Properties

Label 726.2.h.c.161.1
Level $726$
Weight $2$
Character 726.161
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 214232042 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(161,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,2,-2,-5,2,5,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.185640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.1
Root \(-0.245684 - 1.71454i\) of defining polynomial
Character \(\chi\) \(=\) 726.161
Dual form 726.2.h.c.239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(-1.20654 + 1.24268i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-1.24568 - 1.71454i) q^{5} +(1.70654 - 0.296161i) q^{6} +(3.26124 - 1.05964i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.0885088 - 2.99869i) q^{9} +2.11929i q^{10} +(-1.55470 - 0.763481i) q^{12} +(-1.10940 + 1.52696i) q^{13} +(-3.26124 - 1.05964i) q^{14} +(3.63359 + 0.520675i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(-4.17274 + 3.03167i) q^{17} +(-1.69098 + 2.47802i) q^{18} +(0.229139 + 0.0744518i) q^{19} +(1.24568 - 1.71454i) q^{20} +(-2.61803 + 5.33119i) q^{21} -4.97072i q^{23} +(0.809017 + 1.53150i) q^{24} +(0.157176 - 0.483737i) q^{25} +(1.79505 - 0.583248i) q^{26} +(3.83321 + 3.50806i) q^{27} +(2.01556 + 2.77418i) q^{28} +(1.28812 + 3.96443i) q^{29} +(-2.63359 - 2.55701i) q^{30} +(-5.30198 - 3.85211i) q^{31} +1.00000 q^{32} +5.15778 q^{34} +(-5.87928 - 4.27155i) q^{35} +(2.82458 - 1.01082i) q^{36} +(-2.72744 - 8.39419i) q^{37} +(-0.141616 - 0.194917i) q^{38} +(-0.558984 - 3.22098i) q^{39} +(-2.01556 + 0.654895i) q^{40} +(2.45223 - 7.54718i) q^{41} +(5.25163 - 2.77418i) q^{42} -6.51583i q^{43} +(-5.03112 + 3.88718i) q^{45} +(-2.92172 + 4.02140i) q^{46} +(-3.20495 - 1.04135i) q^{47} +(0.245684 - 1.71454i) q^{48} +(3.84975 - 2.79701i) q^{49} +(-0.411491 + 0.298966i) q^{50} +(1.26719 - 8.84322i) q^{51} +(-1.79505 - 0.583248i) q^{52} +(3.65283 - 5.02768i) q^{53} +(-1.03914 - 5.09119i) q^{54} -3.42908i q^{56} +(-0.368986 + 0.194917i) q^{57} +(1.28812 - 3.96443i) q^{58} +(2.63628 - 0.856580i) q^{59} +(0.627650 + 3.61665i) q^{60} +(0.951618 + 1.30979i) q^{61} +(2.02518 + 6.23285i) q^{62} +(-3.46619 - 9.68569i) q^{63} +(-0.809017 - 0.587785i) q^{64} +4.00000 q^{65} -9.98396 q^{67} +(-4.17274 - 3.03167i) q^{68} +(6.17702 + 5.99739i) q^{69} +(2.24568 + 6.91151i) q^{70} +(-5.85410 - 8.05748i) q^{71} +(-2.87928 - 0.842471i) q^{72} +(2.35838 - 0.766285i) q^{73} +(-2.72744 + 8.39419i) q^{74} +(0.411491 + 0.778968i) q^{75} +0.240931i q^{76} +(-1.44102 + 2.93439i) q^{78} +(6.65877 - 9.16501i) q^{79} +(2.01556 + 0.654895i) q^{80} +(-8.98433 + 0.530822i) q^{81} +(-6.42001 + 4.66441i) q^{82} +(-5.55630 + 4.03689i) q^{83} +(-5.87928 - 0.842471i) q^{84} +(10.3958 + 3.37781i) q^{85} +(-3.82991 + 5.27142i) q^{86} +(-6.48070 - 3.18254i) q^{87} -2.47254i q^{89} +(6.35509 - 0.187575i) q^{90} +(-2.00000 + 6.15537i) q^{91} +(4.72744 - 1.53604i) q^{92} +(11.1840 - 1.94093i) q^{93} +(1.98077 + 2.72629i) q^{94} +(-0.157785 - 0.485611i) q^{95} +(-1.20654 + 1.24268i) q^{96} +(10.6968 + 7.77169i) q^{97} -4.75856 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 5 q^{5} + 2 q^{6} + 5 q^{7} - 2 q^{8} + 2 q^{9} - 3 q^{12} + 10 q^{13} - 5 q^{14} + 4 q^{15} - 2 q^{16} - 15 q^{17} - 18 q^{18} + 10 q^{19} + 5 q^{20} - 12 q^{21} + 2 q^{24}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) −1.20654 + 1.24268i −0.696598 + 0.717462i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) −1.24568 1.71454i −0.557087 0.766765i 0.433865 0.900978i \(-0.357149\pi\)
−0.990952 + 0.134213i \(0.957149\pi\)
\(6\) 1.70654 0.296161i 0.696693 0.120907i
\(7\) 3.26124 1.05964i 1.23263 0.400507i 0.380966 0.924589i \(-0.375591\pi\)
0.851668 + 0.524082i \(0.175591\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) −0.0885088 2.99869i −0.0295029 0.999565i
\(10\) 2.11929i 0.670177i
\(11\) 0 0
\(12\) −1.55470 0.763481i −0.448804 0.220398i
\(13\) −1.10940 + 1.52696i −0.307693 + 0.423503i −0.934660 0.355543i \(-0.884296\pi\)
0.626967 + 0.779046i \(0.284296\pi\)
\(14\) −3.26124 1.05964i −0.871604 0.283201i
\(15\) 3.63359 + 0.520675i 0.938190 + 0.134438i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −4.17274 + 3.03167i −1.01204 + 0.735288i −0.964635 0.263588i \(-0.915094\pi\)
−0.0474016 + 0.998876i \(0.515094\pi\)
\(18\) −1.69098 + 2.47802i −0.398569 + 0.584075i
\(19\) 0.229139 + 0.0744518i 0.0525681 + 0.0170804i 0.335183 0.942153i \(-0.391202\pi\)
−0.282615 + 0.959233i \(0.591202\pi\)
\(20\) 1.24568 1.71454i 0.278544 0.383382i
\(21\) −2.61803 + 5.33119i −0.571302 + 1.16336i
\(22\) 0 0
\(23\) 4.97072i 1.03647i −0.855239 0.518234i \(-0.826590\pi\)
0.855239 0.518234i \(-0.173410\pi\)
\(24\) 0.809017 + 1.53150i 0.165140 + 0.312616i
\(25\) 0.157176 0.483737i 0.0314351 0.0967474i
\(26\) 1.79505 0.583248i 0.352039 0.114384i
\(27\) 3.83321 + 3.50806i 0.737701 + 0.675127i
\(28\) 2.01556 + 2.77418i 0.380905 + 0.524271i
\(29\) 1.28812 + 3.96443i 0.239198 + 0.736177i 0.996537 + 0.0831543i \(0.0264994\pi\)
−0.757338 + 0.653023i \(0.773501\pi\)
\(30\) −2.63359 2.55701i −0.480826 0.466844i
\(31\) −5.30198 3.85211i −0.952264 0.691860i −0.000922588 1.00000i \(-0.500294\pi\)
−0.951341 + 0.308139i \(0.900294\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.15778 0.884553
\(35\) −5.87928 4.27155i −0.993779 0.722023i
\(36\) 2.82458 1.01082i 0.470763 0.168471i
\(37\) −2.72744 8.39419i −0.448388 1.38000i −0.878725 0.477328i \(-0.841605\pi\)
0.430337 0.902668i \(-0.358395\pi\)
\(38\) −0.141616 0.194917i −0.0229731 0.0316198i
\(39\) −0.558984 3.22098i −0.0895090 0.515769i
\(40\) −2.01556 + 0.654895i −0.318688 + 0.103548i
\(41\) 2.45223 7.54718i 0.382974 1.17867i −0.554966 0.831873i \(-0.687269\pi\)
0.937940 0.346798i \(-0.112731\pi\)
\(42\) 5.25163 2.77418i 0.810344 0.428065i
\(43\) 6.51583i 0.993655i −0.867849 0.496828i \(-0.834498\pi\)
0.867849 0.496828i \(-0.165502\pi\)
\(44\) 0 0
\(45\) −5.03112 + 3.88718i −0.749995 + 0.579466i
\(46\) −2.92172 + 4.02140i −0.430784 + 0.592923i
\(47\) −3.20495 1.04135i −0.467490 0.151897i 0.0657937 0.997833i \(-0.479042\pi\)
−0.533283 + 0.845937i \(0.679042\pi\)
\(48\) 0.245684 1.71454i 0.0354615 0.247472i
\(49\) 3.84975 2.79701i 0.549965 0.399573i
\(50\) −0.411491 + 0.298966i −0.0581936 + 0.0422802i
\(51\) 1.26719 8.84322i 0.177442 1.23830i
\(52\) −1.79505 0.583248i −0.248929 0.0808819i
\(53\) 3.65283 5.02768i 0.501754 0.690606i −0.480747 0.876859i \(-0.659635\pi\)
0.982502 + 0.186254i \(0.0596346\pi\)
\(54\) −1.03914 5.09119i −0.141409 0.692823i
\(55\) 0 0
\(56\) 3.42908i 0.458229i
\(57\) −0.368986 + 0.194917i −0.0488734 + 0.0258174i
\(58\) 1.28812 3.96443i 0.169139 0.520556i
\(59\) 2.63628 0.856580i 0.343215 0.111517i −0.132338 0.991205i \(-0.542248\pi\)
0.475552 + 0.879688i \(0.342248\pi\)
\(60\) 0.627650 + 3.61665i 0.0810293 + 0.466908i
\(61\) 0.951618 + 1.30979i 0.121842 + 0.167701i 0.865581 0.500769i \(-0.166949\pi\)
−0.743739 + 0.668470i \(0.766949\pi\)
\(62\) 2.02518 + 6.23285i 0.257198 + 0.791573i
\(63\) −3.46619 9.68569i −0.436699 1.22028i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −9.98396 −1.21973 −0.609867 0.792504i \(-0.708777\pi\)
−0.609867 + 0.792504i \(0.708777\pi\)
\(68\) −4.17274 3.03167i −0.506019 0.367644i
\(69\) 6.17702 + 5.99739i 0.743626 + 0.722001i
\(70\) 2.24568 + 6.91151i 0.268411 + 0.826083i
\(71\) −5.85410 8.05748i −0.694754 0.956247i −0.999992 0.00397087i \(-0.998736\pi\)
0.305238 0.952276i \(-0.401264\pi\)
\(72\) −2.87928 0.842471i −0.339326 0.0992861i
\(73\) 2.35838 0.766285i 0.276028 0.0896869i −0.167732 0.985833i \(-0.553644\pi\)
0.443760 + 0.896146i \(0.353644\pi\)
\(74\) −2.72744 + 8.39419i −0.317058 + 0.975805i
\(75\) 0.411491 + 0.778968i 0.0475149 + 0.0899475i
\(76\) 0.240931i 0.0276367i
\(77\) 0 0
\(78\) −1.44102 + 2.93439i −0.163163 + 0.332254i
\(79\) 6.65877 9.16501i 0.749170 1.03114i −0.248868 0.968537i \(-0.580059\pi\)
0.998038 0.0626069i \(-0.0199414\pi\)
\(80\) 2.01556 + 0.654895i 0.225346 + 0.0732195i
\(81\) −8.98433 + 0.530822i −0.998259 + 0.0589802i
\(82\) −6.42001 + 4.66441i −0.708972 + 0.515098i
\(83\) −5.55630 + 4.03689i −0.609883 + 0.443106i −0.849373 0.527793i \(-0.823020\pi\)
0.239490 + 0.970899i \(0.423020\pi\)
\(84\) −5.87928 0.842471i −0.641482 0.0919211i
\(85\) 10.3958 + 3.37781i 1.12759 + 0.366375i
\(86\) −3.82991 + 5.27142i −0.412990 + 0.568432i
\(87\) −6.48070 3.18254i −0.694804 0.341204i
\(88\) 0 0
\(89\) 2.47254i 0.262088i −0.991377 0.131044i \(-0.958167\pi\)
0.991377 0.131044i \(-0.0418330\pi\)
\(90\) 6.35509 0.187575i 0.669885 0.0197722i
\(91\) −2.00000 + 6.15537i −0.209657 + 0.645258i
\(92\) 4.72744 1.53604i 0.492869 0.160143i
\(93\) 11.1840 1.94093i 1.15973 0.201265i
\(94\) 1.98077 + 2.72629i 0.204301 + 0.281196i
\(95\) −0.157785 0.485611i −0.0161884 0.0498227i
\(96\) −1.20654 + 1.24268i −0.123142 + 0.126831i
\(97\) 10.6968 + 7.77169i 1.08610 + 0.789096i 0.978736 0.205124i \(-0.0657598\pi\)
0.107361 + 0.994220i \(0.465760\pi\)
\(98\) −4.75856 −0.480687
\(99\) 0 0
\(100\) 0.508631 0.0508631
\(101\) −1.99038 1.44610i −0.198051 0.143892i 0.484340 0.874880i \(-0.339060\pi\)
−0.682391 + 0.730988i \(0.739060\pi\)
\(102\) −6.22309 + 6.40948i −0.616178 + 0.634633i
\(103\) −1.42440 4.38387i −0.140351 0.431955i 0.856033 0.516921i \(-0.172922\pi\)
−0.996384 + 0.0849658i \(0.972922\pi\)
\(104\) 1.10940 + 1.52696i 0.108786 + 0.149731i
\(105\) 12.4018 2.15226i 1.21029 0.210039i
\(106\) −5.91040 + 1.92040i −0.574069 + 0.186526i
\(107\) −5.60407 + 17.2475i −0.541766 + 1.66738i 0.186792 + 0.982399i \(0.440191\pi\)
−0.728558 + 0.684984i \(0.759809\pi\)
\(108\) −2.15184 + 4.72965i −0.207061 + 0.455111i
\(109\) 0.702783i 0.0673144i 0.999433 + 0.0336572i \(0.0107154\pi\)
−0.999433 + 0.0336572i \(0.989285\pi\)
\(110\) 0 0
\(111\) 13.7221 + 6.73861i 1.30244 + 0.639601i
\(112\) −2.01556 + 2.77418i −0.190453 + 0.262135i
\(113\) −4.07454 1.32390i −0.383301 0.124542i 0.111027 0.993817i \(-0.464586\pi\)
−0.494328 + 0.869275i \(0.664586\pi\)
\(114\) 0.413086 + 0.0591931i 0.0386890 + 0.00554394i
\(115\) −8.52249 + 6.19195i −0.794726 + 0.577402i
\(116\) −3.37235 + 2.45016i −0.313115 + 0.227491i
\(117\) 4.67708 + 3.19161i 0.432397 + 0.295064i
\(118\) −2.63628 0.856580i −0.242689 0.0788546i
\(119\) −10.3958 + 14.3086i −0.952984 + 1.31167i
\(120\) 1.61803 3.29486i 0.147706 0.300778i
\(121\) 0 0
\(122\) 1.61899i 0.146576i
\(123\) 6.42001 + 12.1533i 0.578873 + 1.09583i
\(124\) 2.02518 6.23285i 0.181866 0.559727i
\(125\) −11.1030 + 3.60758i −0.993080 + 0.322671i
\(126\) −2.88889 + 9.87326i −0.257363 + 0.879580i
\(127\) −10.3090 14.1891i −0.914774 1.25908i −0.965510 0.260366i \(-0.916157\pi\)
0.0507363 0.998712i \(-0.483843\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 8.09710 + 7.86163i 0.712910 + 0.692178i
\(130\) −3.23607 2.35114i −0.283822 0.206209i
\(131\) 4.82298 0.421386 0.210693 0.977552i \(-0.432428\pi\)
0.210693 + 0.977552i \(0.432428\pi\)
\(132\) 0 0
\(133\) 0.826171 0.0716381
\(134\) 8.07719 + 5.86842i 0.697763 + 0.506954i
\(135\) 1.23974 10.9421i 0.106700 0.941748i
\(136\) 1.59384 + 4.90534i 0.136671 + 0.420630i
\(137\) −10.6143 14.6093i −0.906840 1.24816i −0.968234 0.250045i \(-0.919555\pi\)
0.0613939 0.998114i \(-0.480445\pi\)
\(138\) −1.47214 8.48275i −0.125317 0.722100i
\(139\) −0.940950 + 0.305733i −0.0798103 + 0.0259319i −0.348650 0.937253i \(-0.613360\pi\)
0.268840 + 0.963185i \(0.413360\pi\)
\(140\) 2.24568 6.91151i 0.189795 0.584129i
\(141\) 5.16097 2.72629i 0.434632 0.229595i
\(142\) 9.95959i 0.835790i
\(143\) 0 0
\(144\) 1.83419 + 2.37397i 0.152849 + 0.197831i
\(145\) 5.19258 7.14697i 0.431220 0.593524i
\(146\) −2.35838 0.766285i −0.195181 0.0634182i
\(147\) −1.16910 + 8.15872i −0.0964260 + 0.672920i
\(148\) 7.14052 5.18789i 0.586947 0.426442i
\(149\) 11.3158 8.22144i 0.927030 0.673526i −0.0182342 0.999834i \(-0.505804\pi\)
0.945264 + 0.326307i \(0.105804\pi\)
\(150\) 0.124963 0.872067i 0.0102032 0.0712040i
\(151\) 6.01875 + 1.95561i 0.489799 + 0.159145i 0.543496 0.839412i \(-0.317100\pi\)
−0.0536968 + 0.998557i \(0.517100\pi\)
\(152\) 0.141616 0.194917i 0.0114866 0.0158099i
\(153\) 9.46037 + 12.2444i 0.764826 + 0.989903i
\(154\) 0 0
\(155\) 13.8890i 1.11559i
\(156\) 2.89060 1.52696i 0.231433 0.122255i
\(157\) −1.14590 + 3.52671i −0.0914526 + 0.281462i −0.986313 0.164884i \(-0.947275\pi\)
0.894860 + 0.446346i \(0.147275\pi\)
\(158\) −10.7741 + 3.50072i −0.857143 + 0.278503i
\(159\) 1.84051 + 10.6054i 0.145962 + 0.841064i
\(160\) −1.24568 1.71454i −0.0984800 0.135546i
\(161\) −5.26719 16.2107i −0.415113 1.27759i
\(162\) 7.58049 + 4.85141i 0.595579 + 0.381163i
\(163\) −6.91743 5.02581i −0.541815 0.393652i 0.282943 0.959137i \(-0.408689\pi\)
−0.824759 + 0.565485i \(0.808689\pi\)
\(164\) 7.93557 0.619664
\(165\) 0 0
\(166\) 6.86796 0.533057
\(167\) −1.33161 0.967474i −0.103043 0.0748654i 0.535070 0.844807i \(-0.320285\pi\)
−0.638114 + 0.769942i \(0.720285\pi\)
\(168\) 4.26124 + 4.13733i 0.328762 + 0.319202i
\(169\) 2.91638 + 8.97570i 0.224337 + 0.690439i
\(170\) −6.42497 8.84322i −0.492773 0.678244i
\(171\) 0.202977 0.693708i 0.0155221 0.0530492i
\(172\) 6.19693 2.01350i 0.472511 0.153528i
\(173\) −1.08423 + 3.33691i −0.0824322 + 0.253700i −0.983775 0.179406i \(-0.942582\pi\)
0.901343 + 0.433106i \(0.142582\pi\)
\(174\) 3.37235 + 6.38399i 0.255657 + 0.483969i
\(175\) 1.74413i 0.131844i
\(176\) 0 0
\(177\) −2.11633 + 4.30956i −0.159073 + 0.323926i
\(178\) −1.45332 + 2.00032i −0.108931 + 0.149931i
\(179\) 12.6233 + 4.10155i 0.943507 + 0.306564i 0.740074 0.672525i \(-0.234790\pi\)
0.203432 + 0.979089i \(0.434790\pi\)
\(180\) −5.25163 3.58367i −0.391433 0.267111i
\(181\) 6.01386 4.36932i 0.447007 0.324769i −0.341406 0.939916i \(-0.610903\pi\)
0.788413 + 0.615147i \(0.210903\pi\)
\(182\) 5.23607 3.80423i 0.388123 0.281988i
\(183\) −2.77582 0.397761i −0.205194 0.0294033i
\(184\) −4.72744 1.53604i −0.348511 0.113238i
\(185\) −10.9946 + 15.1328i −0.808341 + 1.11259i
\(186\) −10.1889 5.00356i −0.747087 0.366879i
\(187\) 0 0
\(188\) 3.36988i 0.245774i
\(189\) 16.2183 + 7.37883i 1.17971 + 0.536731i
\(190\) −0.157785 + 0.485611i −0.0114469 + 0.0352299i
\(191\) 2.46344 0.800420i 0.178248 0.0579163i −0.218533 0.975830i \(-0.570127\pi\)
0.396781 + 0.917913i \(0.370127\pi\)
\(192\) 1.70654 0.296161i 0.123159 0.0213736i
\(193\) 11.4770 + 15.7968i 0.826134 + 1.13708i 0.988630 + 0.150367i \(0.0480456\pi\)
−0.162496 + 0.986709i \(0.551954\pi\)
\(194\) −4.08582 12.5749i −0.293345 0.902823i
\(195\) −4.82617 + 4.97072i −0.345609 + 0.355961i
\(196\) 3.84975 + 2.79701i 0.274982 + 0.199786i
\(197\) 5.38713 0.383817 0.191908 0.981413i \(-0.438532\pi\)
0.191908 + 0.981413i \(0.438532\pi\)
\(198\) 0 0
\(199\) 7.38713 0.523659 0.261830 0.965114i \(-0.415674\pi\)
0.261830 + 0.965114i \(0.415674\pi\)
\(200\) −0.411491 0.298966i −0.0290968 0.0211401i
\(201\) 12.0461 12.4069i 0.849664 0.875113i
\(202\) 0.760259 + 2.33984i 0.0534916 + 0.164630i
\(203\) 8.40177 + 11.5640i 0.589688 + 0.811636i
\(204\) 8.80198 1.52754i 0.616262 0.106949i
\(205\) −15.9946 + 5.19697i −1.11711 + 0.362972i
\(206\) −1.42440 + 4.38387i −0.0992430 + 0.305438i
\(207\) −14.9057 + 0.439953i −1.03602 + 0.0305788i
\(208\) 1.88743i 0.130870i
\(209\) 0 0
\(210\) −11.2983 5.54836i −0.779657 0.382873i
\(211\) −5.03276 + 6.92699i −0.346469 + 0.476874i −0.946317 0.323240i \(-0.895228\pi\)
0.599848 + 0.800114i \(0.295228\pi\)
\(212\) 5.91040 + 1.92040i 0.405928 + 0.131894i
\(213\) 17.0761 + 2.44692i 1.17003 + 0.167660i
\(214\) 14.6716 10.6596i 1.00293 0.728673i
\(215\) −11.1716 + 8.11667i −0.761900 + 0.553553i
\(216\) 4.52089 2.56155i 0.307608 0.174291i
\(217\) −21.3729 6.94448i −1.45089 0.471422i
\(218\) 0.413086 0.568564i 0.0279777 0.0385080i
\(219\) −1.89324 + 3.85527i −0.127934 + 0.260515i
\(220\) 0 0
\(221\) 9.73495i 0.654844i
\(222\) −7.14052 13.5173i −0.479240 0.907220i
\(223\) 0.0155598 0.0478882i 0.00104196 0.00320683i −0.950534 0.310620i \(-0.899463\pi\)
0.951576 + 0.307413i \(0.0994634\pi\)
\(224\) 3.26124 1.05964i 0.217901 0.0708003i
\(225\) −1.46449 0.428507i −0.0976327 0.0285671i
\(226\) 2.51821 + 3.46601i 0.167509 + 0.230556i
\(227\) 4.41512 + 13.5884i 0.293042 + 0.901891i 0.983872 + 0.178873i \(0.0572453\pi\)
−0.690830 + 0.723017i \(0.742755\pi\)
\(228\) −0.299400 0.290694i −0.0198283 0.0192517i
\(229\) 24.4668 + 17.7761i 1.61681 + 1.17468i 0.831272 + 0.555866i \(0.187613\pi\)
0.785537 + 0.618814i \(0.212387\pi\)
\(230\) 10.5344 0.694616
\(231\) 0 0
\(232\) 4.16845 0.273672
\(233\) 2.28819 + 1.66247i 0.149904 + 0.108912i 0.660209 0.751082i \(-0.270468\pi\)
−0.510305 + 0.859993i \(0.670468\pi\)
\(234\) −1.90786 5.33119i −0.124721 0.348511i
\(235\) 2.20692 + 6.79220i 0.143964 + 0.443074i
\(236\) 1.62931 + 2.24256i 0.106059 + 0.145978i
\(237\) 3.35509 + 19.3327i 0.217936 + 1.25579i
\(238\) 16.8208 5.46541i 1.09033 0.354270i
\(239\) 0.350846 1.07979i 0.0226944 0.0698461i −0.939068 0.343732i \(-0.888309\pi\)
0.961762 + 0.273886i \(0.0883090\pi\)
\(240\) −3.24568 + 1.71454i −0.209508 + 0.110673i
\(241\) 15.0464i 0.969223i −0.874730 0.484611i \(-0.838961\pi\)
0.874730 0.484611i \(-0.161039\pi\)
\(242\) 0 0
\(243\) 10.1803 11.8051i 0.653069 0.757298i
\(244\) −0.951618 + 1.30979i −0.0609211 + 0.0838507i
\(245\) −9.59116 3.11636i −0.612756 0.199097i
\(246\) 1.94965 13.6058i 0.124305 0.867477i
\(247\) −0.367893 + 0.267290i −0.0234085 + 0.0170072i
\(248\) −5.30198 + 3.85211i −0.336676 + 0.244609i
\(249\) 1.68735 11.7754i 0.106932 0.746234i
\(250\) 11.1030 + 3.60758i 0.702214 + 0.228163i
\(251\) 5.66415 7.79603i 0.357518 0.492081i −0.591937 0.805984i \(-0.701637\pi\)
0.949455 + 0.313903i \(0.101637\pi\)
\(252\) 8.14052 6.28959i 0.512805 0.396207i
\(253\) 0 0
\(254\) 17.5387i 1.10047i
\(255\) −16.7405 + 8.84322i −1.04833 + 0.553784i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 12.7022 4.12718i 0.792339 0.257446i 0.115239 0.993338i \(-0.463237\pi\)
0.677100 + 0.735891i \(0.263237\pi\)
\(258\) −1.92974 11.1195i −0.120140 0.692273i
\(259\) −17.7897 24.4854i −1.10540 1.52145i
\(260\) 1.23607 + 3.80423i 0.0766577 + 0.235928i
\(261\) 11.7741 4.21357i 0.728800 0.260814i
\(262\) −3.90187 2.83488i −0.241059 0.175139i
\(263\) −9.33677 −0.575730 −0.287865 0.957671i \(-0.592945\pi\)
−0.287865 + 0.957671i \(0.592945\pi\)
\(264\) 0 0
\(265\) −13.1704 −0.809053
\(266\) −0.668387 0.485611i −0.0409814 0.0297747i
\(267\) 3.07257 + 2.98322i 0.188038 + 0.182570i
\(268\) −3.08521 9.49531i −0.188459 0.580018i
\(269\) 8.00856 + 11.0228i 0.488291 + 0.672075i 0.980072 0.198644i \(-0.0636539\pi\)
−0.491781 + 0.870719i \(0.663654\pi\)
\(270\) −7.43459 + 8.12366i −0.452455 + 0.494390i
\(271\) −4.46147 + 1.44962i −0.271015 + 0.0880581i −0.441372 0.897324i \(-0.645508\pi\)
0.170357 + 0.985382i \(0.445508\pi\)
\(272\) 1.59384 4.90534i 0.0966409 0.297430i
\(273\) −5.23607 9.91207i −0.316901 0.599906i
\(274\) 18.0581i 1.09093i
\(275\) 0 0
\(276\) −3.79505 + 7.72799i −0.228435 + 0.465170i
\(277\) −4.86796 + 6.70017i −0.292487 + 0.402574i −0.929820 0.368014i \(-0.880038\pi\)
0.637333 + 0.770589i \(0.280038\pi\)
\(278\) 0.940950 + 0.305733i 0.0564344 + 0.0183367i
\(279\) −11.0820 + 16.2400i −0.663464 + 0.972261i
\(280\) −5.87928 + 4.27155i −0.351354 + 0.255274i
\(281\) 10.2462 7.44429i 0.611236 0.444089i −0.238613 0.971115i \(-0.576693\pi\)
0.849849 + 0.527026i \(0.176693\pi\)
\(282\) −5.77779 0.827928i −0.344062 0.0493024i
\(283\) −21.5030 6.98676i −1.27822 0.415320i −0.410269 0.911965i \(-0.634565\pi\)
−0.867954 + 0.496645i \(0.834565\pi\)
\(284\) 5.85410 8.05748i 0.347377 0.478123i
\(285\) 0.793834 + 0.389835i 0.0470226 + 0.0230918i
\(286\) 0 0
\(287\) 27.2117i 1.60625i
\(288\) −0.0885088 2.99869i −0.00521543 0.176700i
\(289\) 2.96741 9.13275i 0.174554 0.537221i
\(290\) −8.40177 + 2.72990i −0.493369 + 0.160305i
\(291\) −22.5639 + 3.91584i −1.32272 + 0.229551i
\(292\) 1.45756 + 2.00616i 0.0852973 + 0.117402i
\(293\) 7.75383 + 23.8638i 0.452984 + 1.39414i 0.873486 + 0.486849i \(0.161854\pi\)
−0.420502 + 0.907291i \(0.638146\pi\)
\(294\) 5.74140 5.91336i 0.334845 0.344874i
\(295\) −4.75261 3.45298i −0.276708 0.201040i
\(296\) −8.82617 −0.513011
\(297\) 0 0
\(298\) −13.9871 −0.810254
\(299\) 7.59010 + 5.51453i 0.438947 + 0.318914i
\(300\) −0.613685 + 0.632066i −0.0354311 + 0.0364923i
\(301\) −6.90445 21.2497i −0.397966 1.22481i
\(302\) −3.71979 5.11985i −0.214050 0.294614i
\(303\) 4.19852 0.728631i 0.241199 0.0418588i
\(304\) −0.229139 + 0.0744518i −0.0131420 + 0.00427011i
\(305\) 1.06027 3.26317i 0.0607108 0.186849i
\(306\) −0.456510 15.4666i −0.0260969 0.884168i
\(307\) 16.0682i 0.917058i −0.888679 0.458529i \(-0.848377\pi\)
0.888679 0.458529i \(-0.151623\pi\)
\(308\) 0 0
\(309\) 7.16635 + 3.51924i 0.407679 + 0.200203i
\(310\) 8.16373 11.2364i 0.463669 0.638185i
\(311\) −9.15438 2.97444i −0.519097 0.168665i 0.0377383 0.999288i \(-0.487985\pi\)
−0.556836 + 0.830623i \(0.687985\pi\)
\(312\) −3.23607 0.463712i −0.183206 0.0262525i
\(313\) −16.2725 + 11.8227i −0.919777 + 0.668257i −0.943469 0.331462i \(-0.892458\pi\)
0.0236913 + 0.999719i \(0.492458\pi\)
\(314\) 3.00000 2.17963i 0.169300 0.123004i
\(315\) −12.2887 + 18.0082i −0.692389 + 1.01465i
\(316\) 10.7741 + 3.50072i 0.606091 + 0.196931i
\(317\) 10.8453 14.9273i 0.609134 0.838401i −0.387372 0.921924i \(-0.626617\pi\)
0.996506 + 0.0835226i \(0.0266171\pi\)
\(318\) 4.74470 9.66179i 0.266070 0.541806i
\(319\) 0 0
\(320\) 2.11929i 0.118472i
\(321\) −14.6716 27.7740i −0.818891 1.55019i
\(322\) −5.26719 + 16.2107i −0.293529 + 0.903389i
\(323\) −1.18185 + 0.384007i −0.0657599 + 0.0213667i
\(324\) −3.28115 8.38057i −0.182286 0.465587i
\(325\) 0.564277 + 0.776660i 0.0313004 + 0.0430814i
\(326\) 2.64222 + 8.13193i 0.146339 + 0.450386i
\(327\) −0.873335 0.847938i −0.0482955 0.0468911i
\(328\) −6.42001 4.66441i −0.354486 0.257549i
\(329\) −11.5556 −0.637080
\(330\) 0 0
\(331\) −5.03641 −0.276826 −0.138413 0.990375i \(-0.544200\pi\)
−0.138413 + 0.990375i \(0.544200\pi\)
\(332\) −5.55630 4.03689i −0.304941 0.221553i
\(333\) −24.9302 + 8.92171i −1.36617 + 0.488907i
\(334\) 0.508631 + 1.56541i 0.0278311 + 0.0856552i
\(335\) 12.4369 + 17.1179i 0.679498 + 0.935249i
\(336\) −1.01556 5.85186i −0.0554033 0.319245i
\(337\) −16.7902 + 5.45548i −0.914622 + 0.297179i −0.728259 0.685302i \(-0.759670\pi\)
−0.186363 + 0.982481i \(0.559670\pi\)
\(338\) 2.91638 8.97570i 0.158630 0.488214i
\(339\) 6.56130 3.46601i 0.356361 0.188248i
\(340\) 10.9308i 0.592807i
\(341\) 0 0
\(342\) −0.571964 + 0.441914i −0.0309282 + 0.0238960i
\(343\) −4.51776 + 6.21817i −0.243936 + 0.335750i
\(344\) −6.19693 2.01350i −0.334116 0.108561i
\(345\) 2.58813 18.0616i 0.139340 0.972403i
\(346\) 2.83854 2.06232i 0.152601 0.110871i
\(347\) −12.1570 + 8.83255i −0.652620 + 0.474156i −0.864163 0.503213i \(-0.832151\pi\)
0.211543 + 0.977369i \(0.432151\pi\)
\(348\) 1.02412 7.14697i 0.0548988 0.383118i
\(349\) −3.32413 1.08008i −0.177937 0.0578152i 0.218694 0.975794i \(-0.429821\pi\)
−0.396630 + 0.917978i \(0.629821\pi\)
\(350\) −1.02518 + 1.41103i −0.0547980 + 0.0754229i
\(351\) −9.60925 + 1.96131i −0.512904 + 0.104687i
\(352\) 0 0
\(353\) 25.2674i 1.34485i 0.740167 + 0.672423i \(0.234747\pi\)
−0.740167 + 0.672423i \(0.765253\pi\)
\(354\) 4.24524 2.24256i 0.225632 0.119190i
\(355\) −6.52249 + 20.0742i −0.346178 + 1.06543i
\(356\) 2.35152 0.764056i 0.124630 0.0404949i
\(357\) −5.23804 30.1827i −0.277226 1.59744i
\(358\) −7.80160 10.7380i −0.412328 0.567520i
\(359\) −5.96229 18.3500i −0.314677 0.968478i −0.975887 0.218276i \(-0.929957\pi\)
0.661210 0.750201i \(-0.270043\pi\)
\(360\) 2.14222 + 5.98608i 0.112905 + 0.315494i
\(361\) −15.3244 11.1338i −0.806545 0.585989i
\(362\) −7.43354 −0.390698
\(363\) 0 0
\(364\) −6.47214 −0.339232
\(365\) −4.25163 3.08899i −0.222540 0.161685i
\(366\) 2.01189 + 1.95338i 0.105163 + 0.102105i
\(367\) −0.277454 0.853917i −0.0144830 0.0445741i 0.943554 0.331219i \(-0.107460\pi\)
−0.958037 + 0.286645i \(0.907460\pi\)
\(368\) 2.92172 + 4.02140i 0.152305 + 0.209630i
\(369\) −22.8487 6.68549i −1.18946 0.348033i
\(370\) 17.7897 5.78022i 0.924841 0.300499i
\(371\) 6.58521 20.2672i 0.341887 1.05222i
\(372\) 5.30198 + 10.0368i 0.274895 + 0.520386i
\(373\) 26.3407i 1.36387i 0.731413 + 0.681935i \(0.238861\pi\)
−0.731413 + 0.681935i \(0.761139\pi\)
\(374\) 0 0
\(375\) 8.91315 18.1501i 0.460273 0.937269i
\(376\) −1.98077 + 2.72629i −0.102150 + 0.140598i
\(377\) −7.48259 2.43124i −0.385373 0.125215i
\(378\) −8.78373 15.5025i −0.451786 0.797362i
\(379\) 2.15602 1.56644i 0.110747 0.0804625i −0.531033 0.847351i \(-0.678196\pi\)
0.641780 + 0.766889i \(0.278196\pi\)
\(380\) 0.413086 0.300124i 0.0211908 0.0153961i
\(381\) 30.0707 + 4.30898i 1.54057 + 0.220756i
\(382\) −2.46344 0.800420i −0.126040 0.0409530i
\(383\) 19.2253 26.4614i 0.982368 1.35211i 0.0468238 0.998903i \(-0.485090\pi\)
0.935544 0.353210i \(-0.114910\pi\)
\(384\) −1.55470 0.763481i −0.0793380 0.0389612i
\(385\) 0 0
\(386\) 19.5259i 0.993841i
\(387\) −19.5390 + 0.576709i −0.993223 + 0.0293158i
\(388\) −4.08582 + 12.5749i −0.207426 + 0.638392i
\(389\) 1.60221 0.520588i 0.0812350 0.0263949i −0.268118 0.963386i \(-0.586402\pi\)
0.349353 + 0.936991i \(0.386402\pi\)
\(390\) 6.82617 1.18465i 0.345657 0.0599869i
\(391\) 15.0696 + 20.7415i 0.762102 + 1.04894i
\(392\) −1.47047 4.52566i −0.0742702 0.228580i
\(393\) −5.81913 + 5.99343i −0.293537 + 0.302328i
\(394\) −4.35828 3.16647i −0.219567 0.159525i
\(395\) −24.0085 −1.20800
\(396\) 0 0
\(397\) −8.89235 −0.446294 −0.223147 0.974785i \(-0.571633\pi\)
−0.223147 + 0.974785i \(0.571633\pi\)
\(398\) −5.97631 4.34204i −0.299565 0.217647i
\(399\) −0.996811 + 1.02667i −0.0499030 + 0.0513976i
\(400\) 0.157176 + 0.483737i 0.00785878 + 0.0241868i
\(401\) 11.4963 + 15.8233i 0.574099 + 0.790180i 0.993033 0.117837i \(-0.0375961\pi\)
−0.418934 + 0.908017i \(0.637596\pi\)
\(402\) −17.0380 + 2.95686i −0.849781 + 0.147475i
\(403\) 11.7641 3.82238i 0.586010 0.190406i
\(404\) 0.760259 2.33984i 0.0378243 0.116411i
\(405\) 12.1018 + 14.7427i 0.601341 + 0.732573i
\(406\) 14.2939i 0.709396i
\(407\) 0 0
\(408\) −8.01882 3.93787i −0.396991 0.194954i
\(409\) 14.5460 20.0208i 0.719252 0.989965i −0.280297 0.959913i \(-0.590433\pi\)
0.999548 0.0300515i \(-0.00956712\pi\)
\(410\) 15.9946 + 5.19697i 0.789918 + 0.256660i
\(411\) 30.9613 + 4.43660i 1.52721 + 0.218841i
\(412\) 3.72914 2.70938i 0.183722 0.133481i
\(413\) 7.68989 5.58703i 0.378395 0.274920i
\(414\) 12.3175 + 8.40541i 0.605374 + 0.413103i
\(415\) 13.8428 + 4.49779i 0.679516 + 0.220788i
\(416\) −1.10940 + 1.52696i −0.0543930 + 0.0748655i
\(417\) 0.755368 1.53818i 0.0369905 0.0753250i
\(418\) 0 0
\(419\) 34.8462i 1.70235i 0.524883 + 0.851174i \(0.324109\pi\)
−0.524883 + 0.851174i \(0.675891\pi\)
\(420\) 5.87928 + 11.1297i 0.286879 + 0.543074i
\(421\) 5.42375 16.6926i 0.264338 0.813547i −0.727508 0.686100i \(-0.759321\pi\)
0.991845 0.127448i \(-0.0406786\pi\)
\(422\) 8.14317 2.64588i 0.396403 0.128799i
\(423\) −2.83903 + 9.70283i −0.138038 + 0.471768i
\(424\) −3.65283 5.02768i −0.177397 0.244166i
\(425\) 0.810678 + 2.49501i 0.0393237 + 0.121026i
\(426\) −12.3766 12.0167i −0.599648 0.582210i
\(427\) 4.49137 + 3.26317i 0.217353 + 0.157916i
\(428\) −18.1351 −0.876595
\(429\) 0 0
\(430\) 13.8089 0.665925
\(431\) 27.0376 + 19.6440i 1.30236 + 0.946218i 0.999976 0.00696946i \(-0.00221847\pi\)
0.302381 + 0.953187i \(0.402218\pi\)
\(432\) −5.16312 0.584981i −0.248411 0.0281449i
\(433\) 8.40143 + 25.8569i 0.403747 + 1.24261i 0.921937 + 0.387340i \(0.126606\pi\)
−0.518190 + 0.855266i \(0.673394\pi\)
\(434\) 13.2092 + 18.1809i 0.634061 + 0.872711i
\(435\) 2.61633 + 15.0758i 0.125444 + 0.722831i
\(436\) −0.668387 + 0.217172i −0.0320099 + 0.0104007i
\(437\) 0.370079 1.13899i 0.0177033 0.0544851i
\(438\) 3.79774 2.00616i 0.181463 0.0958581i
\(439\) 13.4068i 0.639873i −0.947439 0.319936i \(-0.896338\pi\)
0.947439 0.319936i \(-0.103662\pi\)
\(440\) 0 0
\(441\) −8.72811 11.2967i −0.415624 0.537937i
\(442\) −5.72206 + 7.87574i −0.272171 + 0.374611i
\(443\) 17.5311 + 5.69619i 0.832927 + 0.270634i 0.694278 0.719707i \(-0.255724\pi\)
0.138649 + 0.990342i \(0.455724\pi\)
\(444\) −2.16845 + 15.1328i −0.102910 + 0.718171i
\(445\) −4.23926 + 3.08000i −0.200960 + 0.146006i
\(446\) −0.0407361 + 0.0295965i −0.00192891 + 0.00140144i
\(447\) −3.43642 + 23.9815i −0.162537 + 1.13429i
\(448\) −3.26124 1.05964i −0.154079 0.0500634i
\(449\) 17.8510 24.5698i 0.842443 1.15952i −0.143035 0.989718i \(-0.545686\pi\)
0.985478 0.169805i \(-0.0543138\pi\)
\(450\) 0.932928 + 1.20748i 0.0439786 + 0.0569209i
\(451\) 0 0
\(452\) 4.28423i 0.201513i
\(453\) −9.69208 + 5.11985i −0.455373 + 0.240552i
\(454\) 4.41512 13.5884i 0.207212 0.637733i
\(455\) 13.0450 4.23857i 0.611558 0.198707i
\(456\) 0.0713545 + 0.411159i 0.00334148 + 0.0192543i
\(457\) 20.3890 + 28.0630i 0.953756 + 1.31273i 0.949839 + 0.312740i \(0.101247\pi\)
0.00391756 + 0.999992i \(0.498753\pi\)
\(458\) −9.34547 28.7624i −0.436685 1.34398i
\(459\) −26.6303 3.01721i −1.24299 0.140831i
\(460\) −8.52249 6.19195i −0.397363 0.288701i
\(461\) 20.8777 0.972370 0.486185 0.873856i \(-0.338388\pi\)
0.486185 + 0.873856i \(0.338388\pi\)
\(462\) 0 0
\(463\) 6.14371 0.285522 0.142761 0.989757i \(-0.454402\pi\)
0.142761 + 0.989757i \(0.454402\pi\)
\(464\) −3.37235 2.45016i −0.156557 0.113746i
\(465\) −17.2595 16.7576i −0.800392 0.777116i
\(466\) −0.874011 2.68993i −0.0404878 0.124609i
\(467\) −20.4577 28.1576i −0.946670 1.30298i −0.952991 0.302999i \(-0.902012\pi\)
0.00632072 0.999980i \(-0.497988\pi\)
\(468\) −1.59010 + 5.43443i −0.0735026 + 0.251207i
\(469\) −32.5601 + 10.5794i −1.50349 + 0.488512i
\(470\) 2.20692 6.79220i 0.101798 0.313301i
\(471\) −3.00000 5.67911i −0.138233 0.261680i
\(472\) 2.77195i 0.127589i
\(473\) 0 0
\(474\) 8.64915 17.6126i 0.397269 0.808971i
\(475\) 0.0720302 0.0991411i 0.00330497 0.00454890i
\(476\) −16.8208 5.46541i −0.770980 0.250507i
\(477\) −15.3998 10.5087i −0.705108 0.481161i
\(478\) −0.918528 + 0.667349i −0.0420125 + 0.0305239i
\(479\) 28.1803 20.4742i 1.28759 0.935491i 0.287839 0.957679i \(-0.407063\pi\)
0.999754 + 0.0221881i \(0.00706327\pi\)
\(480\) 3.63359 + 0.520675i 0.165850 + 0.0237655i
\(481\) 15.8434 + 5.14784i 0.722398 + 0.234721i
\(482\) −8.84404 + 12.1728i −0.402835 + 0.554455i
\(483\) 26.4999 + 13.0135i 1.20578 + 0.592136i
\(484\) 0 0
\(485\) 28.0212i 1.27238i
\(486\) −15.1749 + 3.56668i −0.688349 + 0.161788i
\(487\) −1.78176 + 5.48370i −0.0807393 + 0.248490i −0.983276 0.182124i \(-0.941703\pi\)
0.902536 + 0.430614i \(0.141703\pi\)
\(488\) 1.53975 0.500295i 0.0697012 0.0226473i
\(489\) 14.5917 2.53230i 0.659858 0.114515i
\(490\) 5.92766 + 8.15872i 0.267784 + 0.368574i
\(491\) 3.21948 + 9.90855i 0.145293 + 0.447166i 0.997049 0.0767732i \(-0.0244617\pi\)
−0.851755 + 0.523940i \(0.824462\pi\)
\(492\) −9.57461 + 9.86138i −0.431657 + 0.444585i
\(493\) −17.3939 12.6374i −0.783380 0.569159i
\(494\) 0.454741 0.0204597
\(495\) 0 0
\(496\) 6.55361 0.294266
\(497\) −27.6297 20.0742i −1.23936 0.900449i
\(498\) −8.28649 + 8.53468i −0.371326 + 0.382448i
\(499\) −6.76658 20.8254i −0.302914 0.932272i −0.980448 0.196781i \(-0.936951\pi\)
0.677534 0.735492i \(-0.263049\pi\)
\(500\) −6.86202 9.44475i −0.306879 0.422382i
\(501\) 2.80891 0.487471i 0.125493 0.0217786i
\(502\) −9.16478 + 2.97782i −0.409044 + 0.132907i
\(503\) 6.04830 18.6148i 0.269680 0.829991i −0.720898 0.693041i \(-0.756270\pi\)
0.990578 0.136949i \(-0.0437297\pi\)
\(504\) −10.2827 + 0.303503i −0.458030 + 0.0135191i
\(505\) 5.21397i 0.232019i
\(506\) 0 0
\(507\) −14.6727 7.20544i −0.651636 0.320005i
\(508\) 10.3090 14.1891i 0.457387 0.629539i
\(509\) 34.4745 + 11.2014i 1.52805 + 0.496495i 0.948051 0.318120i \(-0.103051\pi\)
0.580003 + 0.814614i \(0.303051\pi\)
\(510\) 18.7413 + 2.68553i 0.829878 + 0.118917i
\(511\) 6.87928 4.99809i 0.304321 0.221102i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0.617156 + 1.08922i 0.0272481 + 0.0480904i
\(514\) −12.7022 4.12718i −0.560268 0.182042i
\(515\) −5.74194 + 7.90311i −0.253020 + 0.348253i
\(516\) −4.97472 + 10.1302i −0.219000 + 0.445956i
\(517\) 0 0
\(518\) 30.2656i 1.32979i
\(519\) −2.83854 5.37347i −0.124598 0.235869i
\(520\) 1.23607 3.80423i 0.0542052 0.166826i
\(521\) −17.2099 + 5.59184i −0.753980 + 0.244983i −0.660693 0.750656i \(-0.729737\pi\)
−0.0932869 + 0.995639i \(0.529737\pi\)
\(522\) −12.0021 3.51180i −0.525319 0.153707i
\(523\) −14.7370 20.2838i −0.644405 0.886947i 0.354436 0.935080i \(-0.384673\pi\)
−0.998841 + 0.0481334i \(0.984673\pi\)
\(524\) 1.49038 + 4.58693i 0.0651077 + 0.200381i
\(525\) 2.16740 + 2.10437i 0.0945931 + 0.0918423i
\(526\) 7.55361 + 5.48802i 0.329353 + 0.239289i
\(527\) 33.8021 1.47244
\(528\) 0 0
\(529\) −1.70807 −0.0742639
\(530\) 10.6551 + 7.74138i 0.462828 + 0.336264i
\(531\) −2.80195 7.82959i −0.121594 0.339775i
\(532\) 0.255301 + 0.785736i 0.0110687 + 0.0340660i
\(533\) 8.80375 + 12.1173i 0.381333 + 0.524859i
\(534\) −0.732270 4.21949i −0.0316884 0.182595i
\(535\) 36.5525 11.8766i 1.58030 0.513471i
\(536\) −3.08521 + 9.49531i −0.133261 + 0.410135i
\(537\) −20.3274 + 10.7380i −0.877193 + 0.463378i
\(538\) 13.6250i 0.587415i
\(539\) 0 0
\(540\) 10.7897 2.20224i 0.464314 0.0947692i
\(541\) −23.1545 + 31.8695i −0.995490 + 1.37017i −0.0674386 + 0.997723i \(0.521483\pi\)
−0.928052 + 0.372451i \(0.878517\pi\)
\(542\) 4.46147 + 1.44962i 0.191636 + 0.0622665i
\(543\) −1.82630 + 12.7451i −0.0783742 + 0.546944i
\(544\) −4.17274 + 3.03167i −0.178905 + 0.129982i
\(545\) 1.20495 0.875446i 0.0516143 0.0375000i
\(546\) −1.59010 + 11.0967i −0.0680501 + 0.474896i
\(547\) −1.70862 0.555165i −0.0730554 0.0237371i 0.272261 0.962223i \(-0.412228\pi\)
−0.345317 + 0.938486i \(0.612228\pi\)
\(548\) 10.6143 14.6093i 0.453420 0.624079i
\(549\) 3.84343 2.96954i 0.164034 0.126737i
\(550\) 0 0
\(551\) 1.00431i 0.0427851i
\(552\) 7.61266 4.02140i 0.324016 0.171162i
\(553\) 12.0042 36.9453i 0.510472 1.57107i
\(554\) 7.87652 2.55924i 0.334641 0.108732i
\(555\) −5.53975 31.9212i −0.235149 1.35498i
\(556\) −0.581539 0.800420i −0.0246627 0.0339454i
\(557\) −13.2379 40.7422i −0.560909 1.72630i −0.679803 0.733395i \(-0.737935\pi\)
0.118894 0.992907i \(-0.462065\pi\)
\(558\) 18.5112 6.62455i 0.783640 0.280439i
\(559\) 9.94943 + 7.22869i 0.420816 + 0.305741i
\(560\) 7.26719 0.307095
\(561\) 0 0
\(562\) −12.6650 −0.534240
\(563\) 13.9704 + 10.1501i 0.588784 + 0.427776i 0.841880 0.539665i \(-0.181449\pi\)
−0.253096 + 0.967441i \(0.581449\pi\)
\(564\) 4.18769 + 4.06591i 0.176333 + 0.171206i
\(565\) 2.80572 + 8.63512i 0.118038 + 0.363282i
\(566\) 13.2896 + 18.2916i 0.558604 + 0.768852i
\(567\) −28.7376 + 11.2513i −1.20687 + 0.472511i
\(568\) −9.47214 + 3.07768i −0.397442 + 0.129137i
\(569\) 1.68607 5.18918i 0.0706836 0.217542i −0.909474 0.415760i \(-0.863516\pi\)
0.980158 + 0.198219i \(0.0635156\pi\)
\(570\) −0.413086 0.781987i −0.0173023 0.0327538i
\(571\) 18.8259i 0.787838i 0.919145 + 0.393919i \(0.128881\pi\)
−0.919145 + 0.393919i \(0.871119\pi\)
\(572\) 0 0
\(573\) −1.97758 + 4.02701i −0.0826145 + 0.168231i
\(574\) −15.9946 + 22.0147i −0.667603 + 0.918876i
\(575\) −2.40452 0.781276i −0.100275 0.0325815i
\(576\) −1.69098 + 2.47802i −0.0704576 + 0.103251i
\(577\) −12.6935 + 9.22238i −0.528438 + 0.383933i −0.819773 0.572688i \(-0.805901\pi\)
0.291335 + 0.956621i \(0.405901\pi\)
\(578\) −7.76878 + 5.64435i −0.323139 + 0.234774i
\(579\) −33.4779 4.79721i −1.39129 0.199365i
\(580\) 8.40177 + 2.72990i 0.348864 + 0.113353i
\(581\) −13.8428 + 19.0530i −0.574295 + 0.790450i
\(582\) 20.5563 + 10.0947i 0.852084 + 0.418441i
\(583\) 0 0
\(584\) 2.47975i 0.102613i
\(585\) −0.354035 11.9948i −0.0146376 0.495923i
\(586\) 7.75383 23.8638i 0.320308 0.985806i
\(587\) 2.82183 0.916868i 0.116469 0.0378432i −0.250202 0.968194i \(-0.580497\pi\)
0.366672 + 0.930350i \(0.380497\pi\)
\(588\) −8.12068 + 1.40930i −0.334891 + 0.0581186i
\(589\) −0.928095 1.27741i −0.0382415 0.0526349i
\(590\) 1.81534 + 5.58703i 0.0747362 + 0.230014i
\(591\) −6.49980 + 6.69448i −0.267366 + 0.275374i
\(592\) 7.14052 + 5.18789i 0.293474 + 0.213221i
\(593\) −43.4839 −1.78567 −0.892836 0.450383i \(-0.851288\pi\)
−0.892836 + 0.450383i \(0.851288\pi\)
\(594\) 0 0
\(595\) 37.4826 1.53664
\(596\) 11.3158 + 8.22144i 0.463515 + 0.336763i
\(597\) −8.91288 + 9.17984i −0.364780 + 0.375706i
\(598\) −2.89916 8.92270i −0.118556 0.364876i
\(599\) 15.3131 + 21.0766i 0.625674 + 0.861167i 0.997751 0.0670354i \(-0.0213540\pi\)
−0.372076 + 0.928202i \(0.621354\pi\)
\(600\) 0.868001 0.150637i 0.0354360 0.00614973i
\(601\) 43.8829 14.2584i 1.79002 0.581613i 0.790498 0.612465i \(-0.209822\pi\)
0.999524 + 0.0308513i \(0.00982183\pi\)
\(602\) −6.90445 + 21.2497i −0.281405 + 0.866074i
\(603\) 0.883668 + 29.9388i 0.0359858 + 1.21920i
\(604\) 6.32849i 0.257502i
\(605\) 0 0
\(606\) −3.82495 1.87835i −0.155378 0.0763029i
\(607\) −5.60812 + 7.71891i −0.227626 + 0.313301i −0.907519 0.420011i \(-0.862026\pi\)
0.679893 + 0.733312i \(0.262026\pi\)
\(608\) 0.229139 + 0.0744518i 0.00929282 + 0.00301942i
\(609\) −24.5075 3.51180i −0.993094 0.142305i
\(610\) −2.77582 + 2.01675i −0.112390 + 0.0816558i
\(611\) 5.14568 3.73856i 0.208172 0.151246i
\(612\) −8.72173 + 12.7811i −0.352555 + 0.516645i
\(613\) 9.96988 + 3.23941i 0.402680 + 0.130839i 0.503353 0.864081i \(-0.332100\pi\)
−0.100673 + 0.994920i \(0.532100\pi\)
\(614\) −9.44462 + 12.9994i −0.381154 + 0.524613i
\(615\) 12.8400 26.1466i 0.517760 1.05433i
\(616\) 0 0
\(617\) 26.7867i 1.07839i 0.842180 + 0.539196i \(0.181272\pi\)
−0.842180 + 0.539196i \(0.818728\pi\)
\(618\) −3.72914 7.05940i −0.150008 0.283971i
\(619\) −2.48973 + 7.66261i −0.100071 + 0.307986i −0.988542 0.150946i \(-0.951768\pi\)
0.888471 + 0.458932i \(0.151768\pi\)
\(620\) −13.2092 + 4.29193i −0.530494 + 0.172368i
\(621\) 17.4376 19.0538i 0.699747 0.764603i
\(622\) 5.65772 + 7.78718i 0.226854 + 0.312238i
\(623\) −2.62000 8.06355i −0.104968 0.323059i
\(624\) 2.34547 + 2.27726i 0.0938940 + 0.0911635i
\(625\) 17.9587 + 13.0477i 0.718347 + 0.521910i
\(626\) 20.1139 0.803915
\(627\) 0 0
\(628\) −3.70820 −0.147973
\(629\) 36.8293 + 26.7580i 1.46848 + 1.06691i
\(630\) 20.5267 7.34585i 0.817804 0.292666i
\(631\) −6.32991 19.4815i −0.251990 0.775545i −0.994408 0.105608i \(-0.966321\pi\)
0.742418 0.669937i \(-0.233679\pi\)
\(632\) −6.65877 9.16501i −0.264872 0.364565i
\(633\) −2.53580 14.6118i −0.100789 0.580768i
\(634\) −17.5481 + 5.70172i −0.696924 + 0.226444i
\(635\) −11.4860 + 35.3503i −0.455808 + 1.40283i
\(636\) −9.51760 + 5.02768i −0.377397 + 0.199361i
\(637\) 8.98144i 0.355858i
\(638\) 0 0
\(639\) −23.6438 + 18.2678i −0.935333 + 0.722664i
\(640\) 1.24568 1.71454i 0.0492400 0.0677730i
\(641\) −2.95338 0.959611i −0.116651 0.0379024i 0.250110 0.968218i \(-0.419533\pi\)
−0.366761 + 0.930315i \(0.619533\pi\)
\(642\) −4.45552 + 31.0934i −0.175846 + 1.22716i
\(643\) 31.7912 23.0977i 1.25372 0.910884i 0.255292 0.966864i \(-0.417828\pi\)
0.998432 + 0.0559805i \(0.0178285\pi\)
\(644\) 13.7897 10.0188i 0.543389 0.394795i
\(645\) 3.39263 23.6759i 0.133585 0.932237i
\(646\) 1.18185 + 0.384007i 0.0464993 + 0.0151085i
\(647\) −21.0793 + 29.0131i −0.828712 + 1.14062i 0.159449 + 0.987206i \(0.449028\pi\)
−0.988161 + 0.153418i \(0.950972\pi\)
\(648\) −2.27147 + 8.70864i −0.0892318 + 0.342108i
\(649\) 0 0
\(650\) 0.960005i 0.0376545i
\(651\) 34.4171 18.1809i 1.34891 0.712565i
\(652\) 2.64222 8.13193i 0.103478 0.318471i
\(653\) −2.24293 + 0.728772i −0.0877726 + 0.0285191i −0.352574 0.935784i \(-0.614694\pi\)
0.264801 + 0.964303i \(0.414694\pi\)
\(654\) 0.208137 + 1.19933i 0.00813881 + 0.0468975i
\(655\) −6.00791 8.26918i −0.234749 0.323104i
\(656\) 2.45223 + 7.54718i 0.0957434 + 0.294668i
\(657\) −2.50659 7.00425i −0.0977915 0.273262i
\(658\) 9.34866 + 6.79220i 0.364449 + 0.264787i
\(659\) −8.51039 −0.331518 −0.165759 0.986166i \(-0.553007\pi\)
−0.165759 + 0.986166i \(0.553007\pi\)
\(660\) 0 0
\(661\) 42.4546 1.65129 0.825646 0.564189i \(-0.190811\pi\)
0.825646 + 0.564189i \(0.190811\pi\)
\(662\) 4.07454 + 2.96033i 0.158362 + 0.115056i
\(663\) 12.0974 + 11.7456i 0.469825 + 0.456163i
\(664\) 2.12232 + 6.53182i 0.0823618 + 0.253484i
\(665\) −1.02915 1.41650i −0.0399087 0.0549296i
\(666\) 25.4130 + 7.43579i 0.984734 + 0.288131i
\(667\) 19.7061 6.40290i 0.763023 0.247921i
\(668\) 0.508631 1.56541i 0.0196795 0.0605674i
\(669\) 0.0407361 + 0.0771150i 0.00157495 + 0.00298144i
\(670\) 21.1588i 0.817438i
\(671\) 0 0
\(672\) −2.61803 + 5.33119i −0.100993 + 0.205655i
\(673\) 28.1092 38.6890i 1.08353 1.49135i 0.227958 0.973671i \(-0.426795\pi\)
0.855573 0.517682i \(-0.173205\pi\)
\(674\) 16.7902 + 5.45548i 0.646735 + 0.210137i
\(675\) 2.29947 1.30288i 0.0885065 0.0501479i
\(676\) −7.63519 + 5.54729i −0.293661 + 0.213357i
\(677\) −4.45107 + 3.23389i −0.171068 + 0.124288i −0.670025 0.742338i \(-0.733717\pi\)
0.498957 + 0.866627i \(0.333717\pi\)
\(678\) −7.34547 1.05257i −0.282101 0.0404236i
\(679\) 43.1202 + 14.0106i 1.65480 + 0.537677i
\(680\) 6.42497 8.84322i 0.246386 0.339122i
\(681\) −22.2130 10.9083i −0.851205 0.418009i
\(682\) 0 0
\(683\) 40.1110i 1.53480i −0.641166 0.767402i \(-0.721549\pi\)
0.641166 0.767402i \(-0.278451\pi\)
\(684\) 0.722479 0.0213245i 0.0276247 0.000815364i
\(685\) −11.8262 + 36.3972i −0.451855 + 1.39067i
\(686\) 7.30989 2.37513i 0.279093 0.0906828i
\(687\) −51.6103 + 8.95669i −1.96905 + 0.341719i
\(688\) 3.82991 + 5.27142i 0.146014 + 0.200971i
\(689\) 3.62463 + 11.1555i 0.138087 + 0.424989i
\(690\) −12.7102 + 13.0909i −0.483868 + 0.498361i
\(691\) −25.5891 18.5916i −0.973457 0.707258i −0.0172201 0.999852i \(-0.505482\pi\)
−0.956237 + 0.292594i \(0.905482\pi\)
\(692\) −3.50863 −0.133378
\(693\) 0 0
\(694\) 15.0268 0.570411
\(695\) 1.69632 + 1.23245i 0.0643450 + 0.0467494i
\(696\) −5.02942 + 5.18005i −0.190640 + 0.196349i
\(697\) 12.6481 + 38.9267i 0.479079 + 1.47445i
\(698\) 2.05443 + 2.82768i 0.0777612 + 0.107029i
\(699\) −4.82671 + 0.837650i −0.182563 + 0.0316829i
\(700\) 1.65877 0.538967i 0.0626956 0.0203710i
\(701\) −4.85616 + 14.9457i −0.183414 + 0.564492i −0.999917 0.0128496i \(-0.995910\pi\)
0.816503 + 0.577341i \(0.195910\pi\)
\(702\) 8.92688 + 4.06145i 0.336923 + 0.153289i
\(703\) 2.12650i 0.0802025i
\(704\) 0 0
\(705\) −11.1033 5.45258i −0.418174 0.205356i
\(706\) 14.8518 20.4417i 0.558955 0.769335i
\(707\) −8.02347 2.60698i −0.301754 0.0980458i
\(708\) −4.75261 0.681025i −0.178614 0.0255945i
\(709\) −4.80715 + 3.49260i −0.180536 + 0.131167i −0.674383 0.738382i \(-0.735590\pi\)
0.493847 + 0.869549i \(0.335590\pi\)
\(710\) 17.0761 12.4065i 0.640854 0.465608i
\(711\) −28.0724 19.1564i −1.05280 0.718422i
\(712\) −2.35152 0.764056i −0.0881270 0.0286342i
\(713\) −19.1478 + 26.3547i −0.717090 + 0.986990i
\(714\) −13.5033 + 27.4971i −0.505347 + 1.02905i
\(715\) 0 0
\(716\) 13.2729i 0.496031i
\(717\) 0.918528 + 1.73881i 0.0343030 + 0.0649370i
\(718\) −5.96229 + 18.3500i −0.222511 + 0.684817i
\(719\) −29.3645 + 9.54110i −1.09511 + 0.355823i −0.800219 0.599708i \(-0.795284\pi\)
−0.294892 + 0.955531i \(0.595284\pi\)
\(720\) 1.78544 6.10201i 0.0665392 0.227409i
\(721\) −9.29066 12.7875i −0.346002 0.476231i
\(722\) 5.85339 + 18.0149i 0.217840 + 0.670444i
\(723\) 18.6978 + 18.1541i 0.695380 + 0.675158i
\(724\) 6.01386 + 4.36932i 0.223503 + 0.162385i
\(725\) 2.12020 0.0787424
\(726\) 0 0
\(727\) −23.3566 −0.866249 −0.433124 0.901334i \(-0.642589\pi\)
−0.433124 + 0.901334i \(0.642589\pi\)
\(728\) 5.23607 + 3.80423i 0.194062 + 0.140994i
\(729\) 2.38697 + 26.8943i 0.0884061 + 0.996085i
\(730\) 1.62398 + 4.99809i 0.0601061 + 0.184988i
\(731\) 19.7539 + 27.1889i 0.730623 + 1.00562i
\(732\) −0.479482 2.76288i −0.0177222 0.102119i
\(733\) −39.4398 + 12.8148i −1.45674 + 0.473325i −0.927074 0.374879i \(-0.877684\pi\)
−0.529670 + 0.848204i \(0.677684\pi\)
\(734\) −0.277454 + 0.853917i −0.0102410 + 0.0315186i
\(735\) 15.4448 8.15872i 0.569689 0.300939i
\(736\) 4.97072i 0.183223i
\(737\) 0 0
\(738\) 14.5554 + 18.8388i 0.535791 + 0.693466i
\(739\) 18.2713 25.1482i 0.672119 0.925092i −0.327687 0.944786i \(-0.606269\pi\)
0.999806 + 0.0196939i \(0.00626918\pi\)
\(740\) −17.7897 5.78022i −0.653962 0.212485i
\(741\) 0.111723 0.779670i 0.00410424 0.0286419i
\(742\) −17.2403 + 12.5258i −0.632912 + 0.459837i
\(743\) 24.8174 18.0309i 0.910462 0.661489i −0.0306698 0.999530i \(-0.509764\pi\)
0.941132 + 0.338040i \(0.109764\pi\)
\(744\) 1.61012 11.2364i 0.0590299 0.411947i
\(745\) −28.1919 9.16011i −1.03287 0.335601i
\(746\) 15.4827 21.3101i 0.566861 0.780217i
\(747\) 12.5972 + 16.3043i 0.460906 + 0.596544i
\(748\) 0 0
\(749\) 62.1868i 2.27226i
\(750\) −17.8793 + 9.44475i −0.652859 + 0.344874i
\(751\) −2.30700 + 7.10023i −0.0841838 + 0.259091i −0.984284 0.176591i \(-0.943493\pi\)
0.900100 + 0.435682i \(0.143493\pi\)
\(752\) 3.20495 1.04135i 0.116872 0.0379742i
\(753\) 2.85394 + 16.4450i 0.104003 + 0.599288i
\(754\) 4.62449 + 6.36507i 0.168414 + 0.231802i
\(755\) −4.14450 12.7554i −0.150834 0.464218i
\(756\) −2.00594 + 17.7047i −0.0729555 + 0.643915i
\(757\) 18.8904 + 13.7247i 0.686583 + 0.498831i 0.875535 0.483155i \(-0.160509\pi\)
−0.188952 + 0.981986i \(0.560509\pi\)
\(758\) −2.66498 −0.0967965
\(759\) 0 0
\(760\) −0.510602 −0.0185215
\(761\) 7.77691 + 5.65026i 0.281913 + 0.204822i 0.719751 0.694232i \(-0.244256\pi\)
−0.437838 + 0.899054i \(0.644256\pi\)
\(762\) −21.7950 21.1612i −0.789548 0.766588i
\(763\) 0.744699 + 2.29195i 0.0269599 + 0.0829741i
\(764\) 1.52249 + 2.09553i 0.0550817 + 0.0758135i
\(765\) 9.20889 31.4729i 0.332948 1.13790i
\(766\) −31.1072 + 10.1073i −1.12395 + 0.365193i
\(767\) −1.61673 + 4.97579i −0.0583769 + 0.179666i
\(768\) 0.809017 + 1.53150i 0.0291929 + 0.0552632i
\(769\) 34.6298i 1.24878i −0.781112 0.624391i \(-0.785347\pi\)
0.781112 0.624391i \(-0.214653\pi\)
\(770\) 0 0
\(771\) −10.1969 + 20.7643i −0.367233 + 0.747809i
\(772\) −11.4770 + 15.7968i −0.413067 + 0.568538i
\(773\) 12.8941 + 4.18953i 0.463767 + 0.150687i 0.531575 0.847011i \(-0.321600\pi\)
−0.0678078 + 0.997698i \(0.521600\pi\)
\(774\) 16.1464 + 11.0182i 0.580369 + 0.396040i
\(775\) −2.69675 + 1.95930i −0.0968702 + 0.0703803i
\(776\) 10.6968 7.77169i 0.383993 0.278988i
\(777\) 51.8915 + 7.43579i 1.86160 + 0.266757i
\(778\) −1.60221 0.520588i −0.0574419 0.0186640i
\(779\) 1.12380 1.54678i 0.0402644 0.0554192i
\(780\) −6.21881 3.05392i −0.222669 0.109348i
\(781\) 0 0
\(782\) 25.6379i 0.916810i
\(783\) −8.96985 + 19.7153i −0.320556 + 0.704568i
\(784\) −1.47047 + 4.52566i −0.0525170 + 0.161631i
\(785\) 7.47411 2.42848i 0.266762 0.0866763i
\(786\) 8.23063 1.42838i 0.293577 0.0509487i
\(787\) −10.8875 14.9854i −0.388099 0.534172i 0.569609 0.821916i \(-0.307095\pi\)
−0.957707 + 0.287744i \(0.907095\pi\)
\(788\) 1.66471 + 5.12346i 0.0593030 + 0.182516i
\(789\) 11.2652 11.6026i 0.401052 0.413064i
\(790\) 19.4233 + 14.1118i 0.691049 + 0.502076i
\(791\) −14.6909 −0.522350
\(792\) 0 0
\(793\) −3.05573 −0.108512
\(794\) 7.19406 + 5.22679i 0.255308 + 0.185492i
\(795\) 15.8907 16.3666i 0.563584 0.580464i
\(796\) 2.28275 + 7.02557i 0.0809098 + 0.249015i
\(797\) −30.2920 41.6933i −1.07300 1.47685i −0.867005 0.498300i \(-0.833958\pi\)
−0.205992 0.978554i \(-0.566042\pi\)
\(798\) 1.40990 0.244680i 0.0499098 0.00866158i
\(799\) 16.5304 5.37106i 0.584805 0.190015i
\(800\) 0.157176 0.483737i 0.00555700 0.0171027i
\(801\) −7.41438 + 0.218841i −0.261974 + 0.00773238i
\(802\) 19.5587i 0.690642i
\(803\) 0 0
\(804\) 15.5221 + 7.62256i 0.547421 + 0.268827i
\(805\) −21.2327 + 29.2243i −0.748353 + 1.03002i
\(806\) −11.7641 3.82238i −0.414372 0.134637i
\(807\) −23.3605 3.34745i −0.822330 0.117836i
\(808\) −1.99038 + 1.44610i −0.0700214 + 0.0508736i
\(809\) −28.2831 + 20.5489i −0.994382 + 0.722461i −0.960876 0.276978i \(-0.910667\pi\)
−0.0335059 + 0.999439i \(0.510667\pi\)
\(810\) −1.12496 19.0404i −0.0395272 0.669010i
\(811\) 17.1154 + 5.56112i 0.601002 + 0.195277i 0.593687 0.804696i \(-0.297672\pi\)
0.00731472 + 0.999973i \(0.497672\pi\)
\(812\) −8.40177 + 11.5640i −0.294844 + 0.405818i
\(813\) 3.58154 7.29320i 0.125610 0.255784i
\(814\) 0 0
\(815\) 18.1208i 0.634743i
\(816\) 4.17274 + 7.89915i 0.146075 + 0.276525i
\(817\) 0.485116 1.49303i 0.0169721 0.0522346i
\(818\) −23.5359 + 7.64727i −0.822912 + 0.267380i
\(819\) 18.6351 + 5.45258i 0.651162 + 0.190529i
\(820\) −9.88522 13.6058i −0.345207 0.475137i
\(821\) 2.80515 + 8.63337i 0.0979005 + 0.301307i 0.987999 0.154462i \(-0.0493644\pi\)
−0.890098 + 0.455769i \(0.849364\pi\)
\(822\) −22.4405 21.7879i −0.782701 0.759940i
\(823\) 0.622491 + 0.452266i 0.0216987 + 0.0157650i 0.598582 0.801062i \(-0.295731\pi\)
−0.576883 + 0.816827i \(0.695731\pi\)
\(824\) −4.60947 −0.160578
\(825\) 0 0
\(826\) −9.50523 −0.330729
\(827\) −39.9982 29.0604i −1.39087 1.01053i −0.995769 0.0918931i \(-0.970708\pi\)
−0.395105 0.918636i \(-0.629292\pi\)
\(828\) −5.02453 14.0402i −0.174614 0.487930i
\(829\) −5.42619 16.7001i −0.188459 0.580018i 0.811531 0.584309i \(-0.198634\pi\)
−0.999991 + 0.00429046i \(0.998634\pi\)
\(830\) −8.55531 11.7754i −0.296959 0.408729i
\(831\) −2.45277 14.1334i −0.0850856 0.490281i
\(832\) 1.79505 0.583248i 0.0622322 0.0202205i
\(833\) −7.58439 + 23.3424i −0.262784 + 0.808765i
\(834\) −1.51522 + 0.800420i −0.0524679 + 0.0277163i
\(835\) 3.48827i 0.120717i
\(836\) 0 0
\(837\) −6.81013 33.3656i −0.235392 1.15329i
\(838\) 20.4821 28.1912i 0.707542 0.973848i
\(839\) 1.15241 + 0.374440i 0.0397856 + 0.0129271i 0.328842 0.944385i \(-0.393342\pi\)
−0.289057 + 0.957312i \(0.593342\pi\)
\(840\) 1.78544 12.4599i 0.0616034 0.429906i
\(841\) 9.40401 6.83241i 0.324276 0.235600i
\(842\) −14.1996 + 10.3166i −0.489350 + 0.355533i
\(843\) −3.11159 + 21.7146i −0.107169 + 0.747890i
\(844\) −8.14317 2.64588i −0.280299 0.0910748i
\(845\) 11.7563 16.1811i 0.404429 0.556648i
\(846\) 8.00000 6.18102i 0.275046 0.212508i
\(847\) 0 0
\(848\) 6.21456i 0.213409i
\(849\) 34.6266 18.2916i 1.18838 0.627765i
\(850\) 0.810678 2.49501i 0.0278060 0.0855782i
\(851\) −41.7252 + 13.5573i −1.43032 + 0.464739i
\(852\) 2.94965 + 16.9965i 0.101053 + 0.582290i
\(853\) 1.26195 + 1.73692i 0.0432082 + 0.0594710i 0.830074 0.557653i \(-0.188298\pi\)
−0.786866 + 0.617124i \(0.788298\pi\)
\(854\) −1.71555 5.27992i −0.0587049 0.180675i
\(855\) −1.44223 + 0.516129i −0.0493234 + 0.0176512i
\(856\) 14.6716 + 10.6596i 0.501466 + 0.364337i
\(857\) 55.7274 1.90361 0.951805 0.306704i \(-0.0992260\pi\)
0.951805 + 0.306704i \(0.0992260\pi\)
\(858\) 0 0
\(859\) −36.2927 −1.23829 −0.619146 0.785276i \(-0.712521\pi\)
−0.619146 + 0.785276i \(0.712521\pi\)
\(860\) −11.1716 8.11667i −0.380950 0.276776i
\(861\) 33.8154 + 32.8321i 1.15243 + 1.11891i
\(862\) −10.3275 31.7846i −0.351755 1.08259i
\(863\) −18.3274 25.2255i −0.623871 0.858685i 0.373757 0.927527i \(-0.378070\pi\)
−0.997628 + 0.0688420i \(0.978070\pi\)
\(864\) 3.83321 + 3.50806i 0.130408 + 0.119347i
\(865\) 7.07186 2.29779i 0.240450 0.0781270i
\(866\) 8.40143 25.8569i 0.285492 0.878655i
\(867\) 7.76878 + 14.7066i 0.263842 + 0.499462i
\(868\) 22.4728i 0.762777i
\(869\) 0 0
\(870\) 6.74470 13.7345i 0.228667 0.465642i
\(871\) 11.0762 15.2451i 0.375304 0.516561i
\(872\) 0.668387 + 0.217172i 0.0226344 + 0.00735437i
\(873\) 22.3582 32.7643i 0.756709 1.10891i
\(874\) −0.968880 + 0.703933i −0.0327729 + 0.0238109i
\(875\) −32.3868 + 23.5304i −1.09487 + 0.795472i
\(876\) −4.25163 0.609237i −0.143649 0.0205842i
\(877\) 17.6284 + 5.72780i 0.595267 + 0.193414i 0.591129 0.806577i \(-0.298683\pi\)
0.00413871 + 0.999991i \(0.498683\pi\)
\(878\) −7.88033 + 10.8463i −0.265948 + 0.366046i
\(879\) −39.0105 19.1572i −1.31579 0.646157i
\(880\) 0 0
\(881\) 22.0893i 0.744207i −0.928191 0.372103i \(-0.878637\pi\)
0.928191 0.372103i \(-0.121363\pi\)
\(882\) 0.421174 + 14.2695i 0.0141817 + 0.480478i
\(883\) 13.4960 41.5364i 0.454176 1.39781i −0.417924 0.908482i \(-0.637242\pi\)
0.872100 0.489328i \(-0.162758\pi\)
\(884\) 9.25849 3.00827i 0.311397 0.101179i
\(885\) 10.0252 1.73982i 0.336993 0.0584833i
\(886\) −10.8348 14.9128i −0.364002 0.501006i
\(887\) −2.60858 8.02839i −0.0875877 0.269567i 0.897663 0.440682i \(-0.145263\pi\)
−0.985251 + 0.171114i \(0.945263\pi\)
\(888\) 10.6492 10.9681i 0.357362 0.368066i
\(889\) −48.6554 35.3503i −1.63185 1.18561i
\(890\) 5.24001 0.175646
\(891\) 0 0
\(892\) 0.0503526 0.00168593
\(893\) −0.656849 0.477229i −0.0219806 0.0159698i
\(894\) 16.8761 17.3815i 0.564421 0.581326i
\(895\) −8.69234 26.7523i −0.290553 0.894230i
\(896\) 2.01556 + 2.77418i 0.0673351 + 0.0926789i
\(897\) −16.0106 + 2.77855i −0.534578 + 0.0927732i
\(898\) −28.8836 + 9.38485i −0.963858 + 0.313176i
\(899\) 8.44185 25.9814i 0.281552 0.866527i
\(900\) −0.0450183 1.52523i −0.00150061 0.0508410i
\(901\) 32.0534i 1.06785i
\(902\) 0 0
\(903\) 34.7371 + 17.0587i 1.15598 + 0.567677i
\(904\) −2.51821 + 3.46601i −0.0837543 + 0.115278i
\(905\) −14.9827 4.86819i −0.498043 0.161824i
\(906\) 10.8504 + 1.55481i 0.360481 + 0.0516551i
\(907\) 9.69876 7.04656i 0.322042 0.233977i −0.415004 0.909819i \(-0.636220\pi\)
0.737046 + 0.675842i \(0.236220\pi\)
\(908\) −11.5589 + 8.39806i −0.383597 + 0.278700i
\(909\) −4.16024 + 6.09654i −0.137986 + 0.202210i
\(910\) −13.0450 4.23857i −0.432437 0.140507i
\(911\) −16.7791 + 23.0945i −0.555918 + 0.765155i −0.990800 0.135332i \(-0.956790\pi\)
0.434883 + 0.900487i \(0.356790\pi\)
\(912\) 0.183946 0.374576i 0.00609108 0.0124035i
\(913\) 0 0
\(914\) 34.6878i 1.14737i
\(915\) 2.77582 + 5.25473i 0.0917657 + 0.173716i
\(916\) −9.34547 + 28.7624i −0.308783 + 0.950337i
\(917\) 15.7289 5.11064i 0.519415 0.168768i
\(918\) 19.7709 + 18.0938i 0.652536 + 0.597186i
\(919\) 32.3570 + 44.5356i 1.06736 + 1.46909i 0.872722 + 0.488217i \(0.162352\pi\)
0.194636 + 0.980876i \(0.437648\pi\)
\(920\) 3.25530 + 10.0188i 0.107324 + 0.330310i
\(921\) 19.9676 + 19.3869i 0.657954 + 0.638821i
\(922\) −16.8904 12.2716i −0.556255 0.404143i
\(923\) 18.7980 0.618745
\(924\) 0 0
\(925\) −4.48926 −0.147606
\(926\) −4.97037 3.61118i −0.163336 0.118671i
\(927\) −13.0198 + 4.65936i −0.427626 + 0.153034i
\(928\) 1.28812 + 3.96443i 0.0422847 + 0.130139i
\(929\) 6.55781 + 9.02605i 0.215155 + 0.296135i 0.902929 0.429789i \(-0.141412\pi\)
−0.687774 + 0.725924i \(0.741412\pi\)
\(930\) 4.11338 + 23.7021i 0.134883 + 0.777223i
\(931\) 1.09037 0.354283i 0.0357355 0.0116112i
\(932\) −0.874011 + 2.68993i −0.0286292 + 0.0881115i
\(933\) 14.7414 7.78718i 0.482613 0.254941i
\(934\) 34.8047i 1.13885i
\(935\) 0 0
\(936\) 4.48070 3.46191i 0.146456 0.113156i
\(937\) −18.5422 + 25.5211i −0.605747 + 0.833739i −0.996219 0.0868753i \(-0.972312\pi\)
0.390472 + 0.920615i \(0.372312\pi\)
\(938\) 32.5601 + 10.5794i 1.06313 + 0.345430i
\(939\) 4.94168 34.4861i 0.161266 1.12541i
\(940\) −5.77779 + 4.19781i −0.188451 + 0.136917i
\(941\) −41.3518 + 30.0438i −1.34803 + 0.979400i −0.348922 + 0.937152i \(0.613452\pi\)
−0.999107 + 0.0422486i \(0.986548\pi\)
\(942\) −0.911048 + 6.35786i −0.0296836 + 0.207150i
\(943\) −37.5149 12.1893i −1.22165 0.396939i
\(944\) −1.62931 + 2.24256i −0.0530296 + 0.0729889i
\(945\) −7.55164 36.9986i −0.245655 1.20356i
\(946\) 0 0
\(947\) 23.9467i 0.778162i −0.921204 0.389081i \(-0.872793\pi\)
0.921204 0.389081i \(-0.127207\pi\)
\(948\) −17.3497 + 9.16501i −0.563492 + 0.297666i
\(949\) −1.44631 + 4.45128i −0.0469492 + 0.144495i
\(950\) −0.116547 + 0.0378685i −0.00378129 + 0.00122862i
\(951\) 5.46452 + 31.4877i 0.177199 + 1.02106i
\(952\) 10.3958 + 14.3086i 0.336931 + 0.463745i
\(953\) −6.18496 19.0353i −0.200350 0.616615i −0.999872 0.0159783i \(-0.994914\pi\)
0.799522 0.600637i \(-0.205086\pi\)
\(954\) 6.28183 + 17.5535i 0.203382 + 0.568316i
\(955\) −4.44102 3.22659i −0.143708 0.104410i
\(956\) 1.13536 0.0367203
\(957\) 0 0
\(958\) −34.8328 −1.12540
\(959\) −50.0965 36.3972i −1.61770 1.17533i
\(960\) −2.63359 2.55701i −0.0849989 0.0825271i
\(961\) 3.69269 + 11.3649i 0.119119 + 0.366610i
\(962\) −9.79178 13.4772i −0.315700 0.434523i
\(963\) 52.2161 + 15.2783i 1.68264 + 0.492337i
\(964\) 14.3100 4.64959i 0.460893 0.149753i
\(965\) 12.7874 39.3556i 0.411641 1.26690i
\(966\) −13.7897 26.1044i −0.443676 0.839895i
\(967\) 48.8703i 1.57156i 0.618505 + 0.785781i \(0.287739\pi\)
−0.618505 + 0.785781i \(0.712261\pi\)
\(968\) 0 0
\(969\) 0.948756 1.93198i 0.0304784 0.0620642i
\(970\) −16.4704 + 22.6696i −0.528834 + 0.727877i
\(971\) −25.9960 8.44660i −0.834251 0.271064i −0.139416 0.990234i \(-0.544522\pi\)
−0.694835 + 0.719169i \(0.744522\pi\)
\(972\) 14.3732 + 6.03410i 0.461021 + 0.193544i
\(973\) −2.74470 + 1.99414i −0.0879910 + 0.0639292i
\(974\) 4.66471 3.38911i 0.149467 0.108594i
\(975\) −1.64596 0.235858i −0.0527131 0.00755351i
\(976\) −1.53975 0.500295i −0.0492862 0.0160141i
\(977\) 9.09106 12.5128i 0.290849 0.400319i −0.638441 0.769671i \(-0.720420\pi\)
0.929290 + 0.369352i \(0.120420\pi\)
\(978\) −13.2933 6.52808i −0.425074 0.208745i
\(979\) 0 0
\(980\) 10.0847i 0.322145i
\(981\) 2.10743 0.0622025i 0.0672851 0.00198597i
\(982\) 3.21948 9.90855i 0.102738 0.316194i
\(983\) 42.0482 13.6623i 1.34113 0.435759i 0.451429 0.892307i \(-0.350914\pi\)
0.889699 + 0.456548i \(0.150914\pi\)
\(984\) 13.5424 2.35021i 0.431716 0.0749220i
\(985\) −6.71066 9.23643i −0.213819 0.294297i
\(986\) 6.64386 + 20.4477i 0.211584 + 0.651187i
\(987\) 13.9423 14.3599i 0.443788 0.457080i
\(988\) −0.367893 0.267290i −0.0117042 0.00850362i
\(989\) −32.3884 −1.02989
\(990\) 0 0
\(991\) −36.1335 −1.14782 −0.573909 0.818919i \(-0.694574\pi\)
−0.573909 + 0.818919i \(0.694574\pi\)
\(992\) −5.30198 3.85211i −0.168338 0.122305i
\(993\) 6.07665 6.25865i 0.192837 0.198612i
\(994\) 10.5536 + 32.4807i 0.334740 + 1.03022i
\(995\) −9.20203 12.6655i −0.291724 0.401524i
\(996\) 11.7205 2.03402i 0.371377 0.0644505i
\(997\) −7.72887 + 2.51126i −0.244776 + 0.0795325i −0.428836 0.903383i \(-0.641076\pi\)
0.184060 + 0.982915i \(0.441076\pi\)
\(998\) −6.76658 + 20.8254i −0.214192 + 0.659216i
\(999\) 18.9925 41.7447i 0.600897 1.32074i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.h.c.161.1 8
3.2 odd 2 726.2.h.f.161.2 8
11.2 odd 10 66.2.h.b.17.2 yes 8
11.3 even 5 726.2.h.a.239.2 8
11.4 even 5 66.2.h.a.35.2 yes 8
11.5 even 5 726.2.b.e.725.3 8
11.6 odd 10 726.2.b.c.725.3 8
11.7 odd 10 726.2.h.j.233.2 8
11.8 odd 10 726.2.h.f.239.2 8
11.9 even 5 726.2.h.d.215.2 8
11.10 odd 2 726.2.h.h.161.1 8
33.2 even 10 66.2.h.a.17.2 8
33.5 odd 10 726.2.b.c.725.4 8
33.8 even 10 inner 726.2.h.c.239.1 8
33.14 odd 10 726.2.h.h.239.1 8
33.17 even 10 726.2.b.e.725.4 8
33.20 odd 10 726.2.h.j.215.2 8
33.26 odd 10 66.2.h.b.35.1 yes 8
33.29 even 10 726.2.h.d.233.1 8
33.32 even 2 726.2.h.a.161.2 8
44.15 odd 10 528.2.bn.b.497.1 8
44.35 even 10 528.2.bn.a.17.1 8
132.35 odd 10 528.2.bn.b.17.1 8
132.59 even 10 528.2.bn.a.497.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.h.a.17.2 8 33.2 even 10
66.2.h.a.35.2 yes 8 11.4 even 5
66.2.h.b.17.2 yes 8 11.2 odd 10
66.2.h.b.35.1 yes 8 33.26 odd 10
528.2.bn.a.17.1 8 44.35 even 10
528.2.bn.a.497.2 8 132.59 even 10
528.2.bn.b.17.1 8 132.35 odd 10
528.2.bn.b.497.1 8 44.15 odd 10
726.2.b.c.725.3 8 11.6 odd 10
726.2.b.c.725.4 8 33.5 odd 10
726.2.b.e.725.3 8 11.5 even 5
726.2.b.e.725.4 8 33.17 even 10
726.2.h.a.161.2 8 33.32 even 2
726.2.h.a.239.2 8 11.3 even 5
726.2.h.c.161.1 8 1.1 even 1 trivial
726.2.h.c.239.1 8 33.8 even 10 inner
726.2.h.d.215.2 8 11.9 even 5
726.2.h.d.233.1 8 33.29 even 10
726.2.h.f.161.2 8 3.2 odd 2
726.2.h.f.239.2 8 11.8 odd 10
726.2.h.h.161.1 8 11.10 odd 2
726.2.h.h.239.1 8 33.14 odd 10
726.2.h.j.215.2 8 33.20 odd 10
726.2.h.j.233.2 8 11.7 odd 10