Properties

Label 726.2.b
Level $726$
Weight $2$
Character orbit 726.b
Rep. character $\chi_{726}(725,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $6$
Sturm bound $264$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(264\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(726, [\chi])\).

Total New Old
Modular forms 156 36 120
Cusp forms 108 36 72
Eisenstein series 48 0 48

Trace form

\( 36 q + 6 q^{3} + 36 q^{4} + 2 q^{9} + 6 q^{12} + 8 q^{15} + 36 q^{16} - 64 q^{25} - 18 q^{27} + 28 q^{31} - 4 q^{34} + 2 q^{36} - 24 q^{42} - 16 q^{45} + 6 q^{48} + 28 q^{58} + 8 q^{60} + 36 q^{64} + 20 q^{67}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(726, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
726.2.b.a 726.b 33.d $2$ $5.797$ \(\Q(\sqrt{-2}) \) None 726.2.b.a \(-2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}-2\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)
726.2.b.b 726.b 33.d $2$ $5.797$ \(\Q(\sqrt{-2}) \) None 726.2.b.a \(2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}-2\beta q^{5}+(1+\cdots)q^{6}+\cdots\)
726.2.b.c 726.b 33.d $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(-8\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\)
726.2.b.d 726.b 33.d $8$ $5.797$ 8.0.3588489216.5 None 726.2.b.d \(-8\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(\beta _{1}+\beta _{6})q^{3}+q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)
726.2.b.e 726.b 33.d $8$ $5.797$ 8.0.185640625.1 None 66.2.h.a \(8\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\)
726.2.b.f 726.b 33.d $8$ $5.797$ 8.0.3588489216.5 None 726.2.b.d \(8\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(\beta _{1}+\beta _{6})q^{3}+q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(726, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(726, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)