Properties

Label 726.2.e.d.493.1
Level $726$
Weight $2$
Character 726.493
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,1,-1,-4,-1,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 726.493
Dual form 726.2.e.d.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(0.309017 + 0.951057i) q^{6} +(-3.23607 - 2.35114i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} -1.00000 q^{10} +1.00000 q^{12} +(-1.54508 + 4.75528i) q^{13} +(-3.23607 + 2.35114i) q^{14} +(0.809017 + 0.587785i) q^{15} +(0.309017 + 0.951057i) q^{16} +(2.16312 + 6.65740i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(-0.309017 + 0.951057i) q^{20} +4.00000 q^{21} +(0.309017 - 0.951057i) q^{24} +(3.23607 - 2.35114i) q^{25} +(4.04508 + 2.93893i) q^{26} +(0.309017 + 0.951057i) q^{27} +(1.23607 + 3.80423i) q^{28} +(-5.66312 - 4.11450i) q^{29} +(0.809017 - 0.587785i) q^{30} +(-2.47214 + 7.60845i) q^{31} +1.00000 q^{32} +7.00000 q^{34} +(-1.23607 + 3.80423i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(4.04508 + 2.93893i) q^{37} +(-1.54508 - 4.75528i) q^{39} +(0.809017 + 0.587785i) q^{40} +(-8.89919 + 6.46564i) q^{41} +(1.23607 - 3.80423i) q^{42} -8.00000 q^{43} -1.00000 q^{45} +(-3.23607 + 2.35114i) q^{47} +(-0.809017 - 0.587785i) q^{48} +(2.78115 + 8.55951i) q^{49} +(-1.23607 - 3.80423i) q^{50} +(-5.66312 - 4.11450i) q^{51} +(4.04508 - 2.93893i) q^{52} +(-1.54508 + 4.75528i) q^{53} +1.00000 q^{54} +4.00000 q^{56} +(-5.66312 + 4.11450i) q^{58} +(-0.309017 - 0.951057i) q^{60} +(-0.618034 - 1.90211i) q^{61} +(6.47214 + 4.70228i) q^{62} +(-3.23607 + 2.35114i) q^{63} +(0.309017 - 0.951057i) q^{64} +5.00000 q^{65} +12.0000 q^{67} +(2.16312 - 6.65740i) q^{68} +(3.23607 + 2.35114i) q^{70} +(-4.94427 - 15.2169i) q^{71} +(0.309017 + 0.951057i) q^{72} +(4.85410 + 3.52671i) q^{73} +(4.04508 - 2.93893i) q^{74} +(-1.23607 + 3.80423i) q^{75} -5.00000 q^{78} +(1.23607 - 3.80423i) q^{79} +(0.809017 - 0.587785i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(3.39919 + 10.4616i) q^{82} +(-2.47214 - 7.60845i) q^{83} +(-3.23607 - 2.35114i) q^{84} +(5.66312 - 4.11450i) q^{85} +(-2.47214 + 7.60845i) q^{86} +7.00000 q^{87} -17.0000 q^{89} +(-0.309017 + 0.951057i) q^{90} +(16.1803 - 11.7557i) q^{91} +(-2.47214 - 7.60845i) q^{93} +(1.23607 + 3.80423i) q^{94} +(-0.809017 + 0.587785i) q^{96} +(-1.54508 + 4.75528i) q^{97} +9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} - q^{9} - 4 q^{10} + 4 q^{12} + 5 q^{13} - 4 q^{14} + q^{15} - q^{16} - 7 q^{17} - q^{18} + q^{20} + 16 q^{21} - q^{24} + 4 q^{25}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −0.309017 0.951057i −0.138197 0.425325i 0.857877 0.513855i \(-0.171783\pi\)
−0.996074 + 0.0885298i \(0.971783\pi\)
\(6\) 0.309017 + 0.951057i 0.126156 + 0.388267i
\(7\) −3.23607 2.35114i −1.22312 0.888648i −0.226764 0.973950i \(-0.572814\pi\)
−0.996355 + 0.0853021i \(0.972814\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −1.00000 −0.316228
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) −1.54508 + 4.75528i −0.428529 + 1.31888i 0.471044 + 0.882109i \(0.343877\pi\)
−0.899574 + 0.436769i \(0.856123\pi\)
\(14\) −3.23607 + 2.35114i −0.864876 + 0.628369i
\(15\) 0.809017 + 0.587785i 0.208887 + 0.151765i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 2.16312 + 6.65740i 0.524633 + 1.61466i 0.765040 + 0.643983i \(0.222719\pi\)
−0.240406 + 0.970672i \(0.577281\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(20\) −0.309017 + 0.951057i −0.0690983 + 0.212663i
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0.309017 0.951057i 0.0630778 0.194134i
\(25\) 3.23607 2.35114i 0.647214 0.470228i
\(26\) 4.04508 + 2.93893i 0.793306 + 0.576371i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 1.23607 + 3.80423i 0.233595 + 0.718931i
\(29\) −5.66312 4.11450i −1.05161 0.764043i −0.0790959 0.996867i \(-0.525203\pi\)
−0.972519 + 0.232824i \(0.925203\pi\)
\(30\) 0.809017 0.587785i 0.147706 0.107314i
\(31\) −2.47214 + 7.60845i −0.444009 + 1.36652i 0.439558 + 0.898214i \(0.355135\pi\)
−0.883567 + 0.468304i \(0.844865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.00000 1.20049
\(35\) −1.23607 + 3.80423i −0.208934 + 0.643032i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) 4.04508 + 2.93893i 0.665008 + 0.483157i 0.868350 0.495951i \(-0.165181\pi\)
−0.203343 + 0.979108i \(0.565181\pi\)
\(38\) 0 0
\(39\) −1.54508 4.75528i −0.247412 0.761455i
\(40\) 0.809017 + 0.587785i 0.127917 + 0.0929370i
\(41\) −8.89919 + 6.46564i −1.38982 + 1.00976i −0.393934 + 0.919139i \(0.628886\pi\)
−0.995885 + 0.0906244i \(0.971114\pi\)
\(42\) 1.23607 3.80423i 0.190729 0.587005i
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −3.23607 + 2.35114i −0.472029 + 0.342949i −0.798232 0.602351i \(-0.794231\pi\)
0.326202 + 0.945300i \(0.394231\pi\)
\(48\) −0.809017 0.587785i −0.116772 0.0848395i
\(49\) 2.78115 + 8.55951i 0.397308 + 1.22279i
\(50\) −1.23607 3.80423i −0.174806 0.537999i
\(51\) −5.66312 4.11450i −0.792995 0.576145i
\(52\) 4.04508 2.93893i 0.560952 0.407556i
\(53\) −1.54508 + 4.75528i −0.212234 + 0.653188i 0.787105 + 0.616819i \(0.211579\pi\)
−0.999338 + 0.0363689i \(0.988421\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) −5.66312 + 4.11450i −0.743604 + 0.540260i
\(59\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(60\) −0.309017 0.951057i −0.0398939 0.122781i
\(61\) −0.618034 1.90211i −0.0791311 0.243541i 0.903663 0.428244i \(-0.140868\pi\)
−0.982794 + 0.184703i \(0.940868\pi\)
\(62\) 6.47214 + 4.70228i 0.821962 + 0.597190i
\(63\) −3.23607 + 2.35114i −0.407706 + 0.296216i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 5.00000 0.620174
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 2.16312 6.65740i 0.262317 0.807328i
\(69\) 0 0
\(70\) 3.23607 + 2.35114i 0.386784 + 0.281015i
\(71\) −4.94427 15.2169i −0.586777 1.80591i −0.592014 0.805928i \(-0.701667\pi\)
0.00523645 0.999986i \(-0.498333\pi\)
\(72\) 0.309017 + 0.951057i 0.0364180 + 0.112083i
\(73\) 4.85410 + 3.52671i 0.568130 + 0.412770i 0.834425 0.551121i \(-0.185800\pi\)
−0.266296 + 0.963891i \(0.585800\pi\)
\(74\) 4.04508 2.93893i 0.470232 0.341643i
\(75\) −1.23607 + 3.80423i −0.142729 + 0.439274i
\(76\) 0 0
\(77\) 0 0
\(78\) −5.00000 −0.566139
\(79\) 1.23607 3.80423i 0.139069 0.428009i −0.857132 0.515097i \(-0.827756\pi\)
0.996201 + 0.0870877i \(0.0277560\pi\)
\(80\) 0.809017 0.587785i 0.0904508 0.0657164i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 3.39919 + 10.4616i 0.375377 + 1.15529i
\(83\) −2.47214 7.60845i −0.271352 0.835136i −0.990162 0.139929i \(-0.955313\pi\)
0.718809 0.695207i \(-0.244687\pi\)
\(84\) −3.23607 2.35114i −0.353084 0.256531i
\(85\) 5.66312 4.11450i 0.614251 0.446280i
\(86\) −2.47214 + 7.60845i −0.266577 + 0.820440i
\(87\) 7.00000 0.750479
\(88\) 0 0
\(89\) −17.0000 −1.80200 −0.900998 0.433823i \(-0.857164\pi\)
−0.900998 + 0.433823i \(0.857164\pi\)
\(90\) −0.309017 + 0.951057i −0.0325733 + 0.100250i
\(91\) 16.1803 11.7557i 1.69616 1.23233i
\(92\) 0 0
\(93\) −2.47214 7.60845i −0.256349 0.788960i
\(94\) 1.23607 + 3.80423i 0.127491 + 0.392376i
\(95\) 0 0
\(96\) −0.809017 + 0.587785i −0.0825700 + 0.0599906i
\(97\) −1.54508 + 4.75528i −0.156880 + 0.482826i −0.998346 0.0574829i \(-0.981693\pi\)
0.841467 + 0.540309i \(0.181693\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) −3.09017 + 9.51057i −0.307483 + 0.946337i 0.671255 + 0.741226i \(0.265755\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(102\) −5.66312 + 4.11450i −0.560732 + 0.407396i
\(103\) −3.23607 2.35114i −0.318859 0.231665i 0.416829 0.908985i \(-0.363141\pi\)
−0.735689 + 0.677320i \(0.763141\pi\)
\(104\) −1.54508 4.75528i −0.151508 0.466294i
\(105\) −1.23607 3.80423i −0.120628 0.371254i
\(106\) 4.04508 + 2.93893i 0.392893 + 0.285454i
\(107\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(108\) 0.309017 0.951057i 0.0297352 0.0915155i
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 1.23607 3.80423i 0.116797 0.359466i
\(113\) −2.42705 + 1.76336i −0.228318 + 0.165883i −0.696063 0.717981i \(-0.745067\pi\)
0.467745 + 0.883863i \(0.345067\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.16312 + 6.65740i 0.200841 + 0.618124i
\(117\) 4.04508 + 2.93893i 0.373968 + 0.271704i
\(118\) 0 0
\(119\) 8.65248 26.6296i 0.793171 2.44113i
\(120\) −1.00000 −0.0912871
\(121\) 0 0
\(122\) −2.00000 −0.181071
\(123\) 3.39919 10.4616i 0.306494 0.943293i
\(124\) 6.47214 4.70228i 0.581215 0.422277i
\(125\) −7.28115 5.29007i −0.651246 0.473158i
\(126\) 1.23607 + 3.80423i 0.110118 + 0.338907i
\(127\) −1.23607 3.80423i −0.109683 0.337570i 0.881118 0.472897i \(-0.156792\pi\)
−0.990801 + 0.135326i \(0.956792\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 6.47214 4.70228i 0.569840 0.414013i
\(130\) 1.54508 4.75528i 0.135513 0.417066i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.70820 11.4127i 0.320340 0.985905i
\(135\) 0.809017 0.587785i 0.0696291 0.0505885i
\(136\) −5.66312 4.11450i −0.485608 0.352815i
\(137\) 3.09017 + 9.51057i 0.264011 + 0.812542i 0.991920 + 0.126868i \(0.0404925\pi\)
−0.727909 + 0.685674i \(0.759507\pi\)
\(138\) 0 0
\(139\) 9.70820 + 7.05342i 0.823439 + 0.598264i 0.917696 0.397284i \(-0.130047\pi\)
−0.0942564 + 0.995548i \(0.530047\pi\)
\(140\) 3.23607 2.35114i 0.273498 0.198708i
\(141\) 1.23607 3.80423i 0.104096 0.320374i
\(142\) −16.0000 −1.34269
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −2.16312 + 6.65740i −0.179637 + 0.552867i
\(146\) 4.85410 3.52671i 0.401728 0.291873i
\(147\) −7.28115 5.29007i −0.600539 0.436317i
\(148\) −1.54508 4.75528i −0.127005 0.390882i
\(149\) −0.309017 0.951057i −0.0253157 0.0779136i 0.937600 0.347714i \(-0.113042\pi\)
−0.962916 + 0.269801i \(0.913042\pi\)
\(150\) 3.23607 + 2.35114i 0.264224 + 0.191970i
\(151\) −16.1803 + 11.7557i −1.31674 + 0.956666i −0.316771 + 0.948502i \(0.602599\pi\)
−0.999967 + 0.00816356i \(0.997401\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) −1.54508 + 4.75528i −0.123706 + 0.380727i
\(157\) 14.5623 10.5801i 1.16220 0.844387i 0.172144 0.985072i \(-0.444931\pi\)
0.990054 + 0.140685i \(0.0449305\pi\)
\(158\) −3.23607 2.35114i −0.257448 0.187047i
\(159\) −1.54508 4.75528i −0.122533 0.377118i
\(160\) −0.309017 0.951057i −0.0244299 0.0751876i
\(161\) 0 0
\(162\) −0.809017 + 0.587785i −0.0635624 + 0.0461808i
\(163\) 1.23607 3.80423i 0.0968163 0.297970i −0.890906 0.454187i \(-0.849930\pi\)
0.987723 + 0.156217i \(0.0499299\pi\)
\(164\) 11.0000 0.858956
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 3.70820 11.4127i 0.286949 0.883140i −0.698858 0.715260i \(-0.746308\pi\)
0.985808 0.167879i \(-0.0536919\pi\)
\(168\) −3.23607 + 2.35114i −0.249668 + 0.181394i
\(169\) −9.70820 7.05342i −0.746785 0.542571i
\(170\) −2.16312 6.65740i −0.165904 0.510599i
\(171\) 0 0
\(172\) 6.47214 + 4.70228i 0.493496 + 0.358546i
\(173\) 14.5623 10.5801i 1.10715 0.804393i 0.124939 0.992164i \(-0.460127\pi\)
0.982213 + 0.187772i \(0.0601265\pi\)
\(174\) 2.16312 6.65740i 0.163986 0.504696i
\(175\) −16.0000 −1.20949
\(176\) 0 0
\(177\) 0 0
\(178\) −5.25329 + 16.1680i −0.393751 + 1.21184i
\(179\) −9.70820 + 7.05342i −0.725625 + 0.527198i −0.888176 0.459503i \(-0.848028\pi\)
0.162551 + 0.986700i \(0.448028\pi\)
\(180\) 0.809017 + 0.587785i 0.0603006 + 0.0438109i
\(181\) −0.309017 0.951057i −0.0229691 0.0706915i 0.938915 0.344149i \(-0.111833\pi\)
−0.961884 + 0.273458i \(0.911833\pi\)
\(182\) −6.18034 19.0211i −0.458117 1.40994i
\(183\) 1.61803 + 1.17557i 0.119609 + 0.0869007i
\(184\) 0 0
\(185\) 1.54508 4.75528i 0.113597 0.349615i
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) 1.23607 3.80423i 0.0899107 0.276717i
\(190\) 0 0
\(191\) −3.23607 2.35114i −0.234154 0.170123i 0.464521 0.885562i \(-0.346227\pi\)
−0.698675 + 0.715439i \(0.746227\pi\)
\(192\) 0.309017 + 0.951057i 0.0223014 + 0.0686366i
\(193\) 3.39919 + 10.4616i 0.244679 + 0.753044i 0.995689 + 0.0927535i \(0.0295669\pi\)
−0.751010 + 0.660291i \(0.770433\pi\)
\(194\) 4.04508 + 2.93893i 0.290420 + 0.211003i
\(195\) −4.04508 + 2.93893i −0.289675 + 0.210461i
\(196\) 2.78115 8.55951i 0.198654 0.611393i
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.23607 + 3.80423i −0.0874032 + 0.268999i
\(201\) −9.70820 + 7.05342i −0.684764 + 0.497510i
\(202\) 8.09017 + 5.87785i 0.569222 + 0.413564i
\(203\) 8.65248 + 26.6296i 0.607285 + 1.86903i
\(204\) 2.16312 + 6.65740i 0.151449 + 0.466111i
\(205\) 8.89919 + 6.46564i 0.621546 + 0.451580i
\(206\) −3.23607 + 2.35114i −0.225468 + 0.163812i
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(212\) 4.04508 2.93893i 0.277818 0.201846i
\(213\) 12.9443 + 9.40456i 0.886927 + 0.644390i
\(214\) 0 0
\(215\) 2.47214 + 7.60845i 0.168598 + 0.518892i
\(216\) −0.809017 0.587785i −0.0550466 0.0399937i
\(217\) 25.8885 18.8091i 1.75743 1.27685i
\(218\) −0.309017 + 0.951057i −0.0209293 + 0.0644137i
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) −35.0000 −2.35435
\(222\) −1.54508 + 4.75528i −0.103699 + 0.319154i
\(223\) −16.1803 + 11.7557i −1.08352 + 0.787220i −0.978293 0.207228i \(-0.933556\pi\)
−0.105223 + 0.994449i \(0.533556\pi\)
\(224\) −3.23607 2.35114i −0.216219 0.157092i
\(225\) −1.23607 3.80423i −0.0824045 0.253615i
\(226\) 0.927051 + 2.85317i 0.0616665 + 0.189790i
\(227\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(228\) 0 0
\(229\) −1.54508 + 4.75528i −0.102102 + 0.314238i −0.989039 0.147652i \(-0.952828\pi\)
0.886937 + 0.461890i \(0.152828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.00000 0.459573
\(233\) −2.78115 + 8.55951i −0.182199 + 0.560752i −0.999889 0.0149075i \(-0.995255\pi\)
0.817689 + 0.575660i \(0.195255\pi\)
\(234\) 4.04508 2.93893i 0.264435 0.192124i
\(235\) 3.23607 + 2.35114i 0.211098 + 0.153372i
\(236\) 0 0
\(237\) 1.23607 + 3.80423i 0.0802912 + 0.247111i
\(238\) −22.6525 16.4580i −1.46834 1.06681i
\(239\) −3.23607 + 2.35114i −0.209324 + 0.152083i −0.687508 0.726177i \(-0.741295\pi\)
0.478184 + 0.878260i \(0.341295\pi\)
\(240\) −0.309017 + 0.951057i −0.0199470 + 0.0613904i
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −0.618034 + 1.90211i −0.0395656 + 0.121770i
\(245\) 7.28115 5.29007i 0.465176 0.337970i
\(246\) −8.89919 6.46564i −0.567391 0.412234i
\(247\) 0 0
\(248\) −2.47214 7.60845i −0.156981 0.483137i
\(249\) 6.47214 + 4.70228i 0.410155 + 0.297995i
\(250\) −7.28115 + 5.29007i −0.460501 + 0.334573i
\(251\) 4.94427 15.2169i 0.312080 0.960482i −0.664860 0.746968i \(-0.731509\pi\)
0.976940 0.213515i \(-0.0684911\pi\)
\(252\) 4.00000 0.251976
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) −2.16312 + 6.65740i −0.135460 + 0.416902i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −2.42705 1.76336i −0.151395 0.109995i 0.509509 0.860465i \(-0.329827\pi\)
−0.660904 + 0.750470i \(0.729827\pi\)
\(258\) −2.47214 7.60845i −0.153908 0.473682i
\(259\) −6.18034 19.0211i −0.384028 1.18192i
\(260\) −4.04508 2.93893i −0.250866 0.182264i
\(261\) −5.66312 + 4.11450i −0.350538 + 0.254681i
\(262\) −3.70820 + 11.4127i −0.229094 + 0.705078i
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 0 0
\(267\) 13.7533 9.99235i 0.841688 0.611522i
\(268\) −9.70820 7.05342i −0.593023 0.430856i
\(269\) −1.54508 4.75528i −0.0942055 0.289935i 0.892840 0.450373i \(-0.148709\pi\)
−0.987046 + 0.160439i \(0.948709\pi\)
\(270\) −0.309017 0.951057i −0.0188062 0.0578795i
\(271\) 6.47214 + 4.70228i 0.393154 + 0.285643i 0.766747 0.641950i \(-0.221874\pi\)
−0.373593 + 0.927593i \(0.621874\pi\)
\(272\) −5.66312 + 4.11450i −0.343377 + 0.249478i
\(273\) −6.18034 + 19.0211i −0.374051 + 1.15121i
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) 7.10739 21.8743i 0.427042 1.31430i −0.473984 0.880533i \(-0.657185\pi\)
0.901026 0.433766i \(-0.142815\pi\)
\(278\) 9.70820 7.05342i 0.582259 0.423036i
\(279\) 6.47214 + 4.70228i 0.387477 + 0.281518i
\(280\) −1.23607 3.80423i −0.0738692 0.227346i
\(281\) 3.09017 + 9.51057i 0.184344 + 0.567353i 0.999936 0.0112742i \(-0.00358875\pi\)
−0.815592 + 0.578627i \(0.803589\pi\)
\(282\) −3.23607 2.35114i −0.192705 0.140008i
\(283\) −3.23607 + 2.35114i −0.192364 + 0.139761i −0.679799 0.733399i \(-0.737933\pi\)
0.487434 + 0.873160i \(0.337933\pi\)
\(284\) −4.94427 + 15.2169i −0.293389 + 0.902957i
\(285\) 0 0
\(286\) 0 0
\(287\) 44.0000 2.59724
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) −25.8885 + 18.8091i −1.52286 + 1.10642i
\(290\) 5.66312 + 4.11450i 0.332550 + 0.241612i
\(291\) −1.54508 4.75528i −0.0905745 0.278760i
\(292\) −1.85410 5.70634i −0.108503 0.333938i
\(293\) −18.6074 13.5191i −1.08706 0.789792i −0.108156 0.994134i \(-0.534495\pi\)
−0.978900 + 0.204342i \(0.934495\pi\)
\(294\) −7.28115 + 5.29007i −0.424645 + 0.308523i
\(295\) 0 0
\(296\) −5.00000 −0.290619
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) 0 0
\(300\) 3.23607 2.35114i 0.186834 0.135743i
\(301\) 25.8885 + 18.8091i 1.49219 + 1.08414i
\(302\) 6.18034 + 19.0211i 0.355639 + 1.09454i
\(303\) −3.09017 9.51057i −0.177526 0.546368i
\(304\) 0 0
\(305\) −1.61803 + 1.17557i −0.0926484 + 0.0673130i
\(306\) 2.16312 6.65740i 0.123657 0.380578i
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 2.47214 7.60845i 0.140408 0.432131i
\(311\) −16.1803 + 11.7557i −0.917503 + 0.666605i −0.942901 0.333073i \(-0.891915\pi\)
0.0253983 + 0.999677i \(0.491915\pi\)
\(312\) 4.04508 + 2.93893i 0.229008 + 0.166384i
\(313\) −2.78115 8.55951i −0.157200 0.483812i 0.841177 0.540760i \(-0.181863\pi\)
−0.998377 + 0.0569477i \(0.981863\pi\)
\(314\) −5.56231 17.1190i −0.313899 0.966082i
\(315\) 3.23607 + 2.35114i 0.182332 + 0.132472i
\(316\) −3.23607 + 2.35114i −0.182043 + 0.132262i
\(317\) −0.618034 + 1.90211i −0.0347122 + 0.106833i −0.966911 0.255113i \(-0.917887\pi\)
0.932199 + 0.361946i \(0.117887\pi\)
\(318\) −5.00000 −0.280386
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) 6.18034 + 19.0211i 0.342824 + 1.05510i
\(326\) −3.23607 2.35114i −0.179229 0.130218i
\(327\) 0.809017 0.587785i 0.0447387 0.0325046i
\(328\) 3.39919 10.4616i 0.187689 0.577646i
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) −2.47214 + 7.60845i −0.135676 + 0.417568i
\(333\) 4.04508 2.93893i 0.221669 0.161052i
\(334\) −9.70820 7.05342i −0.531209 0.385946i
\(335\) −3.70820 11.4127i −0.202601 0.623541i
\(336\) 1.23607 + 3.80423i 0.0674330 + 0.207538i
\(337\) 0.809017 + 0.587785i 0.0440700 + 0.0320187i 0.609602 0.792708i \(-0.291329\pi\)
−0.565532 + 0.824726i \(0.691329\pi\)
\(338\) −9.70820 + 7.05342i −0.528057 + 0.383656i
\(339\) 0.927051 2.85317i 0.0503505 0.154963i
\(340\) −7.00000 −0.379628
\(341\) 0 0
\(342\) 0 0
\(343\) 2.47214 7.60845i 0.133483 0.410818i
\(344\) 6.47214 4.70228i 0.348954 0.253530i
\(345\) 0 0
\(346\) −5.56231 17.1190i −0.299031 0.920324i
\(347\) 7.41641 + 22.8254i 0.398134 + 1.22533i 0.926494 + 0.376309i \(0.122807\pi\)
−0.528361 + 0.849020i \(0.677193\pi\)
\(348\) −5.66312 4.11450i −0.303575 0.220560i
\(349\) −5.66312 + 4.11450i −0.303140 + 0.220244i −0.728947 0.684570i \(-0.759990\pi\)
0.425807 + 0.904814i \(0.359990\pi\)
\(350\) −4.94427 + 15.2169i −0.264282 + 0.813378i
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 27.0000 1.43706 0.718532 0.695493i \(-0.244814\pi\)
0.718532 + 0.695493i \(0.244814\pi\)
\(354\) 0 0
\(355\) −12.9443 + 9.40456i −0.687011 + 0.499142i
\(356\) 13.7533 + 9.99235i 0.728923 + 0.529593i
\(357\) 8.65248 + 26.6296i 0.457938 + 1.40939i
\(358\) 3.70820 + 11.4127i 0.195985 + 0.603179i
\(359\) −3.23607 2.35114i −0.170793 0.124088i 0.499105 0.866542i \(-0.333662\pi\)
−0.669898 + 0.742453i \(0.733662\pi\)
\(360\) 0.809017 0.587785i 0.0426389 0.0309790i
\(361\) −5.87132 + 18.0701i −0.309017 + 0.951057i
\(362\) −1.00000 −0.0525588
\(363\) 0 0
\(364\) −20.0000 −1.04828
\(365\) 1.85410 5.70634i 0.0970481 0.298683i
\(366\) 1.61803 1.17557i 0.0845760 0.0614481i
\(367\) −6.47214 4.70228i −0.337843 0.245457i 0.405908 0.913914i \(-0.366955\pi\)
−0.743751 + 0.668457i \(0.766955\pi\)
\(368\) 0 0
\(369\) 3.39919 + 10.4616i 0.176955 + 0.544610i
\(370\) −4.04508 2.93893i −0.210294 0.152788i
\(371\) 16.1803 11.7557i 0.840041 0.610326i
\(372\) −2.47214 + 7.60845i −0.128174 + 0.394480i
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 1.23607 3.80423i 0.0637453 0.196188i
\(377\) 28.3156 20.5725i 1.45833 1.05954i
\(378\) −3.23607 2.35114i −0.166445 0.120930i
\(379\) −6.18034 19.0211i −0.317463 0.977050i −0.974729 0.223391i \(-0.928287\pi\)
0.657266 0.753659i \(-0.271713\pi\)
\(380\) 0 0
\(381\) 3.23607 + 2.35114i 0.165789 + 0.120453i
\(382\) −3.23607 + 2.35114i −0.165572 + 0.120295i
\(383\) −11.1246 + 34.2380i −0.568441 + 1.74948i 0.0890579 + 0.996026i \(0.471614\pi\)
−0.657499 + 0.753455i \(0.728386\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 11.0000 0.559885
\(387\) −2.47214 + 7.60845i −0.125666 + 0.386759i
\(388\) 4.04508 2.93893i 0.205358 0.149201i
\(389\) 23.4615 + 17.0458i 1.18954 + 0.864255i 0.993216 0.116283i \(-0.0370980\pi\)
0.196329 + 0.980538i \(0.437098\pi\)
\(390\) 1.54508 + 4.75528i 0.0782384 + 0.240793i
\(391\) 0 0
\(392\) −7.28115 5.29007i −0.367754 0.267189i
\(393\) 9.70820 7.05342i 0.489714 0.355798i
\(394\) −2.78115 + 8.55951i −0.140112 + 0.431222i
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) −21.0000 −1.05396 −0.526980 0.849878i \(-0.676676\pi\)
−0.526980 + 0.849878i \(0.676676\pi\)
\(398\) −4.94427 + 15.2169i −0.247834 + 0.762754i
\(399\) 0 0
\(400\) 3.23607 + 2.35114i 0.161803 + 0.117557i
\(401\) 4.63525 + 14.2658i 0.231474 + 0.712402i 0.997570 + 0.0696764i \(0.0221967\pi\)
−0.766096 + 0.642726i \(0.777803\pi\)
\(402\) 3.70820 + 11.4127i 0.184948 + 0.569213i
\(403\) −32.3607 23.5114i −1.61200 1.17119i
\(404\) 8.09017 5.87785i 0.402501 0.292434i
\(405\) −0.309017 + 0.951057i −0.0153552 + 0.0472584i
\(406\) 28.0000 1.38962
\(407\) 0 0
\(408\) 7.00000 0.346552
\(409\) −0.309017 + 0.951057i −0.0152799 + 0.0470267i −0.958406 0.285409i \(-0.907871\pi\)
0.943126 + 0.332436i \(0.107871\pi\)
\(410\) 8.89919 6.46564i 0.439500 0.319315i
\(411\) −8.09017 5.87785i −0.399059 0.289933i
\(412\) 1.23607 + 3.80423i 0.0608967 + 0.187421i
\(413\) 0 0
\(414\) 0 0
\(415\) −6.47214 + 4.70228i −0.317705 + 0.230826i
\(416\) −1.54508 + 4.75528i −0.0757540 + 0.233147i
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) −1.23607 + 3.80423i −0.0603139 + 0.185627i
\(421\) −12.1353 + 8.81678i −0.591436 + 0.429704i −0.842829 0.538182i \(-0.819111\pi\)
0.251393 + 0.967885i \(0.419111\pi\)
\(422\) 0 0
\(423\) 1.23607 + 3.80423i 0.0600997 + 0.184968i
\(424\) −1.54508 4.75528i −0.0750360 0.230937i
\(425\) 22.6525 + 16.4580i 1.09881 + 0.798330i
\(426\) 12.9443 9.40456i 0.627152 0.455653i
\(427\) −2.47214 + 7.60845i −0.119635 + 0.368199i
\(428\) 0 0
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 6.18034 19.0211i 0.297696 0.916216i −0.684606 0.728913i \(-0.740026\pi\)
0.982302 0.187302i \(-0.0599743\pi\)
\(432\) −0.809017 + 0.587785i −0.0389238 + 0.0282798i
\(433\) 16.9894 + 12.3435i 0.816456 + 0.593190i 0.915695 0.401873i \(-0.131641\pi\)
−0.0992389 + 0.995064i \(0.531641\pi\)
\(434\) −9.88854 30.4338i −0.474665 1.46087i
\(435\) −2.16312 6.65740i −0.103714 0.319198i
\(436\) 0.809017 + 0.587785i 0.0387449 + 0.0281498i
\(437\) 0 0
\(438\) −1.85410 + 5.70634i −0.0885924 + 0.272659i
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) −10.8156 + 33.2870i −0.514445 + 1.58330i
\(443\) −29.1246 + 21.1603i −1.38375 + 1.00535i −0.387234 + 0.921982i \(0.626569\pi\)
−0.996518 + 0.0833731i \(0.973431\pi\)
\(444\) 4.04508 + 2.93893i 0.191971 + 0.139475i
\(445\) 5.25329 + 16.1680i 0.249030 + 0.766435i
\(446\) 6.18034 + 19.0211i 0.292648 + 0.900677i
\(447\) 0.809017 + 0.587785i 0.0382652 + 0.0278013i
\(448\) −3.23607 + 2.35114i −0.152890 + 0.111081i
\(449\) 4.63525 14.2658i 0.218751 0.673247i −0.780115 0.625636i \(-0.784839\pi\)
0.998866 0.0476105i \(-0.0151606\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) 3.00000 0.141108
\(453\) 6.18034 19.0211i 0.290378 0.893691i
\(454\) 0 0
\(455\) −16.1803 11.7557i −0.758546 0.551116i
\(456\) 0 0
\(457\) −5.25329 16.1680i −0.245738 0.756305i −0.995514 0.0946131i \(-0.969839\pi\)
0.749776 0.661692i \(-0.230161\pi\)
\(458\) 4.04508 + 2.93893i 0.189014 + 0.137327i
\(459\) −5.66312 + 4.11450i −0.264332 + 0.192048i
\(460\) 0 0
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 2.16312 6.65740i 0.100420 0.309062i
\(465\) −6.47214 + 4.70228i −0.300138 + 0.218063i
\(466\) 7.28115 + 5.29007i 0.337293 + 0.245058i
\(467\) 8.65248 + 26.6296i 0.400389 + 1.23227i 0.924685 + 0.380734i \(0.124329\pi\)
−0.524296 + 0.851536i \(0.675671\pi\)
\(468\) −1.54508 4.75528i −0.0714216 0.219813i
\(469\) −38.8328 28.2137i −1.79313 1.30279i
\(470\) 3.23607 2.35114i 0.149269 0.108450i
\(471\) −5.56231 + 17.1190i −0.256298 + 0.788803i
\(472\) 0 0
\(473\) 0 0
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) −22.6525 + 16.4580i −1.03827 + 0.754351i
\(477\) 4.04508 + 2.93893i 0.185212 + 0.134564i
\(478\) 1.23607 + 3.80423i 0.0565364 + 0.174001i
\(479\) 1.23607 + 3.80423i 0.0564774 + 0.173820i 0.975316 0.220814i \(-0.0708715\pi\)
−0.918838 + 0.394634i \(0.870871\pi\)
\(480\) 0.809017 + 0.587785i 0.0369264 + 0.0268286i
\(481\) −20.2254 + 14.6946i −0.922200 + 0.670018i
\(482\) 5.56231 17.1190i 0.253356 0.779750i
\(483\) 0 0
\(484\) 0 0
\(485\) 5.00000 0.227038
\(486\) 0.309017 0.951057i 0.0140173 0.0431408i
\(487\) 16.1803 11.7557i 0.733201 0.532702i −0.157373 0.987539i \(-0.550303\pi\)
0.890575 + 0.454837i \(0.150303\pi\)
\(488\) 1.61803 + 1.17557i 0.0732450 + 0.0532156i
\(489\) 1.23607 + 3.80423i 0.0558969 + 0.172033i
\(490\) −2.78115 8.55951i −0.125640 0.386679i
\(491\) 9.70820 + 7.05342i 0.438125 + 0.318317i 0.784890 0.619636i \(-0.212720\pi\)
−0.346764 + 0.937952i \(0.612720\pi\)
\(492\) −8.89919 + 6.46564i −0.401206 + 0.291493i
\(493\) 15.1418 46.6018i 0.681954 2.09884i
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −19.7771 + 60.8676i −0.887124 + 2.73029i
\(498\) 6.47214 4.70228i 0.290023 0.210714i
\(499\) −32.3607 23.5114i −1.44866 1.05252i −0.986141 0.165907i \(-0.946945\pi\)
−0.462522 0.886608i \(-0.653055\pi\)
\(500\) 2.78115 + 8.55951i 0.124377 + 0.382793i
\(501\) 3.70820 + 11.4127i 0.165670 + 0.509881i
\(502\) −12.9443 9.40456i −0.577731 0.419746i
\(503\) −12.9443 + 9.40456i −0.577157 + 0.419329i −0.837698 0.546134i \(-0.816099\pi\)
0.260541 + 0.965463i \(0.416099\pi\)
\(504\) 1.23607 3.80423i 0.0550588 0.169454i
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) −1.23607 + 3.80423i −0.0548416 + 0.168785i
\(509\) 1.61803 1.17557i 0.0717181 0.0521062i −0.551349 0.834275i \(-0.685887\pi\)
0.623067 + 0.782169i \(0.285887\pi\)
\(510\) 5.66312 + 4.11450i 0.250767 + 0.182193i
\(511\) −7.41641 22.8254i −0.328083 1.00973i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) −2.42705 + 1.76336i −0.107053 + 0.0777783i
\(515\) −1.23607 + 3.80423i −0.0544677 + 0.167634i
\(516\) −8.00000 −0.352180
\(517\) 0 0
\(518\) −20.0000 −0.878750
\(519\) −5.56231 + 17.1190i −0.244158 + 0.751441i
\(520\) −4.04508 + 2.93893i −0.177389 + 0.128880i
\(521\) 4.85410 + 3.52671i 0.212662 + 0.154508i 0.689017 0.724745i \(-0.258042\pi\)
−0.476355 + 0.879253i \(0.658042\pi\)
\(522\) 2.16312 + 6.65740i 0.0946771 + 0.291386i
\(523\) −4.94427 15.2169i −0.216198 0.665389i −0.999066 0.0432015i \(-0.986244\pi\)
0.782868 0.622187i \(-0.213756\pi\)
\(524\) 9.70820 + 7.05342i 0.424105 + 0.308130i
\(525\) 12.9443 9.40456i 0.564934 0.410449i
\(526\) 2.47214 7.60845i 0.107790 0.331744i
\(527\) −56.0000 −2.43940
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 1.54508 4.75528i 0.0671142 0.206556i
\(531\) 0 0
\(532\) 0 0
\(533\) −16.9959 52.3081i −0.736176 2.26572i
\(534\) −5.25329 16.1680i −0.227332 0.699656i
\(535\) 0 0
\(536\) −9.70820 + 7.05342i −0.419331 + 0.304661i
\(537\) 3.70820 11.4127i 0.160021 0.492493i
\(538\) −5.00000 −0.215565
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) 9.27051 28.5317i 0.398570 1.22667i −0.527576 0.849508i \(-0.676899\pi\)
0.926146 0.377165i \(-0.123101\pi\)
\(542\) 6.47214 4.70228i 0.278002 0.201980i
\(543\) 0.809017 + 0.587785i 0.0347182 + 0.0252243i
\(544\) 2.16312 + 6.65740i 0.0927430 + 0.285433i
\(545\) 0.309017 + 0.951057i 0.0132368 + 0.0407388i
\(546\) 16.1803 + 11.7557i 0.692455 + 0.503098i
\(547\) −3.23607 + 2.35114i −0.138364 + 0.100528i −0.654814 0.755790i \(-0.727253\pi\)
0.516450 + 0.856317i \(0.327253\pi\)
\(548\) 3.09017 9.51057i 0.132006 0.406271i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −12.9443 + 9.40456i −0.550446 + 0.399923i
\(554\) −18.6074 13.5191i −0.790552 0.574370i
\(555\) 1.54508 + 4.75528i 0.0655852 + 0.201851i
\(556\) −3.70820 11.4127i −0.157263 0.484005i
\(557\) −11.3262 8.22899i −0.479908 0.348674i 0.321382 0.946950i \(-0.395853\pi\)
−0.801290 + 0.598276i \(0.795853\pi\)
\(558\) 6.47214 4.70228i 0.273987 0.199063i
\(559\) 12.3607 38.0423i 0.522801 1.60902i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 11.1246 34.2380i 0.468846 1.44296i −0.385233 0.922819i \(-0.625879\pi\)
0.854080 0.520142i \(-0.174121\pi\)
\(564\) −3.23607 + 2.35114i −0.136263 + 0.0990009i
\(565\) 2.42705 + 1.76336i 0.102107 + 0.0741849i
\(566\) 1.23607 + 3.80423i 0.0519558 + 0.159904i
\(567\) 1.23607 + 3.80423i 0.0519100 + 0.159762i
\(568\) 12.9443 + 9.40456i 0.543130 + 0.394607i
\(569\) −21.0344 + 15.2824i −0.881810 + 0.640672i −0.933730 0.357979i \(-0.883466\pi\)
0.0519200 + 0.998651i \(0.483466\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) 13.5967 41.8465i 0.567517 1.74664i
\(575\) 0 0
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) 2.16312 + 6.65740i 0.0900518 + 0.277151i 0.985933 0.167144i \(-0.0534544\pi\)
−0.895881 + 0.444295i \(0.853454\pi\)
\(578\) 9.88854 + 30.4338i 0.411309 + 1.26588i
\(579\) −8.89919 6.46564i −0.369838 0.268703i
\(580\) 5.66312 4.11450i 0.235148 0.170845i
\(581\) −9.88854 + 30.4338i −0.410246 + 1.26261i
\(582\) −5.00000 −0.207257
\(583\) 0 0
\(584\) −6.00000 −0.248282
\(585\) 1.54508 4.75528i 0.0638814 0.196607i
\(586\) −18.6074 + 13.5191i −0.768664 + 0.558467i
\(587\) 22.6525 + 16.4580i 0.934968 + 0.679294i 0.947204 0.320631i \(-0.103895\pi\)
−0.0122363 + 0.999925i \(0.503895\pi\)
\(588\) 2.78115 + 8.55951i 0.114693 + 0.352988i
\(589\) 0 0
\(590\) 0 0
\(591\) 7.28115 5.29007i 0.299507 0.217604i
\(592\) −1.54508 + 4.75528i −0.0635026 + 0.195441i
\(593\) 35.0000 1.43728 0.718639 0.695383i \(-0.244765\pi\)
0.718639 + 0.695383i \(0.244765\pi\)
\(594\) 0 0
\(595\) −28.0000 −1.14789
\(596\) −0.309017 + 0.951057i −0.0126578 + 0.0389568i
\(597\) 12.9443 9.40456i 0.529774 0.384903i
\(598\) 0 0
\(599\) 11.1246 + 34.2380i 0.454539 + 1.39893i 0.871675 + 0.490084i \(0.163034\pi\)
−0.417136 + 0.908844i \(0.636966\pi\)
\(600\) −1.23607 3.80423i −0.0504623 0.155307i
\(601\) 36.4058 + 26.4503i 1.48502 + 1.07893i 0.975895 + 0.218240i \(0.0700317\pi\)
0.509127 + 0.860691i \(0.329968\pi\)
\(602\) 25.8885 18.8091i 1.05514 0.766603i
\(603\) 3.70820 11.4127i 0.151010 0.464760i
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) −10.0000 −0.406222
\(607\) −12.3607 + 38.0423i −0.501705 + 1.54409i 0.304537 + 0.952501i \(0.401498\pi\)
−0.806241 + 0.591587i \(0.798502\pi\)
\(608\) 0 0
\(609\) −22.6525 16.4580i −0.917925 0.666911i
\(610\) 0.618034 + 1.90211i 0.0250235 + 0.0770143i
\(611\) −6.18034 19.0211i −0.250030 0.769513i
\(612\) −5.66312 4.11450i −0.228918 0.166319i
\(613\) 20.2254 14.6946i 0.816897 0.593511i −0.0989248 0.995095i \(-0.531540\pi\)
0.915822 + 0.401584i \(0.131540\pi\)
\(614\) 2.47214 7.60845i 0.0997673 0.307052i
\(615\) −11.0000 −0.443563
\(616\) 0 0
\(617\) −25.0000 −1.00646 −0.503231 0.864152i \(-0.667856\pi\)
−0.503231 + 0.864152i \(0.667856\pi\)
\(618\) 1.23607 3.80423i 0.0497219 0.153028i
\(619\) −3.23607 + 2.35114i −0.130069 + 0.0945003i −0.650917 0.759149i \(-0.725616\pi\)
0.520849 + 0.853649i \(0.325616\pi\)
\(620\) −6.47214 4.70228i −0.259927 0.188848i
\(621\) 0 0
\(622\) 6.18034 + 19.0211i 0.247809 + 0.762678i
\(623\) 55.0132 + 39.9694i 2.20406 + 1.60134i
\(624\) 4.04508 2.93893i 0.161933 0.117651i
\(625\) 3.39919 10.4616i 0.135967 0.418465i
\(626\) −9.00000 −0.359712
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) −10.8156 + 33.2870i −0.431246 + 1.32724i
\(630\) 3.23607 2.35114i 0.128928 0.0936717i
\(631\) 19.4164 + 14.1068i 0.772955 + 0.561585i 0.902856 0.429942i \(-0.141466\pi\)
−0.129901 + 0.991527i \(0.541466\pi\)
\(632\) 1.23607 + 3.80423i 0.0491681 + 0.151324i
\(633\) 0 0
\(634\) 1.61803 + 1.17557i 0.0642603 + 0.0466879i
\(635\) −3.23607 + 2.35114i −0.128419 + 0.0933022i
\(636\) −1.54508 + 4.75528i −0.0612666 + 0.188559i
\(637\) −45.0000 −1.78296
\(638\) 0 0
\(639\) −16.0000 −0.632950
\(640\) −0.309017 + 0.951057i −0.0122150 + 0.0375938i
\(641\) 26.6976 19.3969i 1.05449 0.766132i 0.0814291 0.996679i \(-0.474052\pi\)
0.973061 + 0.230547i \(0.0740516\pi\)
\(642\) 0 0
\(643\) −4.94427 15.2169i −0.194983 0.600096i −0.999977 0.00681282i \(-0.997831\pi\)
0.804994 0.593283i \(-0.202169\pi\)
\(644\) 0 0
\(645\) −6.47214 4.70228i −0.254840 0.185152i
\(646\) 0 0
\(647\) −1.23607 + 3.80423i −0.0485948 + 0.149560i −0.972409 0.233281i \(-0.925054\pi\)
0.923815 + 0.382840i \(0.125054\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 20.0000 0.784465
\(651\) −9.88854 + 30.4338i −0.387563 + 1.19279i
\(652\) −3.23607 + 2.35114i −0.126734 + 0.0920778i
\(653\) −24.2705 17.6336i −0.949778 0.690054i 0.000976014 1.00000i \(-0.499689\pi\)
−0.950754 + 0.309945i \(0.899689\pi\)
\(654\) −0.309017 0.951057i −0.0120835 0.0371893i
\(655\) 3.70820 + 11.4127i 0.144892 + 0.445930i
\(656\) −8.89919 6.46564i −0.347455 0.252441i
\(657\) 4.85410 3.52671i 0.189377 0.137590i
\(658\) 4.94427 15.2169i 0.192748 0.593217i
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) −9.00000 −0.350059 −0.175030 0.984563i \(-0.556002\pi\)
−0.175030 + 0.984563i \(0.556002\pi\)
\(662\) 9.88854 30.4338i 0.384329 1.18284i
\(663\) 28.3156 20.5725i 1.09969 0.798969i
\(664\) 6.47214 + 4.70228i 0.251168 + 0.182484i
\(665\) 0 0
\(666\) −1.54508 4.75528i −0.0598708 0.184263i
\(667\) 0 0
\(668\) −9.70820 + 7.05342i −0.375622 + 0.272905i
\(669\) 6.18034 19.0211i 0.238946 0.735399i
\(670\) −12.0000 −0.463600
\(671\) 0 0
\(672\) 4.00000 0.154303
\(673\) 0.618034 1.90211i 0.0238235 0.0733211i −0.938438 0.345448i \(-0.887727\pi\)
0.962261 + 0.272127i \(0.0877270\pi\)
\(674\) 0.809017 0.587785i 0.0311622 0.0226406i
\(675\) 3.23607 + 2.35114i 0.124556 + 0.0904955i
\(676\) 3.70820 + 11.4127i 0.142623 + 0.438949i
\(677\) −7.72542 23.7764i −0.296912 0.913802i −0.982572 0.185880i \(-0.940486\pi\)
0.685660 0.727922i \(-0.259514\pi\)
\(678\) −2.42705 1.76336i −0.0932103 0.0677213i
\(679\) 16.1803 11.7557i 0.620944 0.451143i
\(680\) −2.16312 + 6.65740i −0.0829518 + 0.255299i
\(681\) 0 0
\(682\) 0 0
\(683\) −52.0000 −1.98972 −0.994862 0.101237i \(-0.967720\pi\)
−0.994862 + 0.101237i \(0.967720\pi\)
\(684\) 0 0
\(685\) 8.09017 5.87785i 0.309110 0.224581i
\(686\) −6.47214 4.70228i −0.247107 0.179534i
\(687\) −1.54508 4.75528i −0.0589487 0.181425i
\(688\) −2.47214 7.60845i −0.0942493 0.290070i
\(689\) −20.2254 14.6946i −0.770527 0.559821i
\(690\) 0 0
\(691\) 1.23607 3.80423i 0.0470222 0.144720i −0.924789 0.380481i \(-0.875758\pi\)
0.971811 + 0.235762i \(0.0757584\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 3.70820 11.4127i 0.140660 0.432908i
\(696\) −5.66312 + 4.11450i −0.214660 + 0.155960i
\(697\) −62.2943 45.2595i −2.35957 1.71432i
\(698\) 2.16312 + 6.65740i 0.0818753 + 0.251986i
\(699\) −2.78115 8.55951i −0.105193 0.323750i
\(700\) 12.9443 + 9.40456i 0.489247 + 0.355459i
\(701\) 26.6976 19.3969i 1.00835 0.732611i 0.0444900 0.999010i \(-0.485834\pi\)
0.963863 + 0.266399i \(0.0858337\pi\)
\(702\) −1.54508 + 4.75528i −0.0583155 + 0.179477i
\(703\) 0 0
\(704\) 0 0
\(705\) −4.00000 −0.150649
\(706\) 8.34346 25.6785i 0.314010 0.966424i
\(707\) 32.3607 23.5114i 1.21705 0.884238i
\(708\) 0 0
\(709\) −8.03444 24.7275i −0.301740 0.928660i −0.980874 0.194645i \(-0.937644\pi\)
0.679134 0.734014i \(-0.262356\pi\)
\(710\) 4.94427 + 15.2169i 0.185555 + 0.571080i
\(711\) −3.23607 2.35114i −0.121362 0.0881747i
\(712\) 13.7533 9.99235i 0.515426 0.374479i
\(713\) 0 0
\(714\) 28.0000 1.04787
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 1.23607 3.80423i 0.0461618 0.142071i
\(718\) −3.23607 + 2.35114i −0.120769 + 0.0877438i
\(719\) −3.23607 2.35114i −0.120685 0.0876828i 0.525805 0.850605i \(-0.323764\pi\)
−0.646490 + 0.762922i \(0.723764\pi\)
\(720\) −0.309017 0.951057i −0.0115164 0.0354438i
\(721\) 4.94427 + 15.2169i 0.184134 + 0.566707i
\(722\) 15.3713 + 11.1679i 0.572061 + 0.415627i
\(723\) −14.5623 + 10.5801i −0.541578 + 0.393479i
\(724\) −0.309017 + 0.951057i −0.0114845 + 0.0353457i
\(725\) −28.0000 −1.03989
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) −6.18034 + 19.0211i −0.229059 + 0.704970i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −4.85410 3.52671i −0.179658 0.130529i
\(731\) −17.3050 53.2592i −0.640047 1.96986i
\(732\) −0.618034 1.90211i −0.0228432 0.0703041i
\(733\) 13.7533 + 9.99235i 0.507989 + 0.369076i 0.812060 0.583574i \(-0.198346\pi\)
−0.304071 + 0.952649i \(0.598346\pi\)
\(734\) −6.47214 + 4.70228i −0.238891 + 0.173564i
\(735\) −2.78115 + 8.55951i −0.102584 + 0.315722i
\(736\) 0 0
\(737\) 0 0
\(738\) 11.0000 0.404916
\(739\) 6.18034 19.0211i 0.227347 0.699704i −0.770697 0.637201i \(-0.780092\pi\)
0.998045 0.0625022i \(-0.0199080\pi\)
\(740\) −4.04508 + 2.93893i −0.148700 + 0.108037i
\(741\) 0 0
\(742\) −6.18034 19.0211i −0.226887 0.698288i
\(743\) −4.94427 15.2169i −0.181388 0.558254i 0.818480 0.574535i \(-0.194817\pi\)
−0.999867 + 0.0162814i \(0.994817\pi\)
\(744\) 6.47214 + 4.70228i 0.237280 + 0.172394i
\(745\) −0.809017 + 0.587785i −0.0296401 + 0.0215348i
\(746\) 6.79837 20.9232i 0.248906 0.766054i
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) 2.78115 8.55951i 0.101553 0.312549i
\(751\) 25.8885 18.8091i 0.944686 0.686355i −0.00485778 0.999988i \(-0.501546\pi\)
0.949544 + 0.313633i \(0.101546\pi\)
\(752\) −3.23607 2.35114i −0.118007 0.0857373i
\(753\) 4.94427 + 15.2169i 0.180179 + 0.554535i
\(754\) −10.8156 33.2870i −0.393881 1.21224i
\(755\) 16.1803 + 11.7557i 0.588863 + 0.427834i
\(756\) −3.23607 + 2.35114i −0.117695 + 0.0855102i
\(757\) −10.1976 + 31.3849i −0.370637 + 1.14070i 0.575739 + 0.817634i \(0.304714\pi\)
−0.946376 + 0.323069i \(0.895286\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) 13.2877 40.8954i 0.481680 1.48246i −0.355053 0.934846i \(-0.615537\pi\)
0.836732 0.547612i \(-0.184463\pi\)
\(762\) 3.23607 2.35114i 0.117230 0.0851729i
\(763\) 3.23607 + 2.35114i 0.117154 + 0.0851170i
\(764\) 1.23607 + 3.80423i 0.0447194 + 0.137632i
\(765\) −2.16312 6.65740i −0.0782077 0.240699i
\(766\) 29.1246 + 21.1603i 1.05231 + 0.764552i
\(767\) 0 0
\(768\) 0.309017 0.951057i 0.0111507 0.0343183i
\(769\) 19.0000 0.685158 0.342579 0.939489i \(-0.388700\pi\)
0.342579 + 0.939489i \(0.388700\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 3.39919 10.4616i 0.122339 0.376522i
\(773\) 21.0344 15.2824i 0.756556 0.549670i −0.141296 0.989967i \(-0.545127\pi\)
0.897852 + 0.440297i \(0.145127\pi\)
\(774\) 6.47214 + 4.70228i 0.232636 + 0.169020i
\(775\) 9.88854 + 30.4338i 0.355207 + 1.09321i
\(776\) −1.54508 4.75528i −0.0554653 0.170705i
\(777\) 16.1803 + 11.7557i 0.580466 + 0.421734i
\(778\) 23.4615 17.0458i 0.841135 0.611121i
\(779\) 0 0
\(780\) 5.00000 0.179029
\(781\) 0 0
\(782\) 0 0
\(783\) 2.16312 6.65740i 0.0773036 0.237916i
\(784\) −7.28115 + 5.29007i −0.260041 + 0.188931i
\(785\) −14.5623 10.5801i −0.519751 0.377621i
\(786\) −3.70820 11.4127i −0.132267 0.407077i
\(787\) −8.65248 26.6296i −0.308427 0.949242i −0.978376 0.206835i \(-0.933684\pi\)
0.669948 0.742408i \(-0.266316\pi\)
\(788\) 7.28115 + 5.29007i 0.259380 + 0.188451i
\(789\) −6.47214 + 4.70228i −0.230414 + 0.167406i
\(790\) −1.23607 + 3.80423i −0.0439773 + 0.135348i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) −6.48936 + 19.9722i −0.230299 + 0.708786i
\(795\) −4.04508 + 2.93893i −0.143464 + 0.104233i
\(796\) 12.9443 + 9.40456i 0.458798 + 0.333336i
\(797\) −0.618034 1.90211i −0.0218919 0.0673763i 0.939514 0.342511i \(-0.111277\pi\)
−0.961406 + 0.275135i \(0.911277\pi\)
\(798\) 0 0
\(799\) −22.6525 16.4580i −0.801387 0.582242i
\(800\) 3.23607 2.35114i 0.114412 0.0831254i
\(801\) −5.25329 + 16.1680i −0.185616 + 0.571267i
\(802\) 15.0000 0.529668
\(803\) 0 0
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) −32.3607 + 23.5114i −1.13986 + 0.828154i
\(807\) 4.04508 + 2.93893i 0.142394 + 0.103455i
\(808\) −3.09017 9.51057i −0.108712 0.334581i
\(809\) −11.7426 36.1401i −0.412849 1.27062i −0.914160 0.405353i \(-0.867149\pi\)
0.501311 0.865267i \(-0.332851\pi\)
\(810\) 0.809017 + 0.587785i 0.0284260 + 0.0206527i
\(811\) −19.4164 + 14.1068i −0.681802 + 0.495358i −0.873955 0.486007i \(-0.838453\pi\)
0.192153 + 0.981365i \(0.438453\pi\)
\(812\) 8.65248 26.6296i 0.303642 0.934515i
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 2.16312 6.65740i 0.0757243 0.233055i
\(817\) 0 0
\(818\) 0.809017 + 0.587785i 0.0282866 + 0.0205514i
\(819\) −6.18034 19.0211i −0.215959 0.664652i
\(820\) −3.39919 10.4616i −0.118705 0.365336i
\(821\) −17.7984 12.9313i −0.621168 0.451305i 0.232162 0.972677i \(-0.425420\pi\)
−0.853329 + 0.521373i \(0.825420\pi\)
\(822\) −8.09017 + 5.87785i −0.282177 + 0.205014i
\(823\) −7.41641 + 22.8254i −0.258520 + 0.795642i 0.734596 + 0.678505i \(0.237372\pi\)
−0.993116 + 0.117137i \(0.962628\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 3.70820 11.4127i 0.128947 0.396858i −0.865653 0.500645i \(-0.833096\pi\)
0.994600 + 0.103787i \(0.0330962\pi\)
\(828\) 0 0
\(829\) 16.9894 + 12.3435i 0.590065 + 0.428707i 0.842339 0.538949i \(-0.181178\pi\)
−0.252274 + 0.967656i \(0.581178\pi\)
\(830\) 2.47214 + 7.60845i 0.0858091 + 0.264093i
\(831\) 7.10739 + 21.8743i 0.246553 + 0.758811i
\(832\) 4.04508 + 2.93893i 0.140238 + 0.101889i
\(833\) −50.9681 + 37.0305i −1.76594 + 1.28303i
\(834\) −3.70820 + 11.4127i −0.128405 + 0.395189i
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 3.23607 + 2.35114i 0.111655 + 0.0811221i
\(841\) 6.18034 + 19.0211i 0.213115 + 0.655901i
\(842\) 4.63525 + 14.2658i 0.159741 + 0.491634i
\(843\) −8.09017 5.87785i −0.278640 0.202444i
\(844\) 0 0
\(845\) −3.70820 + 11.4127i −0.127566 + 0.392608i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) −5.00000 −0.171701
\(849\) 1.23607 3.80423i 0.0424217 0.130561i
\(850\) 22.6525 16.4580i 0.776974 0.564504i
\(851\) 0 0
\(852\) −4.94427 15.2169i −0.169388 0.521323i
\(853\) −6.48936 19.9722i −0.222191 0.683835i −0.998565 0.0535612i \(-0.982943\pi\)
0.776373 0.630273i \(-0.217057\pi\)
\(854\) 6.47214 + 4.70228i 0.221472 + 0.160909i
\(855\) 0 0
\(856\) 0 0
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) 2.47214 7.60845i 0.0842991 0.259446i
\(861\) −35.5967 + 25.8626i −1.21313 + 0.881393i
\(862\) −16.1803 11.7557i −0.551105 0.400401i
\(863\) 3.70820 + 11.4127i 0.126229 + 0.388492i 0.994123 0.108257i \(-0.0345269\pi\)
−0.867894 + 0.496749i \(0.834527\pi\)
\(864\) 0.309017 + 0.951057i 0.0105130 + 0.0323556i
\(865\) −14.5623 10.5801i −0.495133 0.359735i
\(866\) 16.9894 12.3435i 0.577322 0.419449i
\(867\) 9.88854 30.4338i 0.335833 1.03359i
\(868\) −32.0000 −1.08615
\(869\) 0 0
\(870\) −7.00000 −0.237322
\(871\) −18.5410 + 57.0634i −0.628238 + 1.93352i
\(872\) 0.809017 0.587785i 0.0273968 0.0199049i
\(873\) 4.04508 + 2.93893i 0.136905 + 0.0994676i
\(874\) 0 0
\(875\) 11.1246 + 34.2380i 0.376081 + 1.15746i
\(876\) 4.85410 + 3.52671i 0.164005 + 0.119157i
\(877\) 4.04508 2.93893i 0.136593 0.0992405i −0.517391 0.855749i \(-0.673097\pi\)
0.653983 + 0.756509i \(0.273097\pi\)
\(878\) 4.94427 15.2169i 0.166861 0.513546i
\(879\) 23.0000 0.775771
\(880\) 0 0
\(881\) 19.0000 0.640126 0.320063 0.947396i \(-0.396296\pi\)
0.320063 + 0.947396i \(0.396296\pi\)
\(882\) 2.78115 8.55951i 0.0936463 0.288214i
\(883\) 22.6525 16.4580i 0.762317 0.553855i −0.137303 0.990529i \(-0.543844\pi\)
0.899620 + 0.436674i \(0.143844\pi\)
\(884\) 28.3156 + 20.5725i 0.952357 + 0.691928i
\(885\) 0 0
\(886\) 11.1246 + 34.2380i 0.373739 + 1.15025i
\(887\) −9.70820 7.05342i −0.325970 0.236831i 0.412749 0.910845i \(-0.364569\pi\)
−0.738718 + 0.674014i \(0.764569\pi\)
\(888\) 4.04508 2.93893i 0.135744 0.0986239i
\(889\) −4.94427 + 15.2169i −0.165826 + 0.510359i
\(890\) 17.0000 0.569841
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) 0.809017 0.587785i 0.0270576 0.0196585i
\(895\) 9.70820 + 7.05342i 0.324509 + 0.235770i
\(896\) 1.23607 + 3.80423i 0.0412941 + 0.127090i
\(897\) 0 0
\(898\) −12.1353 8.81678i −0.404959 0.294220i
\(899\) 45.3050 32.9160i 1.51100 1.09781i
\(900\) −1.23607 + 3.80423i −0.0412023 + 0.126808i
\(901\) −35.0000 −1.16602
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) 0.927051 2.85317i 0.0308333 0.0948950i
\(905\) −0.809017 + 0.587785i −0.0268926 + 0.0195386i
\(906\) −16.1803 11.7557i −0.537556 0.390557i
\(907\) 14.8328 + 45.6507i 0.492516 + 1.51581i 0.820793 + 0.571226i \(0.193532\pi\)
−0.328277 + 0.944581i \(0.606468\pi\)
\(908\) 0 0
\(909\) 8.09017 + 5.87785i 0.268334 + 0.194956i
\(910\) −16.1803 + 11.7557i −0.536373 + 0.389698i
\(911\) 6.18034 19.0211i 0.204764 0.630198i −0.794959 0.606663i \(-0.792508\pi\)
0.999723 0.0235353i \(-0.00749220\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −17.0000 −0.562310
\(915\) 0.618034 1.90211i 0.0204316 0.0628819i
\(916\) 4.04508 2.93893i 0.133653 0.0971049i
\(917\) 38.8328 + 28.2137i 1.28237 + 0.931698i
\(918\) 2.16312 + 6.65740i 0.0713936 + 0.219727i
\(919\) 6.18034 + 19.0211i 0.203871 + 0.627449i 0.999758 + 0.0220044i \(0.00700477\pi\)
−0.795887 + 0.605445i \(0.792995\pi\)
\(920\) 0 0
\(921\) −6.47214 + 4.70228i −0.213264 + 0.154945i
\(922\) −10.1976 + 31.3849i −0.335839 + 1.03361i
\(923\) 80.0000 2.63323
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) −2.47214 + 7.60845i −0.0812394 + 0.250029i
\(927\) −3.23607 + 2.35114i −0.106286 + 0.0772216i
\(928\) −5.66312 4.11450i −0.185901 0.135065i
\(929\) −2.78115 8.55951i −0.0912467 0.280828i 0.895011 0.446045i \(-0.147168\pi\)
−0.986257 + 0.165216i \(0.947168\pi\)
\(930\) 2.47214 + 7.60845i 0.0810645 + 0.249491i
\(931\) 0 0
\(932\) 7.28115 5.29007i 0.238502 0.173282i
\(933\) 6.18034 19.0211i 0.202335 0.622724i
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −5.00000 −0.163430
\(937\) −16.3779 + 50.4060i −0.535043 + 1.64669i 0.208514 + 0.978019i \(0.433137\pi\)
−0.743557 + 0.668673i \(0.766863\pi\)
\(938\) −38.8328 + 28.2137i −1.26794 + 0.921210i
\(939\) 7.28115 + 5.29007i 0.237611 + 0.172635i
\(940\) −1.23607 3.80423i −0.0403161 0.124080i
\(941\) −10.1976 31.3849i −0.332431 1.02312i −0.967974 0.251052i \(-0.919224\pi\)
0.635543 0.772066i \(-0.280776\pi\)
\(942\) 14.5623 + 10.5801i 0.474466 + 0.344719i
\(943\) 0 0
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) 1.23607 3.80423i 0.0401456 0.123556i
\(949\) −24.2705 + 17.6336i −0.787854 + 0.572410i
\(950\) 0 0
\(951\) −0.618034 1.90211i −0.0200411 0.0616802i
\(952\) 8.65248 + 26.6296i 0.280428 + 0.863070i
\(953\) −2.42705 1.76336i −0.0786199 0.0571207i 0.547781 0.836622i \(-0.315473\pi\)
−0.626401 + 0.779501i \(0.715473\pi\)
\(954\) 4.04508 2.93893i 0.130964 0.0951513i
\(955\) −1.23607 + 3.80423i −0.0399982 + 0.123102i
\(956\) 4.00000 0.129369
\(957\) 0 0
\(958\) 4.00000 0.129234
\(959\) 12.3607 38.0423i 0.399147 1.22845i
\(960\) 0.809017 0.587785i 0.0261109 0.0189707i
\(961\) −26.6976 19.3969i −0.861212 0.625707i
\(962\) 7.72542 + 23.7764i 0.249078 + 0.766582i
\(963\) 0 0
\(964\) −14.5623 10.5801i −0.469020 0.340763i
\(965\) 8.89919 6.46564i 0.286475 0.208136i
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 1.54508 4.75528i 0.0496097 0.152683i
\(971\) −16.1803 + 11.7557i −0.519252 + 0.377259i −0.816322 0.577597i \(-0.803990\pi\)
0.297070 + 0.954856i \(0.403990\pi\)
\(972\) −0.809017 0.587785i −0.0259492 0.0188532i
\(973\) −14.8328 45.6507i −0.475518 1.46349i
\(974\) −6.18034 19.0211i −0.198031 0.609476i
\(975\) −16.1803 11.7557i −0.518186 0.376484i
\(976\) 1.61803 1.17557i 0.0517920 0.0376291i
\(977\) −15.1418 + 46.6018i −0.484430 + 1.49092i 0.348374 + 0.937355i \(0.386734\pi\)
−0.832805 + 0.553567i \(0.813266\pi\)
\(978\) 4.00000 0.127906
\(979\) 0 0
\(980\) −9.00000 −0.287494
\(981\) −0.309017 + 0.951057i −0.00986615 + 0.0303649i
\(982\) 9.70820 7.05342i 0.309801 0.225084i
\(983\) 22.6525 + 16.4580i 0.722502 + 0.524928i 0.887183 0.461419i \(-0.152659\pi\)
−0.164681 + 0.986347i \(0.552659\pi\)
\(984\) 3.39919 + 10.4616i 0.108362 + 0.333504i
\(985\) 2.78115 + 8.55951i 0.0886149 + 0.272729i
\(986\) −39.6418 28.8015i −1.26245 0.917226i
\(987\) −12.9443 + 9.40456i −0.412021 + 0.299351i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) −2.47214 + 7.60845i −0.0784904 + 0.241569i
\(993\) −25.8885 + 18.8091i −0.821548 + 0.596890i
\(994\) 51.7771 + 37.6183i 1.64227 + 1.19318i
\(995\) 4.94427 + 15.2169i 0.156744 + 0.482408i
\(996\) −2.47214 7.60845i −0.0783326 0.241083i
\(997\) 29.9336 + 21.7481i 0.948008 + 0.688768i 0.950335 0.311230i \(-0.100741\pi\)
−0.00232725 + 0.999997i \(0.500741\pi\)
\(998\) −32.3607 + 23.5114i −1.02436 + 0.744241i
\(999\) −1.54508 + 4.75528i −0.0488843 + 0.150450i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.d.493.1 4
11.2 odd 10 726.2.e.l.487.1 4
11.3 even 5 inner 726.2.e.d.565.1 4
11.4 even 5 726.2.a.h.1.1 yes 1
11.5 even 5 inner 726.2.e.d.511.1 4
11.6 odd 10 726.2.e.l.511.1 4
11.7 odd 10 726.2.a.e.1.1 1
11.8 odd 10 726.2.e.l.565.1 4
11.9 even 5 inner 726.2.e.d.487.1 4
11.10 odd 2 726.2.e.l.493.1 4
33.26 odd 10 2178.2.a.e.1.1 1
33.29 even 10 2178.2.a.j.1.1 1
44.7 even 10 5808.2.a.h.1.1 1
44.15 odd 10 5808.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.a.e.1.1 1 11.7 odd 10
726.2.a.h.1.1 yes 1 11.4 even 5
726.2.e.d.487.1 4 11.9 even 5 inner
726.2.e.d.493.1 4 1.1 even 1 trivial
726.2.e.d.511.1 4 11.5 even 5 inner
726.2.e.d.565.1 4 11.3 even 5 inner
726.2.e.l.487.1 4 11.2 odd 10
726.2.e.l.493.1 4 11.10 odd 2
726.2.e.l.511.1 4 11.6 odd 10
726.2.e.l.565.1 4 11.8 odd 10
2178.2.a.e.1.1 1 33.26 odd 10
2178.2.a.j.1.1 1 33.29 even 10
5808.2.a.g.1.1 1 44.15 odd 10
5808.2.a.h.1.1 1 44.7 even 10