Properties

Label 726.2.e.d.487.1
Level $726$
Weight $2$
Character 726.487
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,-1,-1,1,-1,-4,-1,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 726.487
Dual form 726.2.e.d.565.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.309017 - 0.951057i) q^{4} +(0.809017 + 0.587785i) q^{5} +(-0.809017 - 0.587785i) q^{6} +(1.23607 - 3.80423i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} -1.00000 q^{10} +1.00000 q^{12} +(4.04508 - 2.93893i) q^{13} +(1.23607 + 3.80423i) q^{14} +(-0.309017 + 0.951057i) q^{15} +(-0.809017 - 0.587785i) q^{16} +(-5.66312 - 4.11450i) q^{17} +(0.309017 - 0.951057i) q^{18} +(0.809017 - 0.587785i) q^{20} +4.00000 q^{21} +(-0.809017 + 0.587785i) q^{24} +(-1.23607 - 3.80423i) q^{25} +(-1.54508 + 4.75528i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(-3.23607 - 2.35114i) q^{28} +(2.16312 - 6.65740i) q^{29} +(-0.309017 - 0.951057i) q^{30} +(6.47214 - 4.70228i) q^{31} +1.00000 q^{32} +7.00000 q^{34} +(3.23607 - 2.35114i) q^{35} +(0.309017 + 0.951057i) q^{36} +(-1.54508 + 4.75528i) q^{37} +(4.04508 + 2.93893i) q^{39} +(-0.309017 + 0.951057i) q^{40} +(3.39919 + 10.4616i) q^{41} +(-3.23607 + 2.35114i) q^{42} -8.00000 q^{43} -1.00000 q^{45} +(1.23607 + 3.80423i) q^{47} +(0.309017 - 0.951057i) q^{48} +(-7.28115 - 5.29007i) q^{49} +(3.23607 + 2.35114i) q^{50} +(2.16312 - 6.65740i) q^{51} +(-1.54508 - 4.75528i) q^{52} +(4.04508 - 2.93893i) q^{53} +1.00000 q^{54} +4.00000 q^{56} +(2.16312 + 6.65740i) q^{58} +(0.809017 + 0.587785i) q^{60} +(1.61803 + 1.17557i) q^{61} +(-2.47214 + 7.60845i) q^{62} +(1.23607 + 3.80423i) q^{63} +(-0.809017 + 0.587785i) q^{64} +5.00000 q^{65} +12.0000 q^{67} +(-5.66312 + 4.11450i) q^{68} +(-1.23607 + 3.80423i) q^{70} +(12.9443 + 9.40456i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(-1.85410 + 5.70634i) q^{73} +(-1.54508 - 4.75528i) q^{74} +(3.23607 - 2.35114i) q^{75} -5.00000 q^{78} +(-3.23607 + 2.35114i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(0.309017 - 0.951057i) q^{81} +(-8.89919 - 6.46564i) q^{82} +(6.47214 + 4.70228i) q^{83} +(1.23607 - 3.80423i) q^{84} +(-2.16312 - 6.65740i) q^{85} +(6.47214 - 4.70228i) q^{86} +7.00000 q^{87} -17.0000 q^{89} +(0.809017 - 0.587785i) q^{90} +(-6.18034 - 19.0211i) q^{91} +(6.47214 + 4.70228i) q^{93} +(-3.23607 - 2.35114i) q^{94} +(0.309017 + 0.951057i) q^{96} +(4.04508 - 2.93893i) q^{97} +9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} - q^{9} - 4 q^{10} + 4 q^{12} + 5 q^{13} - 4 q^{14} + q^{15} - q^{16} - 7 q^{17} - q^{18} + q^{20} + 16 q^{21} - q^{24} + 4 q^{25}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i 0.753804 0.657099i \(-0.228217\pi\)
−0.392000 + 0.919965i \(0.628217\pi\)
\(6\) −0.809017 0.587785i −0.330280 0.239962i
\(7\) 1.23607 3.80423i 0.467190 1.43786i −0.389018 0.921230i \(-0.627186\pi\)
0.856208 0.516632i \(-0.172814\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) −1.00000 −0.316228
\(11\) 0 0
\(12\) 1.00000 0.288675
\(13\) 4.04508 2.93893i 1.12190 0.815111i 0.137408 0.990515i \(-0.456123\pi\)
0.984497 + 0.175403i \(0.0561229\pi\)
\(14\) 1.23607 + 3.80423i 0.330353 + 1.01672i
\(15\) −0.309017 + 0.951057i −0.0797878 + 0.245562i
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −5.66312 4.11450i −1.37351 0.997912i −0.997454 0.0713144i \(-0.977281\pi\)
−0.376054 0.926598i \(-0.622719\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −0.809017 + 0.587785i −0.165140 + 0.119981i
\(25\) −1.23607 3.80423i −0.247214 0.760845i
\(26\) −1.54508 + 4.75528i −0.303016 + 0.932588i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) −3.23607 2.35114i −0.611559 0.444324i
\(29\) 2.16312 6.65740i 0.401681 1.23625i −0.521954 0.852974i \(-0.674797\pi\)
0.923635 0.383274i \(-0.125203\pi\)
\(30\) −0.309017 0.951057i −0.0564185 0.173638i
\(31\) 6.47214 4.70228i 1.16243 0.844555i 0.172347 0.985036i \(-0.444865\pi\)
0.990083 + 0.140482i \(0.0448651\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.00000 1.20049
\(35\) 3.23607 2.35114i 0.546995 0.397415i
\(36\) 0.309017 + 0.951057i 0.0515028 + 0.158509i
\(37\) −1.54508 + 4.75528i −0.254010 + 0.781764i 0.740013 + 0.672593i \(0.234819\pi\)
−0.994023 + 0.109171i \(0.965181\pi\)
\(38\) 0 0
\(39\) 4.04508 + 2.93893i 0.647732 + 0.470605i
\(40\) −0.309017 + 0.951057i −0.0488599 + 0.150375i
\(41\) 3.39919 + 10.4616i 0.530864 + 1.63383i 0.752420 + 0.658683i \(0.228886\pi\)
−0.221557 + 0.975148i \(0.571114\pi\)
\(42\) −3.23607 + 2.35114i −0.499336 + 0.362789i
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 1.23607 + 3.80423i 0.180299 + 0.554903i 0.999836 0.0181233i \(-0.00576913\pi\)
−0.819537 + 0.573027i \(0.805769\pi\)
\(48\) 0.309017 0.951057i 0.0446028 0.137273i
\(49\) −7.28115 5.29007i −1.04016 0.755724i
\(50\) 3.23607 + 2.35114i 0.457649 + 0.332502i
\(51\) 2.16312 6.65740i 0.302897 0.932222i
\(52\) −1.54508 4.75528i −0.214265 0.659439i
\(53\) 4.04508 2.93893i 0.555635 0.403693i −0.274224 0.961666i \(-0.588421\pi\)
0.829859 + 0.557973i \(0.188421\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) 2.16312 + 6.65740i 0.284031 + 0.874159i
\(59\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(60\) 0.809017 + 0.587785i 0.104444 + 0.0758827i
\(61\) 1.61803 + 1.17557i 0.207168 + 0.150516i 0.686531 0.727100i \(-0.259132\pi\)
−0.479363 + 0.877616i \(0.659132\pi\)
\(62\) −2.47214 + 7.60845i −0.313962 + 0.966274i
\(63\) 1.23607 + 3.80423i 0.155730 + 0.479287i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 5.00000 0.620174
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) −5.66312 + 4.11450i −0.686754 + 0.498956i
\(69\) 0 0
\(70\) −1.23607 + 3.80423i −0.147738 + 0.454692i
\(71\) 12.9443 + 9.40456i 1.53620 + 1.11612i 0.952662 + 0.304033i \(0.0983332\pi\)
0.583541 + 0.812084i \(0.301667\pi\)
\(72\) −0.809017 0.587785i −0.0953436 0.0692712i
\(73\) −1.85410 + 5.70634i −0.217006 + 0.667876i 0.781999 + 0.623280i \(0.214200\pi\)
−0.999005 + 0.0445966i \(0.985800\pi\)
\(74\) −1.54508 4.75528i −0.179612 0.552790i
\(75\) 3.23607 2.35114i 0.373669 0.271486i
\(76\) 0 0
\(77\) 0 0
\(78\) −5.00000 −0.566139
\(79\) −3.23607 + 2.35114i −0.364086 + 0.264524i −0.754754 0.656007i \(-0.772244\pi\)
0.390668 + 0.920532i \(0.372244\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) −8.89919 6.46564i −0.982751 0.714010i
\(83\) 6.47214 + 4.70228i 0.710409 + 0.516143i 0.883306 0.468798i \(-0.155313\pi\)
−0.172896 + 0.984940i \(0.555313\pi\)
\(84\) 1.23607 3.80423i 0.134866 0.415075i
\(85\) −2.16312 6.65740i −0.234623 0.722096i
\(86\) 6.47214 4.70228i 0.697908 0.507060i
\(87\) 7.00000 0.750479
\(88\) 0 0
\(89\) −17.0000 −1.80200 −0.900998 0.433823i \(-0.857164\pi\)
−0.900998 + 0.433823i \(0.857164\pi\)
\(90\) 0.809017 0.587785i 0.0852779 0.0619580i
\(91\) −6.18034 19.0211i −0.647876 1.99396i
\(92\) 0 0
\(93\) 6.47214 + 4.70228i 0.671129 + 0.487604i
\(94\) −3.23607 2.35114i −0.333775 0.242502i
\(95\) 0 0
\(96\) 0.309017 + 0.951057i 0.0315389 + 0.0970668i
\(97\) 4.04508 2.93893i 0.410716 0.298403i −0.363176 0.931721i \(-0.618307\pi\)
0.773892 + 0.633318i \(0.218307\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) 8.09017 5.87785i 0.805002 0.584868i −0.107375 0.994219i \(-0.534245\pi\)
0.912377 + 0.409350i \(0.134245\pi\)
\(102\) 2.16312 + 6.65740i 0.214181 + 0.659180i
\(103\) 1.23607 3.80423i 0.121793 0.374842i −0.871510 0.490378i \(-0.836859\pi\)
0.993303 + 0.115536i \(0.0368587\pi\)
\(104\) 4.04508 + 2.93893i 0.396653 + 0.288185i
\(105\) 3.23607 + 2.35114i 0.315808 + 0.229448i
\(106\) −1.54508 + 4.75528i −0.150072 + 0.461874i
\(107\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(108\) −0.809017 + 0.587785i −0.0778477 + 0.0565597i
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) −3.23607 + 2.35114i −0.305780 + 0.222162i
\(113\) 0.927051 + 2.85317i 0.0872096 + 0.268404i 0.985145 0.171723i \(-0.0549335\pi\)
−0.897936 + 0.440127i \(0.854933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.66312 4.11450i −0.525807 0.382021i
\(117\) −1.54508 + 4.75528i −0.142843 + 0.439626i
\(118\) 0 0
\(119\) −22.6525 + 16.4580i −2.07655 + 1.50870i
\(120\) −1.00000 −0.0912871
\(121\) 0 0
\(122\) −2.00000 −0.181071
\(123\) −8.89919 + 6.46564i −0.802413 + 0.582987i
\(124\) −2.47214 7.60845i −0.222004 0.683259i
\(125\) 2.78115 8.55951i 0.248754 0.765586i
\(126\) −3.23607 2.35114i −0.288292 0.209456i
\(127\) 3.23607 + 2.35114i 0.287155 + 0.208630i 0.722032 0.691860i \(-0.243208\pi\)
−0.434877 + 0.900490i \(0.643208\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) −2.47214 7.60845i −0.217659 0.669887i
\(130\) −4.04508 + 2.93893i −0.354777 + 0.257761i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −9.70820 + 7.05342i −0.838661 + 0.609323i
\(135\) −0.309017 0.951057i −0.0265959 0.0818539i
\(136\) 2.16312 6.65740i 0.185486 0.570867i
\(137\) −8.09017 5.87785i −0.691190 0.502179i 0.185861 0.982576i \(-0.440493\pi\)
−0.877051 + 0.480397i \(0.840493\pi\)
\(138\) 0 0
\(139\) −3.70820 + 11.4127i −0.314526 + 0.968011i 0.661423 + 0.750013i \(0.269953\pi\)
−0.975949 + 0.217998i \(0.930047\pi\)
\(140\) −1.23607 3.80423i −0.104467 0.321516i
\(141\) −3.23607 + 2.35114i −0.272526 + 0.198002i
\(142\) −16.0000 −1.34269
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 5.66312 4.11450i 0.470296 0.341690i
\(146\) −1.85410 5.70634i −0.153447 0.472260i
\(147\) 2.78115 8.55951i 0.229386 0.705976i
\(148\) 4.04508 + 2.93893i 0.332504 + 0.241578i
\(149\) 0.809017 + 0.587785i 0.0662773 + 0.0481532i 0.620431 0.784261i \(-0.286958\pi\)
−0.554153 + 0.832415i \(0.686958\pi\)
\(150\) −1.23607 + 3.80423i −0.100925 + 0.310614i
\(151\) 6.18034 + 19.0211i 0.502949 + 1.54792i 0.804192 + 0.594370i \(0.202599\pi\)
−0.301243 + 0.953548i \(0.597401\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 4.04508 2.93893i 0.323866 0.235302i
\(157\) −5.56231 17.1190i −0.443920 1.36625i −0.883663 0.468123i \(-0.844931\pi\)
0.439743 0.898124i \(-0.355069\pi\)
\(158\) 1.23607 3.80423i 0.0983363 0.302648i
\(159\) 4.04508 + 2.93893i 0.320796 + 0.233072i
\(160\) 0.809017 + 0.587785i 0.0639584 + 0.0464685i
\(161\) 0 0
\(162\) 0.309017 + 0.951057i 0.0242787 + 0.0747221i
\(163\) −3.23607 + 2.35114i −0.253468 + 0.184156i −0.707263 0.706951i \(-0.750070\pi\)
0.453794 + 0.891107i \(0.350070\pi\)
\(164\) 11.0000 0.858956
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) −9.70820 + 7.05342i −0.751243 + 0.545810i −0.896212 0.443626i \(-0.853692\pi\)
0.144969 + 0.989436i \(0.453692\pi\)
\(168\) 1.23607 + 3.80423i 0.0953647 + 0.293502i
\(169\) 3.70820 11.4127i 0.285246 0.877898i
\(170\) 5.66312 + 4.11450i 0.434341 + 0.315567i
\(171\) 0 0
\(172\) −2.47214 + 7.60845i −0.188499 + 0.580139i
\(173\) −5.56231 17.1190i −0.422894 1.30153i −0.904996 0.425420i \(-0.860127\pi\)
0.482102 0.876115i \(-0.339873\pi\)
\(174\) −5.66312 + 4.11450i −0.429320 + 0.311919i
\(175\) −16.0000 −1.20949
\(176\) 0 0
\(177\) 0 0
\(178\) 13.7533 9.99235i 1.03085 0.748958i
\(179\) 3.70820 + 11.4127i 0.277164 + 0.853024i 0.988639 + 0.150312i \(0.0480277\pi\)
−0.711474 + 0.702712i \(0.751972\pi\)
\(180\) −0.309017 + 0.951057i −0.0230328 + 0.0708876i
\(181\) 0.809017 + 0.587785i 0.0601338 + 0.0436897i 0.617446 0.786613i \(-0.288167\pi\)
−0.557312 + 0.830303i \(0.688167\pi\)
\(182\) 16.1803 + 11.7557i 1.19937 + 0.871391i
\(183\) −0.618034 + 1.90211i −0.0456864 + 0.140608i
\(184\) 0 0
\(185\) −4.04508 + 2.93893i −0.297401 + 0.216074i
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) 4.00000 0.291730
\(189\) −3.23607 + 2.35114i −0.235389 + 0.171020i
\(190\) 0 0
\(191\) 1.23607 3.80423i 0.0894387 0.275264i −0.896326 0.443396i \(-0.853773\pi\)
0.985764 + 0.168132i \(0.0537735\pi\)
\(192\) −0.809017 0.587785i −0.0583858 0.0424197i
\(193\) −8.89919 6.46564i −0.640577 0.465407i 0.219471 0.975619i \(-0.429567\pi\)
−0.860049 + 0.510212i \(0.829567\pi\)
\(194\) −1.54508 + 4.75528i −0.110931 + 0.341409i
\(195\) 1.54508 + 4.75528i 0.110646 + 0.340533i
\(196\) −7.28115 + 5.29007i −0.520082 + 0.377862i
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 3.23607 2.35114i 0.228825 0.166251i
\(201\) 3.70820 + 11.4127i 0.261557 + 0.804988i
\(202\) −3.09017 + 9.51057i −0.217424 + 0.669161i
\(203\) −22.6525 16.4580i −1.58989 1.15512i
\(204\) −5.66312 4.11450i −0.396498 0.288072i
\(205\) −3.39919 + 10.4616i −0.237410 + 0.730671i
\(206\) 1.23607 + 3.80423i 0.0861209 + 0.265053i
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(212\) −1.54508 4.75528i −0.106117 0.326594i
\(213\) −4.94427 + 15.2169i −0.338776 + 1.04265i
\(214\) 0 0
\(215\) −6.47214 4.70228i −0.441396 0.320693i
\(216\) 0.309017 0.951057i 0.0210259 0.0647112i
\(217\) −9.88854 30.4338i −0.671278 2.06598i
\(218\) 0.809017 0.587785i 0.0547935 0.0398098i
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) −35.0000 −2.35435
\(222\) 4.04508 2.93893i 0.271488 0.197248i
\(223\) 6.18034 + 19.0211i 0.413866 + 1.27375i 0.913261 + 0.407375i \(0.133556\pi\)
−0.499395 + 0.866374i \(0.666444\pi\)
\(224\) 1.23607 3.80423i 0.0825883 0.254181i
\(225\) 3.23607 + 2.35114i 0.215738 + 0.156743i
\(226\) −2.42705 1.76336i −0.161445 0.117297i
\(227\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(228\) 0 0
\(229\) 4.04508 2.93893i 0.267307 0.194210i −0.446055 0.895005i \(-0.647172\pi\)
0.713362 + 0.700796i \(0.247172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.00000 0.459573
\(233\) 7.28115 5.29007i 0.477004 0.346564i −0.323161 0.946344i \(-0.604745\pi\)
0.800165 + 0.599780i \(0.204745\pi\)
\(234\) −1.54508 4.75528i −0.101005 0.310863i
\(235\) −1.23607 + 3.80423i −0.0806322 + 0.248160i
\(236\) 0 0
\(237\) −3.23607 2.35114i −0.210205 0.152723i
\(238\) 8.65248 26.6296i 0.560857 1.72614i
\(239\) 1.23607 + 3.80423i 0.0799546 + 0.246075i 0.983042 0.183383i \(-0.0587048\pi\)
−0.903087 + 0.429458i \(0.858705\pi\)
\(240\) 0.809017 0.587785i 0.0522218 0.0379414i
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 1.61803 1.17557i 0.103584 0.0752582i
\(245\) −2.78115 8.55951i −0.177681 0.546847i
\(246\) 3.39919 10.4616i 0.216724 0.667009i
\(247\) 0 0
\(248\) 6.47214 + 4.70228i 0.410981 + 0.298595i
\(249\) −2.47214 + 7.60845i −0.156665 + 0.482166i
\(250\) 2.78115 + 8.55951i 0.175896 + 0.541351i
\(251\) −12.9443 + 9.40456i −0.817035 + 0.593611i −0.915862 0.401494i \(-0.868491\pi\)
0.0988265 + 0.995105i \(0.468491\pi\)
\(252\) 4.00000 0.251976
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 5.66312 4.11450i 0.354638 0.257660i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 0.927051 2.85317i 0.0578279 0.177976i −0.917970 0.396649i \(-0.870173\pi\)
0.975798 + 0.218673i \(0.0701729\pi\)
\(258\) 6.47214 + 4.70228i 0.402938 + 0.292751i
\(259\) 16.1803 + 11.7557i 1.00540 + 0.730464i
\(260\) 1.54508 4.75528i 0.0958221 0.294910i
\(261\) 2.16312 + 6.65740i 0.133894 + 0.412082i
\(262\) 9.70820 7.05342i 0.599775 0.435762i
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 0 0
\(267\) −5.25329 16.1680i −0.321496 0.989463i
\(268\) 3.70820 11.4127i 0.226515 0.697140i
\(269\) 4.04508 + 2.93893i 0.246633 + 0.179189i 0.704233 0.709969i \(-0.251291\pi\)
−0.457600 + 0.889158i \(0.651291\pi\)
\(270\) 0.809017 + 0.587785i 0.0492352 + 0.0357715i
\(271\) −2.47214 + 7.60845i −0.150172 + 0.462181i −0.997640 0.0686657i \(-0.978126\pi\)
0.847468 + 0.530846i \(0.178126\pi\)
\(272\) 2.16312 + 6.65740i 0.131158 + 0.403664i
\(273\) 16.1803 11.7557i 0.979279 0.711488i
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) −18.6074 + 13.5191i −1.11801 + 0.812282i −0.983906 0.178686i \(-0.942815\pi\)
−0.134104 + 0.990967i \(0.542815\pi\)
\(278\) −3.70820 11.4127i −0.222403 0.684487i
\(279\) −2.47214 + 7.60845i −0.148003 + 0.455506i
\(280\) 3.23607 + 2.35114i 0.193392 + 0.140508i
\(281\) −8.09017 5.87785i −0.482619 0.350643i 0.319720 0.947512i \(-0.396411\pi\)
−0.802339 + 0.596869i \(0.796411\pi\)
\(282\) 1.23607 3.80423i 0.0736068 0.226538i
\(283\) 1.23607 + 3.80423i 0.0734766 + 0.226138i 0.981050 0.193756i \(-0.0620672\pi\)
−0.907573 + 0.419894i \(0.862067\pi\)
\(284\) 12.9443 9.40456i 0.768101 0.558058i
\(285\) 0 0
\(286\) 0 0
\(287\) 44.0000 2.59724
\(288\) −0.809017 + 0.587785i −0.0476718 + 0.0346356i
\(289\) 9.88854 + 30.4338i 0.581679 + 1.79022i
\(290\) −2.16312 + 6.65740i −0.127023 + 0.390936i
\(291\) 4.04508 + 2.93893i 0.237127 + 0.172283i
\(292\) 4.85410 + 3.52671i 0.284065 + 0.206385i
\(293\) 7.10739 21.8743i 0.415218 1.27791i −0.496837 0.867844i \(-0.665505\pi\)
0.912056 0.410067i \(-0.134495\pi\)
\(294\) 2.78115 + 8.55951i 0.162200 + 0.499201i
\(295\) 0 0
\(296\) −5.00000 −0.290619
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) 0 0
\(300\) −1.23607 3.80423i −0.0713644 0.219637i
\(301\) −9.88854 + 30.4338i −0.569966 + 1.75418i
\(302\) −16.1803 11.7557i −0.931074 0.676465i
\(303\) 8.09017 + 5.87785i 0.464768 + 0.337674i
\(304\) 0 0
\(305\) 0.618034 + 1.90211i 0.0353885 + 0.108915i
\(306\) −5.66312 + 4.11450i −0.323739 + 0.235210i
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) −6.47214 + 4.70228i −0.367593 + 0.267072i
\(311\) 6.18034 + 19.0211i 0.350455 + 1.07859i 0.958598 + 0.284762i \(0.0919146\pi\)
−0.608143 + 0.793827i \(0.708085\pi\)
\(312\) −1.54508 + 4.75528i −0.0874732 + 0.269215i
\(313\) 7.28115 + 5.29007i 0.411555 + 0.299012i 0.774231 0.632903i \(-0.218137\pi\)
−0.362676 + 0.931915i \(0.618137\pi\)
\(314\) 14.5623 + 10.5801i 0.821798 + 0.597072i
\(315\) −1.23607 + 3.80423i −0.0696445 + 0.214344i
\(316\) 1.23607 + 3.80423i 0.0695343 + 0.214004i
\(317\) 1.61803 1.17557i 0.0908778 0.0660266i −0.541418 0.840753i \(-0.682113\pi\)
0.632296 + 0.774727i \(0.282113\pi\)
\(318\) −5.00000 −0.280386
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.809017 0.587785i −0.0449454 0.0326547i
\(325\) −16.1803 11.7557i −0.897524 0.652089i
\(326\) 1.23607 3.80423i 0.0684595 0.210697i
\(327\) −0.309017 0.951057i −0.0170887 0.0525935i
\(328\) −8.89919 + 6.46564i −0.491375 + 0.357005i
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 6.47214 4.70228i 0.355205 0.258071i
\(333\) −1.54508 4.75528i −0.0846701 0.260588i
\(334\) 3.70820 11.4127i 0.202904 0.624474i
\(335\) 9.70820 + 7.05342i 0.530416 + 0.385370i
\(336\) −3.23607 2.35114i −0.176542 0.128265i
\(337\) −0.309017 + 0.951057i −0.0168332 + 0.0518073i −0.959120 0.282999i \(-0.908671\pi\)
0.942287 + 0.334806i \(0.108671\pi\)
\(338\) 3.70820 + 11.4127i 0.201700 + 0.620768i
\(339\) −2.42705 + 1.76336i −0.131819 + 0.0957723i
\(340\) −7.00000 −0.379628
\(341\) 0 0
\(342\) 0 0
\(343\) −6.47214 + 4.70228i −0.349462 + 0.253899i
\(344\) −2.47214 7.60845i −0.133289 0.410220i
\(345\) 0 0
\(346\) 14.5623 + 10.5801i 0.782874 + 0.568792i
\(347\) −19.4164 14.1068i −1.04233 0.757295i −0.0715889 0.997434i \(-0.522807\pi\)
−0.970739 + 0.240139i \(0.922807\pi\)
\(348\) 2.16312 6.65740i 0.115955 0.356874i
\(349\) 2.16312 + 6.65740i 0.115789 + 0.356362i 0.992111 0.125364i \(-0.0400099\pi\)
−0.876322 + 0.481726i \(0.840010\pi\)
\(350\) 12.9443 9.40456i 0.691900 0.502695i
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 27.0000 1.43706 0.718532 0.695493i \(-0.244814\pi\)
0.718532 + 0.695493i \(0.244814\pi\)
\(354\) 0 0
\(355\) 4.94427 + 15.2169i 0.262415 + 0.807629i
\(356\) −5.25329 + 16.1680i −0.278424 + 0.856900i
\(357\) −22.6525 16.4580i −1.19890 0.871049i
\(358\) −9.70820 7.05342i −0.513095 0.372785i
\(359\) 1.23607 3.80423i 0.0652372 0.200779i −0.913125 0.407680i \(-0.866338\pi\)
0.978362 + 0.206901i \(0.0663378\pi\)
\(360\) −0.309017 0.951057i −0.0162866 0.0501251i
\(361\) 15.3713 11.1679i 0.809017 0.587785i
\(362\) −1.00000 −0.0525588
\(363\) 0 0
\(364\) −20.0000 −1.04828
\(365\) −4.85410 + 3.52671i −0.254075 + 0.184597i
\(366\) −0.618034 1.90211i −0.0323052 0.0994250i
\(367\) 2.47214 7.60845i 0.129044 0.397158i −0.865572 0.500785i \(-0.833045\pi\)
0.994616 + 0.103627i \(0.0330448\pi\)
\(368\) 0 0
\(369\) −8.89919 6.46564i −0.463273 0.336588i
\(370\) 1.54508 4.75528i 0.0803251 0.247215i
\(371\) −6.18034 19.0211i −0.320867 0.987528i
\(372\) 6.47214 4.70228i 0.335565 0.243802i
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) −3.23607 + 2.35114i −0.166887 + 0.121251i
\(377\) −10.8156 33.2870i −0.557031 1.71437i
\(378\) 1.23607 3.80423i 0.0635765 0.195668i
\(379\) 16.1803 + 11.7557i 0.831128 + 0.603850i 0.919878 0.392204i \(-0.128287\pi\)
−0.0887501 + 0.996054i \(0.528287\pi\)
\(380\) 0 0
\(381\) −1.23607 + 3.80423i −0.0633257 + 0.194896i
\(382\) 1.23607 + 3.80423i 0.0632427 + 0.194641i
\(383\) 29.1246 21.1603i 1.48820 1.08124i 0.513400 0.858149i \(-0.328386\pi\)
0.974798 0.223090i \(-0.0716144\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 11.0000 0.559885
\(387\) 6.47214 4.70228i 0.328997 0.239030i
\(388\) −1.54508 4.75528i −0.0784398 0.241413i
\(389\) −8.96149 + 27.5806i −0.454366 + 1.39839i 0.417513 + 0.908671i \(0.362902\pi\)
−0.871878 + 0.489723i \(0.837098\pi\)
\(390\) −4.04508 2.93893i −0.204831 0.148818i
\(391\) 0 0
\(392\) 2.78115 8.55951i 0.140469 0.432320i
\(393\) −3.70820 11.4127i −0.187054 0.575693i
\(394\) 7.28115 5.29007i 0.366819 0.266510i
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) −21.0000 −1.05396 −0.526980 0.849878i \(-0.676676\pi\)
−0.526980 + 0.849878i \(0.676676\pi\)
\(398\) 12.9443 9.40456i 0.648838 0.471408i
\(399\) 0 0
\(400\) −1.23607 + 3.80423i −0.0618034 + 0.190211i
\(401\) −12.1353 8.81678i −0.606006 0.440289i 0.242000 0.970276i \(-0.422197\pi\)
−0.848006 + 0.529987i \(0.822197\pi\)
\(402\) −9.70820 7.05342i −0.484201 0.351793i
\(403\) 12.3607 38.0423i 0.615729 1.89502i
\(404\) −3.09017 9.51057i −0.153742 0.473168i
\(405\) 0.809017 0.587785i 0.0402004 0.0292073i
\(406\) 28.0000 1.38962
\(407\) 0 0
\(408\) 7.00000 0.346552
\(409\) 0.809017 0.587785i 0.0400033 0.0290641i −0.567604 0.823302i \(-0.692129\pi\)
0.607607 + 0.794238i \(0.292129\pi\)
\(410\) −3.39919 10.4616i −0.167874 0.516663i
\(411\) 3.09017 9.51057i 0.152427 0.469122i
\(412\) −3.23607 2.35114i −0.159430 0.115832i
\(413\) 0 0
\(414\) 0 0
\(415\) 2.47214 + 7.60845i 0.121352 + 0.373484i
\(416\) 4.04508 2.93893i 0.198327 0.144093i
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 3.23607 2.35114i 0.157904 0.114724i
\(421\) 4.63525 + 14.2658i 0.225909 + 0.695275i 0.998198 + 0.0600043i \(0.0191114\pi\)
−0.772290 + 0.635271i \(0.780889\pi\)
\(422\) 0 0
\(423\) −3.23607 2.35114i −0.157343 0.114316i
\(424\) 4.04508 + 2.93893i 0.196447 + 0.142727i
\(425\) −8.65248 + 26.6296i −0.419707 + 1.29172i
\(426\) −4.94427 15.2169i −0.239551 0.737261i
\(427\) 6.47214 4.70228i 0.313209 0.227559i
\(428\) 0 0
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) −16.1803 + 11.7557i −0.779380 + 0.566252i −0.904793 0.425852i \(-0.859974\pi\)
0.125413 + 0.992105i \(0.459974\pi\)
\(432\) 0.309017 + 0.951057i 0.0148676 + 0.0457577i
\(433\) −6.48936 + 19.9722i −0.311859 + 0.959802i 0.665170 + 0.746692i \(0.268359\pi\)
−0.977028 + 0.213110i \(0.931641\pi\)
\(434\) 25.8885 + 18.8091i 1.24269 + 0.902867i
\(435\) 5.66312 + 4.11450i 0.271526 + 0.197275i
\(436\) −0.309017 + 0.951057i −0.0147992 + 0.0455473i
\(437\) 0 0
\(438\) 4.85410 3.52671i 0.231938 0.168513i
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 28.3156 20.5725i 1.34684 0.978533i
\(443\) 11.1246 + 34.2380i 0.528546 + 1.62670i 0.757195 + 0.653189i \(0.226569\pi\)
−0.228649 + 0.973509i \(0.573431\pi\)
\(444\) −1.54508 + 4.75528i −0.0733265 + 0.225676i
\(445\) −13.7533 9.99235i −0.651968 0.473683i
\(446\) −16.1803 11.7557i −0.766161 0.556649i
\(447\) −0.309017 + 0.951057i −0.0146160 + 0.0449834i
\(448\) 1.23607 + 3.80423i 0.0583987 + 0.179733i
\(449\) −12.1353 + 8.81678i −0.572698 + 0.416090i −0.836084 0.548601i \(-0.815161\pi\)
0.263386 + 0.964690i \(0.415161\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) 3.00000 0.141108
\(453\) −16.1803 + 11.7557i −0.760219 + 0.552331i
\(454\) 0 0
\(455\) 6.18034 19.0211i 0.289739 0.891724i
\(456\) 0 0
\(457\) 13.7533 + 9.99235i 0.643352 + 0.467422i 0.861000 0.508605i \(-0.169839\pi\)
−0.217648 + 0.976027i \(0.569839\pi\)
\(458\) −1.54508 + 4.75528i −0.0721971 + 0.222200i
\(459\) 2.16312 + 6.65740i 0.100966 + 0.310741i
\(460\) 0 0
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −5.66312 + 4.11450i −0.262904 + 0.191011i
\(465\) 2.47214 + 7.60845i 0.114643 + 0.352834i
\(466\) −2.78115 + 8.55951i −0.128834 + 0.396512i
\(467\) −22.6525 16.4580i −1.04823 0.761585i −0.0763562 0.997081i \(-0.524329\pi\)
−0.971875 + 0.235496i \(0.924329\pi\)
\(468\) 4.04508 + 2.93893i 0.186984 + 0.135852i
\(469\) 14.8328 45.6507i 0.684916 2.10795i
\(470\) −1.23607 3.80423i −0.0570156 0.175476i
\(471\) 14.5623 10.5801i 0.670996 0.487507i
\(472\) 0 0
\(473\) 0 0
\(474\) 4.00000 0.183726
\(475\) 0 0
\(476\) 8.65248 + 26.6296i 0.396586 + 1.22056i
\(477\) −1.54508 + 4.75528i −0.0707446 + 0.217729i
\(478\) −3.23607 2.35114i −0.148014 0.107539i
\(479\) −3.23607 2.35114i −0.147860 0.107426i 0.511396 0.859345i \(-0.329129\pi\)
−0.659256 + 0.751919i \(0.729129\pi\)
\(480\) −0.309017 + 0.951057i −0.0141046 + 0.0434096i
\(481\) 7.72542 + 23.7764i 0.352249 + 1.08411i
\(482\) −14.5623 + 10.5801i −0.663295 + 0.481912i
\(483\) 0 0
\(484\) 0 0
\(485\) 5.00000 0.227038
\(486\) −0.809017 + 0.587785i −0.0366978 + 0.0266625i
\(487\) −6.18034 19.0211i −0.280058 0.861930i −0.987837 0.155495i \(-0.950303\pi\)
0.707779 0.706434i \(-0.249697\pi\)
\(488\) −0.618034 + 1.90211i −0.0279771 + 0.0861046i
\(489\) −3.23607 2.35114i −0.146340 0.106322i
\(490\) 7.28115 + 5.29007i 0.328929 + 0.238981i
\(491\) −3.70820 + 11.4127i −0.167349 + 0.515047i −0.999202 0.0399494i \(-0.987280\pi\)
0.831853 + 0.554996i \(0.187280\pi\)
\(492\) 3.39919 + 10.4616i 0.153247 + 0.471646i
\(493\) −39.6418 + 28.8015i −1.78538 + 1.29715i
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 51.7771 37.6183i 2.32252 1.68741i
\(498\) −2.47214 7.60845i −0.110779 0.340943i
\(499\) 12.3607 38.0423i 0.553340 1.70301i −0.146947 0.989144i \(-0.546945\pi\)
0.700287 0.713861i \(-0.253055\pi\)
\(500\) −7.28115 5.29007i −0.325623 0.236579i
\(501\) −9.70820 7.05342i −0.433731 0.315124i
\(502\) 4.94427 15.2169i 0.220674 0.679164i
\(503\) 4.94427 + 15.2169i 0.220454 + 0.678488i 0.998721 + 0.0505549i \(0.0160990\pi\)
−0.778267 + 0.627933i \(0.783901\pi\)
\(504\) −3.23607 + 2.35114i −0.144146 + 0.104728i
\(505\) 10.0000 0.444994
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 3.23607 2.35114i 0.143577 0.104315i
\(509\) −0.618034 1.90211i −0.0273939 0.0843097i 0.936425 0.350868i \(-0.114113\pi\)
−0.963819 + 0.266558i \(0.914113\pi\)
\(510\) −2.16312 + 6.65740i −0.0957845 + 0.294794i
\(511\) 19.4164 + 14.1068i 0.858931 + 0.624050i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) 0.927051 + 2.85317i 0.0408905 + 0.125848i
\(515\) 3.23607 2.35114i 0.142598 0.103604i
\(516\) −8.00000 −0.352180
\(517\) 0 0
\(518\) −20.0000 −0.878750
\(519\) 14.5623 10.5801i 0.639214 0.464416i
\(520\) 1.54508 + 4.75528i 0.0677565 + 0.208533i
\(521\) −1.85410 + 5.70634i −0.0812297 + 0.249999i −0.983421 0.181337i \(-0.941958\pi\)
0.902191 + 0.431336i \(0.141958\pi\)
\(522\) −5.66312 4.11450i −0.247868 0.180087i
\(523\) 12.9443 + 9.40456i 0.566013 + 0.411233i 0.833655 0.552286i \(-0.186244\pi\)
−0.267641 + 0.963519i \(0.586244\pi\)
\(524\) −3.70820 + 11.4127i −0.161994 + 0.498565i
\(525\) −4.94427 15.2169i −0.215786 0.664120i
\(526\) −6.47214 + 4.70228i −0.282199 + 0.205029i
\(527\) −56.0000 −2.43940
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −4.04508 + 2.93893i −0.175707 + 0.127659i
\(531\) 0 0
\(532\) 0 0
\(533\) 44.4959 + 32.3282i 1.92733 + 1.40029i
\(534\) 13.7533 + 9.99235i 0.595163 + 0.432411i
\(535\) 0 0
\(536\) 3.70820 + 11.4127i 0.160170 + 0.492953i
\(537\) −9.70820 + 7.05342i −0.418940 + 0.304378i
\(538\) −5.00000 −0.215565
\(539\) 0 0
\(540\) −1.00000 −0.0430331
\(541\) −24.2705 + 17.6336i −1.04347 + 0.758126i −0.970960 0.239242i \(-0.923101\pi\)
−0.0725107 + 0.997368i \(0.523101\pi\)
\(542\) −2.47214 7.60845i −0.106187 0.326811i
\(543\) −0.309017 + 0.951057i −0.0132612 + 0.0408137i
\(544\) −5.66312 4.11450i −0.242804 0.176408i
\(545\) −0.809017 0.587785i −0.0346545 0.0251780i
\(546\) −6.18034 + 19.0211i −0.264494 + 0.814029i
\(547\) 1.23607 + 3.80423i 0.0528505 + 0.162657i 0.973998 0.226557i \(-0.0727468\pi\)
−0.921148 + 0.389214i \(0.872747\pi\)
\(548\) −8.09017 + 5.87785i −0.345595 + 0.251089i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 4.94427 + 15.2169i 0.210252 + 0.647089i
\(554\) 7.10739 21.8743i 0.301964 0.929350i
\(555\) −4.04508 2.93893i −0.171704 0.124750i
\(556\) 9.70820 + 7.05342i 0.411720 + 0.299132i
\(557\) 4.32624 13.3148i 0.183309 0.564166i −0.816607 0.577195i \(-0.804147\pi\)
0.999915 + 0.0130289i \(0.00414735\pi\)
\(558\) −2.47214 7.60845i −0.104654 0.322091i
\(559\) −32.3607 + 23.5114i −1.36871 + 0.994427i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) −29.1246 + 21.1603i −1.22746 + 0.891799i −0.996697 0.0812119i \(-0.974121\pi\)
−0.230759 + 0.973011i \(0.574121\pi\)
\(564\) 1.23607 + 3.80423i 0.0520479 + 0.160187i
\(565\) −0.927051 + 2.85317i −0.0390013 + 0.120034i
\(566\) −3.23607 2.35114i −0.136022 0.0988258i
\(567\) −3.23607 2.35114i −0.135902 0.0987386i
\(568\) −4.94427 + 15.2169i −0.207457 + 0.638487i
\(569\) 8.03444 + 24.7275i 0.336821 + 1.03663i 0.965818 + 0.259221i \(0.0834659\pi\)
−0.628997 + 0.777408i \(0.716534\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) −35.5967 + 25.8626i −1.48578 + 1.07948i
\(575\) 0 0
\(576\) 0.309017 0.951057i 0.0128757 0.0396274i
\(577\) −5.66312 4.11450i −0.235759 0.171289i 0.463633 0.886027i \(-0.346546\pi\)
−0.699392 + 0.714739i \(0.746546\pi\)
\(578\) −25.8885 18.8091i −1.07682 0.782357i
\(579\) 3.39919 10.4616i 0.141265 0.434770i
\(580\) −2.16312 6.65740i −0.0898186 0.276433i
\(581\) 25.8885 18.8091i 1.07404 0.780334i
\(582\) −5.00000 −0.207257
\(583\) 0 0
\(584\) −6.00000 −0.248282
\(585\) −4.04508 + 2.93893i −0.167244 + 0.121510i
\(586\) 7.10739 + 21.8743i 0.293604 + 0.903619i
\(587\) −8.65248 + 26.6296i −0.357126 + 1.09912i 0.597641 + 0.801764i \(0.296105\pi\)
−0.954767 + 0.297356i \(0.903895\pi\)
\(588\) −7.28115 5.29007i −0.300270 0.218159i
\(589\) 0 0
\(590\) 0 0
\(591\) −2.78115 8.55951i −0.114401 0.352091i
\(592\) 4.04508 2.93893i 0.166252 0.120789i
\(593\) 35.0000 1.43728 0.718639 0.695383i \(-0.244765\pi\)
0.718639 + 0.695383i \(0.244765\pi\)
\(594\) 0 0
\(595\) −28.0000 −1.14789
\(596\) 0.809017 0.587785i 0.0331386 0.0240766i
\(597\) −4.94427 15.2169i −0.202356 0.622786i
\(598\) 0 0
\(599\) −29.1246 21.1603i −1.19000 0.864585i −0.196735 0.980457i \(-0.563034\pi\)
−0.993264 + 0.115872i \(0.963034\pi\)
\(600\) 3.23607 + 2.35114i 0.132112 + 0.0959849i
\(601\) −13.9058 + 42.7975i −0.567228 + 1.74575i 0.0940092 + 0.995571i \(0.470032\pi\)
−0.661237 + 0.750177i \(0.729968\pi\)
\(602\) −9.88854 30.4338i −0.403027 1.24039i
\(603\) −9.70820 + 7.05342i −0.395349 + 0.287238i
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) −10.0000 −0.406222
\(607\) 32.3607 23.5114i 1.31348 0.954299i 0.313491 0.949591i \(-0.398502\pi\)
0.999989 0.00470738i \(-0.00149841\pi\)
\(608\) 0 0
\(609\) 8.65248 26.6296i 0.350616 1.07909i
\(610\) −1.61803 1.17557i −0.0655123 0.0475975i
\(611\) 16.1803 + 11.7557i 0.654586 + 0.475585i
\(612\) 2.16312 6.65740i 0.0874389 0.269109i
\(613\) −7.72542 23.7764i −0.312027 0.960320i −0.976961 0.213418i \(-0.931540\pi\)
0.664934 0.746902i \(-0.268460\pi\)
\(614\) −6.47214 + 4.70228i −0.261194 + 0.189769i
\(615\) −11.0000 −0.443563
\(616\) 0 0
\(617\) −25.0000 −1.00646 −0.503231 0.864152i \(-0.667856\pi\)
−0.503231 + 0.864152i \(0.667856\pi\)
\(618\) −3.23607 + 2.35114i −0.130174 + 0.0945768i
\(619\) 1.23607 + 3.80423i 0.0496818 + 0.152905i 0.972820 0.231565i \(-0.0743845\pi\)
−0.923138 + 0.384469i \(0.874384\pi\)
\(620\) 2.47214 7.60845i 0.0992834 0.305563i
\(621\) 0 0
\(622\) −16.1803 11.7557i −0.648773 0.471361i
\(623\) −21.0132 + 64.6718i −0.841874 + 2.59102i
\(624\) −1.54508 4.75528i −0.0618529 0.190364i
\(625\) −8.89919 + 6.46564i −0.355967 + 0.258626i
\(626\) −9.00000 −0.359712
\(627\) 0 0
\(628\) −18.0000 −0.718278
\(629\) 28.3156 20.5725i 1.12902 0.820279i
\(630\) −1.23607 3.80423i −0.0492461 0.151564i
\(631\) −7.41641 + 22.8254i −0.295243 + 0.908663i 0.687897 + 0.725808i \(0.258534\pi\)
−0.983140 + 0.182855i \(0.941466\pi\)
\(632\) −3.23607 2.35114i −0.128724 0.0935234i
\(633\) 0 0
\(634\) −0.618034 + 1.90211i −0.0245453 + 0.0755426i
\(635\) 1.23607 + 3.80423i 0.0490519 + 0.150966i
\(636\) 4.04508 2.93893i 0.160398 0.116536i
\(637\) −45.0000 −1.78296
\(638\) 0 0
\(639\) −16.0000 −0.632950
\(640\) 0.809017 0.587785i 0.0319792 0.0232343i
\(641\) −10.1976 31.3849i −0.402779 1.23963i −0.922735 0.385434i \(-0.874052\pi\)
0.519956 0.854193i \(-0.325948\pi\)
\(642\) 0 0
\(643\) 12.9443 + 9.40456i 0.510472 + 0.370880i 0.813003 0.582260i \(-0.197831\pi\)
−0.302530 + 0.953140i \(0.597831\pi\)
\(644\) 0 0
\(645\) 2.47214 7.60845i 0.0973403 0.299583i
\(646\) 0 0
\(647\) 3.23607 2.35114i 0.127223 0.0924329i −0.522354 0.852729i \(-0.674946\pi\)
0.649577 + 0.760296i \(0.274946\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 20.0000 0.784465
\(651\) 25.8885 18.8091i 1.01465 0.737188i
\(652\) 1.23607 + 3.80423i 0.0484082 + 0.148985i
\(653\) 9.27051 28.5317i 0.362783 1.11653i −0.588575 0.808443i \(-0.700311\pi\)
0.951358 0.308089i \(-0.0996893\pi\)
\(654\) 0.809017 + 0.587785i 0.0316351 + 0.0229842i
\(655\) −9.70820 7.05342i −0.379331 0.275600i
\(656\) 3.39919 10.4616i 0.132716 0.408458i
\(657\) −1.85410 5.70634i −0.0723354 0.222625i
\(658\) −12.9443 + 9.40456i −0.504620 + 0.366628i
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) −9.00000 −0.350059 −0.175030 0.984563i \(-0.556002\pi\)
−0.175030 + 0.984563i \(0.556002\pi\)
\(662\) −25.8885 + 18.8091i −1.00619 + 0.731038i
\(663\) −10.8156 33.2870i −0.420043 1.29276i
\(664\) −2.47214 + 7.60845i −0.0959375 + 0.295265i
\(665\) 0 0
\(666\) 4.04508 + 2.93893i 0.156744 + 0.113881i
\(667\) 0 0
\(668\) 3.70820 + 11.4127i 0.143475 + 0.441570i
\(669\) −16.1803 + 11.7557i −0.625568 + 0.454502i
\(670\) −12.0000 −0.463600
\(671\) 0 0
\(672\) 4.00000 0.154303
\(673\) −1.61803 + 1.17557i −0.0623706 + 0.0453149i −0.618534 0.785758i \(-0.712273\pi\)
0.556163 + 0.831073i \(0.312273\pi\)
\(674\) −0.309017 0.951057i −0.0119029 0.0366333i
\(675\) −1.23607 + 3.80423i −0.0475763 + 0.146425i
\(676\) −9.70820 7.05342i −0.373392 0.271286i
\(677\) 20.2254 + 14.6946i 0.777326 + 0.564761i 0.904175 0.427161i \(-0.140486\pi\)
−0.126849 + 0.991922i \(0.540486\pi\)
\(678\) 0.927051 2.85317i 0.0356032 0.109575i
\(679\) −6.18034 19.0211i −0.237180 0.729964i
\(680\) 5.66312 4.11450i 0.217171 0.157784i
\(681\) 0 0
\(682\) 0 0
\(683\) −52.0000 −1.98972 −0.994862 0.101237i \(-0.967720\pi\)
−0.994862 + 0.101237i \(0.967720\pi\)
\(684\) 0 0
\(685\) −3.09017 9.51057i −0.118069 0.363380i
\(686\) 2.47214 7.60845i 0.0943866 0.290492i
\(687\) 4.04508 + 2.93893i 0.154330 + 0.112127i
\(688\) 6.47214 + 4.70228i 0.246748 + 0.179273i
\(689\) 7.72542 23.7764i 0.294315 0.905809i
\(690\) 0 0
\(691\) −3.23607 + 2.35114i −0.123106 + 0.0894416i −0.647634 0.761951i \(-0.724242\pi\)
0.524529 + 0.851393i \(0.324242\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) −9.70820 + 7.05342i −0.368253 + 0.267552i
\(696\) 2.16312 + 6.65740i 0.0819928 + 0.252348i
\(697\) 23.7943 73.2314i 0.901274 2.77384i
\(698\) −5.66312 4.11450i −0.214352 0.155736i
\(699\) 7.28115 + 5.29007i 0.275398 + 0.200089i
\(700\) −4.94427 + 15.2169i −0.186876 + 0.575145i
\(701\) −10.1976 31.3849i −0.385157 1.18539i −0.936367 0.351024i \(-0.885834\pi\)
0.551210 0.834366i \(-0.314166\pi\)
\(702\) 4.04508 2.93893i 0.152672 0.110923i
\(703\) 0 0
\(704\) 0 0
\(705\) −4.00000 −0.150649
\(706\) −21.8435 + 15.8702i −0.822089 + 0.597283i
\(707\) −12.3607 38.0423i −0.464871 1.43073i
\(708\) 0 0
\(709\) 21.0344 + 15.2824i 0.789965 + 0.573943i 0.907953 0.419072i \(-0.137644\pi\)
−0.117988 + 0.993015i \(0.537644\pi\)
\(710\) −12.9443 9.40456i −0.485790 0.352947i
\(711\) 1.23607 3.80423i 0.0463562 0.142670i
\(712\) −5.25329 16.1680i −0.196875 0.605920i
\(713\) 0 0
\(714\) 28.0000 1.04787
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −3.23607 + 2.35114i −0.120853 + 0.0878050i
\(718\) 1.23607 + 3.80423i 0.0461296 + 0.141972i
\(719\) 1.23607 3.80423i 0.0460976 0.141874i −0.925359 0.379093i \(-0.876236\pi\)
0.971456 + 0.237219i \(0.0762360\pi\)
\(720\) 0.809017 + 0.587785i 0.0301503 + 0.0219055i
\(721\) −12.9443 9.40456i −0.482070 0.350244i
\(722\) −5.87132 + 18.0701i −0.218508 + 0.672499i
\(723\) 5.56231 + 17.1190i 0.206864 + 0.636663i
\(724\) 0.809017 0.587785i 0.0300669 0.0218449i
\(725\) −28.0000 −1.03989
\(726\) 0 0
\(727\) 28.0000 1.03846 0.519231 0.854634i \(-0.326218\pi\)
0.519231 + 0.854634i \(0.326218\pi\)
\(728\) 16.1803 11.7557i 0.599683 0.435695i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 1.85410 5.70634i 0.0686234 0.211201i
\(731\) 45.3050 + 32.9160i 1.67566 + 1.21744i
\(732\) 1.61803 + 1.17557i 0.0598043 + 0.0434503i
\(733\) −5.25329 + 16.1680i −0.194035 + 0.597177i 0.805952 + 0.591981i \(0.201654\pi\)
−0.999986 + 0.00519616i \(0.998346\pi\)
\(734\) 2.47214 + 7.60845i 0.0912482 + 0.280833i
\(735\) 7.28115 5.29007i 0.268569 0.195127i
\(736\) 0 0
\(737\) 0 0
\(738\) 11.0000 0.404916
\(739\) −16.1803 + 11.7557i −0.595203 + 0.432441i −0.844173 0.536071i \(-0.819908\pi\)
0.248970 + 0.968511i \(0.419908\pi\)
\(740\) 1.54508 + 4.75528i 0.0567985 + 0.174808i
\(741\) 0 0
\(742\) 16.1803 + 11.7557i 0.593999 + 0.431566i
\(743\) 12.9443 + 9.40456i 0.474879 + 0.345020i 0.799340 0.600879i \(-0.205183\pi\)
−0.324461 + 0.945899i \(0.605183\pi\)
\(744\) −2.47214 + 7.60845i −0.0906329 + 0.278939i
\(745\) 0.309017 + 0.951057i 0.0113215 + 0.0348440i
\(746\) −17.7984 + 12.9313i −0.651645 + 0.473448i
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) −7.28115 + 5.29007i −0.265870 + 0.193166i
\(751\) −9.88854 30.4338i −0.360838 1.11055i −0.952546 0.304393i \(-0.901546\pi\)
0.591708 0.806152i \(-0.298454\pi\)
\(752\) 1.23607 3.80423i 0.0450748 0.138726i
\(753\) −12.9443 9.40456i −0.471715 0.342721i
\(754\) 28.3156 + 20.5725i 1.03119 + 0.749206i
\(755\) −6.18034 + 19.0211i −0.224926 + 0.692250i
\(756\) 1.23607 + 3.80423i 0.0449554 + 0.138358i
\(757\) 26.6976 19.3969i 0.970339 0.704993i 0.0148105 0.999890i \(-0.495286\pi\)
0.955529 + 0.294898i \(0.0952855\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) −34.7877 + 25.2748i −1.26105 + 0.916210i −0.998809 0.0487917i \(-0.984463\pi\)
−0.262245 + 0.965001i \(0.584463\pi\)
\(762\) −1.23607 3.80423i −0.0447780 0.137813i
\(763\) −1.23607 + 3.80423i −0.0447487 + 0.137722i
\(764\) −3.23607 2.35114i −0.117077 0.0850613i
\(765\) 5.66312 + 4.11450i 0.204750 + 0.148760i
\(766\) −11.1246 + 34.2380i −0.401949 + 1.23707i
\(767\) 0 0
\(768\) −0.809017 + 0.587785i −0.0291929 + 0.0212099i
\(769\) 19.0000 0.685158 0.342579 0.939489i \(-0.388700\pi\)
0.342579 + 0.939489i \(0.388700\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) −8.89919 + 6.46564i −0.320289 + 0.232703i
\(773\) −8.03444 24.7275i −0.288979 0.889385i −0.985178 0.171536i \(-0.945127\pi\)
0.696199 0.717849i \(-0.254873\pi\)
\(774\) −2.47214 + 7.60845i −0.0888591 + 0.273480i
\(775\) −25.8885 18.8091i −0.929944 0.675644i
\(776\) 4.04508 + 2.93893i 0.145210 + 0.105501i
\(777\) −6.18034 + 19.0211i −0.221718 + 0.682379i
\(778\) −8.96149 27.5806i −0.321285 0.988814i
\(779\) 0 0
\(780\) 5.00000 0.179029
\(781\) 0 0
\(782\) 0 0
\(783\) −5.66312 + 4.11450i −0.202383 + 0.147040i
\(784\) 2.78115 + 8.55951i 0.0993269 + 0.305697i
\(785\) 5.56231 17.1190i 0.198527 0.611004i
\(786\) 9.70820 + 7.05342i 0.346280 + 0.251587i
\(787\) 22.6525 + 16.4580i 0.807474 + 0.586664i 0.913097 0.407742i \(-0.133684\pi\)
−0.105623 + 0.994406i \(0.533684\pi\)
\(788\) −2.78115 + 8.55951i −0.0990745 + 0.304920i
\(789\) 2.47214 + 7.60845i 0.0880104 + 0.270868i
\(790\) 3.23607 2.35114i 0.115134 0.0836498i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 16.9894 12.3435i 0.602930 0.438054i
\(795\) 1.54508 + 4.75528i 0.0547985 + 0.168652i
\(796\) −4.94427 + 15.2169i −0.175245 + 0.539349i
\(797\) 1.61803 + 1.17557i 0.0573137 + 0.0416408i 0.616073 0.787689i \(-0.288723\pi\)
−0.558760 + 0.829330i \(0.688723\pi\)
\(798\) 0 0
\(799\) 8.65248 26.6296i 0.306103 0.942087i
\(800\) −1.23607 3.80423i −0.0437016 0.134500i
\(801\) 13.7533 9.99235i 0.485949 0.353062i
\(802\) 15.0000 0.529668
\(803\) 0 0
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) 12.3607 + 38.0423i 0.435386 + 1.33998i
\(807\) −1.54508 + 4.75528i −0.0543896 + 0.167394i
\(808\) 8.09017 + 5.87785i 0.284611 + 0.206782i
\(809\) 30.7426 + 22.3358i 1.08085 + 0.785286i 0.977832 0.209393i \(-0.0671487\pi\)
0.103022 + 0.994679i \(0.467149\pi\)
\(810\) −0.309017 + 0.951057i −0.0108578 + 0.0334167i
\(811\) 7.41641 + 22.8254i 0.260425 + 0.801507i 0.992712 + 0.120510i \(0.0384531\pi\)
−0.732287 + 0.680996i \(0.761547\pi\)
\(812\) −22.6525 + 16.4580i −0.794946 + 0.577562i
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) −5.66312 + 4.11450i −0.198249 + 0.144036i
\(817\) 0 0
\(818\) −0.309017 + 0.951057i −0.0108045 + 0.0332529i
\(819\) 16.1803 + 11.7557i 0.565387 + 0.410778i
\(820\) 8.89919 + 6.46564i 0.310773 + 0.225790i
\(821\) 6.79837 20.9232i 0.237265 0.730226i −0.759548 0.650451i \(-0.774580\pi\)
0.996813 0.0797750i \(-0.0254202\pi\)
\(822\) 3.09017 + 9.51057i 0.107782 + 0.331719i
\(823\) 19.4164 14.1068i 0.676813 0.491734i −0.195486 0.980707i \(-0.562628\pi\)
0.872299 + 0.488973i \(0.162628\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) −9.70820 + 7.05342i −0.337587 + 0.245272i −0.743643 0.668577i \(-0.766904\pi\)
0.406056 + 0.913848i \(0.366904\pi\)
\(828\) 0 0
\(829\) −6.48936 + 19.9722i −0.225385 + 0.693663i 0.772868 + 0.634567i \(0.218822\pi\)
−0.998252 + 0.0590955i \(0.981178\pi\)
\(830\) −6.47214 4.70228i −0.224651 0.163219i
\(831\) −18.6074 13.5191i −0.645483 0.468971i
\(832\) −1.54508 + 4.75528i −0.0535662 + 0.164860i
\(833\) 19.4681 + 59.9166i 0.674529 + 2.07599i
\(834\) 9.70820 7.05342i 0.336168 0.244240i
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(840\) −1.23607 + 3.80423i −0.0426484 + 0.131258i
\(841\) −16.1803 11.7557i −0.557943 0.405369i
\(842\) −12.1353 8.81678i −0.418209 0.303846i
\(843\) 3.09017 9.51057i 0.106431 0.327561i
\(844\) 0 0
\(845\) 9.70820 7.05342i 0.333972 0.242645i
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) −5.00000 −0.171701
\(849\) −3.23607 + 2.35114i −0.111062 + 0.0806910i
\(850\) −8.65248 26.6296i −0.296777 0.913387i
\(851\) 0 0
\(852\) 12.9443 + 9.40456i 0.443463 + 0.322195i
\(853\) 16.9894 + 12.3435i 0.581705 + 0.422633i 0.839338 0.543610i \(-0.182943\pi\)
−0.257634 + 0.966243i \(0.582943\pi\)
\(854\) −2.47214 + 7.60845i −0.0845948 + 0.260356i
\(855\) 0 0
\(856\) 0 0
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) −6.47214 + 4.70228i −0.220698 + 0.160346i
\(861\) 13.5967 + 41.8465i 0.463376 + 1.42612i
\(862\) 6.18034 19.0211i 0.210503 0.647862i
\(863\) −9.70820 7.05342i −0.330471 0.240101i 0.410159 0.912014i \(-0.365473\pi\)
−0.740630 + 0.671913i \(0.765473\pi\)
\(864\) −0.809017 0.587785i −0.0275233 0.0199969i
\(865\) 5.56231 17.1190i 0.189124 0.582064i
\(866\) −6.48936 19.9722i −0.220517 0.678683i
\(867\) −25.8885 + 18.8091i −0.879221 + 0.638791i
\(868\) −32.0000 −1.08615
\(869\) 0 0
\(870\) −7.00000 −0.237322
\(871\) 48.5410 35.2671i 1.64475 1.19498i
\(872\) −0.309017 0.951057i −0.0104646 0.0322068i
\(873\) −1.54508 + 4.75528i −0.0522932 + 0.160942i
\(874\) 0 0
\(875\) −29.1246 21.1603i −0.984592 0.715348i
\(876\) −1.85410 + 5.70634i −0.0626443 + 0.192799i
\(877\) −1.54508 4.75528i −0.0521738 0.160574i 0.921575 0.388201i \(-0.126903\pi\)
−0.973748 + 0.227627i \(0.926903\pi\)
\(878\) −12.9443 + 9.40456i −0.436848 + 0.317389i
\(879\) 23.0000 0.775771
\(880\) 0 0
\(881\) 19.0000 0.640126 0.320063 0.947396i \(-0.396296\pi\)
0.320063 + 0.947396i \(0.396296\pi\)
\(882\) −7.28115 + 5.29007i −0.245169 + 0.178126i
\(883\) −8.65248 26.6296i −0.291179 0.896157i −0.984478 0.175507i \(-0.943844\pi\)
0.693299 0.720650i \(-0.256156\pi\)
\(884\) −10.8156 + 33.2870i −0.363768 + 1.11956i
\(885\) 0 0
\(886\) −29.1246 21.1603i −0.978460 0.710893i
\(887\) 3.70820 11.4127i 0.124509 0.383200i −0.869302 0.494281i \(-0.835431\pi\)
0.993811 + 0.111081i \(0.0354313\pi\)
\(888\) −1.54508 4.75528i −0.0518497 0.159577i
\(889\) 12.9443 9.40456i 0.434137 0.315419i
\(890\) 17.0000 0.569841
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) −0.309017 0.951057i −0.0103351 0.0318081i
\(895\) −3.70820 + 11.4127i −0.123952 + 0.381484i
\(896\) −3.23607 2.35114i −0.108109 0.0785461i
\(897\) 0 0
\(898\) 4.63525 14.2658i 0.154680 0.476058i
\(899\) −17.3050 53.2592i −0.577152 1.77629i
\(900\) 3.23607 2.35114i 0.107869 0.0783714i
\(901\) −35.0000 −1.16602
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) −2.42705 + 1.76336i −0.0807225 + 0.0586483i
\(905\) 0.309017 + 0.951057i 0.0102721 + 0.0316142i
\(906\) 6.18034 19.0211i 0.205328 0.631935i
\(907\) −38.8328 28.2137i −1.28942 0.936820i −0.289629 0.957139i \(-0.593532\pi\)
−0.999794 + 0.0203187i \(0.993532\pi\)
\(908\) 0 0
\(909\) −3.09017 + 9.51057i −0.102494 + 0.315446i
\(910\) 6.18034 + 19.0211i 0.204876 + 0.630544i
\(911\) −16.1803 + 11.7557i −0.536079 + 0.389484i −0.822627 0.568582i \(-0.807492\pi\)
0.286548 + 0.958066i \(0.407492\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −17.0000 −0.562310
\(915\) −1.61803 + 1.17557i −0.0534906 + 0.0388632i
\(916\) −1.54508 4.75528i −0.0510510 0.157119i
\(917\) −14.8328 + 45.6507i −0.489823 + 1.50752i
\(918\) −5.66312 4.11450i −0.186911 0.135799i
\(919\) −16.1803 11.7557i −0.533740 0.387785i 0.288015 0.957626i \(-0.407005\pi\)
−0.821755 + 0.569841i \(0.807005\pi\)
\(920\) 0 0
\(921\) 2.47214 + 7.60845i 0.0814596 + 0.250707i
\(922\) 26.6976 19.3969i 0.879237 0.638803i
\(923\) 80.0000 2.63323
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 6.47214 4.70228i 0.212688 0.154527i
\(927\) 1.23607 + 3.80423i 0.0405978 + 0.124947i
\(928\) 2.16312 6.65740i 0.0710079 0.218540i
\(929\) 7.28115 + 5.29007i 0.238887 + 0.173561i 0.700787 0.713370i \(-0.252832\pi\)
−0.461900 + 0.886932i \(0.652832\pi\)
\(930\) −6.47214 4.70228i −0.212230 0.154194i
\(931\) 0 0
\(932\) −2.78115 8.55951i −0.0910997 0.280376i
\(933\) −16.1803 + 11.7557i −0.529721 + 0.384865i
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −5.00000 −0.163430
\(937\) 42.8779 31.1526i 1.40076 1.01771i 0.406174 0.913796i \(-0.366863\pi\)
0.994586 0.103916i \(-0.0331373\pi\)
\(938\) 14.8328 + 45.6507i 0.484309 + 1.49055i
\(939\) −2.78115 + 8.55951i −0.0907595 + 0.279329i
\(940\) 3.23607 + 2.35114i 0.105549 + 0.0766858i
\(941\) 26.6976 + 19.3969i 0.870316 + 0.632321i 0.930672 0.365856i \(-0.119224\pi\)
−0.0603560 + 0.998177i \(0.519224\pi\)
\(942\) −5.56231 + 17.1190i −0.181230 + 0.557768i
\(943\) 0 0
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) −3.23607 + 2.35114i −0.105103 + 0.0763615i
\(949\) 9.27051 + 28.5317i 0.300933 + 0.926178i
\(950\) 0 0
\(951\) 1.61803 + 1.17557i 0.0524683 + 0.0381205i
\(952\) −22.6525 16.4580i −0.734171 0.533406i
\(953\) 0.927051 2.85317i 0.0300301 0.0924232i −0.934918 0.354864i \(-0.884527\pi\)
0.964948 + 0.262440i \(0.0845273\pi\)
\(954\) −1.54508 4.75528i −0.0500240 0.153958i
\(955\) 3.23607 2.35114i 0.104717 0.0760811i
\(956\) 4.00000 0.129369
\(957\) 0 0
\(958\) 4.00000 0.129234
\(959\) −32.3607 + 23.5114i −1.04498 + 0.759223i
\(960\) −0.309017 0.951057i −0.00997348 0.0306952i
\(961\) 10.1976 31.3849i 0.328954 1.01242i
\(962\) −20.2254 14.6946i −0.652094 0.473774i
\(963\) 0 0
\(964\) 5.56231 17.1190i 0.179150 0.551366i
\(965\) −3.39919 10.4616i −0.109424 0.336772i
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −4.04508 + 2.93893i −0.129880 + 0.0943632i
\(971\) 6.18034 + 19.0211i 0.198337 + 0.610417i 0.999921 + 0.0125361i \(0.00399048\pi\)
−0.801585 + 0.597881i \(0.796010\pi\)
\(972\) 0.309017 0.951057i 0.00991172 0.0305052i
\(973\) 38.8328 + 28.2137i 1.24492 + 0.904489i
\(974\) 16.1803 + 11.7557i 0.518452 + 0.376677i
\(975\) 6.18034 19.0211i 0.197929 0.609164i
\(976\) −0.618034 1.90211i −0.0197828 0.0608852i
\(977\) 39.6418 28.8015i 1.26825 0.921441i 0.269123 0.963106i \(-0.413266\pi\)
0.999132 + 0.0416649i \(0.0132662\pi\)
\(978\) 4.00000 0.127906
\(979\) 0 0
\(980\) −9.00000 −0.287494
\(981\) 0.809017 0.587785i 0.0258299 0.0187665i
\(982\) −3.70820 11.4127i −0.118334 0.364193i
\(983\) −8.65248 + 26.6296i −0.275971 + 0.849352i 0.712990 + 0.701175i \(0.247341\pi\)
−0.988961 + 0.148177i \(0.952659\pi\)
\(984\) −8.89919 6.46564i −0.283696 0.206117i
\(985\) −7.28115 5.29007i −0.231997 0.168556i
\(986\) 15.1418 46.6018i 0.482214 1.48410i
\(987\) 4.94427 + 15.2169i 0.157378 + 0.484359i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 6.47214 4.70228i 0.205491 0.149298i
\(993\) 9.88854 + 30.4338i 0.313803 + 0.965788i
\(994\) −19.7771 + 60.8676i −0.627291 + 1.93060i
\(995\) −12.9443 9.40456i −0.410361 0.298145i
\(996\) 6.47214 + 4.70228i 0.205077 + 0.148998i
\(997\) −11.4336 + 35.1891i −0.362107 + 1.11445i 0.589666 + 0.807647i \(0.299259\pi\)
−0.951773 + 0.306803i \(0.900741\pi\)
\(998\) 12.3607 + 38.0423i 0.391270 + 1.20421i
\(999\) 4.04508 2.93893i 0.127981 0.0929835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.d.487.1 4
11.2 odd 10 726.2.a.e.1.1 1
11.3 even 5 inner 726.2.e.d.511.1 4
11.4 even 5 inner 726.2.e.d.565.1 4
11.5 even 5 inner 726.2.e.d.493.1 4
11.6 odd 10 726.2.e.l.493.1 4
11.7 odd 10 726.2.e.l.565.1 4
11.8 odd 10 726.2.e.l.511.1 4
11.9 even 5 726.2.a.h.1.1 yes 1
11.10 odd 2 726.2.e.l.487.1 4
33.2 even 10 2178.2.a.j.1.1 1
33.20 odd 10 2178.2.a.e.1.1 1
44.31 odd 10 5808.2.a.g.1.1 1
44.35 even 10 5808.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.a.e.1.1 1 11.2 odd 10
726.2.a.h.1.1 yes 1 11.9 even 5
726.2.e.d.487.1 4 1.1 even 1 trivial
726.2.e.d.493.1 4 11.5 even 5 inner
726.2.e.d.511.1 4 11.3 even 5 inner
726.2.e.d.565.1 4 11.4 even 5 inner
726.2.e.l.487.1 4 11.10 odd 2
726.2.e.l.493.1 4 11.6 odd 10
726.2.e.l.511.1 4 11.8 odd 10
726.2.e.l.565.1 4 11.7 odd 10
2178.2.a.e.1.1 1 33.20 odd 10
2178.2.a.j.1.1 1 33.2 even 10
5808.2.a.g.1.1 1 44.31 odd 10
5808.2.a.h.1.1 1 44.35 even 10