Properties

Label 726.2.b.f.725.5
Level $726$
Weight $2$
Character 726.725
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(725,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3588489216.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 10x^{6} - 8x^{5} + 8x^{4} + 4x^{3} + 16x^{2} + 32x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 725.5
Root \(1.25299 - 1.71348i\) of defining polynomial
Character \(\chi\) \(=\) 726.725
Dual form 726.2.b.f.725.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.25299 - 1.19584i) q^{3} +1.00000 q^{4} -0.197913i q^{5} +(1.25299 - 1.19584i) q^{6} -3.42695i q^{7} +1.00000 q^{8} +(0.139946 - 2.99673i) q^{9} -0.197913i q^{10} +(1.25299 - 1.19584i) q^{12} -1.66994i q^{13} -3.42695i q^{14} +(-0.236672 - 0.247982i) q^{15} +1.00000 q^{16} -7.62036 q^{17} +(0.139946 - 2.99673i) q^{18} +5.55672i q^{19} -0.197913i q^{20} +(-4.09808 - 4.29392i) q^{21} +6.63432i q^{23} +(1.25299 - 1.19584i) q^{24} +4.96083 q^{25} -1.66994i q^{26} +(-3.40826 - 3.92222i) q^{27} -3.42695i q^{28} -0.102447 q^{29} +(-0.236672 - 0.247982i) q^{30} +5.60842 q^{31} +1.00000 q^{32} -7.62036 q^{34} -0.678239 q^{35} +(0.139946 - 2.99673i) q^{36} +7.34047 q^{37} +5.55672i q^{38} +(-1.99698 - 2.09241i) q^{39} -0.197913i q^{40} +9.53662 q^{41} +(-4.09808 - 4.29392i) q^{42} -1.95492i q^{43} +(-0.593093 - 0.0276971i) q^{45} +6.63432i q^{46} -7.98932i q^{47} +(1.25299 - 1.19584i) q^{48} -4.74399 q^{49} +4.96083 q^{50} +(-9.54820 + 9.11271i) q^{51} -1.66994i q^{52} +7.54638i q^{53} +(-3.40826 - 3.92222i) q^{54} -3.42695i q^{56} +(6.64493 + 6.96248i) q^{57} -0.102447 q^{58} -6.53418i q^{59} +(-0.236672 - 0.247982i) q^{60} +8.42607i q^{61} +5.60842 q^{62} +(-10.2697 - 0.479587i) q^{63} +1.00000 q^{64} -0.330504 q^{65} -4.42223 q^{67} -7.62036 q^{68} +(7.93356 + 8.31270i) q^{69} -0.678239 q^{70} +8.48528i q^{71} +(0.139946 - 2.99673i) q^{72} +0.919646i q^{73} +7.34047 q^{74} +(6.21585 - 5.93235i) q^{75} +5.55672i q^{76} +(-1.99698 - 2.09241i) q^{78} -4.27050i q^{79} -0.197913i q^{80} +(-8.96083 - 0.838761i) q^{81} +9.53662 q^{82} +1.23802 q^{83} +(-4.09808 - 4.29392i) q^{84} +1.50817i q^{85} -1.95492i q^{86} +(-0.128365 + 0.122510i) q^{87} +2.04888i q^{89} +(-0.593093 - 0.0276971i) q^{90} -5.72281 q^{91} +6.63432i q^{92} +(7.02727 - 6.70676i) q^{93} -7.98932i q^{94} +1.09975 q^{95} +(1.25299 - 1.19584i) q^{96} +1.55978 q^{97} -4.74399 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} - 4 q^{9} + 4 q^{12} - 8 q^{15} + 8 q^{16} - 16 q^{17} - 4 q^{18} - 12 q^{21} + 4 q^{24} - 40 q^{25} + 16 q^{27} + 8 q^{29} - 8 q^{30} + 24 q^{31} + 8 q^{32}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.25299 1.19584i 0.723412 0.690417i
\(4\) 1.00000 0.500000
\(5\) 0.197913i 0.0885095i −0.999020 0.0442547i \(-0.985909\pi\)
0.999020 0.0442547i \(-0.0140913\pi\)
\(6\) 1.25299 1.19584i 0.511529 0.488199i
\(7\) 3.42695i 1.29527i −0.761953 0.647633i \(-0.775759\pi\)
0.761953 0.647633i \(-0.224241\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.139946 2.99673i 0.0466486 0.998911i
\(10\) 0.197913i 0.0625857i
\(11\) 0 0
\(12\) 1.25299 1.19584i 0.361706 0.345209i
\(13\) 1.66994i 0.463158i −0.972816 0.231579i \(-0.925611\pi\)
0.972816 0.231579i \(-0.0743893\pi\)
\(14\) 3.42695i 0.915891i
\(15\) −0.236672 0.247982i −0.0611085 0.0640288i
\(16\) 1.00000 0.250000
\(17\) −7.62036 −1.84821 −0.924105 0.382140i \(-0.875187\pi\)
−0.924105 + 0.382140i \(0.875187\pi\)
\(18\) 0.139946 2.99673i 0.0329855 0.706337i
\(19\) 5.55672i 1.27480i 0.770534 + 0.637399i \(0.219990\pi\)
−0.770534 + 0.637399i \(0.780010\pi\)
\(20\) 0.197913i 0.0442547i
\(21\) −4.09808 4.29392i −0.894274 0.937010i
\(22\) 0 0
\(23\) 6.63432i 1.38335i 0.722209 + 0.691675i \(0.243127\pi\)
−0.722209 + 0.691675i \(0.756873\pi\)
\(24\) 1.25299 1.19584i 0.255765 0.244099i
\(25\) 4.96083 0.992166
\(26\) 1.66994i 0.327503i
\(27\) −3.40826 3.92222i −0.655919 0.754831i
\(28\) 3.42695i 0.647633i
\(29\) −0.102447 −0.0190240 −0.00951200 0.999955i \(-0.503028\pi\)
−0.00951200 + 0.999955i \(0.503028\pi\)
\(30\) −0.236672 0.247982i −0.0432102 0.0452752i
\(31\) 5.60842 1.00730 0.503651 0.863907i \(-0.331990\pi\)
0.503651 + 0.863907i \(0.331990\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −7.62036 −1.30688
\(35\) −0.678239 −0.114643
\(36\) 0.139946 2.99673i 0.0233243 0.499456i
\(37\) 7.34047 1.20677 0.603383 0.797452i \(-0.293819\pi\)
0.603383 + 0.797452i \(0.293819\pi\)
\(38\) 5.55672i 0.901418i
\(39\) −1.99698 2.09241i −0.319773 0.335054i
\(40\) 0.197913i 0.0312928i
\(41\) 9.53662 1.48937 0.744685 0.667416i \(-0.232600\pi\)
0.744685 + 0.667416i \(0.232600\pi\)
\(42\) −4.09808 4.29392i −0.632347 0.662566i
\(43\) 1.95492i 0.298123i −0.988828 0.149061i \(-0.952375\pi\)
0.988828 0.149061i \(-0.0476252\pi\)
\(44\) 0 0
\(45\) −0.593093 0.0276971i −0.0884131 0.00412884i
\(46\) 6.63432i 0.978176i
\(47\) 7.98932i 1.16536i −0.812701 0.582681i \(-0.802004\pi\)
0.812701 0.582681i \(-0.197996\pi\)
\(48\) 1.25299 1.19584i 0.180853 0.172604i
\(49\) −4.74399 −0.677713
\(50\) 4.96083 0.701567
\(51\) −9.54820 + 9.11271i −1.33702 + 1.27604i
\(52\) 1.66994i 0.231579i
\(53\) 7.54638i 1.03658i 0.855206 + 0.518288i \(0.173430\pi\)
−0.855206 + 0.518288i \(0.826570\pi\)
\(54\) −3.40826 3.92222i −0.463805 0.533746i
\(55\) 0 0
\(56\) 3.42695i 0.457946i
\(57\) 6.64493 + 6.96248i 0.880142 + 0.922204i
\(58\) −0.102447 −0.0134520
\(59\) 6.53418i 0.850677i −0.905034 0.425339i \(-0.860155\pi\)
0.905034 0.425339i \(-0.139845\pi\)
\(60\) −0.236672 0.247982i −0.0305542 0.0320144i
\(61\) 8.42607i 1.07885i 0.842034 + 0.539424i \(0.181358\pi\)
−0.842034 + 0.539424i \(0.818642\pi\)
\(62\) 5.60842 0.712270
\(63\) −10.2697 0.479587i −1.29386 0.0604223i
\(64\) 1.00000 0.125000
\(65\) −0.330504 −0.0409939
\(66\) 0 0
\(67\) −4.42223 −0.540262 −0.270131 0.962824i \(-0.587067\pi\)
−0.270131 + 0.962824i \(0.587067\pi\)
\(68\) −7.62036 −0.924105
\(69\) 7.93356 + 8.31270i 0.955089 + 1.00073i
\(70\) −0.678239 −0.0810651
\(71\) 8.48528i 1.00702i 0.863990 + 0.503509i \(0.167958\pi\)
−0.863990 + 0.503509i \(0.832042\pi\)
\(72\) 0.139946 2.99673i 0.0164928 0.353168i
\(73\) 0.919646i 0.107636i 0.998551 + 0.0538182i \(0.0171392\pi\)
−0.998551 + 0.0538182i \(0.982861\pi\)
\(74\) 7.34047 0.853312
\(75\) 6.21585 5.93235i 0.717744 0.685008i
\(76\) 5.55672i 0.637399i
\(77\) 0 0
\(78\) −1.99698 2.09241i −0.226113 0.236919i
\(79\) 4.27050i 0.480468i −0.970715 0.240234i \(-0.922776\pi\)
0.970715 0.240234i \(-0.0772242\pi\)
\(80\) 0.197913i 0.0221274i
\(81\) −8.96083 0.838761i −0.995648 0.0931956i
\(82\) 9.53662 1.05314
\(83\) 1.23802 0.135891 0.0679453 0.997689i \(-0.478356\pi\)
0.0679453 + 0.997689i \(0.478356\pi\)
\(84\) −4.09808 4.29392i −0.447137 0.468505i
\(85\) 1.50817i 0.163584i
\(86\) 1.95492i 0.210805i
\(87\) −0.128365 + 0.122510i −0.0137622 + 0.0131345i
\(88\) 0 0
\(89\) 2.04888i 0.217181i 0.994087 + 0.108590i \(0.0346337\pi\)
−0.994087 + 0.108590i \(0.965366\pi\)
\(90\) −0.593093 0.0276971i −0.0625175 0.00291953i
\(91\) −5.72281 −0.599913
\(92\) 6.63432i 0.691675i
\(93\) 7.02727 6.70676i 0.728694 0.695458i
\(94\) 7.98932i 0.824035i
\(95\) 1.09975 0.112832
\(96\) 1.25299 1.19584i 0.127882 0.122050i
\(97\) 1.55978 0.158372 0.0791860 0.996860i \(-0.474768\pi\)
0.0791860 + 0.996860i \(0.474768\pi\)
\(98\) −4.74399 −0.479216
\(99\) 0 0
\(100\) 4.96083 0.496083
\(101\) −8.75594 −0.871248 −0.435624 0.900129i \(-0.643472\pi\)
−0.435624 + 0.900129i \(0.643472\pi\)
\(102\) −9.54820 + 9.11271i −0.945413 + 0.902293i
\(103\) −8.55978 −0.843420 −0.421710 0.906731i \(-0.638570\pi\)
−0.421710 + 0.906731i \(0.638570\pi\)
\(104\) 1.66994i 0.163751i
\(105\) −0.849824 + 0.811063i −0.0829343 + 0.0791517i
\(106\) 7.54638i 0.732969i
\(107\) −10.8253 −1.04652 −0.523258 0.852174i \(-0.675284\pi\)
−0.523258 + 0.852174i \(0.675284\pi\)
\(108\) −3.40826 3.92222i −0.327960 0.377416i
\(109\) 6.84912i 0.656027i 0.944673 + 0.328013i \(0.106379\pi\)
−0.944673 + 0.328013i \(0.893621\pi\)
\(110\) 0 0
\(111\) 9.19750 8.77801i 0.872988 0.833172i
\(112\) 3.42695i 0.323816i
\(113\) 10.6236i 0.999389i 0.866202 + 0.499694i \(0.166554\pi\)
−0.866202 + 0.499694i \(0.833446\pi\)
\(114\) 6.64493 + 6.96248i 0.622355 + 0.652096i
\(115\) 1.31302 0.122440
\(116\) −0.102447 −0.00951200
\(117\) −5.00437 0.233701i −0.462654 0.0216057i
\(118\) 6.53418i 0.601520i
\(119\) 26.1146i 2.39392i
\(120\) −0.236672 0.247982i −0.0216051 0.0226376i
\(121\) 0 0
\(122\) 8.42607i 0.762860i
\(123\) 11.9492 11.4042i 1.07743 1.02829i
\(124\) 5.60842 0.503651
\(125\) 1.97138i 0.176326i
\(126\) −10.2697 0.479587i −0.914894 0.0427250i
\(127\) 4.46362i 0.396083i 0.980194 + 0.198041i \(0.0634580\pi\)
−0.980194 + 0.198041i \(0.936542\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.33777 2.44949i −0.205829 0.215666i
\(130\) −0.330504 −0.0289871
\(131\) 21.3040 1.86134 0.930670 0.365861i \(-0.119225\pi\)
0.930670 + 0.365861i \(0.119225\pi\)
\(132\) 0 0
\(133\) 19.0426 1.65120
\(134\) −4.42223 −0.382023
\(135\) −0.776259 + 0.674539i −0.0668097 + 0.0580551i
\(136\) −7.62036 −0.653441
\(137\) 10.3810i 0.886908i −0.896297 0.443454i \(-0.853753\pi\)
0.896297 0.443454i \(-0.146247\pi\)
\(138\) 7.93356 + 8.31270i 0.675350 + 0.707624i
\(139\) 4.51762i 0.383180i −0.981475 0.191590i \(-0.938636\pi\)
0.981475 0.191590i \(-0.0613643\pi\)
\(140\) −0.678239 −0.0573216
\(141\) −9.55392 10.0105i −0.804586 0.843036i
\(142\) 8.48528i 0.712069i
\(143\) 0 0
\(144\) 0.139946 2.99673i 0.0116621 0.249728i
\(145\) 0.0202757i 0.00168381i
\(146\) 0.919646i 0.0761105i
\(147\) −5.94416 + 5.67304i −0.490266 + 0.467905i
\(148\) 7.34047 0.603383
\(149\) 3.73007 0.305580 0.152790 0.988259i \(-0.451174\pi\)
0.152790 + 0.988259i \(0.451174\pi\)
\(150\) 6.21585 5.93235i 0.507522 0.484374i
\(151\) 3.06248i 0.249221i −0.992206 0.124611i \(-0.960232\pi\)
0.992206 0.124611i \(-0.0397682\pi\)
\(152\) 5.55672i 0.450709i
\(153\) −1.06644 + 22.8362i −0.0862163 + 1.84620i
\(154\) 0 0
\(155\) 1.10998i 0.0891558i
\(156\) −1.99698 2.09241i −0.159886 0.167527i
\(157\) −16.3671 −1.30623 −0.653117 0.757257i \(-0.726539\pi\)
−0.653117 + 0.757257i \(0.726539\pi\)
\(158\) 4.27050i 0.339742i
\(159\) 9.02425 + 9.45551i 0.715669 + 0.749871i
\(160\) 0.197913i 0.0156464i
\(161\) 22.7355 1.79181
\(162\) −8.96083 0.838761i −0.704029 0.0658993i
\(163\) −22.6749 −1.77603 −0.888017 0.459810i \(-0.847918\pi\)
−0.888017 + 0.459810i \(0.847918\pi\)
\(164\) 9.53662 0.744685
\(165\) 0 0
\(166\) 1.23802 0.0960891
\(167\) 6.06328 0.469191 0.234595 0.972093i \(-0.424624\pi\)
0.234595 + 0.972093i \(0.424624\pi\)
\(168\) −4.09808 4.29392i −0.316173 0.331283i
\(169\) 10.2113 0.785484
\(170\) 1.50817i 0.115671i
\(171\) 16.6520 + 0.777639i 1.27341 + 0.0594675i
\(172\) 1.95492i 0.149061i
\(173\) 3.03917 0.231064 0.115532 0.993304i \(-0.463143\pi\)
0.115532 + 0.993304i \(0.463143\pi\)
\(174\) −0.128365 + 0.122510i −0.00973134 + 0.00928749i
\(175\) 17.0005i 1.28512i
\(176\) 0 0
\(177\) −7.81381 8.18723i −0.587322 0.615390i
\(178\) 2.04888i 0.153570i
\(179\) 0.669410i 0.0500340i 0.999687 + 0.0250170i \(0.00796399\pi\)
−0.999687 + 0.0250170i \(0.992036\pi\)
\(180\) −0.593093 0.0276971i −0.0442066 0.00206442i
\(181\) −20.7141 −1.53966 −0.769832 0.638246i \(-0.779660\pi\)
−0.769832 + 0.638246i \(0.779660\pi\)
\(182\) −5.72281 −0.424203
\(183\) 10.0762 + 10.5577i 0.744855 + 0.780451i
\(184\) 6.63432i 0.489088i
\(185\) 1.45278i 0.106810i
\(186\) 7.02727 6.70676i 0.515264 0.491763i
\(187\) 0 0
\(188\) 7.98932i 0.582681i
\(189\) −13.4412 + 11.6799i −0.977707 + 0.849590i
\(190\) 1.09975 0.0797841
\(191\) 15.6889i 1.13521i 0.823302 + 0.567603i \(0.192129\pi\)
−0.823302 + 0.567603i \(0.807871\pi\)
\(192\) 1.25299 1.19584i 0.0904264 0.0863021i
\(193\) 11.7928i 0.848867i 0.905459 + 0.424434i \(0.139527\pi\)
−0.905459 + 0.424434i \(0.860473\pi\)
\(194\) 1.55978 0.111986
\(195\) −0.414116 + 0.395228i −0.0296555 + 0.0283029i
\(196\) −4.74399 −0.338857
\(197\) −3.06328 −0.218250 −0.109125 0.994028i \(-0.534805\pi\)
−0.109125 + 0.994028i \(0.534805\pi\)
\(198\) 0 0
\(199\) −12.0633 −0.855143 −0.427572 0.903982i \(-0.640631\pi\)
−0.427572 + 0.903982i \(0.640631\pi\)
\(200\) 4.96083 0.350784
\(201\) −5.54099 + 5.28827i −0.390832 + 0.373006i
\(202\) −8.75594 −0.616065
\(203\) 0.351082i 0.0246411i
\(204\) −9.54820 + 9.11271i −0.668508 + 0.638018i
\(205\) 1.88742i 0.131823i
\(206\) −8.55978 −0.596388
\(207\) 19.8813 + 0.928444i 1.38184 + 0.0645313i
\(208\) 1.66994i 0.115790i
\(209\) 0 0
\(210\) −0.849824 + 0.811063i −0.0586434 + 0.0559687i
\(211\) 17.1623i 1.18150i −0.806854 0.590751i \(-0.798832\pi\)
0.806854 0.590751i \(-0.201168\pi\)
\(212\) 7.54638i 0.518288i
\(213\) 10.1470 + 10.6319i 0.695262 + 0.728488i
\(214\) −10.8253 −0.739999
\(215\) −0.386905 −0.0263867
\(216\) −3.40826 3.92222i −0.231902 0.266873i
\(217\) 19.2198i 1.30472i
\(218\) 6.84912i 0.463881i
\(219\) 1.09975 + 1.15230i 0.0743140 + 0.0778655i
\(220\) 0 0
\(221\) 12.7256i 0.856014i
\(222\) 9.19750 8.77801i 0.617296 0.589141i
\(223\) −25.9621 −1.73855 −0.869274 0.494331i \(-0.835413\pi\)
−0.869274 + 0.494331i \(0.835413\pi\)
\(224\) 3.42695i 0.228973i
\(225\) 0.694247 14.8663i 0.0462832 0.991086i
\(226\) 10.6236i 0.706675i
\(227\) −6.80507 −0.451668 −0.225834 0.974166i \(-0.572511\pi\)
−0.225834 + 0.974166i \(0.572511\pi\)
\(228\) 6.64493 + 6.96248i 0.440071 + 0.461102i
\(229\) −5.56248 −0.367579 −0.183790 0.982966i \(-0.558837\pi\)
−0.183790 + 0.982966i \(0.558837\pi\)
\(230\) 1.31302 0.0865779
\(231\) 0 0
\(232\) −0.102447 −0.00672600
\(233\) −18.1509 −1.18911 −0.594554 0.804056i \(-0.702671\pi\)
−0.594554 + 0.804056i \(0.702671\pi\)
\(234\) −5.00437 0.233701i −0.327146 0.0152775i
\(235\) −1.58119 −0.103146
\(236\) 6.53418i 0.425339i
\(237\) −5.10682 5.35087i −0.331724 0.347576i
\(238\) 26.1146i 1.69276i
\(239\) 7.16303 0.463338 0.231669 0.972795i \(-0.425581\pi\)
0.231669 + 0.972795i \(0.425581\pi\)
\(240\) −0.236672 0.247982i −0.0152771 0.0160072i
\(241\) 8.92445i 0.574875i −0.957799 0.287437i \(-0.907197\pi\)
0.957799 0.287437i \(-0.0928033\pi\)
\(242\) 0 0
\(243\) −12.2308 + 9.66474i −0.784607 + 0.619993i
\(244\) 8.42607i 0.539424i
\(245\) 0.938899i 0.0599841i
\(246\) 11.9492 11.4042i 0.761856 0.727108i
\(247\) 9.27939 0.590434
\(248\) 5.60842 0.356135
\(249\) 1.55122 1.48047i 0.0983048 0.0938212i
\(250\) 1.97138i 0.124681i
\(251\) 25.8964i 1.63457i −0.576236 0.817284i \(-0.695479\pi\)
0.576236 0.817284i \(-0.304521\pi\)
\(252\) −10.2697 0.479587i −0.646928 0.0302112i
\(253\) 0 0
\(254\) 4.46362i 0.280073i
\(255\) 1.80353 + 1.88972i 0.112941 + 0.118339i
\(256\) 1.00000 0.0625000
\(257\) 14.6153i 0.911680i 0.890062 + 0.455840i \(0.150661\pi\)
−0.890062 + 0.455840i \(0.849339\pi\)
\(258\) −2.33777 2.44949i −0.145543 0.152499i
\(259\) 25.1554i 1.56308i
\(260\) −0.330504 −0.0204970
\(261\) −0.0143371 + 0.307008i −0.000887443 + 0.0190033i
\(262\) 21.3040 1.31617
\(263\) −9.22928 −0.569102 −0.284551 0.958661i \(-0.591844\pi\)
−0.284551 + 0.958661i \(0.591844\pi\)
\(264\) 0 0
\(265\) 1.49353 0.0917467
\(266\) 19.0426 1.16758
\(267\) 2.45013 + 2.56722i 0.149945 + 0.157111i
\(268\) −4.42223 −0.270131
\(269\) 20.7596i 1.26574i 0.774260 + 0.632868i \(0.218122\pi\)
−0.774260 + 0.632868i \(0.781878\pi\)
\(270\) −0.776259 + 0.674539i −0.0472416 + 0.0410511i
\(271\) 12.2210i 0.742372i −0.928558 0.371186i \(-0.878951\pi\)
0.928558 0.371186i \(-0.121049\pi\)
\(272\) −7.62036 −0.462052
\(273\) −7.17060 + 6.84355i −0.433984 + 0.414190i
\(274\) 10.3810i 0.627139i
\(275\) 0 0
\(276\) 7.93356 + 8.31270i 0.477544 + 0.500366i
\(277\) 28.6802i 1.72322i 0.507568 + 0.861612i \(0.330545\pi\)
−0.507568 + 0.861612i \(0.669455\pi\)
\(278\) 4.51762i 0.270949i
\(279\) 0.784874 16.8069i 0.0469892 1.00621i
\(280\) −0.678239 −0.0405325
\(281\) 4.28863 0.255838 0.127919 0.991785i \(-0.459170\pi\)
0.127919 + 0.991785i \(0.459170\pi\)
\(282\) −9.55392 10.0105i −0.568928 0.596117i
\(283\) 1.51575i 0.0901020i −0.998985 0.0450510i \(-0.985655\pi\)
0.998985 0.0450510i \(-0.0143450\pi\)
\(284\) 8.48528i 0.503509i
\(285\) 1.37797 1.31512i 0.0816238 0.0779009i
\(286\) 0 0
\(287\) 32.6815i 1.92913i
\(288\) 0.139946 2.99673i 0.00824638 0.176584i
\(289\) 41.0699 2.41588
\(290\) 0.0202757i 0.00119063i
\(291\) 1.95439 1.86525i 0.114568 0.109343i
\(292\) 0.919646i 0.0538182i
\(293\) −12.3823 −0.723384 −0.361692 0.932298i \(-0.617801\pi\)
−0.361692 + 0.932298i \(0.617801\pi\)
\(294\) −5.94416 + 5.67304i −0.346670 + 0.330859i
\(295\) −1.29320 −0.0752930
\(296\) 7.34047 0.426656
\(297\) 0 0
\(298\) 3.73007 0.216077
\(299\) 11.0789 0.640710
\(300\) 6.21585 5.93235i 0.358872 0.342504i
\(301\) −6.69942 −0.386148
\(302\) 3.06248i 0.176226i
\(303\) −10.9711 + 10.4707i −0.630271 + 0.601525i
\(304\) 5.55672i 0.318700i
\(305\) 1.66763 0.0954882
\(306\) −1.06644 + 22.8362i −0.0609642 + 1.30546i
\(307\) 4.80739i 0.274372i 0.990545 + 0.137186i \(0.0438058\pi\)
−0.990545 + 0.137186i \(0.956194\pi\)
\(308\) 0 0
\(309\) −10.7253 + 10.2361i −0.610140 + 0.582312i
\(310\) 1.10998i 0.0630426i
\(311\) 13.1417i 0.745195i −0.927993 0.372598i \(-0.878467\pi\)
0.927993 0.372598i \(-0.121533\pi\)
\(312\) −1.99698 2.09241i −0.113057 0.118460i
\(313\) 4.47284 0.252820 0.126410 0.991978i \(-0.459654\pi\)
0.126410 + 0.991978i \(0.459654\pi\)
\(314\) −16.3671 −0.923646
\(315\) −0.0949167 + 2.03250i −0.00534795 + 0.114518i
\(316\) 4.27050i 0.240234i
\(317\) 32.5486i 1.82811i −0.405586 0.914057i \(-0.632932\pi\)
0.405586 0.914057i \(-0.367068\pi\)
\(318\) 9.02425 + 9.45551i 0.506055 + 0.530239i
\(319\) 0 0
\(320\) 0.197913i 0.0110637i
\(321\) −13.5639 + 12.9452i −0.757062 + 0.722533i
\(322\) 22.7355 1.26700
\(323\) 42.3442i 2.35609i
\(324\) −8.96083 0.838761i −0.497824 0.0465978i
\(325\) 8.28430i 0.459530i
\(326\) −22.6749 −1.25585
\(327\) 8.19043 + 8.58185i 0.452932 + 0.474577i
\(328\) 9.53662 0.526572
\(329\) −27.3790 −1.50945
\(330\) 0 0
\(331\) 0.533922 0.0293470 0.0146735 0.999892i \(-0.495329\pi\)
0.0146735 + 0.999892i \(0.495329\pi\)
\(332\) 1.23802 0.0679453
\(333\) 1.02727 21.9974i 0.0562939 1.20545i
\(334\) 6.06328 0.331768
\(335\) 0.875218i 0.0478183i
\(336\) −4.09808 4.29392i −0.223568 0.234253i
\(337\) 18.4416i 1.00458i −0.864699 0.502290i \(-0.832491\pi\)
0.864699 0.502290i \(-0.167509\pi\)
\(338\) 10.2113 0.555421
\(339\) 12.7042 + 13.3113i 0.689995 + 0.722969i
\(340\) 1.50817i 0.0817920i
\(341\) 0 0
\(342\) 16.6520 + 0.777639i 0.900437 + 0.0420499i
\(343\) 7.73122i 0.417447i
\(344\) 1.95492i 0.105402i
\(345\) 1.64519 1.57016i 0.0885742 0.0845344i
\(346\) 3.03917 0.163387
\(347\) 22.7472 1.22113 0.610567 0.791965i \(-0.290942\pi\)
0.610567 + 0.791965i \(0.290942\pi\)
\(348\) −0.128365 + 0.122510i −0.00688109 + 0.00656725i
\(349\) 31.5774i 1.69030i 0.534531 + 0.845149i \(0.320488\pi\)
−0.534531 + 0.845149i \(0.679512\pi\)
\(350\) 17.0005i 0.908716i
\(351\) −6.54987 + 5.69159i −0.349606 + 0.303795i
\(352\) 0 0
\(353\) 1.52435i 0.0811331i −0.999177 0.0405665i \(-0.987084\pi\)
0.999177 0.0405665i \(-0.0129163\pi\)
\(354\) −7.81381 8.18723i −0.415299 0.435146i
\(355\) 1.67935 0.0891306
\(356\) 2.04888i 0.108590i
\(357\) 31.2288 + 32.7212i 1.65280 + 1.73179i
\(358\) 0.669410i 0.0353794i
\(359\) 3.16600 0.167095 0.0835476 0.996504i \(-0.473375\pi\)
0.0835476 + 0.996504i \(0.473375\pi\)
\(360\) −0.593093 0.0276971i −0.0312588 0.00145977i
\(361\) −11.8771 −0.625110
\(362\) −20.7141 −1.08871
\(363\) 0 0
\(364\) −5.72281 −0.299957
\(365\) 0.182010 0.00952685
\(366\) 10.0762 + 10.5577i 0.526692 + 0.551862i
\(367\) 8.99273 0.469417 0.234708 0.972066i \(-0.424586\pi\)
0.234708 + 0.972066i \(0.424586\pi\)
\(368\) 6.63432i 0.345838i
\(369\) 1.33461 28.5787i 0.0694770 1.48775i
\(370\) 1.45278i 0.0755262i
\(371\) 25.8611 1.34264
\(372\) 7.02727 6.70676i 0.364347 0.347729i
\(373\) 2.25776i 0.116902i −0.998290 0.0584511i \(-0.981384\pi\)
0.998290 0.0584511i \(-0.0186162\pi\)
\(374\) 0 0
\(375\) −2.35745 2.47011i −0.121738 0.127556i
\(376\) 7.98932i 0.412018i
\(377\) 0.171081i 0.00881113i
\(378\) −13.4412 + 11.6799i −0.691343 + 0.600751i
\(379\) 5.62763 0.289072 0.144536 0.989500i \(-0.453831\pi\)
0.144536 + 0.989500i \(0.453831\pi\)
\(380\) 1.09975 0.0564159
\(381\) 5.33777 + 5.59286i 0.273462 + 0.286531i
\(382\) 15.6889i 0.802712i
\(383\) 4.50977i 0.230438i 0.993340 + 0.115219i \(0.0367570\pi\)
−0.993340 + 0.115219i \(0.963243\pi\)
\(384\) 1.25299 1.19584i 0.0639412 0.0610248i
\(385\) 0 0
\(386\) 11.7928i 0.600240i
\(387\) −5.85838 0.273583i −0.297798 0.0139070i
\(388\) 1.55978 0.0791860
\(389\) 26.6308i 1.35024i 0.737709 + 0.675119i \(0.235908\pi\)
−0.737709 + 0.675119i \(0.764092\pi\)
\(390\) −0.414116 + 0.395228i −0.0209696 + 0.0200132i
\(391\) 50.5559i 2.55672i
\(392\) −4.74399 −0.239608
\(393\) 26.6936 25.4761i 1.34651 1.28510i
\(394\) −3.06328 −0.154326
\(395\) −0.845188 −0.0425260
\(396\) 0 0
\(397\) 15.3405 0.769916 0.384958 0.922934i \(-0.374216\pi\)
0.384958 + 0.922934i \(0.374216\pi\)
\(398\) −12.0633 −0.604677
\(399\) 23.8601 22.7718i 1.19450 1.14002i
\(400\) 4.96083 0.248042
\(401\) 4.80782i 0.240091i −0.992768 0.120045i \(-0.961696\pi\)
0.992768 0.120045i \(-0.0383040\pi\)
\(402\) −5.54099 + 5.28827i −0.276360 + 0.263755i
\(403\) 9.36573i 0.466540i
\(404\) −8.75594 −0.435624
\(405\) −0.166002 + 1.77347i −0.00824870 + 0.0881243i
\(406\) 0.351082i 0.0174239i
\(407\) 0 0
\(408\) −9.54820 + 9.11271i −0.472706 + 0.451147i
\(409\) 25.5532i 1.26353i −0.775161 0.631763i \(-0.782331\pi\)
0.775161 0.631763i \(-0.217669\pi\)
\(410\) 1.88742i 0.0932132i
\(411\) −12.4140 13.0072i −0.612336 0.641599i
\(412\) −8.55978 −0.421710
\(413\) −22.3923 −1.10185
\(414\) 19.8813 + 0.928444i 0.977112 + 0.0456306i
\(415\) 0.245021i 0.0120276i
\(416\) 1.66994i 0.0818756i
\(417\) −5.40234 5.66051i −0.264554 0.277197i
\(418\) 0 0
\(419\) 0.820215i 0.0400701i 0.999799 + 0.0200351i \(0.00637779\pi\)
−0.999799 + 0.0200351i \(0.993622\pi\)
\(420\) −0.849824 + 0.811063i −0.0414671 + 0.0395758i
\(421\) 11.5211 0.561505 0.280752 0.959780i \(-0.409416\pi\)
0.280752 + 0.959780i \(0.409416\pi\)
\(422\) 17.1623i 0.835447i
\(423\) −23.9419 1.11807i −1.16409 0.0543625i
\(424\) 7.54638i 0.366485i
\(425\) −37.8033 −1.83373
\(426\) 10.1470 + 10.6319i 0.491625 + 0.515119i
\(427\) 28.8757 1.39739
\(428\) −10.8253 −0.523258
\(429\) 0 0
\(430\) −0.386905 −0.0186582
\(431\) 24.8280 1.19592 0.597960 0.801526i \(-0.295978\pi\)
0.597960 + 0.801526i \(0.295978\pi\)
\(432\) −3.40826 3.92222i −0.163980 0.188708i
\(433\) 16.9217 0.813203 0.406602 0.913606i \(-0.366714\pi\)
0.406602 + 0.913606i \(0.366714\pi\)
\(434\) 19.2198i 0.922579i
\(435\) 0.0242464 + 0.0254052i 0.00116253 + 0.00121808i
\(436\) 6.84912i 0.328013i
\(437\) −36.8650 −1.76349
\(438\) 1.09975 + 1.15230i 0.0525480 + 0.0550592i
\(439\) 0.597501i 0.0285172i −0.999898 0.0142586i \(-0.995461\pi\)
0.999898 0.0142586i \(-0.00453880\pi\)
\(440\) 0 0
\(441\) −0.663902 + 14.2165i −0.0316144 + 0.676976i
\(442\) 12.7256i 0.605293i
\(443\) 8.28500i 0.393632i −0.980440 0.196816i \(-0.936940\pi\)
0.980440 0.196816i \(-0.0630602\pi\)
\(444\) 9.19750 8.77801i 0.436494 0.416586i
\(445\) 0.405500 0.0192226
\(446\) −25.9621 −1.22934
\(447\) 4.67373 4.46056i 0.221060 0.210977i
\(448\) 3.42695i 0.161908i
\(449\) 17.7377i 0.837096i −0.908195 0.418548i \(-0.862539\pi\)
0.908195 0.418548i \(-0.137461\pi\)
\(450\) 0.694247 14.8663i 0.0327271 0.700804i
\(451\) 0 0
\(452\) 10.6236i 0.499694i
\(453\) −3.66223 3.83725i −0.172067 0.180290i
\(454\) −6.80507 −0.319378
\(455\) 1.13262i 0.0530980i
\(456\) 6.64493 + 6.96248i 0.311177 + 0.326048i
\(457\) 41.0955i 1.92237i 0.275911 + 0.961183i \(0.411021\pi\)
−0.275911 + 0.961183i \(0.588979\pi\)
\(458\) −5.56248 −0.259918
\(459\) 25.9721 + 29.8887i 1.21228 + 1.39509i
\(460\) 1.31302 0.0612198
\(461\) 12.1741 0.567004 0.283502 0.958972i \(-0.408504\pi\)
0.283502 + 0.958972i \(0.408504\pi\)
\(462\) 0 0
\(463\) −32.5767 −1.51397 −0.756985 0.653433i \(-0.773328\pi\)
−0.756985 + 0.653433i \(0.773328\pi\)
\(464\) −0.102447 −0.00475600
\(465\) −1.32736 1.39079i −0.0615547 0.0644963i
\(466\) −18.1509 −0.840826
\(467\) 27.0064i 1.24971i −0.780742 0.624853i \(-0.785159\pi\)
0.780742 0.624853i \(-0.214841\pi\)
\(468\) −5.00437 0.233701i −0.231327 0.0108028i
\(469\) 15.1548i 0.699782i
\(470\) −1.58119 −0.0729349
\(471\) −20.5077 + 19.5723i −0.944944 + 0.901846i
\(472\) 6.53418i 0.300760i
\(473\) 0 0
\(474\) −5.10682 5.35087i −0.234564 0.245774i
\(475\) 27.5659i 1.26481i
\(476\) 26.1146i 1.19696i
\(477\) 22.6145 + 1.05608i 1.03545 + 0.0483548i
\(478\) 7.16303 0.327629
\(479\) 10.7388 0.490669 0.245335 0.969438i \(-0.421102\pi\)
0.245335 + 0.969438i \(0.421102\pi\)
\(480\) −0.236672 0.247982i −0.0108026 0.0113188i
\(481\) 12.2582i 0.558924i
\(482\) 8.92445i 0.406498i
\(483\) 28.4872 27.1879i 1.29621 1.23709i
\(484\) 0 0
\(485\) 0.308702i 0.0140174i
\(486\) −12.2308 + 9.66474i −0.554801 + 0.438402i
\(487\) −19.5744 −0.887002 −0.443501 0.896274i \(-0.646264\pi\)
−0.443501 + 0.896274i \(0.646264\pi\)
\(488\) 8.42607i 0.381430i
\(489\) −28.4113 + 27.1155i −1.28480 + 1.22620i
\(490\) 0.938899i 0.0424151i
\(491\) −0.0551780 −0.00249015 −0.00124507 0.999999i \(-0.500396\pi\)
−0.00124507 + 0.999999i \(0.500396\pi\)
\(492\) 11.9492 11.4042i 0.538714 0.514143i
\(493\) 0.780686 0.0351603
\(494\) 9.27939 0.417500
\(495\) 0 0
\(496\) 5.60842 0.251825
\(497\) 29.0786 1.30436
\(498\) 1.55122 1.48047i 0.0695120 0.0663416i
\(499\) 10.0239 0.448731 0.224365 0.974505i \(-0.427969\pi\)
0.224365 + 0.974505i \(0.427969\pi\)
\(500\) 1.97138i 0.0881628i
\(501\) 7.59720 7.25069i 0.339418 0.323937i
\(502\) 25.8964i 1.15581i
\(503\) −40.0976 −1.78786 −0.893932 0.448202i \(-0.852065\pi\)
−0.893932 + 0.448202i \(0.852065\pi\)
\(504\) −10.2697 0.479587i −0.457447 0.0213625i
\(505\) 1.73292i 0.0771137i
\(506\) 0 0
\(507\) 12.7946 12.2110i 0.568228 0.542312i
\(508\) 4.46362i 0.198041i
\(509\) 19.4803i 0.863449i −0.902006 0.431724i \(-0.857905\pi\)
0.902006 0.431724i \(-0.142095\pi\)
\(510\) 1.80353 + 1.88972i 0.0798615 + 0.0836780i
\(511\) 3.15158 0.139418
\(512\) 1.00000 0.0441942
\(513\) 21.7946 18.9387i 0.962257 0.836165i
\(514\) 14.6153i 0.644655i
\(515\) 1.69409i 0.0746507i
\(516\) −2.33777 2.44949i −0.102915 0.107833i
\(517\) 0 0
\(518\) 25.1554i 1.10527i
\(519\) 3.80804 3.63435i 0.167154 0.159530i
\(520\) −0.330504 −0.0144935
\(521\) 37.3546i 1.63654i −0.574837 0.818268i \(-0.694934\pi\)
0.574837 0.818268i \(-0.305066\pi\)
\(522\) −0.0143371 + 0.307008i −0.000627517 + 0.0134374i
\(523\) 17.8602i 0.780974i 0.920608 + 0.390487i \(0.127693\pi\)
−0.920608 + 0.390487i \(0.872307\pi\)
\(524\) 21.3040 0.930670
\(525\) −20.3299 21.3014i −0.887268 0.929670i
\(526\) −9.22928 −0.402416
\(527\) −42.7382 −1.86170
\(528\) 0 0
\(529\) −21.0141 −0.913658
\(530\) 1.49353 0.0648747
\(531\) −19.5812 0.914430i −0.849751 0.0396829i
\(532\) 19.0426 0.825601
\(533\) 15.9256i 0.689814i
\(534\) 2.45013 + 2.56722i 0.106027 + 0.111094i
\(535\) 2.14246i 0.0926267i
\(536\) −4.42223 −0.191011
\(537\) 0.800505 + 0.838761i 0.0345443 + 0.0361952i
\(538\) 20.7596i 0.895011i
\(539\) 0 0
\(540\) −0.776259 + 0.674539i −0.0334049 + 0.0290275i
\(541\) 19.5264i 0.839507i 0.907638 + 0.419753i \(0.137883\pi\)
−0.907638 + 0.419753i \(0.862117\pi\)
\(542\) 12.2210i 0.524937i
\(543\) −25.9544 + 24.7707i −1.11381 + 1.06301i
\(544\) −7.62036 −0.326720
\(545\) 1.35553 0.0580646
\(546\) −7.17060 + 6.84355i −0.306873 + 0.292877i
\(547\) 25.3055i 1.08199i −0.841027 0.540993i \(-0.818049\pi\)
0.841027 0.540993i \(-0.181951\pi\)
\(548\) 10.3810i 0.443454i
\(549\) 25.2507 + 1.17919i 1.07767 + 0.0503267i
\(550\) 0 0
\(551\) 0.569271i 0.0242518i
\(552\) 7.93356 + 8.31270i 0.337675 + 0.353812i
\(553\) −14.6348 −0.622334
\(554\) 28.6802i 1.21850i
\(555\) −1.73728 1.82031i −0.0737436 0.0772677i
\(556\) 4.51762i 0.191590i
\(557\) 5.82378 0.246761 0.123381 0.992359i \(-0.460626\pi\)
0.123381 + 0.992359i \(0.460626\pi\)
\(558\) 0.784874 16.8069i 0.0332264 0.711494i
\(559\) −3.26461 −0.138078
\(560\) −0.678239 −0.0286608
\(561\) 0 0
\(562\) 4.28863 0.180905
\(563\) 15.3272 0.645963 0.322981 0.946405i \(-0.395315\pi\)
0.322981 + 0.946405i \(0.395315\pi\)
\(564\) −9.55392 10.0105i −0.402293 0.421518i
\(565\) 2.10256 0.0884554
\(566\) 1.51575i 0.0637117i
\(567\) −2.87439 + 30.7083i −0.120713 + 1.28963i
\(568\) 8.48528i 0.356034i
\(569\) 18.2765 0.766193 0.383096 0.923708i \(-0.374858\pi\)
0.383096 + 0.923708i \(0.374858\pi\)
\(570\) 1.37797 1.31512i 0.0577167 0.0550843i
\(571\) 3.71463i 0.155452i 0.996975 + 0.0777262i \(0.0247660\pi\)
−0.996975 + 0.0777262i \(0.975234\pi\)
\(572\) 0 0
\(573\) 18.7613 + 19.6579i 0.783766 + 0.821222i
\(574\) 32.6815i 1.36410i
\(575\) 32.9117i 1.37251i
\(576\) 0.139946 2.99673i 0.00583107 0.124864i
\(577\) −16.1516 −0.672399 −0.336200 0.941791i \(-0.609142\pi\)
−0.336200 + 0.941791i \(0.609142\pi\)
\(578\) 41.0699 1.70828
\(579\) 14.1023 + 14.7763i 0.586072 + 0.614080i
\(580\) 0.0202757i 0.000841903i
\(581\) 4.24264i 0.176014i
\(582\) 1.95439 1.86525i 0.0810119 0.0773170i
\(583\) 0 0
\(584\) 0.919646i 0.0380552i
\(585\) −0.0462526 + 0.990431i −0.00191231 + 0.0409493i
\(586\) −12.3823 −0.511510
\(587\) 25.1733i 1.03901i 0.854466 + 0.519507i \(0.173885\pi\)
−0.854466 + 0.519507i \(0.826115\pi\)
\(588\) −5.94416 + 5.67304i −0.245133 + 0.233952i
\(589\) 31.1644i 1.28411i
\(590\) −1.29320 −0.0532402
\(591\) −3.83824 + 3.66318i −0.157884 + 0.150683i
\(592\) 7.34047 0.301691
\(593\) 27.7761 1.14063 0.570314 0.821427i \(-0.306821\pi\)
0.570314 + 0.821427i \(0.306821\pi\)
\(594\) 0 0
\(595\) 5.16843 0.211885
\(596\) 3.73007 0.152790
\(597\) −15.1151 + 14.4257i −0.618620 + 0.590405i
\(598\) 11.0789 0.453051
\(599\) 7.27097i 0.297084i −0.988906 0.148542i \(-0.952542\pi\)
0.988906 0.148542i \(-0.0474580\pi\)
\(600\) 6.21585 5.93235i 0.253761 0.242187i
\(601\) 10.3617i 0.422664i 0.977414 + 0.211332i \(0.0677801\pi\)
−0.977414 + 0.211332i \(0.932220\pi\)
\(602\) −6.69942 −0.273048
\(603\) −0.618873 + 13.2523i −0.0252024 + 0.539673i
\(604\) 3.06248i 0.124611i
\(605\) 0 0
\(606\) −10.9711 + 10.4707i −0.445669 + 0.425342i
\(607\) 25.9022i 1.05134i −0.850690 0.525668i \(-0.823815\pi\)
0.850690 0.525668i \(-0.176185\pi\)
\(608\) 5.55672i 0.225355i
\(609\) 0.419837 + 0.439901i 0.0170127 + 0.0178257i
\(610\) 1.66763 0.0675204
\(611\) −13.3417 −0.539747
\(612\) −1.06644 + 22.8362i −0.0431082 + 0.923098i
\(613\) 45.7223i 1.84671i 0.383952 + 0.923353i \(0.374563\pi\)
−0.383952 + 0.923353i \(0.625437\pi\)
\(614\) 4.80739i 0.194010i
\(615\) −2.25705 2.36491i −0.0910131 0.0953626i
\(616\) 0 0
\(617\) 29.7020i 1.19576i −0.801586 0.597880i \(-0.796010\pi\)
0.801586 0.597880i \(-0.203990\pi\)
\(618\) −10.7253 + 10.2361i −0.431434 + 0.411757i
\(619\) −11.7945 −0.474059 −0.237030 0.971502i \(-0.576174\pi\)
−0.237030 + 0.971502i \(0.576174\pi\)
\(620\) 1.10998i 0.0445779i
\(621\) 26.0212 22.6115i 1.04420 0.907366i
\(622\) 13.1417i 0.526933i
\(623\) 7.02141 0.281307
\(624\) −1.99698 2.09241i −0.0799431 0.0837636i
\(625\) 24.4140 0.976560
\(626\) 4.47284 0.178771
\(627\) 0 0
\(628\) −16.3671 −0.653117
\(629\) −55.9370 −2.23036
\(630\) −0.0949167 + 2.03250i −0.00378157 + 0.0809768i
\(631\) −2.63587 −0.104932 −0.0524662 0.998623i \(-0.516708\pi\)
−0.0524662 + 0.998623i \(0.516708\pi\)
\(632\) 4.27050i 0.169871i
\(633\) −20.5233 21.5041i −0.815728 0.854712i
\(634\) 32.5486i 1.29267i
\(635\) 0.883410 0.0350571
\(636\) 9.02425 + 9.45551i 0.357835 + 0.374935i
\(637\) 7.92219i 0.313889i
\(638\) 0 0
\(639\) 25.4281 + 1.18748i 1.00592 + 0.0469760i
\(640\) 0.197913i 0.00782321i
\(641\) 30.5879i 1.20815i 0.796928 + 0.604075i \(0.206457\pi\)
−0.796928 + 0.604075i \(0.793543\pi\)
\(642\) −13.5639 + 12.9452i −0.535324 + 0.510908i
\(643\) −1.76615 −0.0696503 −0.0348252 0.999393i \(-0.511087\pi\)
−0.0348252 + 0.999393i \(0.511087\pi\)
\(644\) 22.7355 0.895903
\(645\) −0.484786 + 0.462675i −0.0190884 + 0.0182178i
\(646\) 42.3442i 1.66601i
\(647\) 35.2961i 1.38763i −0.720151 0.693817i \(-0.755928\pi\)
0.720151 0.693817i \(-0.244072\pi\)
\(648\) −8.96083 0.838761i −0.352015 0.0329496i
\(649\) 0 0
\(650\) 8.28430i 0.324937i
\(651\) −22.9837 24.0821i −0.900803 0.943852i
\(652\) −22.6749 −0.888017
\(653\) 40.0032i 1.56545i 0.622371 + 0.782723i \(0.286170\pi\)
−0.622371 + 0.782723i \(0.713830\pi\)
\(654\) 8.19043 + 8.58185i 0.320271 + 0.335577i
\(655\) 4.21634i 0.164746i
\(656\) 9.53662 0.372343
\(657\) 2.75594 + 0.128701i 0.107519 + 0.00502109i
\(658\) −27.3790 −1.06734
\(659\) 15.3212 0.596830 0.298415 0.954436i \(-0.403542\pi\)
0.298415 + 0.954436i \(0.403542\pi\)
\(660\) 0 0
\(661\) 10.0745 0.391853 0.195926 0.980619i \(-0.437229\pi\)
0.195926 + 0.980619i \(0.437229\pi\)
\(662\) 0.533922 0.0207515
\(663\) 15.2177 + 15.9449i 0.591006 + 0.619250i
\(664\) 1.23802 0.0480446
\(665\) 3.76878i 0.146147i
\(666\) 1.02727 21.9974i 0.0398058 0.852383i
\(667\) 0.679668i 0.0263169i
\(668\) 6.06328 0.234595
\(669\) −32.5301 + 31.0464i −1.25769 + 1.20032i
\(670\) 0.875218i 0.0338126i
\(671\) 0 0
\(672\) −4.09808 4.29392i −0.158087 0.165642i
\(673\) 21.4133i 0.825421i −0.910862 0.412711i \(-0.864582\pi\)
0.910862 0.412711i \(-0.135418\pi\)
\(674\) 18.4416i 0.710345i
\(675\) −16.9078 19.4575i −0.650781 0.748918i
\(676\) 10.2113 0.392742
\(677\) 42.8376 1.64638 0.823191 0.567765i \(-0.192192\pi\)
0.823191 + 0.567765i \(0.192192\pi\)
\(678\) 12.7042 + 13.3113i 0.487900 + 0.511217i
\(679\) 5.34530i 0.205134i
\(680\) 1.50817i 0.0578357i
\(681\) −8.52666 + 8.13776i −0.326742 + 0.311840i
\(682\) 0 0
\(683\) 2.89356i 0.110719i 0.998466 + 0.0553595i \(0.0176305\pi\)
−0.998466 + 0.0553595i \(0.982369\pi\)
\(684\) 16.6520 + 0.777639i 0.636705 + 0.0297338i
\(685\) −2.05454 −0.0784998
\(686\) 7.73122i 0.295180i
\(687\) −6.96971 + 6.65183i −0.265911 + 0.253783i
\(688\) 1.95492i 0.0745307i
\(689\) 12.6020 0.480099
\(690\) 1.64519 1.57016i 0.0626314 0.0597749i
\(691\) −30.5073 −1.16055 −0.580276 0.814420i \(-0.697055\pi\)
−0.580276 + 0.814420i \(0.697055\pi\)
\(692\) 3.03917 0.115532
\(693\) 0 0
\(694\) 22.7472 0.863472
\(695\) −0.894097 −0.0339150
\(696\) −0.128365 + 0.122510i −0.00486567 + 0.00464375i
\(697\) −72.6725 −2.75267
\(698\) 31.5774i 1.19522i
\(699\) −22.7429 + 21.7056i −0.860214 + 0.820980i
\(700\) 17.0005i 0.642559i
\(701\) −32.1166 −1.21303 −0.606513 0.795073i \(-0.707432\pi\)
−0.606513 + 0.795073i \(0.707432\pi\)
\(702\) −6.54987 + 5.69159i −0.247209 + 0.214815i
\(703\) 40.7889i 1.53838i
\(704\) 0 0
\(705\) −1.98121 + 1.89085i −0.0746167 + 0.0712134i
\(706\) 1.52435i 0.0573697i
\(707\) 30.0062i 1.12850i
\(708\) −7.81381 8.18723i −0.293661 0.307695i
\(709\) 23.5254 0.883515 0.441758 0.897134i \(-0.354355\pi\)
0.441758 + 0.897134i \(0.354355\pi\)
\(710\) 1.67935 0.0630249
\(711\) −12.7975 0.597638i −0.479945 0.0224132i
\(712\) 2.04888i 0.0767850i
\(713\) 37.2080i 1.39345i
\(714\) 31.2288 + 32.7212i 1.16871 + 1.22456i
\(715\) 0 0
\(716\) 0.669410i 0.0250170i
\(717\) 8.97517 8.56581i 0.335184 0.319896i
\(718\) 3.16600 0.118154
\(719\) 18.1927i 0.678472i −0.940701 0.339236i \(-0.889831\pi\)
0.940701 0.339236i \(-0.110169\pi\)
\(720\) −0.593093 0.0276971i −0.0221033 0.00103221i
\(721\) 29.3340i 1.09245i
\(722\) −11.8771 −0.442020
\(723\) −10.6722 11.1822i −0.396903 0.415871i
\(724\) −20.7141 −0.769832
\(725\) −0.508224 −0.0188750
\(726\) 0 0
\(727\) 35.7165 1.32465 0.662326 0.749216i \(-0.269570\pi\)
0.662326 + 0.749216i \(0.269570\pi\)
\(728\) −5.72281 −0.212101
\(729\) −3.76757 + 26.7358i −0.139540 + 0.990216i
\(730\) 0.182010 0.00673650
\(731\) 14.8972i 0.550993i
\(732\) 10.0762 + 10.5577i 0.372427 + 0.390225i
\(733\) 39.8789i 1.47296i 0.676458 + 0.736481i \(0.263514\pi\)
−0.676458 + 0.736481i \(0.736486\pi\)
\(734\) 8.99273 0.331928
\(735\) 1.12277 + 1.17643i 0.0414140 + 0.0433932i
\(736\) 6.63432i 0.244544i
\(737\) 0 0
\(738\) 1.33461 28.5787i 0.0491277 1.05200i
\(739\) 23.5502i 0.866308i 0.901320 + 0.433154i \(0.142599\pi\)
−0.901320 + 0.433154i \(0.857401\pi\)
\(740\) 1.45278i 0.0534051i
\(741\) 11.6269 11.0966i 0.427126 0.407645i
\(742\) 25.8611 0.949390
\(743\) −27.7107 −1.01661 −0.508304 0.861178i \(-0.669727\pi\)
−0.508304 + 0.861178i \(0.669727\pi\)
\(744\) 7.02727 6.70676i 0.257632 0.245882i
\(745\) 0.738231i 0.0270467i
\(746\) 2.25776i 0.0826624i
\(747\) 0.173256 3.71002i 0.00633910 0.135743i
\(748\) 0 0
\(749\) 37.0976i 1.35552i
\(750\) −2.35745 2.47011i −0.0860819 0.0901957i
\(751\) 28.2921 1.03239 0.516196 0.856471i \(-0.327348\pi\)
0.516196 + 0.856471i \(0.327348\pi\)
\(752\) 7.98932i 0.291340i
\(753\) −30.9679 32.4478i −1.12853 1.18246i
\(754\) 0.171081i 0.00623041i
\(755\) −0.606106 −0.0220584
\(756\) −13.4412 + 11.6799i −0.488853 + 0.424795i
\(757\) 38.3101 1.39241 0.696203 0.717845i \(-0.254872\pi\)
0.696203 + 0.717845i \(0.254872\pi\)
\(758\) 5.62763 0.204405
\(759\) 0 0
\(760\) 1.09975 0.0398920
\(761\) 21.2534 0.770435 0.385217 0.922826i \(-0.374126\pi\)
0.385217 + 0.922826i \(0.374126\pi\)
\(762\) 5.33777 + 5.59286i 0.193367 + 0.202608i
\(763\) 23.4716 0.849729
\(764\) 15.6889i 0.567603i
\(765\) 4.51958 + 0.211062i 0.163406 + 0.00763096i
\(766\) 4.50977i 0.162944i
\(767\) −10.9117 −0.393998
\(768\) 1.25299 1.19584i 0.0452132 0.0431511i
\(769\) 42.1983i 1.52171i 0.648921 + 0.760855i \(0.275220\pi\)
−0.648921 + 0.760855i \(0.724780\pi\)
\(770\) 0 0
\(771\) 17.4776 + 18.3128i 0.629440 + 0.659520i
\(772\) 11.7928i 0.424434i
\(773\) 12.6236i 0.454039i 0.973890 + 0.227020i \(0.0728981\pi\)
−0.973890 + 0.227020i \(0.927102\pi\)
\(774\) −5.85838 0.273583i −0.210575 0.00983374i
\(775\) 27.8224 0.999411
\(776\) 1.55978 0.0559930
\(777\) −30.0818 31.5194i −1.07918 1.13075i
\(778\) 26.6308i 0.954762i
\(779\) 52.9923i 1.89865i
\(780\) −0.414116 + 0.395228i −0.0148277 + 0.0141514i
\(781\) 0 0
\(782\) 50.5559i 1.80787i
\(783\) 0.349167 + 0.401821i 0.0124782 + 0.0143599i
\(784\) −4.74399 −0.169428
\(785\) 3.23926i 0.115614i
\(786\) 26.6936 25.4761i 0.952129 0.908703i
\(787\) 12.3366i 0.439753i −0.975528 0.219877i \(-0.929435\pi\)
0.975528 0.219877i \(-0.0705654\pi\)
\(788\) −3.06328 −0.109125
\(789\) −11.5642 + 11.0367i −0.411695 + 0.392918i
\(790\) −0.845188 −0.0300704
\(791\) 36.4067 1.29447
\(792\) 0 0
\(793\) 14.0710 0.499677
\(794\) 15.3405 0.544413
\(795\) 1.87137 1.78602i 0.0663707 0.0633435i
\(796\) −12.0633 −0.427572
\(797\) 8.83217i 0.312852i −0.987690 0.156426i \(-0.950003\pi\)
0.987690 0.156426i \(-0.0499972\pi\)
\(798\) 23.8601 22.7718i 0.844638 0.806115i
\(799\) 60.8815i 2.15383i
\(800\) 4.96083 0.175392
\(801\) 6.13995 + 0.286732i 0.216944 + 0.0101312i
\(802\) 4.80782i 0.169770i
\(803\) 0 0
\(804\) −5.54099 + 5.28827i −0.195416 + 0.186503i
\(805\) 4.49965i 0.158592i
\(806\) 9.36573i 0.329894i
\(807\) 24.8251 + 26.0115i 0.873886 + 0.915648i
\(808\) −8.75594 −0.308033
\(809\) −15.2178 −0.535031 −0.267515 0.963554i \(-0.586203\pi\)
−0.267515 + 0.963554i \(0.586203\pi\)
\(810\) −0.166002 + 1.77347i −0.00583271 + 0.0623133i
\(811\) 41.7756i 1.46694i −0.679722 0.733470i \(-0.737899\pi\)
0.679722 0.733470i \(-0.262101\pi\)
\(812\) 0.351082i 0.0123206i
\(813\) −14.6143 15.3127i −0.512547 0.537041i
\(814\) 0 0
\(815\) 4.48766i 0.157196i
\(816\) −9.54820 + 9.11271i −0.334254 + 0.319009i
\(817\) 10.8629 0.380046
\(818\) 25.5532i 0.893448i
\(819\) −0.800883 + 17.1497i −0.0279851 + 0.599260i
\(820\) 1.88742i 0.0659117i
\(821\) −19.0675 −0.665459 −0.332729 0.943022i \(-0.607970\pi\)
−0.332729 + 0.943022i \(0.607970\pi\)
\(822\) −12.4140 13.0072i −0.432987 0.453679i
\(823\) −9.81259 −0.342045 −0.171023 0.985267i \(-0.554707\pi\)
−0.171023 + 0.985267i \(0.554707\pi\)
\(824\) −8.55978 −0.298194
\(825\) 0 0
\(826\) −22.3923 −0.779128
\(827\) −41.7340 −1.45123 −0.725617 0.688099i \(-0.758445\pi\)
−0.725617 + 0.688099i \(0.758445\pi\)
\(828\) 19.8813 + 0.928444i 0.690922 + 0.0322657i
\(829\) −22.9136 −0.795821 −0.397910 0.917424i \(-0.630265\pi\)
−0.397910 + 0.917424i \(0.630265\pi\)
\(830\) 0.245021i 0.00850480i
\(831\) 34.2968 + 35.9358i 1.18974 + 1.24660i
\(832\) 1.66994i 0.0578948i
\(833\) 36.1509 1.25256
\(834\) −5.40234 5.66051i −0.187068 0.196008i
\(835\) 1.20000i 0.0415278i
\(836\) 0 0
\(837\) −19.1149 21.9974i −0.660709 0.760343i
\(838\) 0.820215i 0.0283339i
\(839\) 6.08715i 0.210152i 0.994464 + 0.105076i \(0.0335085\pi\)
−0.994464 + 0.105076i \(0.966491\pi\)
\(840\) −0.849824 + 0.811063i −0.0293217 + 0.0279843i
\(841\) −28.9895 −0.999638
\(842\) 11.5211 0.397044
\(843\) 5.37360 5.12851i 0.185076 0.176635i
\(844\) 17.1623i 0.590751i
\(845\) 2.02095i 0.0695228i
\(846\) −23.9419 1.11807i −0.823138 0.0384401i
\(847\) 0 0
\(848\) 7.54638i 0.259144i
\(849\) −1.81259 1.89921i −0.0622079 0.0651808i
\(850\) −37.8033 −1.29664
\(851\) 48.6990i 1.66938i
\(852\) 10.1470 + 10.6319i 0.347631 + 0.364244i
\(853\) 25.8152i 0.883894i −0.897041 0.441947i \(-0.854288\pi\)
0.897041 0.441947i \(-0.145712\pi\)
\(854\) 28.8757 0.988107
\(855\) 0.153905 3.29565i 0.00526344 0.112709i
\(856\) −10.8253 −0.370000
\(857\) −41.7371 −1.42571 −0.712855 0.701311i \(-0.752598\pi\)
−0.712855 + 0.701311i \(0.752598\pi\)
\(858\) 0 0
\(859\) −22.9322 −0.782435 −0.391218 0.920298i \(-0.627946\pi\)
−0.391218 + 0.920298i \(0.627946\pi\)
\(860\) −0.386905 −0.0131934
\(861\) −39.0818 40.9495i −1.33190 1.39555i
\(862\) 24.8280 0.845644
\(863\) 24.8329i 0.845322i 0.906288 + 0.422661i \(0.138904\pi\)
−0.906288 + 0.422661i \(0.861096\pi\)
\(864\) −3.40826 3.92222i −0.115951 0.133437i
\(865\) 0.601492i 0.0204513i
\(866\) 16.9217 0.575021
\(867\) 51.4600 49.1129i 1.74767 1.66796i
\(868\) 19.2198i 0.652362i
\(869\) 0 0
\(870\) 0.0242464 + 0.0254052i 0.000822031 + 0.000861315i
\(871\) 7.38487i 0.250227i
\(872\) 6.84912i 0.231940i
\(873\) 0.218285 4.67426i 0.00738783 0.158200i
\(874\) −36.8650 −1.24698
\(875\) −6.75582 −0.228388
\(876\) 1.09975 + 1.15230i 0.0371570 + 0.0389327i
\(877\) 2.16903i 0.0732431i −0.999329 0.0366215i \(-0.988340\pi\)
0.999329 0.0366215i \(-0.0116596\pi\)
\(878\) 0.597501i 0.0201647i
\(879\) −15.5149 + 14.8073i −0.523304 + 0.499437i
\(880\) 0 0
\(881\) 32.6529i 1.10010i −0.835131 0.550052i \(-0.814608\pi\)
0.835131 0.550052i \(-0.185392\pi\)
\(882\) −0.663902 + 14.2165i −0.0223547 + 0.478694i
\(883\) 25.5513 0.859868 0.429934 0.902860i \(-0.358537\pi\)
0.429934 + 0.902860i \(0.358537\pi\)
\(884\) 12.7256i 0.428007i
\(885\) −1.62036 + 1.54646i −0.0544678 + 0.0519836i
\(886\) 8.28500i 0.278340i
\(887\) −38.7177 −1.30001 −0.650007 0.759928i \(-0.725234\pi\)
−0.650007 + 0.759928i \(0.725234\pi\)
\(888\) 9.19750 8.77801i 0.308648 0.294571i
\(889\) 15.2966 0.513032
\(890\) 0.405500 0.0135924
\(891\) 0 0
\(892\) −25.9621 −0.869274
\(893\) 44.3944 1.48560
\(894\) 4.67373 4.46056i 0.156313 0.149184i
\(895\) 0.132485 0.00442849
\(896\) 3.42695i 0.114486i
\(897\) 13.8817 13.2486i 0.463497 0.442357i
\(898\) 17.7377i 0.591916i
\(899\) −0.574568 −0.0191629
\(900\) 0.694247 14.8663i 0.0231416 0.495543i
\(901\) 57.5062i 1.91581i
\(902\) 0 0
\(903\) −8.39428 + 8.01142i −0.279344 + 0.266603i
\(904\) 10.6236i 0.353337i
\(905\) 4.09959i 0.136275i
\(906\) −3.66223 3.83725i −0.121669 0.127484i
\(907\) 24.0024 0.796987 0.398494 0.917171i \(-0.369533\pi\)
0.398494 + 0.917171i \(0.369533\pi\)
\(908\) −6.80507 −0.225834
\(909\) −1.22536 + 26.2392i −0.0406425 + 0.870300i
\(910\) 1.13262i 0.0375460i
\(911\) 3.01161i 0.0997792i −0.998755 0.0498896i \(-0.984113\pi\)
0.998755 0.0498896i \(-0.0158869\pi\)
\(912\) 6.64493 + 6.96248i 0.220036 + 0.230551i
\(913\) 0 0
\(914\) 41.0955i 1.35932i
\(915\) 2.08952 1.99421i 0.0690773 0.0659267i
\(916\) −5.56248 −0.183790
\(917\) 73.0078i 2.41093i
\(918\) 25.9721 + 29.8887i 0.857209 + 0.986474i
\(919\) 3.12099i 0.102952i −0.998674 0.0514759i \(-0.983607\pi\)
0.998674 0.0514759i \(-0.0163925\pi\)
\(920\) 1.31302 0.0432889
\(921\) 5.74885 + 6.02359i 0.189431 + 0.198484i
\(922\) 12.1741 0.400933
\(923\) 14.1699 0.466409
\(924\) 0 0
\(925\) 36.4148 1.19731
\(926\) −32.5767 −1.07054
\(927\) −1.19791 + 25.6514i −0.0393444 + 0.842502i
\(928\) −0.102447 −0.00336300
\(929\) 15.4296i 0.506230i −0.967436 0.253115i \(-0.918545\pi\)
0.967436 0.253115i \(-0.0814551\pi\)
\(930\) −1.32736 1.39079i −0.0435257 0.0456058i
\(931\) 26.3610i 0.863948i
\(932\) −18.1509 −0.594554
\(933\) −15.7153 16.4663i −0.514495 0.539083i
\(934\) 27.0064i 0.883676i
\(935\) 0 0
\(936\) −5.00437 0.233701i −0.163573 0.00763877i
\(937\) 7.77973i 0.254153i −0.991893 0.127076i \(-0.959441\pi\)
0.991893 0.127076i \(-0.0405593\pi\)
\(938\) 15.1548i 0.494821i
\(939\) 5.60441 5.34879i 0.182893 0.174551i
\(940\) −1.58119 −0.0515728
\(941\) −25.8138 −0.841506 −0.420753 0.907175i \(-0.638234\pi\)
−0.420753 + 0.907175i \(0.638234\pi\)
\(942\) −20.5077 + 19.5723i −0.668176 + 0.637701i
\(943\) 63.2690i 2.06032i
\(944\) 6.53418i 0.212669i
\(945\) 2.31161 + 2.66020i 0.0751968 + 0.0865363i
\(946\) 0 0
\(947\) 58.4123i 1.89814i 0.315058 + 0.949072i \(0.397976\pi\)
−0.315058 + 0.949072i \(0.602024\pi\)
\(948\) −5.10682 5.35087i −0.165862 0.173788i
\(949\) 1.53576 0.0498527
\(950\) 27.5659i 0.894357i
\(951\) −38.9229 40.7830i −1.26216 1.32248i
\(952\) 26.1146i 0.846379i
\(953\) 55.6803 1.80366 0.901831 0.432089i \(-0.142223\pi\)
0.901831 + 0.432089i \(0.142223\pi\)
\(954\) 22.6145 + 1.05608i 0.732172 + 0.0341920i
\(955\) 3.10503 0.100477
\(956\) 7.16303 0.231669
\(957\) 0 0
\(958\) 10.7388 0.346955
\(959\) −35.5751 −1.14878
\(960\) −0.236672 0.247982i −0.00763856 0.00800360i
\(961\) 0.454359 0.0146567
\(962\) 12.2582i 0.395219i
\(963\) −1.51495 + 32.4404i −0.0488185 + 1.04538i
\(964\) 8.92445i 0.287437i
\(965\) 2.33396 0.0751328
\(966\) 28.4872 27.1879i 0.916561 0.874757i
\(967\) 45.0742i 1.44949i −0.689018 0.724744i \(-0.741958\pi\)
0.689018 0.724744i \(-0.258042\pi\)
\(968\) 0 0
\(969\) −50.6368 53.0566i −1.62669 1.70443i
\(970\) 0.308702i 0.00991181i
\(971\) 45.7887i 1.46943i −0.678376 0.734715i \(-0.737316\pi\)
0.678376 0.734715i \(-0.262684\pi\)
\(972\) −12.2308 + 9.66474i −0.392303 + 0.309997i
\(973\) −15.4817 −0.496319
\(974\) −19.5744 −0.627205
\(975\) −9.90667 10.3801i −0.317267 0.332429i
\(976\) 8.42607i 0.269712i
\(977\) 27.2150i 0.870684i 0.900265 + 0.435342i \(0.143372\pi\)
−0.900265 + 0.435342i \(0.856628\pi\)
\(978\) −28.4113 + 27.1155i −0.908494 + 0.867058i
\(979\) 0 0
\(980\) 0.938899i 0.0299920i
\(981\) 20.5250 + 0.958505i 0.655312 + 0.0306027i
\(982\) −0.0551780 −0.00176080
\(983\) 8.55859i 0.272977i −0.990642 0.136488i \(-0.956418\pi\)
0.990642 0.136488i \(-0.0435816\pi\)
\(984\) 11.9492 11.4042i 0.380928 0.363554i
\(985\) 0.606263i 0.0193172i
\(986\) 0.780686 0.0248621
\(987\) −34.3055 + 32.7408i −1.09196 + 1.04215i
\(988\) 9.27939 0.295217
\(989\) 12.9696 0.412408
\(990\) 0 0
\(991\) −47.5069 −1.50911 −0.754553 0.656239i \(-0.772147\pi\)
−0.754553 + 0.656239i \(0.772147\pi\)
\(992\) 5.60842 0.178067
\(993\) 0.668996 0.638484i 0.0212300 0.0202617i
\(994\) 29.0786 0.922319
\(995\) 2.38748i 0.0756883i
\(996\) 1.55122 1.48047i 0.0491524 0.0469106i
\(997\) 11.4127i 0.361444i 0.983534 + 0.180722i \(0.0578434\pi\)
−0.983534 + 0.180722i \(0.942157\pi\)
\(998\) 10.0239 0.317301
\(999\) −25.0182 28.7909i −0.791541 0.910904i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.b.f.725.5 yes 8
3.2 odd 2 726.2.b.d.725.6 yes 8
11.2 odd 10 726.2.h.l.161.3 32
11.3 even 5 726.2.h.k.233.6 32
11.4 even 5 726.2.h.k.215.1 32
11.5 even 5 726.2.h.k.239.7 32
11.6 odd 10 726.2.h.l.239.7 32
11.7 odd 10 726.2.h.l.215.1 32
11.8 odd 10 726.2.h.l.233.6 32
11.9 even 5 726.2.h.k.161.3 32
11.10 odd 2 726.2.b.d.725.5 8
33.2 even 10 726.2.h.k.161.7 32
33.5 odd 10 726.2.h.l.239.3 32
33.8 even 10 726.2.h.k.233.1 32
33.14 odd 10 726.2.h.l.233.1 32
33.17 even 10 726.2.h.k.239.3 32
33.20 odd 10 726.2.h.l.161.7 32
33.26 odd 10 726.2.h.l.215.6 32
33.29 even 10 726.2.h.k.215.6 32
33.32 even 2 inner 726.2.b.f.725.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.b.d.725.5 8 11.10 odd 2
726.2.b.d.725.6 yes 8 3.2 odd 2
726.2.b.f.725.5 yes 8 1.1 even 1 trivial
726.2.b.f.725.6 yes 8 33.32 even 2 inner
726.2.h.k.161.3 32 11.9 even 5
726.2.h.k.161.7 32 33.2 even 10
726.2.h.k.215.1 32 11.4 even 5
726.2.h.k.215.6 32 33.29 even 10
726.2.h.k.233.1 32 33.8 even 10
726.2.h.k.233.6 32 11.3 even 5
726.2.h.k.239.3 32 33.17 even 10
726.2.h.k.239.7 32 11.5 even 5
726.2.h.l.161.3 32 11.2 odd 10
726.2.h.l.161.7 32 33.20 odd 10
726.2.h.l.215.1 32 11.7 odd 10
726.2.h.l.215.6 32 33.26 odd 10
726.2.h.l.233.1 32 33.14 odd 10
726.2.h.l.233.6 32 11.8 odd 10
726.2.h.l.239.3 32 33.5 odd 10
726.2.h.l.239.7 32 11.6 odd 10