Properties

Label 2912.2.c.a.1457.9
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1457,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1457"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.9
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.a.1457.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60179i q^{3} -2.04118i q^{5} +1.00000 q^{7} +0.434268 q^{9} +3.30009i q^{11} +1.00000i q^{13} -3.26954 q^{15} -4.91083 q^{17} +4.94776i q^{19} -1.60179i q^{21} +9.20320 q^{23} +0.833579 q^{25} -5.50098i q^{27} -7.07766i q^{29} +7.44816 q^{31} +5.28605 q^{33} -2.04118i q^{35} -4.63185i q^{37} +1.60179 q^{39} +4.33522 q^{41} -7.48166i q^{43} -0.886420i q^{45} -0.246211 q^{47} +1.00000 q^{49} +7.86611i q^{51} -9.84928i q^{53} +6.73608 q^{55} +7.92528 q^{57} -4.04217i q^{59} -10.6561i q^{61} +0.434268 q^{63} +2.04118 q^{65} +10.2757i q^{67} -14.7416i q^{69} -11.1847 q^{71} +5.93073 q^{73} -1.33522i q^{75} +3.30009i q^{77} +6.84608 q^{79} -7.50861 q^{81} +8.53099i q^{83} +10.0239i q^{85} -11.3369 q^{87} -14.4730 q^{89} +1.00000i q^{91} -11.9304i q^{93} +10.0993 q^{95} -3.61044 q^{97} +1.43312i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 34 q^{7} - 26 q^{9} + 8 q^{15} - 20 q^{17} + 20 q^{23} - 22 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 34 q^{49} + 32 q^{55} + 8 q^{57} - 26 q^{63} - 20 q^{65} - 64 q^{71} - 20 q^{79}+ \cdots + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.60179i − 0.924794i −0.886673 0.462397i \(-0.846989\pi\)
0.886673 0.462397i \(-0.153011\pi\)
\(4\) 0 0
\(5\) − 2.04118i − 0.912844i −0.889763 0.456422i \(-0.849131\pi\)
0.889763 0.456422i \(-0.150869\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0.434268 0.144756
\(10\) 0 0
\(11\) 3.30009i 0.995014i 0.867460 + 0.497507i \(0.165751\pi\)
−0.867460 + 0.497507i \(0.834249\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −3.26954 −0.844193
\(16\) 0 0
\(17\) −4.91083 −1.19105 −0.595525 0.803337i \(-0.703056\pi\)
−0.595525 + 0.803337i \(0.703056\pi\)
\(18\) 0 0
\(19\) 4.94776i 1.13509i 0.823341 + 0.567547i \(0.192108\pi\)
−0.823341 + 0.567547i \(0.807892\pi\)
\(20\) 0 0
\(21\) − 1.60179i − 0.349539i
\(22\) 0 0
\(23\) 9.20320 1.91900 0.959500 0.281709i \(-0.0909014\pi\)
0.959500 + 0.281709i \(0.0909014\pi\)
\(24\) 0 0
\(25\) 0.833579 0.166716
\(26\) 0 0
\(27\) − 5.50098i − 1.05866i
\(28\) 0 0
\(29\) − 7.07766i − 1.31429i −0.753765 0.657144i \(-0.771764\pi\)
0.753765 0.657144i \(-0.228236\pi\)
\(30\) 0 0
\(31\) 7.44816 1.33773 0.668865 0.743384i \(-0.266780\pi\)
0.668865 + 0.743384i \(0.266780\pi\)
\(32\) 0 0
\(33\) 5.28605 0.920183
\(34\) 0 0
\(35\) − 2.04118i − 0.345023i
\(36\) 0 0
\(37\) − 4.63185i − 0.761471i −0.924684 0.380735i \(-0.875671\pi\)
0.924684 0.380735i \(-0.124329\pi\)
\(38\) 0 0
\(39\) 1.60179 0.256492
\(40\) 0 0
\(41\) 4.33522 0.677047 0.338524 0.940958i \(-0.390072\pi\)
0.338524 + 0.940958i \(0.390072\pi\)
\(42\) 0 0
\(43\) − 7.48166i − 1.14094i −0.821318 0.570471i \(-0.806761\pi\)
0.821318 0.570471i \(-0.193239\pi\)
\(44\) 0 0
\(45\) − 0.886420i − 0.132140i
\(46\) 0 0
\(47\) −0.246211 −0.0359136 −0.0179568 0.999839i \(-0.505716\pi\)
−0.0179568 + 0.999839i \(0.505716\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 7.86611i 1.10148i
\(52\) 0 0
\(53\) − 9.84928i − 1.35290i −0.736487 0.676451i \(-0.763517\pi\)
0.736487 0.676451i \(-0.236483\pi\)
\(54\) 0 0
\(55\) 6.73608 0.908293
\(56\) 0 0
\(57\) 7.92528 1.04973
\(58\) 0 0
\(59\) − 4.04217i − 0.526246i −0.964762 0.263123i \(-0.915248\pi\)
0.964762 0.263123i \(-0.0847525\pi\)
\(60\) 0 0
\(61\) − 10.6561i − 1.36438i −0.731175 0.682190i \(-0.761028\pi\)
0.731175 0.682190i \(-0.238972\pi\)
\(62\) 0 0
\(63\) 0.434268 0.0547126
\(64\) 0 0
\(65\) 2.04118 0.253177
\(66\) 0 0
\(67\) 10.2757i 1.25538i 0.778464 + 0.627689i \(0.215999\pi\)
−0.778464 + 0.627689i \(0.784001\pi\)
\(68\) 0 0
\(69\) − 14.7416i − 1.77468i
\(70\) 0 0
\(71\) −11.1847 −1.32738 −0.663691 0.748007i \(-0.731011\pi\)
−0.663691 + 0.748007i \(0.731011\pi\)
\(72\) 0 0
\(73\) 5.93073 0.694140 0.347070 0.937839i \(-0.387177\pi\)
0.347070 + 0.937839i \(0.387177\pi\)
\(74\) 0 0
\(75\) − 1.33522i − 0.154178i
\(76\) 0 0
\(77\) 3.30009i 0.376080i
\(78\) 0 0
\(79\) 6.84608 0.770245 0.385122 0.922866i \(-0.374159\pi\)
0.385122 + 0.922866i \(0.374159\pi\)
\(80\) 0 0
\(81\) −7.50861 −0.834290
\(82\) 0 0
\(83\) 8.53099i 0.936398i 0.883623 + 0.468199i \(0.155097\pi\)
−0.883623 + 0.468199i \(0.844903\pi\)
\(84\) 0 0
\(85\) 10.0239i 1.08724i
\(86\) 0 0
\(87\) −11.3369 −1.21545
\(88\) 0 0
\(89\) −14.4730 −1.53413 −0.767066 0.641568i \(-0.778284\pi\)
−0.767066 + 0.641568i \(0.778284\pi\)
\(90\) 0 0
\(91\) 1.00000i 0.104828i
\(92\) 0 0
\(93\) − 11.9304i − 1.23712i
\(94\) 0 0
\(95\) 10.0993 1.03616
\(96\) 0 0
\(97\) −3.61044 −0.366584 −0.183292 0.983058i \(-0.558675\pi\)
−0.183292 + 0.983058i \(0.558675\pi\)
\(98\) 0 0
\(99\) 1.43312i 0.144034i
\(100\) 0 0
\(101\) 6.51050i 0.647819i 0.946088 + 0.323909i \(0.104997\pi\)
−0.946088 + 0.323909i \(0.895003\pi\)
\(102\) 0 0
\(103\) −18.3047 −1.80362 −0.901809 0.432134i \(-0.857761\pi\)
−0.901809 + 0.432134i \(0.857761\pi\)
\(104\) 0 0
\(105\) −3.26954 −0.319075
\(106\) 0 0
\(107\) 16.0316i 1.54983i 0.632064 + 0.774916i \(0.282208\pi\)
−0.632064 + 0.774916i \(0.717792\pi\)
\(108\) 0 0
\(109\) 10.7704i 1.03162i 0.856703 + 0.515810i \(0.172509\pi\)
−0.856703 + 0.515810i \(0.827491\pi\)
\(110\) 0 0
\(111\) −7.41925 −0.704204
\(112\) 0 0
\(113\) 5.36213 0.504426 0.252213 0.967672i \(-0.418842\pi\)
0.252213 + 0.967672i \(0.418842\pi\)
\(114\) 0 0
\(115\) − 18.7854i − 1.75175i
\(116\) 0 0
\(117\) 0.434268i 0.0401481i
\(118\) 0 0
\(119\) −4.91083 −0.450175
\(120\) 0 0
\(121\) 0.109419 0.00994719
\(122\) 0 0
\(123\) − 6.94411i − 0.626129i
\(124\) 0 0
\(125\) − 11.9074i − 1.06503i
\(126\) 0 0
\(127\) 18.4402 1.63630 0.818152 0.575002i \(-0.194999\pi\)
0.818152 + 0.575002i \(0.194999\pi\)
\(128\) 0 0
\(129\) −11.9841 −1.05514
\(130\) 0 0
\(131\) − 9.95924i − 0.870143i −0.900396 0.435072i \(-0.856723\pi\)
0.900396 0.435072i \(-0.143277\pi\)
\(132\) 0 0
\(133\) 4.94776i 0.429025i
\(134\) 0 0
\(135\) −11.2285 −0.966395
\(136\) 0 0
\(137\) 11.7779 1.00626 0.503128 0.864212i \(-0.332182\pi\)
0.503128 + 0.864212i \(0.332182\pi\)
\(138\) 0 0
\(139\) − 6.87146i − 0.582829i −0.956597 0.291415i \(-0.905874\pi\)
0.956597 0.291415i \(-0.0941259\pi\)
\(140\) 0 0
\(141\) 0.394379i 0.0332127i
\(142\) 0 0
\(143\) −3.30009 −0.275967
\(144\) 0 0
\(145\) −14.4468 −1.19974
\(146\) 0 0
\(147\) − 1.60179i − 0.132113i
\(148\) 0 0
\(149\) − 15.7608i − 1.29118i −0.763686 0.645588i \(-0.776612\pi\)
0.763686 0.645588i \(-0.223388\pi\)
\(150\) 0 0
\(151\) 3.89237 0.316757 0.158378 0.987378i \(-0.449373\pi\)
0.158378 + 0.987378i \(0.449373\pi\)
\(152\) 0 0
\(153\) −2.13261 −0.172412
\(154\) 0 0
\(155\) − 15.2031i − 1.22114i
\(156\) 0 0
\(157\) 10.5821i 0.844545i 0.906469 + 0.422273i \(0.138768\pi\)
−0.906469 + 0.422273i \(0.861232\pi\)
\(158\) 0 0
\(159\) −15.7765 −1.25116
\(160\) 0 0
\(161\) 9.20320 0.725314
\(162\) 0 0
\(163\) − 18.4249i − 1.44315i −0.692338 0.721573i \(-0.743419\pi\)
0.692338 0.721573i \(-0.256581\pi\)
\(164\) 0 0
\(165\) − 10.7898i − 0.839984i
\(166\) 0 0
\(167\) 13.1609 1.01842 0.509212 0.860641i \(-0.329937\pi\)
0.509212 + 0.860641i \(0.329937\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 2.14866i 0.164312i
\(172\) 0 0
\(173\) − 7.42763i − 0.564713i −0.959310 0.282356i \(-0.908884\pi\)
0.959310 0.282356i \(-0.0911160\pi\)
\(174\) 0 0
\(175\) 0.833579 0.0630126
\(176\) 0 0
\(177\) −6.47471 −0.486669
\(178\) 0 0
\(179\) − 18.5579i − 1.38708i −0.720419 0.693540i \(-0.756050\pi\)
0.720419 0.693540i \(-0.243950\pi\)
\(180\) 0 0
\(181\) 18.9137i 1.40584i 0.711267 + 0.702922i \(0.248122\pi\)
−0.711267 + 0.702922i \(0.751878\pi\)
\(182\) 0 0
\(183\) −17.0689 −1.26177
\(184\) 0 0
\(185\) −9.45444 −0.695104
\(186\) 0 0
\(187\) − 16.2062i − 1.18511i
\(188\) 0 0
\(189\) − 5.50098i − 0.400137i
\(190\) 0 0
\(191\) −17.3720 −1.25699 −0.628496 0.777813i \(-0.716329\pi\)
−0.628496 + 0.777813i \(0.716329\pi\)
\(192\) 0 0
\(193\) 10.9562 0.788647 0.394324 0.918972i \(-0.370979\pi\)
0.394324 + 0.918972i \(0.370979\pi\)
\(194\) 0 0
\(195\) − 3.26954i − 0.234137i
\(196\) 0 0
\(197\) 4.36246i 0.310812i 0.987851 + 0.155406i \(0.0496687\pi\)
−0.987851 + 0.155406i \(0.950331\pi\)
\(198\) 0 0
\(199\) −10.1073 −0.716484 −0.358242 0.933629i \(-0.616624\pi\)
−0.358242 + 0.933629i \(0.616624\pi\)
\(200\) 0 0
\(201\) 16.4595 1.16097
\(202\) 0 0
\(203\) − 7.07766i − 0.496754i
\(204\) 0 0
\(205\) − 8.84897i − 0.618039i
\(206\) 0 0
\(207\) 3.99665 0.277787
\(208\) 0 0
\(209\) −16.3281 −1.12944
\(210\) 0 0
\(211\) 24.7203i 1.70181i 0.525317 + 0.850906i \(0.323947\pi\)
−0.525317 + 0.850906i \(0.676053\pi\)
\(212\) 0 0
\(213\) 17.9156i 1.22756i
\(214\) 0 0
\(215\) −15.2714 −1.04150
\(216\) 0 0
\(217\) 7.44816 0.505614
\(218\) 0 0
\(219\) − 9.49979i − 0.641936i
\(220\) 0 0
\(221\) − 4.91083i − 0.330338i
\(222\) 0 0
\(223\) 9.86265 0.660452 0.330226 0.943902i \(-0.392875\pi\)
0.330226 + 0.943902i \(0.392875\pi\)
\(224\) 0 0
\(225\) 0.361997 0.0241331
\(226\) 0 0
\(227\) − 3.27410i − 0.217310i −0.994080 0.108655i \(-0.965346\pi\)
0.994080 0.108655i \(-0.0346543\pi\)
\(228\) 0 0
\(229\) − 0.592074i − 0.0391254i −0.999809 0.0195627i \(-0.993773\pi\)
0.999809 0.0195627i \(-0.00622739\pi\)
\(230\) 0 0
\(231\) 5.28605 0.347796
\(232\) 0 0
\(233\) 15.3194 1.00361 0.501804 0.864981i \(-0.332670\pi\)
0.501804 + 0.864981i \(0.332670\pi\)
\(234\) 0 0
\(235\) 0.502562i 0.0327835i
\(236\) 0 0
\(237\) − 10.9660i − 0.712318i
\(238\) 0 0
\(239\) 8.41048 0.544028 0.272014 0.962293i \(-0.412310\pi\)
0.272014 + 0.962293i \(0.412310\pi\)
\(240\) 0 0
\(241\) −21.7077 −1.39831 −0.699157 0.714968i \(-0.746441\pi\)
−0.699157 + 0.714968i \(0.746441\pi\)
\(242\) 0 0
\(243\) − 4.47572i − 0.287117i
\(244\) 0 0
\(245\) − 2.04118i − 0.130406i
\(246\) 0 0
\(247\) −4.94776 −0.314819
\(248\) 0 0
\(249\) 13.6649 0.865975
\(250\) 0 0
\(251\) − 14.6293i − 0.923394i −0.887038 0.461697i \(-0.847241\pi\)
0.887038 0.461697i \(-0.152759\pi\)
\(252\) 0 0
\(253\) 30.3714i 1.90943i
\(254\) 0 0
\(255\) 16.0562 1.00548
\(256\) 0 0
\(257\) −16.6321 −1.03748 −0.518740 0.854932i \(-0.673599\pi\)
−0.518740 + 0.854932i \(0.673599\pi\)
\(258\) 0 0
\(259\) − 4.63185i − 0.287809i
\(260\) 0 0
\(261\) − 3.07360i − 0.190251i
\(262\) 0 0
\(263\) 15.6456 0.964750 0.482375 0.875965i \(-0.339774\pi\)
0.482375 + 0.875965i \(0.339774\pi\)
\(264\) 0 0
\(265\) −20.1042 −1.23499
\(266\) 0 0
\(267\) 23.1827i 1.41876i
\(268\) 0 0
\(269\) 11.9287i 0.727305i 0.931535 + 0.363652i \(0.118470\pi\)
−0.931535 + 0.363652i \(0.881530\pi\)
\(270\) 0 0
\(271\) 5.99184 0.363978 0.181989 0.983301i \(-0.441746\pi\)
0.181989 + 0.983301i \(0.441746\pi\)
\(272\) 0 0
\(273\) 1.60179 0.0969448
\(274\) 0 0
\(275\) 2.75088i 0.165884i
\(276\) 0 0
\(277\) − 12.9046i − 0.775363i −0.921793 0.387682i \(-0.873276\pi\)
0.921793 0.387682i \(-0.126724\pi\)
\(278\) 0 0
\(279\) 3.23450 0.193644
\(280\) 0 0
\(281\) −17.9330 −1.06979 −0.534896 0.844918i \(-0.679649\pi\)
−0.534896 + 0.844918i \(0.679649\pi\)
\(282\) 0 0
\(283\) 12.8586i 0.764364i 0.924087 + 0.382182i \(0.124827\pi\)
−0.924087 + 0.382182i \(0.875173\pi\)
\(284\) 0 0
\(285\) − 16.1769i − 0.958239i
\(286\) 0 0
\(287\) 4.33522 0.255900
\(288\) 0 0
\(289\) 7.11620 0.418600
\(290\) 0 0
\(291\) 5.78316i 0.339015i
\(292\) 0 0
\(293\) 26.7615i 1.56342i 0.623641 + 0.781711i \(0.285653\pi\)
−0.623641 + 0.781711i \(0.714347\pi\)
\(294\) 0 0
\(295\) −8.25080 −0.480380
\(296\) 0 0
\(297\) 18.1537 1.05338
\(298\) 0 0
\(299\) 9.20320i 0.532235i
\(300\) 0 0
\(301\) − 7.48166i − 0.431236i
\(302\) 0 0
\(303\) 10.4285 0.599099
\(304\) 0 0
\(305\) −21.7511 −1.24547
\(306\) 0 0
\(307\) − 10.2784i − 0.586622i −0.956017 0.293311i \(-0.905243\pi\)
0.956017 0.293311i \(-0.0947571\pi\)
\(308\) 0 0
\(309\) 29.3203i 1.66798i
\(310\) 0 0
\(311\) 4.51151 0.255824 0.127912 0.991786i \(-0.459172\pi\)
0.127912 + 0.991786i \(0.459172\pi\)
\(312\) 0 0
\(313\) −2.90958 −0.164459 −0.0822296 0.996613i \(-0.526204\pi\)
−0.0822296 + 0.996613i \(0.526204\pi\)
\(314\) 0 0
\(315\) − 0.886420i − 0.0499441i
\(316\) 0 0
\(317\) − 8.78517i − 0.493424i −0.969089 0.246712i \(-0.920650\pi\)
0.969089 0.246712i \(-0.0793502\pi\)
\(318\) 0 0
\(319\) 23.3569 1.30773
\(320\) 0 0
\(321\) 25.6793 1.43328
\(322\) 0 0
\(323\) − 24.2976i − 1.35195i
\(324\) 0 0
\(325\) 0.833579i 0.0462386i
\(326\) 0 0
\(327\) 17.2520 0.954036
\(328\) 0 0
\(329\) −0.246211 −0.0135741
\(330\) 0 0
\(331\) 11.5276i 0.633614i 0.948490 + 0.316807i \(0.102611\pi\)
−0.948490 + 0.316807i \(0.897389\pi\)
\(332\) 0 0
\(333\) − 2.01146i − 0.110227i
\(334\) 0 0
\(335\) 20.9746 1.14597
\(336\) 0 0
\(337\) 17.7814 0.968615 0.484307 0.874898i \(-0.339072\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(338\) 0 0
\(339\) − 8.58900i − 0.466490i
\(340\) 0 0
\(341\) 24.5796i 1.33106i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −30.0903 −1.62001
\(346\) 0 0
\(347\) 14.2957i 0.767435i 0.923451 + 0.383717i \(0.125356\pi\)
−0.923451 + 0.383717i \(0.874644\pi\)
\(348\) 0 0
\(349\) − 27.0196i − 1.44632i −0.690678 0.723162i \(-0.742688\pi\)
0.690678 0.723162i \(-0.257312\pi\)
\(350\) 0 0
\(351\) 5.50098 0.293620
\(352\) 0 0
\(353\) 21.9915 1.17049 0.585244 0.810857i \(-0.300999\pi\)
0.585244 + 0.810857i \(0.300999\pi\)
\(354\) 0 0
\(355\) 22.8300i 1.21169i
\(356\) 0 0
\(357\) 7.86611i 0.416319i
\(358\) 0 0
\(359\) −3.86395 −0.203931 −0.101966 0.994788i \(-0.532513\pi\)
−0.101966 + 0.994788i \(0.532513\pi\)
\(360\) 0 0
\(361\) −5.48036 −0.288440
\(362\) 0 0
\(363\) − 0.175266i − 0.00919910i
\(364\) 0 0
\(365\) − 12.1057i − 0.633641i
\(366\) 0 0
\(367\) −29.1363 −1.52090 −0.760450 0.649396i \(-0.775022\pi\)
−0.760450 + 0.649396i \(0.775022\pi\)
\(368\) 0 0
\(369\) 1.88265 0.0980067
\(370\) 0 0
\(371\) − 9.84928i − 0.511349i
\(372\) 0 0
\(373\) − 16.0903i − 0.833123i −0.909107 0.416562i \(-0.863235\pi\)
0.909107 0.416562i \(-0.136765\pi\)
\(374\) 0 0
\(375\) −19.0731 −0.984933
\(376\) 0 0
\(377\) 7.07766 0.364518
\(378\) 0 0
\(379\) 23.9974i 1.23266i 0.787487 + 0.616331i \(0.211382\pi\)
−0.787487 + 0.616331i \(0.788618\pi\)
\(380\) 0 0
\(381\) − 29.5374i − 1.51324i
\(382\) 0 0
\(383\) −18.3411 −0.937186 −0.468593 0.883414i \(-0.655239\pi\)
−0.468593 + 0.883414i \(0.655239\pi\)
\(384\) 0 0
\(385\) 6.73608 0.343302
\(386\) 0 0
\(387\) − 3.24905i − 0.165158i
\(388\) 0 0
\(389\) − 0.628023i − 0.0318420i −0.999873 0.0159210i \(-0.994932\pi\)
0.999873 0.0159210i \(-0.00506803\pi\)
\(390\) 0 0
\(391\) −45.1953 −2.28562
\(392\) 0 0
\(393\) −15.9526 −0.804703
\(394\) 0 0
\(395\) − 13.9741i − 0.703113i
\(396\) 0 0
\(397\) − 5.60043i − 0.281078i −0.990075 0.140539i \(-0.955117\pi\)
0.990075 0.140539i \(-0.0448835\pi\)
\(398\) 0 0
\(399\) 7.92528 0.396760
\(400\) 0 0
\(401\) 16.1431 0.806147 0.403073 0.915168i \(-0.367942\pi\)
0.403073 + 0.915168i \(0.367942\pi\)
\(402\) 0 0
\(403\) 7.44816i 0.371019i
\(404\) 0 0
\(405\) 15.3264i 0.761576i
\(406\) 0 0
\(407\) 15.2855 0.757674
\(408\) 0 0
\(409\) 35.6500 1.76278 0.881390 0.472389i \(-0.156608\pi\)
0.881390 + 0.472389i \(0.156608\pi\)
\(410\) 0 0
\(411\) − 18.8658i − 0.930580i
\(412\) 0 0
\(413\) − 4.04217i − 0.198902i
\(414\) 0 0
\(415\) 17.4133 0.854785
\(416\) 0 0
\(417\) −11.0066 −0.538997
\(418\) 0 0
\(419\) − 31.0570i − 1.51724i −0.651536 0.758618i \(-0.725875\pi\)
0.651536 0.758618i \(-0.274125\pi\)
\(420\) 0 0
\(421\) 1.20004i 0.0584864i 0.999572 + 0.0292432i \(0.00930972\pi\)
−0.999572 + 0.0292432i \(0.990690\pi\)
\(422\) 0 0
\(423\) −0.106922 −0.00519871
\(424\) 0 0
\(425\) −4.09356 −0.198567
\(426\) 0 0
\(427\) − 10.6561i − 0.515687i
\(428\) 0 0
\(429\) 5.28605i 0.255213i
\(430\) 0 0
\(431\) −22.6281 −1.08996 −0.544978 0.838450i \(-0.683462\pi\)
−0.544978 + 0.838450i \(0.683462\pi\)
\(432\) 0 0
\(433\) −7.81312 −0.375475 −0.187737 0.982219i \(-0.560115\pi\)
−0.187737 + 0.982219i \(0.560115\pi\)
\(434\) 0 0
\(435\) 23.1407i 1.10951i
\(436\) 0 0
\(437\) 45.5352i 2.17825i
\(438\) 0 0
\(439\) 6.45379 0.308023 0.154011 0.988069i \(-0.450781\pi\)
0.154011 + 0.988069i \(0.450781\pi\)
\(440\) 0 0
\(441\) 0.434268 0.0206794
\(442\) 0 0
\(443\) 6.15949i 0.292646i 0.989237 + 0.146323i \(0.0467439\pi\)
−0.989237 + 0.146323i \(0.953256\pi\)
\(444\) 0 0
\(445\) 29.5420i 1.40042i
\(446\) 0 0
\(447\) −25.2455 −1.19407
\(448\) 0 0
\(449\) −3.77506 −0.178156 −0.0890781 0.996025i \(-0.528392\pi\)
−0.0890781 + 0.996025i \(0.528392\pi\)
\(450\) 0 0
\(451\) 14.3066i 0.673672i
\(452\) 0 0
\(453\) − 6.23477i − 0.292935i
\(454\) 0 0
\(455\) 2.04118 0.0956921
\(456\) 0 0
\(457\) 16.8871 0.789945 0.394972 0.918693i \(-0.370754\pi\)
0.394972 + 0.918693i \(0.370754\pi\)
\(458\) 0 0
\(459\) 27.0143i 1.26092i
\(460\) 0 0
\(461\) − 22.1909i − 1.03353i −0.856127 0.516766i \(-0.827136\pi\)
0.856127 0.516766i \(-0.172864\pi\)
\(462\) 0 0
\(463\) 0.870232 0.0404431 0.0202216 0.999796i \(-0.493563\pi\)
0.0202216 + 0.999796i \(0.493563\pi\)
\(464\) 0 0
\(465\) −24.3521 −1.12930
\(466\) 0 0
\(467\) 8.29553i 0.383871i 0.981408 + 0.191936i \(0.0614765\pi\)
−0.981408 + 0.191936i \(0.938523\pi\)
\(468\) 0 0
\(469\) 10.2757i 0.474489i
\(470\) 0 0
\(471\) 16.9503 0.781030
\(472\) 0 0
\(473\) 24.6901 1.13525
\(474\) 0 0
\(475\) 4.12435i 0.189238i
\(476\) 0 0
\(477\) − 4.27723i − 0.195841i
\(478\) 0 0
\(479\) −14.4135 −0.658572 −0.329286 0.944230i \(-0.606808\pi\)
−0.329286 + 0.944230i \(0.606808\pi\)
\(480\) 0 0
\(481\) 4.63185 0.211194
\(482\) 0 0
\(483\) − 14.7416i − 0.670766i
\(484\) 0 0
\(485\) 7.36955i 0.334634i
\(486\) 0 0
\(487\) 13.8036 0.625503 0.312751 0.949835i \(-0.398749\pi\)
0.312751 + 0.949835i \(0.398749\pi\)
\(488\) 0 0
\(489\) −29.5128 −1.33461
\(490\) 0 0
\(491\) 25.7469i 1.16194i 0.813925 + 0.580970i \(0.197327\pi\)
−0.813925 + 0.580970i \(0.802673\pi\)
\(492\) 0 0
\(493\) 34.7571i 1.56538i
\(494\) 0 0
\(495\) 2.92526 0.131481
\(496\) 0 0
\(497\) −11.1847 −0.501703
\(498\) 0 0
\(499\) 12.7680i 0.571575i 0.958293 + 0.285788i \(0.0922552\pi\)
−0.958293 + 0.285788i \(0.907745\pi\)
\(500\) 0 0
\(501\) − 21.0811i − 0.941832i
\(502\) 0 0
\(503\) −11.8527 −0.528486 −0.264243 0.964456i \(-0.585122\pi\)
−0.264243 + 0.964456i \(0.585122\pi\)
\(504\) 0 0
\(505\) 13.2891 0.591358
\(506\) 0 0
\(507\) 1.60179i 0.0711380i
\(508\) 0 0
\(509\) 20.3465i 0.901841i 0.892564 + 0.450920i \(0.148904\pi\)
−0.892564 + 0.450920i \(0.851096\pi\)
\(510\) 0 0
\(511\) 5.93073 0.262360
\(512\) 0 0
\(513\) 27.2175 1.20168
\(514\) 0 0
\(515\) 37.3633i 1.64642i
\(516\) 0 0
\(517\) − 0.812519i − 0.0357346i
\(518\) 0 0
\(519\) −11.8975 −0.522243
\(520\) 0 0
\(521\) 38.3974 1.68222 0.841111 0.540863i \(-0.181902\pi\)
0.841111 + 0.540863i \(0.181902\pi\)
\(522\) 0 0
\(523\) − 23.6884i − 1.03582i −0.855435 0.517911i \(-0.826710\pi\)
0.855435 0.517911i \(-0.173290\pi\)
\(524\) 0 0
\(525\) − 1.33522i − 0.0582737i
\(526\) 0 0
\(527\) −36.5766 −1.59330
\(528\) 0 0
\(529\) 61.6989 2.68256
\(530\) 0 0
\(531\) − 1.75539i − 0.0761772i
\(532\) 0 0
\(533\) 4.33522i 0.187779i
\(534\) 0 0
\(535\) 32.7234 1.41476
\(536\) 0 0
\(537\) −29.7258 −1.28276
\(538\) 0 0
\(539\) 3.30009i 0.142145i
\(540\) 0 0
\(541\) − 3.94405i − 0.169568i −0.996399 0.0847839i \(-0.972980\pi\)
0.996399 0.0847839i \(-0.0270200\pi\)
\(542\) 0 0
\(543\) 30.2958 1.30012
\(544\) 0 0
\(545\) 21.9844 0.941708
\(546\) 0 0
\(547\) 18.7051i 0.799771i 0.916565 + 0.399886i \(0.130950\pi\)
−0.916565 + 0.399886i \(0.869050\pi\)
\(548\) 0 0
\(549\) − 4.62762i − 0.197502i
\(550\) 0 0
\(551\) 35.0186 1.49184
\(552\) 0 0
\(553\) 6.84608 0.291125
\(554\) 0 0
\(555\) 15.1440i 0.642828i
\(556\) 0 0
\(557\) − 17.9717i − 0.761487i −0.924681 0.380744i \(-0.875668\pi\)
0.924681 0.380744i \(-0.124332\pi\)
\(558\) 0 0
\(559\) 7.48166 0.316441
\(560\) 0 0
\(561\) −25.9589 −1.09598
\(562\) 0 0
\(563\) 3.54863i 0.149557i 0.997200 + 0.0747784i \(0.0238249\pi\)
−0.997200 + 0.0747784i \(0.976175\pi\)
\(564\) 0 0
\(565\) − 10.9451i − 0.460463i
\(566\) 0 0
\(567\) −7.50861 −0.315332
\(568\) 0 0
\(569\) −26.3743 −1.10567 −0.552835 0.833291i \(-0.686454\pi\)
−0.552835 + 0.833291i \(0.686454\pi\)
\(570\) 0 0
\(571\) 28.8831i 1.20872i 0.796711 + 0.604361i \(0.206571\pi\)
−0.796711 + 0.604361i \(0.793429\pi\)
\(572\) 0 0
\(573\) 27.8263i 1.16246i
\(574\) 0 0
\(575\) 7.67159 0.319927
\(576\) 0 0
\(577\) −2.90293 −0.120851 −0.0604253 0.998173i \(-0.519246\pi\)
−0.0604253 + 0.998173i \(0.519246\pi\)
\(578\) 0 0
\(579\) − 17.5496i − 0.729336i
\(580\) 0 0
\(581\) 8.53099i 0.353925i
\(582\) 0 0
\(583\) 32.5035 1.34616
\(584\) 0 0
\(585\) 0.886420 0.0366489
\(586\) 0 0
\(587\) − 37.8683i − 1.56299i −0.623909 0.781497i \(-0.714456\pi\)
0.623909 0.781497i \(-0.285544\pi\)
\(588\) 0 0
\(589\) 36.8517i 1.51845i
\(590\) 0 0
\(591\) 6.98775 0.287438
\(592\) 0 0
\(593\) −6.49295 −0.266634 −0.133317 0.991073i \(-0.542563\pi\)
−0.133317 + 0.991073i \(0.542563\pi\)
\(594\) 0 0
\(595\) 10.0239i 0.410939i
\(596\) 0 0
\(597\) 16.1897i 0.662600i
\(598\) 0 0
\(599\) −25.2803 −1.03293 −0.516463 0.856310i \(-0.672752\pi\)
−0.516463 + 0.856310i \(0.672752\pi\)
\(600\) 0 0
\(601\) −16.8805 −0.688571 −0.344285 0.938865i \(-0.611879\pi\)
−0.344285 + 0.938865i \(0.611879\pi\)
\(602\) 0 0
\(603\) 4.46242i 0.181724i
\(604\) 0 0
\(605\) − 0.223344i − 0.00908023i
\(606\) 0 0
\(607\) 7.10773 0.288494 0.144247 0.989542i \(-0.453924\pi\)
0.144247 + 0.989542i \(0.453924\pi\)
\(608\) 0 0
\(609\) −11.3369 −0.459395
\(610\) 0 0
\(611\) − 0.246211i − 0.00996065i
\(612\) 0 0
\(613\) 44.5259i 1.79838i 0.437554 + 0.899192i \(0.355845\pi\)
−0.437554 + 0.899192i \(0.644155\pi\)
\(614\) 0 0
\(615\) −14.1742 −0.571558
\(616\) 0 0
\(617\) −38.8785 −1.56519 −0.782596 0.622530i \(-0.786105\pi\)
−0.782596 + 0.622530i \(0.786105\pi\)
\(618\) 0 0
\(619\) 12.3262i 0.495431i 0.968833 + 0.247716i \(0.0796798\pi\)
−0.968833 + 0.247716i \(0.920320\pi\)
\(620\) 0 0
\(621\) − 50.6266i − 2.03157i
\(622\) 0 0
\(623\) −14.4730 −0.579847
\(624\) 0 0
\(625\) −20.1373 −0.805490
\(626\) 0 0
\(627\) 26.1541i 1.04449i
\(628\) 0 0
\(629\) 22.7462i 0.906950i
\(630\) 0 0
\(631\) −20.7693 −0.826815 −0.413407 0.910546i \(-0.635661\pi\)
−0.413407 + 0.910546i \(0.635661\pi\)
\(632\) 0 0
\(633\) 39.5967 1.57383
\(634\) 0 0
\(635\) − 37.6398i − 1.49369i
\(636\) 0 0
\(637\) 1.00000i 0.0396214i
\(638\) 0 0
\(639\) −4.85717 −0.192147
\(640\) 0 0
\(641\) −19.0642 −0.752989 −0.376495 0.926419i \(-0.622871\pi\)
−0.376495 + 0.926419i \(0.622871\pi\)
\(642\) 0 0
\(643\) 34.7530i 1.37052i 0.728297 + 0.685262i \(0.240312\pi\)
−0.728297 + 0.685262i \(0.759688\pi\)
\(644\) 0 0
\(645\) 24.4616i 0.963176i
\(646\) 0 0
\(647\) 15.8459 0.622967 0.311483 0.950252i \(-0.399174\pi\)
0.311483 + 0.950252i \(0.399174\pi\)
\(648\) 0 0
\(649\) 13.3395 0.523622
\(650\) 0 0
\(651\) − 11.9304i − 0.467589i
\(652\) 0 0
\(653\) − 7.69423i − 0.301098i −0.988603 0.150549i \(-0.951896\pi\)
0.988603 0.150549i \(-0.0481042\pi\)
\(654\) 0 0
\(655\) −20.3286 −0.794305
\(656\) 0 0
\(657\) 2.57553 0.100481
\(658\) 0 0
\(659\) − 40.5243i − 1.57860i −0.614006 0.789301i \(-0.710443\pi\)
0.614006 0.789301i \(-0.289557\pi\)
\(660\) 0 0
\(661\) − 22.9742i − 0.893594i −0.894635 0.446797i \(-0.852565\pi\)
0.894635 0.446797i \(-0.147435\pi\)
\(662\) 0 0
\(663\) −7.86611 −0.305494
\(664\) 0 0
\(665\) 10.0993 0.391633
\(666\) 0 0
\(667\) − 65.1371i − 2.52212i
\(668\) 0 0
\(669\) − 15.7979i − 0.610782i
\(670\) 0 0
\(671\) 35.1662 1.35758
\(672\) 0 0
\(673\) 23.7759 0.916494 0.458247 0.888825i \(-0.348477\pi\)
0.458247 + 0.888825i \(0.348477\pi\)
\(674\) 0 0
\(675\) − 4.58550i − 0.176496i
\(676\) 0 0
\(677\) − 28.8401i − 1.10842i −0.832378 0.554208i \(-0.813021\pi\)
0.832378 0.554208i \(-0.186979\pi\)
\(678\) 0 0
\(679\) −3.61044 −0.138556
\(680\) 0 0
\(681\) −5.24442 −0.200967
\(682\) 0 0
\(683\) 14.1254i 0.540492i 0.962791 + 0.270246i \(0.0871050\pi\)
−0.962791 + 0.270246i \(0.912895\pi\)
\(684\) 0 0
\(685\) − 24.0409i − 0.918555i
\(686\) 0 0
\(687\) −0.948379 −0.0361829
\(688\) 0 0
\(689\) 9.84928 0.375228
\(690\) 0 0
\(691\) 21.5228i 0.818766i 0.912363 + 0.409383i \(0.134256\pi\)
−0.912363 + 0.409383i \(0.865744\pi\)
\(692\) 0 0
\(693\) 1.43312i 0.0544398i
\(694\) 0 0
\(695\) −14.0259 −0.532032
\(696\) 0 0
\(697\) −21.2895 −0.806397
\(698\) 0 0
\(699\) − 24.5385i − 0.928131i
\(700\) 0 0
\(701\) 28.0267i 1.05855i 0.848449 + 0.529277i \(0.177537\pi\)
−0.848449 + 0.529277i \(0.822463\pi\)
\(702\) 0 0
\(703\) 22.9173 0.864342
\(704\) 0 0
\(705\) 0.804999 0.0303180
\(706\) 0 0
\(707\) 6.51050i 0.244853i
\(708\) 0 0
\(709\) 28.2833i 1.06220i 0.847308 + 0.531101i \(0.178222\pi\)
−0.847308 + 0.531101i \(0.821778\pi\)
\(710\) 0 0
\(711\) 2.97303 0.111498
\(712\) 0 0
\(713\) 68.5469 2.56710
\(714\) 0 0
\(715\) 6.73608i 0.251915i
\(716\) 0 0
\(717\) − 13.4718i − 0.503114i
\(718\) 0 0
\(719\) −13.6899 −0.510545 −0.255273 0.966869i \(-0.582165\pi\)
−0.255273 + 0.966869i \(0.582165\pi\)
\(720\) 0 0
\(721\) −18.3047 −0.681704
\(722\) 0 0
\(723\) 34.7712i 1.29315i
\(724\) 0 0
\(725\) − 5.89978i − 0.219112i
\(726\) 0 0
\(727\) −13.1391 −0.487303 −0.243651 0.969863i \(-0.578345\pi\)
−0.243651 + 0.969863i \(0.578345\pi\)
\(728\) 0 0
\(729\) −29.6950 −1.09981
\(730\) 0 0
\(731\) 36.7411i 1.35892i
\(732\) 0 0
\(733\) 4.10881i 0.151762i 0.997117 + 0.0758812i \(0.0241770\pi\)
−0.997117 + 0.0758812i \(0.975823\pi\)
\(734\) 0 0
\(735\) −3.26954 −0.120599
\(736\) 0 0
\(737\) −33.9108 −1.24912
\(738\) 0 0
\(739\) − 5.60947i − 0.206348i −0.994663 0.103174i \(-0.967100\pi\)
0.994663 0.103174i \(-0.0328998\pi\)
\(740\) 0 0
\(741\) 7.92528i 0.291142i
\(742\) 0 0
\(743\) 15.2173 0.558268 0.279134 0.960252i \(-0.409953\pi\)
0.279134 + 0.960252i \(0.409953\pi\)
\(744\) 0 0
\(745\) −32.1707 −1.17864
\(746\) 0 0
\(747\) 3.70474i 0.135549i
\(748\) 0 0
\(749\) 16.0316i 0.585782i
\(750\) 0 0
\(751\) 30.0338 1.09595 0.547974 0.836495i \(-0.315399\pi\)
0.547974 + 0.836495i \(0.315399\pi\)
\(752\) 0 0
\(753\) −23.4331 −0.853949
\(754\) 0 0
\(755\) − 7.94504i − 0.289150i
\(756\) 0 0
\(757\) − 24.4007i − 0.886858i −0.896310 0.443429i \(-0.853762\pi\)
0.896310 0.443429i \(-0.146238\pi\)
\(758\) 0 0
\(759\) 48.6486 1.76583
\(760\) 0 0
\(761\) −50.2706 −1.82231 −0.911153 0.412068i \(-0.864807\pi\)
−0.911153 + 0.412068i \(0.864807\pi\)
\(762\) 0 0
\(763\) 10.7704i 0.389916i
\(764\) 0 0
\(765\) 4.35305i 0.157385i
\(766\) 0 0
\(767\) 4.04217 0.145954
\(768\) 0 0
\(769\) −20.7181 −0.747115 −0.373557 0.927607i \(-0.621862\pi\)
−0.373557 + 0.927607i \(0.621862\pi\)
\(770\) 0 0
\(771\) 26.6411i 0.959454i
\(772\) 0 0
\(773\) 46.0405i 1.65596i 0.560756 + 0.827981i \(0.310511\pi\)
−0.560756 + 0.827981i \(0.689489\pi\)
\(774\) 0 0
\(775\) 6.20863 0.223021
\(776\) 0 0
\(777\) −7.41925 −0.266164
\(778\) 0 0
\(779\) 21.4496i 0.768513i
\(780\) 0 0
\(781\) − 36.9106i − 1.32076i
\(782\) 0 0
\(783\) −38.9340 −1.39139
\(784\) 0 0
\(785\) 21.6000 0.770938
\(786\) 0 0
\(787\) 42.3137i 1.50832i 0.656691 + 0.754160i \(0.271956\pi\)
−0.656691 + 0.754160i \(0.728044\pi\)
\(788\) 0 0
\(789\) − 25.0610i − 0.892195i
\(790\) 0 0
\(791\) 5.36213 0.190655
\(792\) 0 0
\(793\) 10.6561 0.378411
\(794\) 0 0
\(795\) 32.2027i 1.14211i
\(796\) 0 0
\(797\) 17.9127i 0.634502i 0.948342 + 0.317251i \(0.102760\pi\)
−0.948342 + 0.317251i \(0.897240\pi\)
\(798\) 0 0
\(799\) 1.20910 0.0427749
\(800\) 0 0
\(801\) −6.28515 −0.222075
\(802\) 0 0
\(803\) 19.5719i 0.690679i
\(804\) 0 0
\(805\) − 18.7854i − 0.662098i
\(806\) 0 0
\(807\) 19.1073 0.672607
\(808\) 0 0
\(809\) −4.46270 −0.156900 −0.0784500 0.996918i \(-0.524997\pi\)
−0.0784500 + 0.996918i \(0.524997\pi\)
\(810\) 0 0
\(811\) 30.1488i 1.05867i 0.848413 + 0.529334i \(0.177558\pi\)
−0.848413 + 0.529334i \(0.822442\pi\)
\(812\) 0 0
\(813\) − 9.59767i − 0.336605i
\(814\) 0 0
\(815\) −37.6085 −1.31737
\(816\) 0 0
\(817\) 37.0175 1.29508
\(818\) 0 0
\(819\) 0.434268i 0.0151746i
\(820\) 0 0
\(821\) 16.5840i 0.578786i 0.957210 + 0.289393i \(0.0934535\pi\)
−0.957210 + 0.289393i \(0.906547\pi\)
\(822\) 0 0
\(823\) −33.0671 −1.15265 −0.576324 0.817221i \(-0.695513\pi\)
−0.576324 + 0.817221i \(0.695513\pi\)
\(824\) 0 0
\(825\) 4.40634 0.153409
\(826\) 0 0
\(827\) 24.9129i 0.866308i 0.901320 + 0.433154i \(0.142599\pi\)
−0.901320 + 0.433154i \(0.857401\pi\)
\(828\) 0 0
\(829\) 42.3263i 1.47005i 0.678038 + 0.735027i \(0.262831\pi\)
−0.678038 + 0.735027i \(0.737169\pi\)
\(830\) 0 0
\(831\) −20.6705 −0.717051
\(832\) 0 0
\(833\) −4.91083 −0.170150
\(834\) 0 0
\(835\) − 26.8639i − 0.929662i
\(836\) 0 0
\(837\) − 40.9722i − 1.41621i
\(838\) 0 0
\(839\) 22.8739 0.789695 0.394847 0.918747i \(-0.370797\pi\)
0.394847 + 0.918747i \(0.370797\pi\)
\(840\) 0 0
\(841\) −21.0932 −0.727352
\(842\) 0 0
\(843\) 28.7249i 0.989338i
\(844\) 0 0
\(845\) 2.04118i 0.0702188i
\(846\) 0 0
\(847\) 0.109419 0.00375968
\(848\) 0 0
\(849\) 20.5968 0.706879
\(850\) 0 0
\(851\) − 42.6278i − 1.46126i
\(852\) 0 0
\(853\) 8.85133i 0.303064i 0.988452 + 0.151532i \(0.0484206\pi\)
−0.988452 + 0.151532i \(0.951579\pi\)
\(854\) 0 0
\(855\) 4.38579 0.149991
\(856\) 0 0
\(857\) −8.20832 −0.280391 −0.140195 0.990124i \(-0.544773\pi\)
−0.140195 + 0.990124i \(0.544773\pi\)
\(858\) 0 0
\(859\) 21.9662i 0.749476i 0.927131 + 0.374738i \(0.122267\pi\)
−0.927131 + 0.374738i \(0.877733\pi\)
\(860\) 0 0
\(861\) − 6.94411i − 0.236655i
\(862\) 0 0
\(863\) 33.8494 1.15225 0.576123 0.817363i \(-0.304565\pi\)
0.576123 + 0.817363i \(0.304565\pi\)
\(864\) 0 0
\(865\) −15.1611 −0.515495
\(866\) 0 0
\(867\) − 11.3987i − 0.387119i
\(868\) 0 0
\(869\) 22.5927i 0.766404i
\(870\) 0 0
\(871\) −10.2757 −0.348179
\(872\) 0 0
\(873\) −1.56790 −0.0530653
\(874\) 0 0
\(875\) − 11.9074i − 0.402543i
\(876\) 0 0
\(877\) − 26.3189i − 0.888728i −0.895846 0.444364i \(-0.853430\pi\)
0.895846 0.444364i \(-0.146570\pi\)
\(878\) 0 0
\(879\) 42.8663 1.44584
\(880\) 0 0
\(881\) 36.5036 1.22984 0.614919 0.788590i \(-0.289188\pi\)
0.614919 + 0.788590i \(0.289188\pi\)
\(882\) 0 0
\(883\) 35.3164i 1.18849i 0.804283 + 0.594246i \(0.202549\pi\)
−0.804283 + 0.594246i \(0.797451\pi\)
\(884\) 0 0
\(885\) 13.2161i 0.444253i
\(886\) 0 0
\(887\) −23.3302 −0.783351 −0.391676 0.920103i \(-0.628104\pi\)
−0.391676 + 0.920103i \(0.628104\pi\)
\(888\) 0 0
\(889\) 18.4402 0.618465
\(890\) 0 0
\(891\) − 24.7791i − 0.830130i
\(892\) 0 0
\(893\) − 1.21820i − 0.0407654i
\(894\) 0 0
\(895\) −37.8799 −1.26619
\(896\) 0 0
\(897\) 14.7416 0.492207
\(898\) 0 0
\(899\) − 52.7155i − 1.75816i
\(900\) 0 0
\(901\) 48.3681i 1.61137i
\(902\) 0 0
\(903\) −11.9841 −0.398804
\(904\) 0 0
\(905\) 38.6063 1.28332
\(906\) 0 0
\(907\) 30.1817i 1.00217i 0.865399 + 0.501083i \(0.167065\pi\)
−0.865399 + 0.501083i \(0.832935\pi\)
\(908\) 0 0
\(909\) 2.82730i 0.0937757i
\(910\) 0 0
\(911\) −7.93273 −0.262823 −0.131412 0.991328i \(-0.541951\pi\)
−0.131412 + 0.991328i \(0.541951\pi\)
\(912\) 0 0
\(913\) −28.1530 −0.931729
\(914\) 0 0
\(915\) 34.8407i 1.15180i
\(916\) 0 0
\(917\) − 9.95924i − 0.328883i
\(918\) 0 0
\(919\) −29.3071 −0.966750 −0.483375 0.875413i \(-0.660589\pi\)
−0.483375 + 0.875413i \(0.660589\pi\)
\(920\) 0 0
\(921\) −16.4639 −0.542504
\(922\) 0 0
\(923\) − 11.1847i − 0.368150i
\(924\) 0 0
\(925\) − 3.86101i − 0.126949i
\(926\) 0 0
\(927\) −7.94916 −0.261085
\(928\) 0 0
\(929\) 2.37267 0.0778447 0.0389224 0.999242i \(-0.487607\pi\)
0.0389224 + 0.999242i \(0.487607\pi\)
\(930\) 0 0
\(931\) 4.94776i 0.162156i
\(932\) 0 0
\(933\) − 7.22649i − 0.236585i
\(934\) 0 0
\(935\) −33.0797 −1.08182
\(936\) 0 0
\(937\) 32.6751 1.06745 0.533725 0.845658i \(-0.320792\pi\)
0.533725 + 0.845658i \(0.320792\pi\)
\(938\) 0 0
\(939\) 4.66054i 0.152091i
\(940\) 0 0
\(941\) − 38.3641i − 1.25063i −0.780371 0.625316i \(-0.784970\pi\)
0.780371 0.625316i \(-0.215030\pi\)
\(942\) 0 0
\(943\) 39.8979 1.29925
\(944\) 0 0
\(945\) −11.2285 −0.365263
\(946\) 0 0
\(947\) − 9.22751i − 0.299854i −0.988697 0.149927i \(-0.952096\pi\)
0.988697 0.149927i \(-0.0479039\pi\)
\(948\) 0 0
\(949\) 5.93073i 0.192520i
\(950\) 0 0
\(951\) −14.0720 −0.456316
\(952\) 0 0
\(953\) 20.3151 0.658072 0.329036 0.944317i \(-0.393276\pi\)
0.329036 + 0.944317i \(0.393276\pi\)
\(954\) 0 0
\(955\) 35.4593i 1.14744i
\(956\) 0 0
\(957\) − 37.4128i − 1.20939i
\(958\) 0 0
\(959\) 11.7779 0.380329
\(960\) 0 0
\(961\) 24.4751 0.789521
\(962\) 0 0
\(963\) 6.96201i 0.224348i
\(964\) 0 0
\(965\) − 22.3637i − 0.719912i
\(966\) 0 0
\(967\) −13.9577 −0.448851 −0.224425 0.974491i \(-0.572050\pi\)
−0.224425 + 0.974491i \(0.572050\pi\)
\(968\) 0 0
\(969\) −38.9197 −1.25028
\(970\) 0 0
\(971\) − 11.4952i − 0.368898i −0.982842 0.184449i \(-0.940950\pi\)
0.982842 0.184449i \(-0.0590501\pi\)
\(972\) 0 0
\(973\) − 6.87146i − 0.220289i
\(974\) 0 0
\(975\) 1.33522 0.0427612
\(976\) 0 0
\(977\) −7.39204 −0.236492 −0.118246 0.992984i \(-0.537727\pi\)
−0.118246 + 0.992984i \(0.537727\pi\)
\(978\) 0 0
\(979\) − 47.7621i − 1.52648i
\(980\) 0 0
\(981\) 4.67725i 0.149333i
\(982\) 0 0
\(983\) 34.2578 1.09265 0.546327 0.837572i \(-0.316026\pi\)
0.546327 + 0.837572i \(0.316026\pi\)
\(984\) 0 0
\(985\) 8.90457 0.283723
\(986\) 0 0
\(987\) 0.394379i 0.0125532i
\(988\) 0 0
\(989\) − 68.8552i − 2.18947i
\(990\) 0 0
\(991\) −50.9734 −1.61922 −0.809612 0.586966i \(-0.800322\pi\)
−0.809612 + 0.586966i \(0.800322\pi\)
\(992\) 0 0
\(993\) 18.4648 0.585962
\(994\) 0 0
\(995\) 20.6307i 0.654038i
\(996\) 0 0
\(997\) − 7.97874i − 0.252689i −0.991986 0.126345i \(-0.959675\pi\)
0.991986 0.126345i \(-0.0403245\pi\)
\(998\) 0 0
\(999\) −25.4797 −0.806141
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.a.1457.9 34
4.3 odd 2 728.2.c.a.365.1 34
8.3 odd 2 728.2.c.a.365.2 yes 34
8.5 even 2 inner 2912.2.c.a.1457.26 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.a.365.1 34 4.3 odd 2
728.2.c.a.365.2 yes 34 8.3 odd 2
2912.2.c.a.1457.9 34 1.1 even 1 trivial
2912.2.c.a.1457.26 34 8.5 even 2 inner