Defining parameters
Level: | \( N \) | \(=\) | \( 726 = 2 \cdot 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 726.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(264\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(726, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 36 | 120 |
Cusp forms | 108 | 36 | 72 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(726, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
726.2.b.a | $2$ | $5.797$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(2\) | \(0\) | \(0\) | \(q-q^{2}+(1+\beta )q^{3}+q^{4}-2\beta q^{5}+(-1+\cdots)q^{6}+\cdots\) |
726.2.b.b | $2$ | $5.797$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(2\) | \(0\) | \(0\) | \(q+q^{2}+(1+\beta )q^{3}+q^{4}-2\beta q^{5}+(1+\cdots)q^{6}+\cdots\) |
726.2.b.c | $8$ | $5.797$ | 8.0.185640625.1 | None | \(-8\) | \(-3\) | \(0\) | \(0\) | \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\) |
726.2.b.d | $8$ | $5.797$ | 8.0.3588489216.5 | None | \(-8\) | \(4\) | \(0\) | \(0\) | \(q-q^{2}+(\beta _{1}+\beta _{6})q^{3}+q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\) |
726.2.b.e | $8$ | $5.797$ | 8.0.185640625.1 | None | \(8\) | \(-3\) | \(0\) | \(0\) | \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\) |
726.2.b.f | $8$ | $5.797$ | 8.0.3588489216.5 | None | \(8\) | \(4\) | \(0\) | \(0\) | \(q+q^{2}+(\beta _{1}+\beta _{6})q^{3}+q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(726, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(726, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)