 0.494196i
\(813\) 9.59767i 0.336605i
\(814\) 21.5891 + 1.09694i 0.756698 + 0.0384477i
\(815\) 37.6085 1.31737
\(816\) 6.34550 30.8179i 0.222137 1.07884i
\(817\) 37.0175 1.29508
\(818\) −50.3518 2.55837i −1.76051 0.0894512i
\(819\) 0.434268i 0.0151746i
\(820\) 1.79383 17.6068i 0.0626432 0.614856i
\(821\) 16.5840i 0.578786i 0.957210 + 0.289393i \(0.0934535\pi\)
−0.957210 + 0.289393i \(0.906547\pi\)
\(822\) 1.35387 26.6459i 0.0472217 0.929381i
\(823\) 33.0671 1.15265 0.576324 0.817221i \(-0.304487\pi\)
0.576324 + 0.817221i \(0.304487\pi\)
\(824\) −51.1743 7.85460i −1.78274 0.273628i
\(825\) 4.40634 0.153409
\(826\) −0.290080 + 5.70913i −0.0100932 + 0.198646i
\(827\) 24.9129i 0.866308i −0.901320 0.433154i \(-0.857401\pi\)
0.901320 0.433154i \(-0.142599\pi\)
\(828\) −7.95214 0.810186i −0.276356 0.0281559i
\(829\) 42.3263i 1.47005i 0.678038 + 0.735027i \(0.262831\pi\)
−0.678038 + 0.735027i \(0.737169\pi\)
\(830\) 24.5944 + 1.24964i 0.853684 + 0.0433756i
\(831\) 20.6705 0.717051
\(832\) −2.39927 + 7.63174i −0.0831798 + 0.264583i
\(833\) −4.91083 −0.170150
\(834\) 15.5457 + 0.789873i 0.538303 + 0.0273511i
\(835\) 26.8639i 0.929662i
\(836\) −32.4879 3.30996i −1.12362 0.114477i
\(837\) 40.9722i 1.41621i
\(838\) 2.22876 43.8647i 0.0769912 1.51528i
\(839\) −22.8739 −0.789695 −0.394847 0.918747i \(-0.629203\pi\)
−0.394847 + 0.918747i \(0.629203\pi\)
\(840\) 9.14063 + 1.40297i 0.315382 + 0.0484070i
\(841\) −21.0932 −0.727352
\(842\) 0.0861190 1.69493i 0.00296786 0.0584110i
\(843\) 28.7249i 0.989338i
\(844\) 5.01119 49.1859i 0.172492 1.69305i
\(845\) 2.04118i 0.0702188i
\(846\) −0.151015 0.00767307i −0.00519201 0.000263806i
\(847\) −0.109419 −0.00375968
\(848\) 7.94530 38.5876i 0.272843 1.32510i
\(849\) 20.5968 0.706879
\(850\) 5.78171 + 0.293768i 0.198311 + 0.0100762i
\(851\) 42.6278i 1.46126i
\(852\) −3.63178 + 35.6466i −0.124423 + 1.22123i
\(853\) 8.85133i 0.303064i 0.988452 + 0.151532i \(0.0484206\pi\)
−0.988452 + 0.151532i \(0.951579\pi\)
\(854\) 0.764721 15.0507i 0.0261682 0.515023i
\(855\) −4.38579 −0.149991
\(856\) −6.87919 + 44.8193i −0.235126 + 1.53189i
\(857\) −8.20832 −0.280391 −0.140195 0.990124i \(-0.544773\pi\)
−0.140195 + 0.990124i \(0.544773\pi\)
\(858\) 0.379345 7.46597i 0.0129506 0.254884i
\(859\) 21.9662i 0.749476i −0.927131 0.374738i \(-0.877733\pi\)
0.927131 0.374738i \(-0.122267\pi\)
\(860\) 30.3856 + 3.09576i 1.03614 + 0.105565i
\(861\) 6.94411i 0.236655i
\(862\) −31.9597 1.62387i −1.08855 0.0553092i
\(863\) −33.8494 −1.15225 −0.576123 0.817363i \(-0.695435\pi\)
−0.576123 + 0.817363i \(0.695435\pi\)
\(864\) 7.81422 30.1211i 0.265845 1.02474i
\(865\) −15.1611 −0.515495
\(866\) 11.0352 + 0.560696i 0.374991 + 0.0190532i
\(867\) 11.3987i 0.387119i
\(868\) 14.8196 + 1.50986i 0.503010 + 0.0512481i
\(869\) 22.5927i 0.766404i
\(870\) −1.66066 + 32.6837i −0.0563015 + 1.10808i
\(871\) 10.2757 0.348179
\(872\) 4.62162 30.1108i 0.156508 1.01968i
\(873\) −1.56790 −0.0530653
\(874\) 3.26776 64.3136i 0.110534 2.17544i
\(875\) 11.9074i 0.402543i
\(876\) −1.92576 + 18.9017i −0.0650654 + 0.638630i
\(877\) 26.3189i 0.888728i −0.895846 0.444364i \(-0.853430\pi\)
0.895846 0.444364i \(-0.146570\pi\)
\(878\) 9.11528 + 0.463146i 0.307626 + 0.0156304i
\(879\) −42.8663 −1.44584
\(880\) −26.3907 5.43392i −0.889630 0.183177i
\(881\) 36.5036 1.22984 0.614919 0.788590i \(-0.289188\pi\)
0.614919 + 0.788590i \(0.289188\pi\)
\(882\) −0.613356 0.0311646i −0.0206528 0.00104937i
\(883\) 35.3164i 1.18849i −0.804283 0.594246i \(-0.797451\pi\)
0.804283 0.594246i \(-0.202549\pi\)
\(884\) 0.995503 9.77107i 0.0334824 0.328637i
\(885\) 13.2161i 0.444253i
\(886\) −0.442026 + 8.69961i −0.0148502 + 0.292269i
\(887\) 23.3302 0.783351 0.391676 0.920103i \(-0.371896\pi\)
0.391676 + 0.920103i \(0.371896\pi\)
\(888\) −20.7419 3.18361i −0.696053 0.106835i
\(889\) 18.4402 0.618465
\(890\) 2.12003 41.7248i 0.0710636 1.39862i
\(891\) 24.7791i 0.830130i
\(892\) −19.6237 1.99932i −0.657051 0.0669421i
\(893\) 1.21820i 0.0407654i
\(894\) −35.6565 1.81170i −1.19253 0.0605924i
\(895\) 37.8799 1.26619
\(896\) 10.6068 + 3.93639i 0.354349 + 0.131506i
\(897\) 14.7416 0.492207
\(898\) 5.33186 + 0.270911i 0.177927 + 0.00904043i
\(899\) 52.7155i 1.75816i
\(900\) 0.720264 + 0.0733825i 0.0240088 + 0.00244608i
\(901\) 48.3681i 1.61137i
\(902\) −1.02669 + 20.2065i −0.0341851 + 0.672804i
\(903\) 11.9841 0.398804
\(904\) −14.9908 2.30090i −0.498588 0.0765268i
\(905\) 38.6063 1.28332
\(906\) −0.447428 + 8.80593i −0.0148648 + 0.292557i
\(907\) 30.1817i 1.00217i −0.865399 0.501083i \(-0.832935\pi\)
0.865399 0.501083i \(-0.167065\pi\)
\(908\) −0.663713 + 6.51448i −0.0220261 + 0.216191i
\(909\) 2.82730i 0.0937757i
\(910\) 2.88295 + 0.146482i 0.0955688 + 0.00485584i
\(911\) 7.93273 0.262823 0.131412 0.991328i \(-0.458049\pi\)
0.131412 + 0.991328i \(0.458049\pi\)
\(912\) 31.0498 + 6.39323i 1.02816 + 0.211701i
\(913\) −28.1530 −0.931729
\(914\) −23.8512 1.21188i −0.788927 0.0400853i
\(915\) 34.8407i 1.15180i
\(916\) 0.120023 1.17805i 0.00396567 0.0389239i
\(917\) 9.95924i 0.328883i
\(918\) −1.93864 + 38.1548i −0.0639847 + 1.25930i
\(919\) 29.3071 0.966750 0.483375 0.875413i \(-0.339411\pi\)
0.483375 + 0.875413i \(0.339411\pi\)
\(920\) 8.06085 52.5181i 0.265758 1.73147i
\(921\) −16.4639 −0.542504
\(922\) −1.59249 + 31.3422i −0.0524459 + 1.03220i
\(923\) 11.1847i 0.368150i
\(924\) −10.5177 1.07157i −0.346005 0.0352520i
\(925\) 3.86101i 0.126949i
\(926\) 1.22911 + 0.0624508i 0.0403910 + 0.00205226i
\(927\) 7.94916 0.261085
\(928\) −10.0539 + 38.7544i −0.330036 + 1.27217i
\(929\) 2.37267 0.0778447 0.0389224 0.999242i \(-0.487607\pi\)
0.0389224 + 0.999242i \(0.487607\pi\)
\(930\) 34.3947 + 1.74759i 1.12785 + 0.0573057i
\(931\) 4.94776i 0.162156i
\(932\) 30.4810 + 3.10549i 0.998439 + 0.101724i
\(933\) 7.22649i 0.236585i
\(934\) −0.595316 + 11.7165i −0.0194793 + 0.383377i
\(935\) 33.0797 1.08182
\(936\) 0.186345 1.21408i 0.00609089 0.0396834i
\(937\) 32.6751 1.06745 0.533725 0.845658i \(-0.320792\pi\)
0.533725 + 0.845658i \(0.320792\pi\)
\(938\) 0.737421 14.5133i 0.0240776 0.473877i
\(939\) 4.66054i 0.152091i
\(940\) 0.101877 0.999948i 0.00332288 0.0326147i
\(941\) 38.3641i 1.25063i −0.780371 0.625316i \(-0.784970\pi\)
0.780371 0.625316i \(-0.215030\pi\)
\(942\) 23.9405 + 1.21641i 0.780024 + 0.0396329i
\(943\) −39.8979 −1.29925
\(944\) −3.26077 + 15.8365i −0.106129 + 0.515433i
\(945\) −11.2285 −0.365263
\(946\) −34.8721 1.77185i −1.13379 0.0576078i
\(947\) 9.22751i 0.299854i 0.988697 + 0.149927i \(0.0479039\pi\)
−0.988697 + 0.149927i \(0.952096\pi\)
\(948\) 2.22298 21.8190i 0.0721991 0.708649i
\(949\) 5.93073i 0.192520i
\(950\) −0.295977 + 5.82520i −0.00960277 + 0.188994i
\(951\) 14.0720 0.456316
\(952\) −13.7291 2.10725i −0.444964 0.0682962i
\(953\) 20.3151 0.658072 0.329036 0.944317i \(-0.393276\pi\)
0.329036 + 0.944317i \(0.393276\pi\)
\(954\) −0.306948 + 6.04112i −0.00993782 + 0.195588i
\(955\) 35.4593i 1.14744i
\(956\) −16.7343 1.70494i −0.541227 0.0551417i
\(957\) 37.4128i 1.20939i
\(958\) −20.3576 1.03436i −0.657723 0.0334188i
\(959\) −11.7779 −0.380329
\(960\) 24.9523 + 7.84452i 0.805333 + 0.253181i
\(961\) 24.4751 0.789521
\(962\) −6.54198 0.332397i −0.210922 0.0107169i
\(963\) 6.96201i 0.224348i
\(964\) −43.1918 4.40050i −1.39111 0.141730i
\(965\) 22.3637i 0.719912i
\(966\) 1.05791 20.8209i 0.0340376 0.669902i
\(967\) 13.9577 0.448851 0.224425 0.974491i \(-0.427950\pi\)
0.224425 + 0.974491i \(0.427950\pi\)
\(968\) −0.305901 0.0469519i −0.00983205 0.00150909i
\(969\) −38.9197 −1.25028
\(970\) 0.528864 10.4087i 0.0169808 0.334203i
\(971\) 11.4952i 0.368898i 0.982842 + 0.184449i \(0.0590501\pi\)
−0.982842 + 0.184449i \(0.940950\pi\)
\(972\) −0.907300 + 8.90533i −0.0291017 + 0.285639i
\(973\) 6.87146i 0.220289i
\(974\) 19.4962 + 0.990597i 0.624697 + 0.0317408i
\(975\) −1.33522 −0.0427612
\(976\) 8.59619 41.7488i 0.275157 1.33635i
\(977\) −7.39204 −0.236492 −0.118246 0.992984i \(-0.537727\pi\)
−0.118246 + 0.992984i \(0.537727\pi\)
\(978\) 41.6836 + 2.11794i 1.33289 + 0.0677241i
\(979\) 47.7621i 1.52648i
\(980\) 0.413780 4.06134i 0.0132177 0.129735i
\(981\) 4.67725i 0.149333i
\(982\) −1.84768 + 36.3647i −0.0589619 + 1.16044i
\(983\) −34.2578 −1.09265 −0.546327 0.837572i \(-0.683974\pi\)
−0.546327 + 0.837572i \(0.683974\pi\)
\(984\) 2.97973 19.4136i 0.0949904 0.618882i
\(985\) 8.90457 0.283723
\(986\) 2.49429 49.0907i 0.0794344 1.56337i
\(987\) 0.394379i 0.0125532i
\(988\) 9.84456 + 1.00299i 0.313197 + 0.0319094i
\(989\) 68.8552i 2.18947i
\(990\) 4.13162 + 0.209927i 0.131311 + 0.00667191i
\(991\) 50.9734 1.61922 0.809612 0.586966i \(-0.199678\pi\)
0.809612 + 0.586966i \(0.199678\pi\)
\(992\) 40.7831 + 10.5802i 1.29487 + 0.335923i
\(993\) 18.4648 0.585962
\(994\) 15.7972 + 0.802654i 0.501057 + 0.0254586i
\(995\) 20.6307i 0.654038i
\(996\) 27.1890 + 2.77009i 0.861515 + 0.0877735i
\(997\) 7.97874i 0.252689i −0.991986 0.126345i \(-0.959675\pi\)
0.991986 0.126345i \(-0.0403245\pi\)
\(998\) −0.916277 + 18.0334i −0.0290042 + 0.570839i
\(999\) 25.4797 0.806141
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.a.365.1 34
4.3 odd 2 2912.2.c.a.1457.9 34
8.3 odd 2 2912.2.c.a.1457.26 34
8.5 even 2 inner 728.2.c.a.365.2 yes 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.1 34 1.1 even 1 trivial
728.2.c.a.365.2 yes 34 8.5 even 2 inner
2912.2.c.a.1457.9 34 4.3 odd 2
2912.2.c.a.1457.26 34 8.3 odd 2