Properties

Label 726.2.b.f.725.1
Level $726$
Weight $2$
Character 726.725
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(725,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3588489216.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 10x^{6} - 8x^{5} + 8x^{4} + 4x^{3} + 16x^{2} + 32x + 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 725.1
Root \(-0.697085 + 0.346269i\) of defining polynomial
Character \(\chi\) \(=\) 726.725
Dual form 726.2.b.f.725.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.697085 - 1.58558i) q^{3} +1.00000 q^{4} +2.86823i q^{5} +(-0.697085 - 1.58558i) q^{6} +0.692538i q^{7} +1.00000 q^{8} +(-2.02814 + 2.21057i) q^{9} +2.86823i q^{10} +(-0.697085 - 1.58558i) q^{12} +7.07467i q^{13} +0.692538i q^{14} +(4.54782 - 1.99940i) q^{15} +1.00000 q^{16} -1.35848 q^{17} +(-2.02814 + 2.21057i) q^{18} -4.07841i q^{19} +2.86823i q^{20} +(1.09808 - 0.482758i) q^{21} +7.41381i q^{23} +(-0.697085 - 1.58558i) q^{24} -3.22674 q^{25} +7.07467i q^{26} +(4.91883 + 1.67483i) q^{27} +0.692538i q^{28} -5.54099 q^{29} +(4.54782 - 1.99940i) q^{30} +7.14682 q^{31} +1.00000 q^{32} -1.35848 q^{34} -1.98636 q^{35} +(-2.02814 + 2.21057i) q^{36} +5.41477 q^{37} -4.07841i q^{38} +(11.2175 - 4.93165i) q^{39} +2.86823i q^{40} -2.78138 q^{41} +(1.09808 - 0.482758i) q^{42} -3.51390i q^{43} +(-6.34043 - 5.81719i) q^{45} +7.41381i q^{46} -4.48648i q^{47} +(-0.697085 - 1.58558i) q^{48} +6.52039 q^{49} -3.22674 q^{50} +(0.946979 + 2.15399i) q^{51} +7.07467i q^{52} -10.2167i q^{53} +(4.91883 + 1.67483i) q^{54} +0.692538i q^{56} +(-6.46665 + 2.84300i) q^{57} -5.54099 q^{58} +2.32145i q^{59} +(4.54782 - 1.99940i) q^{60} +4.14374i q^{61} +7.14682 q^{62} +(-1.53091 - 1.40457i) q^{63} +1.00000 q^{64} -20.2918 q^{65} +5.53403 q^{67} -1.35848 q^{68} +(11.7552 - 5.16805i) q^{69} -1.98636 q^{70} +8.48528i q^{71} +(-2.02814 + 2.21057i) q^{72} +7.37761i q^{73} +5.41477 q^{74} +(2.24931 + 5.11627i) q^{75} -4.07841i q^{76} +(11.2175 - 4.93165i) q^{78} -13.3579i q^{79} +2.86823i q^{80} +(-0.773258 - 8.96672i) q^{81} -2.78138 q^{82} -6.12622 q^{83} +(1.09808 - 0.482758i) q^{84} -3.89644i q^{85} -3.51390i q^{86} +(3.86254 + 8.78570i) q^{87} -1.79675i q^{89} +(-6.34043 - 5.81719i) q^{90} -4.89948 q^{91} +7.41381i q^{92} +(-4.98194 - 11.3319i) q^{93} -4.48648i q^{94} +11.6978 q^{95} +(-0.697085 - 1.58558i) q^{96} -7.11258 q^{97} +6.52039 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} - 4 q^{9} + 4 q^{12} - 8 q^{15} + 8 q^{16} - 16 q^{17} - 4 q^{18} - 12 q^{21} + 4 q^{24} - 40 q^{25} + 16 q^{27} + 8 q^{29} - 8 q^{30} + 24 q^{31} + 8 q^{32}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.697085 1.58558i −0.402462 0.915437i
\(4\) 1.00000 0.500000
\(5\) 2.86823i 1.28271i 0.767244 + 0.641356i \(0.221628\pi\)
−0.767244 + 0.641356i \(0.778372\pi\)
\(6\) −0.697085 1.58558i −0.284584 0.647311i
\(7\) 0.692538i 0.261755i 0.991399 + 0.130877i \(0.0417794\pi\)
−0.991399 + 0.130877i \(0.958221\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.02814 + 2.21057i −0.676048 + 0.736857i
\(10\) 2.86823i 0.907014i
\(11\) 0 0
\(12\) −0.697085 1.58558i −0.201231 0.457718i
\(13\) 7.07467i 1.96216i 0.193601 + 0.981080i \(0.437983\pi\)
−0.193601 + 0.981080i \(0.562017\pi\)
\(14\) 0.692538i 0.185089i
\(15\) 4.54782 1.99940i 1.17424 0.516243i
\(16\) 1.00000 0.250000
\(17\) −1.35848 −0.329481 −0.164740 0.986337i \(-0.552679\pi\)
−0.164740 + 0.986337i \(0.552679\pi\)
\(18\) −2.02814 + 2.21057i −0.478038 + 0.521037i
\(19\) 4.07841i 0.935650i −0.883821 0.467825i \(-0.845038\pi\)
0.883821 0.467825i \(-0.154962\pi\)
\(20\) 2.86823i 0.641356i
\(21\) 1.09808 0.482758i 0.239620 0.105346i
\(22\) 0 0
\(23\) 7.41381i 1.54589i 0.634476 + 0.772943i \(0.281216\pi\)
−0.634476 + 0.772943i \(0.718784\pi\)
\(24\) −0.697085 1.58558i −0.142292 0.323656i
\(25\) −3.22674 −0.645348
\(26\) 7.07467i 1.38746i
\(27\) 4.91883 + 1.67483i 0.946630 + 0.322322i
\(28\) 0.692538i 0.130877i
\(29\) −5.54099 −1.02894 −0.514468 0.857509i \(-0.672011\pi\)
−0.514468 + 0.857509i \(0.672011\pi\)
\(30\) 4.54782 1.99940i 0.830314 0.365039i
\(31\) 7.14682 1.28361 0.641804 0.766869i \(-0.278186\pi\)
0.641804 + 0.766869i \(0.278186\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.35848 −0.232978
\(35\) −1.98636 −0.335756
\(36\) −2.02814 + 2.21057i −0.338024 + 0.368429i
\(37\) 5.41477 0.890183 0.445092 0.895485i \(-0.353171\pi\)
0.445092 + 0.895485i \(0.353171\pi\)
\(38\) 4.07841i 0.661605i
\(39\) 11.2175 4.93165i 1.79623 0.789696i
\(40\) 2.86823i 0.453507i
\(41\) −2.78138 −0.434378 −0.217189 0.976130i \(-0.569689\pi\)
−0.217189 + 0.976130i \(0.569689\pi\)
\(42\) 1.09808 0.482758i 0.169437 0.0744912i
\(43\) 3.51390i 0.535865i −0.963438 0.267933i \(-0.913660\pi\)
0.963438 0.267933i \(-0.0863405\pi\)
\(44\) 0 0
\(45\) −6.34043 5.81719i −0.945175 0.867175i
\(46\) 7.41381i 1.09311i
\(47\) 4.48648i 0.654420i −0.944952 0.327210i \(-0.893891\pi\)
0.944952 0.327210i \(-0.106109\pi\)
\(48\) −0.697085 1.58558i −0.100616 0.228859i
\(49\) 6.52039 0.931484
\(50\) −3.22674 −0.456330
\(51\) 0.946979 + 2.15399i 0.132604 + 0.301619i
\(52\) 7.07467i 0.981080i
\(53\) 10.2167i 1.40337i −0.712487 0.701686i \(-0.752431\pi\)
0.712487 0.701686i \(-0.247569\pi\)
\(54\) 4.91883 + 1.67483i 0.669369 + 0.227916i
\(55\) 0 0
\(56\) 0.692538i 0.0925443i
\(57\) −6.46665 + 2.84300i −0.856529 + 0.376564i
\(58\) −5.54099 −0.727568
\(59\) 2.32145i 0.302228i 0.988516 + 0.151114i \(0.0482860\pi\)
−0.988516 + 0.151114i \(0.951714\pi\)
\(60\) 4.54782 1.99940i 0.587120 0.258121i
\(61\) 4.14374i 0.530552i 0.964173 + 0.265276i \(0.0854631\pi\)
−0.964173 + 0.265276i \(0.914537\pi\)
\(62\) 7.14682 0.907648
\(63\) −1.53091 1.40457i −0.192876 0.176959i
\(64\) 1.00000 0.125000
\(65\) −20.2918 −2.51689
\(66\) 0 0
\(67\) 5.53403 0.676090 0.338045 0.941130i \(-0.390234\pi\)
0.338045 + 0.941130i \(0.390234\pi\)
\(68\) −1.35848 −0.164740
\(69\) 11.7552 5.16805i 1.41516 0.622161i
\(70\) −1.98636 −0.237415
\(71\) 8.48528i 1.00702i 0.863990 + 0.503509i \(0.167958\pi\)
−0.863990 + 0.503509i \(0.832042\pi\)
\(72\) −2.02814 + 2.21057i −0.239019 + 0.260518i
\(73\) 7.37761i 0.863484i 0.901997 + 0.431742i \(0.142101\pi\)
−0.901997 + 0.431742i \(0.857899\pi\)
\(74\) 5.41477 0.629455
\(75\) 2.24931 + 5.11627i 0.259728 + 0.590776i
\(76\) 4.07841i 0.467825i
\(77\) 0 0
\(78\) 11.2175 4.93165i 1.27013 0.558399i
\(79\) 13.3579i 1.50288i −0.659800 0.751441i \(-0.729359\pi\)
0.659800 0.751441i \(-0.270641\pi\)
\(80\) 2.86823i 0.320678i
\(81\) −0.773258 8.96672i −0.0859175 0.996302i
\(82\) −2.78138 −0.307152
\(83\) −6.12622 −0.672440 −0.336220 0.941783i \(-0.609149\pi\)
−0.336220 + 0.941783i \(0.609149\pi\)
\(84\) 1.09808 0.482758i 0.119810 0.0526732i
\(85\) 3.89644i 0.422629i
\(86\) 3.51390i 0.378914i
\(87\) 3.86254 + 8.78570i 0.414108 + 0.941926i
\(88\) 0 0
\(89\) 1.79675i 0.190456i −0.995456 0.0952278i \(-0.969642\pi\)
0.995456 0.0952278i \(-0.0303580\pi\)
\(90\) −6.34043 5.81719i −0.668340 0.613185i
\(91\) −4.89948 −0.513605
\(92\) 7.41381i 0.772943i
\(93\) −4.98194 11.3319i −0.516604 1.17506i
\(94\) 4.48648i 0.462745i
\(95\) 11.6978 1.20017
\(96\) −0.697085 1.58558i −0.0711459 0.161828i
\(97\) −7.11258 −0.722173 −0.361086 0.932532i \(-0.617594\pi\)
−0.361086 + 0.932532i \(0.617594\pi\)
\(98\) 6.52039 0.658659
\(99\) 0 0
\(100\) −3.22674 −0.322674
\(101\) 10.3087 1.02576 0.512879 0.858461i \(-0.328579\pi\)
0.512879 + 0.858461i \(0.328579\pi\)
\(102\) 0.946979 + 2.15399i 0.0937649 + 0.213277i
\(103\) 0.112579 0.0110927 0.00554637 0.999985i \(-0.498235\pi\)
0.00554637 + 0.999985i \(0.498235\pi\)
\(104\) 7.07467i 0.693729i
\(105\) 1.38466 + 3.14953i 0.135129 + 0.307363i
\(106\) 10.2167i 0.992334i
\(107\) −15.4405 −1.49269 −0.746343 0.665561i \(-0.768192\pi\)
−0.746343 + 0.665561i \(0.768192\pi\)
\(108\) 4.91883 + 1.67483i 0.473315 + 0.161161i
\(109\) 6.46880i 0.619599i −0.950802 0.309799i \(-0.899738\pi\)
0.950802 0.309799i \(-0.100262\pi\)
\(110\) 0 0
\(111\) −3.77456 8.58557i −0.358265 0.814906i
\(112\) 0.692538i 0.0654387i
\(113\) 2.89031i 0.271897i 0.990716 + 0.135949i \(0.0434082\pi\)
−0.990716 + 0.135949i \(0.956592\pi\)
\(114\) −6.46665 + 2.84300i −0.605657 + 0.266271i
\(115\) −21.2645 −1.98292
\(116\) −5.54099 −0.514468
\(117\) −15.6391 14.3485i −1.44583 1.32652i
\(118\) 2.32145i 0.213707i
\(119\) 0.940802i 0.0862432i
\(120\) 4.54782 1.99940i 0.415157 0.182519i
\(121\) 0 0
\(122\) 4.14374i 0.375157i
\(123\) 1.93886 + 4.41011i 0.174821 + 0.397646i
\(124\) 7.14682 0.641804
\(125\) 5.08611i 0.454916i
\(126\) −1.53091 1.40457i −0.136384 0.125129i
\(127\) 5.40595i 0.479701i 0.970810 + 0.239850i \(0.0770984\pi\)
−0.970810 + 0.239850i \(0.922902\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.57158 + 2.44949i −0.490551 + 0.215666i
\(130\) −20.2918 −1.77971
\(131\) 6.03122 0.526950 0.263475 0.964666i \(-0.415131\pi\)
0.263475 + 0.964666i \(0.415131\pi\)
\(132\) 0 0
\(133\) 2.82445 0.244911
\(134\) 5.53403 0.478068
\(135\) −4.80381 + 14.1083i −0.413446 + 1.21425i
\(136\) −1.35848 −0.116489
\(137\) 7.65765i 0.654237i −0.944983 0.327118i \(-0.893922\pi\)
0.944983 0.327118i \(-0.106078\pi\)
\(138\) 11.7552 5.16805i 1.00067 0.439934i
\(139\) 7.07813i 0.600359i −0.953883 0.300180i \(-0.902953\pi\)
0.953883 0.300180i \(-0.0970466\pi\)
\(140\) −1.98636 −0.167878
\(141\) −7.11369 + 3.12746i −0.599080 + 0.263380i
\(142\) 8.48528i 0.712069i
\(143\) 0 0
\(144\) −2.02814 + 2.21057i −0.169012 + 0.184214i
\(145\) 15.8928i 1.31983i
\(146\) 7.37761i 0.610575i
\(147\) −4.54527 10.3386i −0.374887 0.852715i
\(148\) 5.41477 0.445092
\(149\) −13.8207 −1.13224 −0.566119 0.824324i \(-0.691556\pi\)
−0.566119 + 0.824324i \(0.691556\pi\)
\(150\) 2.24931 + 5.11627i 0.183656 + 0.417741i
\(151\) 0.270194i 0.0219881i −0.999940 0.0109941i \(-0.996500\pi\)
0.999940 0.0109941i \(-0.00349959\pi\)
\(152\) 4.07841i 0.330802i
\(153\) 2.75520 3.00303i 0.222745 0.242780i
\(154\) 0 0
\(155\) 20.4987i 1.64650i
\(156\) 11.2175 4.93165i 0.898117 0.394848i
\(157\) 6.31872 0.504289 0.252144 0.967690i \(-0.418864\pi\)
0.252144 + 0.967690i \(0.418864\pi\)
\(158\) 13.3579i 1.06270i
\(159\) −16.1994 + 7.12191i −1.28470 + 0.564804i
\(160\) 2.86823i 0.226753i
\(161\) −5.13434 −0.404643
\(162\) −0.773258 8.96672i −0.0607529 0.704492i
\(163\) 7.60541 0.595701 0.297851 0.954612i \(-0.403730\pi\)
0.297851 + 0.954612i \(0.403730\pi\)
\(164\) −2.78138 −0.217189
\(165\) 0 0
\(166\) −6.12622 −0.475487
\(167\) 3.31425 0.256465 0.128232 0.991744i \(-0.459070\pi\)
0.128232 + 0.991744i \(0.459070\pi\)
\(168\) 1.09808 0.482758i 0.0847184 0.0372456i
\(169\) −37.0510 −2.85007
\(170\) 3.89644i 0.298844i
\(171\) 9.01561 + 8.27160i 0.689441 + 0.632545i
\(172\) 3.51390i 0.267933i
\(173\) 11.2267 0.853553 0.426777 0.904357i \(-0.359649\pi\)
0.426777 + 0.904357i \(0.359649\pi\)
\(174\) 3.86254 + 8.78570i 0.292819 + 0.666043i
\(175\) 2.23464i 0.168923i
\(176\) 0 0
\(177\) 3.68086 1.61825i 0.276670 0.121635i
\(178\) 1.79675i 0.134672i
\(179\) 12.8632i 0.961438i −0.876875 0.480719i \(-0.840376\pi\)
0.876875 0.480719i \(-0.159624\pi\)
\(180\) −6.34043 5.81719i −0.472588 0.433587i
\(181\) 1.37866 0.102475 0.0512376 0.998686i \(-0.483683\pi\)
0.0512376 + 0.998686i \(0.483683\pi\)
\(182\) −4.89948 −0.363174
\(183\) 6.57025 2.88854i 0.485687 0.213527i
\(184\) 7.41381i 0.546553i
\(185\) 15.5308i 1.14185i
\(186\) −4.98194 11.3319i −0.365294 0.830894i
\(187\) 0 0
\(188\) 4.48648i 0.327210i
\(189\) −1.15989 + 3.40648i −0.0843693 + 0.247785i
\(190\) 11.6978 0.848648
\(191\) 6.69934i 0.484747i −0.970183 0.242374i \(-0.922074\pi\)
0.970183 0.242374i \(-0.0779259\pi\)
\(192\) −0.697085 1.58558i −0.0503078 0.114430i
\(193\) 13.2669i 0.954972i −0.878639 0.477486i \(-0.841548\pi\)
0.878639 0.477486i \(-0.158452\pi\)
\(194\) −7.11258 −0.510653
\(195\) 14.1451 + 32.1743i 1.01295 + 2.30405i
\(196\) 6.52039 0.465742
\(197\) −0.314252 −0.0223895 −0.0111948 0.999937i \(-0.503563\pi\)
−0.0111948 + 0.999937i \(0.503563\pi\)
\(198\) 0 0
\(199\) −9.31425 −0.660270 −0.330135 0.943934i \(-0.607094\pi\)
−0.330135 + 0.943934i \(0.607094\pi\)
\(200\) −3.22674 −0.228165
\(201\) −3.85769 8.77467i −0.272101 0.618917i
\(202\) 10.3087 0.725320
\(203\) 3.83735i 0.269329i
\(204\) 0.946979 + 2.15399i 0.0663018 + 0.150809i
\(205\) 7.97763i 0.557182i
\(206\) 0.112579 0.00784376
\(207\) −16.3888 15.0363i −1.13910 1.04509i
\(208\) 7.07467i 0.490540i
\(209\) 0 0
\(210\) 1.38466 + 3.14953i 0.0955507 + 0.217339i
\(211\) 0.943585i 0.0649591i 0.999472 + 0.0324795i \(0.0103404\pi\)
−0.999472 + 0.0324795i \(0.989660\pi\)
\(212\) 10.2167i 0.701686i
\(213\) 13.4541 5.91496i 0.921861 0.405287i
\(214\) −15.4405 −1.05549
\(215\) 10.0787 0.687360
\(216\) 4.91883 + 1.67483i 0.334684 + 0.113958i
\(217\) 4.94945i 0.335990i
\(218\) 6.46880i 0.438122i
\(219\) 11.6978 5.14282i 0.790464 0.347520i
\(220\) 0 0
\(221\) 9.61083i 0.646494i
\(222\) −3.77456 8.58557i −0.253332 0.576226i
\(223\) 25.3819 1.69970 0.849849 0.527027i \(-0.176693\pi\)
0.849849 + 0.527027i \(0.176693\pi\)
\(224\) 0.692538i 0.0462721i
\(225\) 6.54430 7.13295i 0.436287 0.475530i
\(226\) 2.89031i 0.192260i
\(227\) 25.9590 1.72296 0.861480 0.507792i \(-0.169538\pi\)
0.861480 + 0.507792i \(0.169538\pi\)
\(228\) −6.46665 + 2.84300i −0.428264 + 0.188282i
\(229\) 8.26939 0.546457 0.273228 0.961949i \(-0.411909\pi\)
0.273228 + 0.961949i \(0.411909\pi\)
\(230\) −21.2645 −1.40214
\(231\) 0 0
\(232\) −5.54099 −0.363784
\(233\) 26.8578 1.75952 0.879758 0.475422i \(-0.157705\pi\)
0.879758 + 0.475422i \(0.157705\pi\)
\(234\) −15.6391 14.3485i −1.02236 0.937988i
\(235\) 12.8683 0.839433
\(236\) 2.32145i 0.151114i
\(237\) −21.1801 + 9.31160i −1.37579 + 0.604853i
\(238\) 0.940802i 0.0609831i
\(239\) 15.0121 0.971049 0.485525 0.874223i \(-0.338629\pi\)
0.485525 + 0.874223i \(0.338629\pi\)
\(240\) 4.54782 1.99940i 0.293560 0.129061i
\(241\) 9.11248i 0.586987i 0.955961 + 0.293493i \(0.0948178\pi\)
−0.955961 + 0.293493i \(0.905182\pi\)
\(242\) 0 0
\(243\) −13.6784 + 7.47663i −0.877473 + 0.479626i
\(244\) 4.14374i 0.265276i
\(245\) 18.7020i 1.19483i
\(246\) 1.93886 + 4.41011i 0.123617 + 0.281178i
\(247\) 28.8534 1.83590
\(248\) 7.14682 0.453824
\(249\) 4.27050 + 9.71363i 0.270632 + 0.615576i
\(250\) 5.08611i 0.321674i
\(251\) 17.8203i 1.12481i −0.826863 0.562403i \(-0.809877\pi\)
0.826863 0.562403i \(-0.190123\pi\)
\(252\) −1.53091 1.40457i −0.0964380 0.0884794i
\(253\) 0 0
\(254\) 5.40595i 0.339200i
\(255\) −6.17813 + 2.71615i −0.386890 + 0.170092i
\(256\) 1.00000 0.0625000
\(257\) 20.7056i 1.29158i 0.763516 + 0.645789i \(0.223471\pi\)
−0.763516 + 0.645789i \(0.776529\pi\)
\(258\) −5.57158 + 2.44949i −0.346872 + 0.152499i
\(259\) 3.74994i 0.233010i
\(260\) −20.2918 −1.25844
\(261\) 11.2379 12.2488i 0.695611 0.758180i
\(262\) 6.03122 0.372610
\(263\) 19.4044 1.19652 0.598262 0.801300i \(-0.295858\pi\)
0.598262 + 0.801300i \(0.295858\pi\)
\(264\) 0 0
\(265\) 29.3038 1.80012
\(266\) 2.82445 0.173178
\(267\) −2.84890 + 1.25249i −0.174350 + 0.0766512i
\(268\) 5.53403 0.338045
\(269\) 7.02346i 0.428228i −0.976809 0.214114i \(-0.931314\pi\)
0.976809 0.214114i \(-0.0686864\pi\)
\(270\) −4.80381 + 14.1083i −0.292351 + 0.858607i
\(271\) 11.4005i 0.692532i 0.938136 + 0.346266i \(0.112551\pi\)
−0.938136 + 0.346266i \(0.887449\pi\)
\(272\) −1.35848 −0.0823702
\(273\) 3.41535 + 7.76853i 0.206707 + 0.470173i
\(274\) 7.65765i 0.462615i
\(275\) 0 0
\(276\) 11.7552 5.16805i 0.707580 0.311080i
\(277\) 17.0460i 1.02419i −0.858928 0.512096i \(-0.828869\pi\)
0.858928 0.512096i \(-0.171131\pi\)
\(278\) 7.07813i 0.424518i
\(279\) −14.4948 + 15.7986i −0.867781 + 0.945836i
\(280\) −1.98636 −0.118708
\(281\) 21.2219 1.26599 0.632995 0.774156i \(-0.281825\pi\)
0.632995 + 0.774156i \(0.281825\pi\)
\(282\) −7.11369 + 3.12746i −0.423614 + 0.186237i
\(283\) 21.1117i 1.25496i −0.778633 0.627479i \(-0.784087\pi\)
0.778633 0.627479i \(-0.215913\pi\)
\(284\) 8.48528i 0.503509i
\(285\) −8.15437 18.5478i −0.483023 1.09868i
\(286\) 0 0
\(287\) 1.92621i 0.113701i
\(288\) −2.02814 + 2.21057i −0.119510 + 0.130259i
\(289\) −15.1545 −0.891442
\(290\) 15.8928i 0.933260i
\(291\) 4.95807 + 11.2776i 0.290647 + 0.661104i
\(292\) 7.37761i 0.431742i
\(293\) −13.4847 −0.787785 −0.393892 0.919157i \(-0.628872\pi\)
−0.393892 + 0.919157i \(0.628872\pi\)
\(294\) −4.54527 10.3386i −0.265085 0.602961i
\(295\) −6.65846 −0.387671
\(296\) 5.41477 0.314727
\(297\) 0 0
\(298\) −13.8207 −0.800613
\(299\) −52.4502 −3.03328
\(300\) 2.24931 + 5.11627i 0.129864 + 0.295388i
\(301\) 2.43351 0.140265
\(302\) 0.270194i 0.0155479i
\(303\) −7.18606 16.3453i −0.412829 0.939016i
\(304\) 4.07841i 0.233913i
\(305\) −11.8852 −0.680545
\(306\) 2.75520 3.00303i 0.157504 0.171672i
\(307\) 22.7504i 1.29844i 0.760603 + 0.649218i \(0.224904\pi\)
−0.760603 + 0.649218i \(0.775096\pi\)
\(308\) 0 0
\(309\) −0.0784772 0.178503i −0.00446441 0.0101547i
\(310\) 20.4987i 1.16425i
\(311\) 31.2401i 1.77147i 0.464196 + 0.885733i \(0.346343\pi\)
−0.464196 + 0.885733i \(0.653657\pi\)
\(312\) 11.2175 4.93165i 0.635065 0.279200i
\(313\) 18.8140 1.06343 0.531716 0.846923i \(-0.321547\pi\)
0.531716 + 0.846923i \(0.321547\pi\)
\(314\) 6.31872 0.356586
\(315\) 4.02862 4.39099i 0.226987 0.247404i
\(316\) 13.3579i 0.751441i
\(317\) 12.9975i 0.730013i 0.931005 + 0.365007i \(0.118933\pi\)
−0.931005 + 0.365007i \(0.881067\pi\)
\(318\) −16.1994 + 7.12191i −0.908418 + 0.399377i
\(319\) 0 0
\(320\) 2.86823i 0.160339i
\(321\) 10.7633 + 24.4821i 0.600750 + 1.36646i
\(322\) −5.13434 −0.286126
\(323\) 5.54045i 0.308279i
\(324\) −0.773258 8.96672i −0.0429588 0.498151i
\(325\) 22.8281i 1.26628i
\(326\) 7.60541 0.421224
\(327\) −10.2568 + 4.50930i −0.567203 + 0.249365i
\(328\) −2.78138 −0.153576
\(329\) 3.10706 0.171298
\(330\) 0 0
\(331\) −6.62457 −0.364119 −0.182060 0.983287i \(-0.558276\pi\)
−0.182060 + 0.983287i \(0.558276\pi\)
\(332\) −6.12622 −0.336220
\(333\) −10.9819 + 11.9697i −0.601807 + 0.655938i
\(334\) 3.31425 0.181348
\(335\) 15.8729i 0.867228i
\(336\) 1.09808 0.482758i 0.0599050 0.0263366i
\(337\) 0.387565i 0.0211120i −0.999944 0.0105560i \(-0.996640\pi\)
0.999944 0.0105560i \(-0.00336014\pi\)
\(338\) −37.0510 −2.01531
\(339\) 4.58282 2.01479i 0.248905 0.109428i
\(340\) 3.89644i 0.211314i
\(341\) 0 0
\(342\) 9.01561 + 8.27160i 0.487508 + 0.447277i
\(343\) 9.36338i 0.505575i
\(344\) 3.51390i 0.189457i
\(345\) 14.8232 + 33.7166i 0.798052 + 1.81524i
\(346\) 11.2267 0.603553
\(347\) −17.5869 −0.944113 −0.472056 0.881568i \(-0.656488\pi\)
−0.472056 + 0.881568i \(0.656488\pi\)
\(348\) 3.86254 + 8.78570i 0.207054 + 0.470963i
\(349\) 0.291450i 0.0156010i 0.999970 + 0.00780049i \(0.00248300\pi\)
−0.999970 + 0.00780049i \(0.997517\pi\)
\(350\) 2.23464i 0.119447i
\(351\) −11.8489 + 34.7991i −0.632448 + 1.85744i
\(352\) 0 0
\(353\) 18.9026i 1.00608i −0.864263 0.503041i \(-0.832215\pi\)
0.864263 0.503041i \(-0.167785\pi\)
\(354\) 3.68086 1.61825i 0.195635 0.0860091i
\(355\) −24.3377 −1.29171
\(356\) 1.79675i 0.0952278i
\(357\) −1.49172 + 0.655819i −0.0789501 + 0.0347096i
\(358\) 12.8632i 0.679839i
\(359\) −22.7186 −1.19904 −0.599521 0.800359i \(-0.704642\pi\)
−0.599521 + 0.800359i \(0.704642\pi\)
\(360\) −6.34043 5.81719i −0.334170 0.306593i
\(361\) 2.36661 0.124558
\(362\) 1.37866 0.0724609
\(363\) 0 0
\(364\) −4.89948 −0.256802
\(365\) −21.1607 −1.10760
\(366\) 6.57025 2.88854i 0.343432 0.150986i
\(367\) 25.7202 1.34258 0.671292 0.741193i \(-0.265740\pi\)
0.671292 + 0.741193i \(0.265740\pi\)
\(368\) 7.41381i 0.386471i
\(369\) 5.64104 6.14844i 0.293661 0.320075i
\(370\) 15.5308i 0.807409i
\(371\) 7.07545 0.367339
\(372\) −4.98194 11.3319i −0.258302 0.587531i
\(373\) 15.4647i 0.800730i −0.916356 0.400365i \(-0.868883\pi\)
0.916356 0.400365i \(-0.131117\pi\)
\(374\) 0 0
\(375\) 8.06445 3.54545i 0.416446 0.183086i
\(376\) 4.48648i 0.231373i
\(377\) 39.2007i 2.01894i
\(378\) −1.15989 + 3.40648i −0.0596581 + 0.175210i
\(379\) −17.3617 −0.891811 −0.445906 0.895080i \(-0.647118\pi\)
−0.445906 + 0.895080i \(0.647118\pi\)
\(380\) 11.6978 0.600085
\(381\) 8.57158 3.76841i 0.439136 0.193061i
\(382\) 6.69934i 0.342768i
\(383\) 13.4690i 0.688236i 0.938926 + 0.344118i \(0.111822\pi\)
−0.938926 + 0.344118i \(0.888178\pi\)
\(384\) −0.697085 1.58558i −0.0355730 0.0809139i
\(385\) 0 0
\(386\) 13.2669i 0.675267i
\(387\) 7.76774 + 7.12671i 0.394856 + 0.362271i
\(388\) −7.11258 −0.361086
\(389\) 12.8348i 0.650753i −0.945585 0.325376i \(-0.894509\pi\)
0.945585 0.325376i \(-0.105491\pi\)
\(390\) 14.1451 + 32.1743i 0.716265 + 1.62921i
\(391\) 10.0715i 0.509340i
\(392\) 6.52039 0.329329
\(393\) −4.20427 9.56300i −0.212078 0.482389i
\(394\) −0.314252 −0.0158318
\(395\) 38.3135 1.92776
\(396\) 0 0
\(397\) 13.4148 0.673268 0.336634 0.941636i \(-0.390711\pi\)
0.336634 + 0.941636i \(0.390711\pi\)
\(398\) −9.31425 −0.466881
\(399\) −1.96888 4.47840i −0.0985674 0.224200i
\(400\) −3.22674 −0.161337
\(401\) 20.3361i 1.01553i −0.861494 0.507767i \(-0.830471\pi\)
0.861494 0.507767i \(-0.169529\pi\)
\(402\) −3.85769 8.77467i −0.192404 0.437641i
\(403\) 50.5614i 2.51864i
\(404\) 10.3087 0.512879
\(405\) 25.7186 2.21788i 1.27797 0.110207i
\(406\) 3.83735i 0.190444i
\(407\) 0 0
\(408\) 0.946979 + 2.15399i 0.0468824 + 0.106638i
\(409\) 24.3271i 1.20290i 0.798912 + 0.601448i \(0.205409\pi\)
−0.798912 + 0.601448i \(0.794591\pi\)
\(410\) 7.97763i 0.393987i
\(411\) −12.1418 + 5.33803i −0.598912 + 0.263306i
\(412\) 0.112579 0.00554637
\(413\) −1.60770 −0.0791095
\(414\) −16.3888 15.0363i −0.805463 0.738992i
\(415\) 17.5714i 0.862547i
\(416\) 7.07467i 0.346864i
\(417\) −11.2230 + 4.93406i −0.549591 + 0.241622i
\(418\) 0 0
\(419\) 36.1710i 1.76707i −0.468365 0.883535i \(-0.655157\pi\)
0.468365 0.883535i \(-0.344843\pi\)
\(420\) 1.38466 + 3.14953i 0.0675645 + 0.153682i
\(421\) −29.2490 −1.42551 −0.712754 0.701414i \(-0.752553\pi\)
−0.712754 + 0.701414i \(0.752553\pi\)
\(422\) 0.943585i 0.0459330i
\(423\) 9.91769 + 9.09923i 0.482215 + 0.442420i
\(424\) 10.2167i 0.496167i
\(425\) 4.38348 0.212630
\(426\) 13.4541 5.91496i 0.651854 0.286581i
\(427\) −2.86970 −0.138874
\(428\) −15.4405 −0.746343
\(429\) 0 0
\(430\) 10.0787 0.486037
\(431\) 24.2837 1.16970 0.584851 0.811140i \(-0.301153\pi\)
0.584851 + 0.811140i \(0.301153\pi\)
\(432\) 4.91883 + 1.67483i 0.236658 + 0.0805805i
\(433\) 0.546515 0.0262638 0.0131319 0.999914i \(-0.495820\pi\)
0.0131319 + 0.999914i \(0.495820\pi\)
\(434\) 4.94945i 0.237581i
\(435\) −25.1994 + 11.0787i −1.20822 + 0.531181i
\(436\) 6.46880i 0.309799i
\(437\) 30.2365 1.44641
\(438\) 11.6978 5.14282i 0.558943 0.245733i
\(439\) 23.6963i 1.13096i −0.824762 0.565480i \(-0.808691\pi\)
0.824762 0.565480i \(-0.191309\pi\)
\(440\) 0 0
\(441\) −13.2243 + 14.4138i −0.629728 + 0.686371i
\(442\) 9.61083i 0.457140i
\(443\) 10.9852i 0.521924i 0.965349 + 0.260962i \(0.0840398\pi\)
−0.965349 + 0.260962i \(0.915960\pi\)
\(444\) −3.77456 8.58557i −0.179133 0.407453i
\(445\) 5.15350 0.244300
\(446\) 25.3819 1.20187
\(447\) 9.63422 + 21.9139i 0.455683 + 1.03649i
\(448\) 0.692538i 0.0327193i
\(449\) 8.49609i 0.400955i 0.979698 + 0.200478i \(0.0642494\pi\)
−0.979698 + 0.200478i \(0.935751\pi\)
\(450\) 6.54430 7.13295i 0.308501 0.336250i
\(451\) 0 0
\(452\) 2.89031i 0.135949i
\(453\) −0.428415 + 0.188348i −0.0201287 + 0.00884938i
\(454\) 25.9590 1.21832
\(455\) 14.0528i 0.658807i
\(456\) −6.46665 + 2.84300i −0.302829 + 0.133135i
\(457\) 22.1681i 1.03698i 0.855084 + 0.518489i \(0.173505\pi\)
−0.855084 + 0.518489i \(0.826495\pi\)
\(458\) 8.26939 0.386403
\(459\) −6.68216 2.27524i −0.311896 0.106199i
\(460\) −21.2645 −0.991462
\(461\) −29.1890 −1.35947 −0.679735 0.733458i \(-0.737905\pi\)
−0.679735 + 0.733458i \(0.737905\pi\)
\(462\) 0 0
\(463\) −13.8641 −0.644318 −0.322159 0.946686i \(-0.604409\pi\)
−0.322159 + 0.946686i \(0.604409\pi\)
\(464\) −5.54099 −0.257234
\(465\) 32.5024 14.2894i 1.50726 0.662653i
\(466\) 26.8578 1.24417
\(467\) 2.67846i 0.123944i 0.998078 + 0.0619722i \(0.0197390\pi\)
−0.998078 + 0.0619722i \(0.980261\pi\)
\(468\) −15.6391 14.3485i −0.722916 0.663258i
\(469\) 3.83253i 0.176970i
\(470\) 12.8683 0.593568
\(471\) −4.40468 10.0188i −0.202957 0.461644i
\(472\) 2.32145i 0.106854i
\(473\) 0 0
\(474\) −21.1801 + 9.31160i −0.972833 + 0.427696i
\(475\) 13.1600i 0.603821i
\(476\) 0.940802i 0.0431216i
\(477\) 22.5847 + 20.7209i 1.03408 + 0.948747i
\(478\) 15.0121 0.686636
\(479\) 14.4574 0.660576 0.330288 0.943880i \(-0.392854\pi\)
0.330288 + 0.943880i \(0.392854\pi\)
\(480\) 4.54782 1.99940i 0.207578 0.0912597i
\(481\) 38.3077i 1.74668i
\(482\) 9.11248i 0.415062i
\(483\) 3.57907 + 8.14092i 0.162853 + 0.370425i
\(484\) 0 0
\(485\) 20.4005i 0.926340i
\(486\) −13.6784 + 7.47663i −0.620467 + 0.339147i
\(487\) 2.05773 0.0932447 0.0466223 0.998913i \(-0.485154\pi\)
0.0466223 + 0.998913i \(0.485154\pi\)
\(488\) 4.14374i 0.187578i
\(489\) −5.30161 12.0590i −0.239747 0.545327i
\(490\) 18.7020i 0.844869i
\(491\) −12.7847 −0.576965 −0.288482 0.957485i \(-0.593151\pi\)
−0.288482 + 0.957485i \(0.593151\pi\)
\(492\) 1.93886 + 4.41011i 0.0874105 + 0.198823i
\(493\) 7.52735 0.339015
\(494\) 28.8534 1.29818
\(495\) 0 0
\(496\) 7.14682 0.320902
\(497\) −5.87638 −0.263592
\(498\) 4.27050 + 9.71363i 0.191366 + 0.435278i
\(499\) −5.57668 −0.249647 −0.124823 0.992179i \(-0.539836\pi\)
−0.124823 + 0.992179i \(0.539836\pi\)
\(500\) 5.08611i 0.227458i
\(501\) −2.31032 5.25502i −0.103217 0.234777i
\(502\) 17.8203i 0.795358i
\(503\) 24.0491 1.07230 0.536148 0.844124i \(-0.319879\pi\)
0.536148 + 0.844124i \(0.319879\pi\)
\(504\) −1.53091 1.40457i −0.0681919 0.0625644i
\(505\) 29.5678i 1.31575i
\(506\) 0 0
\(507\) 25.8277 + 58.7474i 1.14705 + 2.60906i
\(508\) 5.40595i 0.239850i
\(509\) 8.35461i 0.370311i 0.982709 + 0.185156i \(0.0592790\pi\)
−0.982709 + 0.185156i \(0.940721\pi\)
\(510\) −6.17813 + 2.71615i −0.273572 + 0.120273i
\(511\) −5.10927 −0.226021
\(512\) 1.00000 0.0441942
\(513\) 6.83065 20.0610i 0.301581 0.885715i
\(514\) 20.7056i 0.913283i
\(515\) 0.322903i 0.0142288i
\(516\) −5.57158 + 2.44949i −0.245275 + 0.107833i
\(517\) 0 0
\(518\) 3.74994i 0.164763i
\(519\) −7.82599 17.8009i −0.343523 0.781374i
\(520\) −20.2918 −0.889854
\(521\) 0.209281i 0.00916877i 0.999989 + 0.00458439i \(0.00145926\pi\)
−0.999989 + 0.00458439i \(0.998541\pi\)
\(522\) 11.2379 12.2488i 0.491871 0.536114i
\(523\) 39.0841i 1.70903i 0.519428 + 0.854514i \(0.326145\pi\)
−0.519428 + 0.854514i \(0.673855\pi\)
\(524\) 6.03122 0.263475
\(525\) −3.54321 + 1.55774i −0.154638 + 0.0679851i
\(526\) 19.4044 0.846070
\(527\) −9.70885 −0.422924
\(528\) 0 0
\(529\) −31.9645 −1.38976
\(530\) 29.3038 1.27288
\(531\) −5.13174 4.70825i −0.222699 0.204320i
\(532\) 2.82445 0.122455
\(533\) 19.6773i 0.852320i
\(534\) −2.84890 + 1.25249i −0.123284 + 0.0542006i
\(535\) 44.2868i 1.91469i
\(536\) 5.53403 0.239034
\(537\) −20.3956 + 8.96672i −0.880136 + 0.386943i
\(538\) 7.02346i 0.302803i
\(539\) 0 0
\(540\) −4.80381 + 14.1083i −0.206723 + 0.607127i
\(541\) 0.291525i 0.0125336i −0.999980 0.00626681i \(-0.998005\pi\)
0.999980 0.00626681i \(-0.00199480\pi\)
\(542\) 11.4005i 0.489694i
\(543\) −0.961045 2.18598i −0.0412424 0.0938096i
\(544\) −1.35848 −0.0582445
\(545\) 18.5540 0.794766
\(546\) 3.41535 + 7.76853i 0.146164 + 0.332462i
\(547\) 6.75558i 0.288848i −0.989516 0.144424i \(-0.953867\pi\)
0.989516 0.144424i \(-0.0461328\pi\)
\(548\) 7.65765i 0.327118i
\(549\) −9.16004 8.40411i −0.390941 0.358679i
\(550\) 0 0
\(551\) 22.5984i 0.962725i
\(552\) 11.7552 5.16805i 0.500335 0.219967i
\(553\) 9.25086 0.393386
\(554\) 17.0460i 0.724214i
\(555\) 24.6254 10.8263i 1.04529 0.459551i
\(556\) 7.07813i 0.300180i
\(557\) −27.5579 −1.16766 −0.583832 0.811874i \(-0.698447\pi\)
−0.583832 + 0.811874i \(0.698447\pi\)
\(558\) −14.4948 + 15.7986i −0.613614 + 0.668807i
\(559\) 24.8597 1.05145
\(560\) −1.98636 −0.0839389
\(561\) 0 0
\(562\) 21.2219 0.895190
\(563\) 3.70002 0.155937 0.0779686 0.996956i \(-0.475157\pi\)
0.0779686 + 0.996956i \(0.475157\pi\)
\(564\) −7.11369 + 3.12746i −0.299540 + 0.131690i
\(565\) −8.29006 −0.348766
\(566\) 21.1117i 0.887390i
\(567\) 6.20979 0.535510i 0.260787 0.0224893i
\(568\) 8.48528i 0.356034i
\(569\) −17.6481 −0.739845 −0.369922 0.929063i \(-0.620616\pi\)
−0.369922 + 0.929063i \(0.620616\pi\)
\(570\) −8.15437 18.5478i −0.341549 0.776883i
\(571\) 38.7580i 1.62197i −0.585065 0.810986i \(-0.698931\pi\)
0.585065 0.810986i \(-0.301069\pi\)
\(572\) 0 0
\(573\) −10.6224 + 4.67001i −0.443755 + 0.195092i
\(574\) 1.92621i 0.0803985i
\(575\) 23.9224i 0.997635i
\(576\) −2.02814 + 2.21057i −0.0845060 + 0.0921072i
\(577\) −7.89073 −0.328495 −0.164248 0.986419i \(-0.552520\pi\)
−0.164248 + 0.986419i \(0.552520\pi\)
\(578\) −15.1545 −0.630345
\(579\) −21.0358 + 9.24815i −0.874216 + 0.384340i
\(580\) 15.8928i 0.659915i
\(581\) 4.24264i 0.176014i
\(582\) 4.95807 + 11.2776i 0.205519 + 0.467471i
\(583\) 0 0
\(584\) 7.37761i 0.305288i
\(585\) 41.1547 44.8564i 1.70154 1.85459i
\(586\) −13.4847 −0.557048
\(587\) 41.9815i 1.73276i −0.499382 0.866382i \(-0.666440\pi\)
0.499382 0.866382i \(-0.333560\pi\)
\(588\) −4.54527 10.3386i −0.187444 0.426357i
\(589\) 29.1477i 1.20101i
\(590\) −6.65846 −0.274125
\(591\) 0.219060 + 0.498273i 0.00901094 + 0.0204962i
\(592\) 5.41477 0.222546
\(593\) 46.0907 1.89272 0.946360 0.323114i \(-0.104730\pi\)
0.946360 + 0.323114i \(0.104730\pi\)
\(594\) 0 0
\(595\) 2.69844 0.110625
\(596\) −13.8207 −0.566119
\(597\) 6.49283 + 14.7685i 0.265734 + 0.604435i
\(598\) −52.4502 −2.14485
\(599\) 10.6378i 0.434650i 0.976099 + 0.217325i \(0.0697331\pi\)
−0.976099 + 0.217325i \(0.930267\pi\)
\(600\) 2.24931 + 5.11627i 0.0918279 + 0.208871i
\(601\) 3.66673i 0.149569i −0.997200 0.0747845i \(-0.976173\pi\)
0.997200 0.0747845i \(-0.0238269\pi\)
\(602\) 2.43351 0.0991825
\(603\) −11.2238 + 12.2334i −0.457069 + 0.498182i
\(604\) 0.270194i 0.0109941i
\(605\) 0 0
\(606\) −7.18606 16.3453i −0.291914 0.663984i
\(607\) 35.2806i 1.43199i −0.698104 0.715997i \(-0.745973\pi\)
0.698104 0.715997i \(-0.254027\pi\)
\(608\) 4.07841i 0.165401i
\(609\) −6.08443 + 2.67496i −0.246554 + 0.108395i
\(610\) −11.8852 −0.481218
\(611\) 31.7404 1.28408
\(612\) 2.75520 3.00303i 0.111372 0.121390i
\(613\) 34.3580i 1.38771i 0.720117 + 0.693853i \(0.244088\pi\)
−0.720117 + 0.693853i \(0.755912\pi\)
\(614\) 22.7504i 0.918133i
\(615\) −12.6492 + 5.56109i −0.510065 + 0.224245i
\(616\) 0 0
\(617\) 23.7843i 0.957519i 0.877946 + 0.478760i \(0.158913\pi\)
−0.877946 + 0.478760i \(0.841087\pi\)
\(618\) −0.0784772 0.178503i −0.00315682 0.00718046i
\(619\) 35.8306 1.44015 0.720076 0.693895i \(-0.244107\pi\)
0.720076 + 0.693895i \(0.244107\pi\)
\(620\) 20.4987i 0.823249i
\(621\) −12.4169 + 36.4673i −0.498273 + 1.46338i
\(622\) 31.2401i 1.25262i
\(623\) 1.24432 0.0498527
\(624\) 11.2175 4.93165i 0.449058 0.197424i
\(625\) −30.7218 −1.22887
\(626\) 18.8140 0.751960
\(627\) 0 0
\(628\) 6.31872 0.252144
\(629\) −7.35588 −0.293298
\(630\) 4.02862 4.39099i 0.160504 0.174941i
\(631\) −24.8261 −0.988311 −0.494156 0.869373i \(-0.664523\pi\)
−0.494156 + 0.869373i \(0.664523\pi\)
\(632\) 13.3579i 0.531349i
\(633\) 1.49613 0.657759i 0.0594659 0.0261436i
\(634\) 12.9975i 0.516197i
\(635\) −15.5055 −0.615318
\(636\) −16.1994 + 7.12191i −0.642349 + 0.282402i
\(637\) 46.1296i 1.82772i
\(638\) 0 0
\(639\) −18.7573 17.2094i −0.742028 0.680793i
\(640\) 2.86823i 0.113377i
\(641\) 5.62208i 0.222059i 0.993817 + 0.111029i \(0.0354147\pi\)
−0.993817 + 0.111029i \(0.964585\pi\)
\(642\) 10.7633 + 24.4821i 0.424794 + 0.966233i
\(643\) −41.9678 −1.65505 −0.827523 0.561431i \(-0.810251\pi\)
−0.827523 + 0.561431i \(0.810251\pi\)
\(644\) −5.13434 −0.202321
\(645\) −7.02570 15.9806i −0.276637 0.629235i
\(646\) 5.54045i 0.217986i
\(647\) 31.0138i 1.21928i −0.792679 0.609639i \(-0.791314\pi\)
0.792679 0.609639i \(-0.208686\pi\)
\(648\) −0.773258 8.96672i −0.0303764 0.352246i
\(649\) 0 0
\(650\) 22.8281i 0.895393i
\(651\) 7.84776 3.45019i 0.307578 0.135223i
\(652\) 7.60541 0.297851
\(653\) 41.7547i 1.63399i −0.576645 0.816995i \(-0.695638\pi\)
0.576645 0.816995i \(-0.304362\pi\)
\(654\) −10.2568 + 4.50930i −0.401073 + 0.176328i
\(655\) 17.2989i 0.675925i
\(656\) −2.78138 −0.108595
\(657\) −16.3087 14.9629i −0.636264 0.583757i
\(658\) 3.10706 0.121126
\(659\) −38.5660 −1.50232 −0.751159 0.660122i \(-0.770505\pi\)
−0.751159 + 0.660122i \(0.770505\pi\)
\(660\) 0 0
\(661\) 18.7714 0.730123 0.365061 0.930983i \(-0.381048\pi\)
0.365061 + 0.930983i \(0.381048\pi\)
\(662\) −6.62457 −0.257471
\(663\) −15.2388 + 6.69956i −0.591824 + 0.260190i
\(664\) −6.12622 −0.237743
\(665\) 8.10117i 0.314150i
\(666\) −10.9819 + 11.9697i −0.425542 + 0.463818i
\(667\) 41.0799i 1.59062i
\(668\) 3.31425 0.128232
\(669\) −17.6933 40.2451i −0.684064 1.55597i
\(670\) 15.8729i 0.613223i
\(671\) 0 0
\(672\) 1.09808 0.482758i 0.0423592 0.0186228i
\(673\) 45.1000i 1.73848i 0.494393 + 0.869238i \(0.335390\pi\)
−0.494393 + 0.869238i \(0.664610\pi\)
\(674\) 0.387565i 0.0149284i
\(675\) −15.8718 5.40426i −0.610906 0.208010i
\(676\) −37.0510 −1.42504
\(677\) −44.9158 −1.72625 −0.863127 0.504987i \(-0.831497\pi\)
−0.863127 + 0.504987i \(0.831497\pi\)
\(678\) 4.58282 2.01479i 0.176002 0.0773775i
\(679\) 4.92573i 0.189032i
\(680\) 3.89644i 0.149422i
\(681\) −18.0956 41.1601i −0.693426 1.57726i
\(682\) 0 0
\(683\) 23.9741i 0.917342i −0.888606 0.458671i \(-0.848326\pi\)
0.888606 0.458671i \(-0.151674\pi\)
\(684\) 9.01561 + 8.27160i 0.344720 + 0.316272i
\(685\) 21.9639 0.839197
\(686\) 9.36338i 0.357496i
\(687\) −5.76447 13.1118i −0.219928 0.500246i
\(688\) 3.51390i 0.133966i
\(689\) 72.2798 2.75364
\(690\) 14.8232 + 33.7166i 0.564308 + 1.28357i
\(691\) −3.94592 −0.150110 −0.0750550 0.997179i \(-0.523913\pi\)
−0.0750550 + 0.997179i \(0.523913\pi\)
\(692\) 11.2267 0.426777
\(693\) 0 0
\(694\) −17.5869 −0.667589
\(695\) 20.3017 0.770087
\(696\) 3.86254 + 8.78570i 0.146409 + 0.333021i
\(697\) 3.77846 0.143119
\(698\) 0.291450i 0.0110316i
\(699\) −18.7222 42.5853i −0.708139 1.61073i
\(700\) 2.23464i 0.0844615i
\(701\) −48.5055 −1.83203 −0.916014 0.401146i \(-0.868612\pi\)
−0.916014 + 0.401146i \(0.868612\pi\)
\(702\) −11.8489 + 34.7991i −0.447208 + 1.31341i
\(703\) 22.0836i 0.832900i
\(704\) 0 0
\(705\) −8.97027 20.4037i −0.337840 0.768447i
\(706\) 18.9026i 0.711407i
\(707\) 7.13919i 0.268497i
\(708\) 3.68086 1.61825i 0.138335 0.0608176i
\(709\) −0.238519 −0.00895777 −0.00447888 0.999990i \(-0.501426\pi\)
−0.00447888 + 0.999990i \(0.501426\pi\)
\(710\) −24.3377 −0.913379
\(711\) 29.5286 + 27.0918i 1.10741 + 1.01602i
\(712\) 1.79675i 0.0673362i
\(713\) 52.9852i 1.98431i
\(714\) −1.49172 + 0.655819i −0.0558262 + 0.0245434i
\(715\) 0 0
\(716\) 12.8632i 0.480719i
\(717\) −10.4647 23.8029i −0.390811 0.888934i
\(718\) −22.7186 −0.847851
\(719\) 0.880489i 0.0328367i 0.999865 + 0.0164183i \(0.00522636\pi\)
−0.999865 + 0.0164183i \(0.994774\pi\)
\(720\) −6.34043 5.81719i −0.236294 0.216794i
\(721\) 0.0779653i 0.00290358i
\(722\) 2.36661 0.0880759
\(723\) 14.4486 6.35218i 0.537349 0.236240i
\(724\) 1.37866 0.0512376
\(725\) 17.8794 0.664023
\(726\) 0 0
\(727\) 37.0384 1.37368 0.686839 0.726810i \(-0.258998\pi\)
0.686839 + 0.726810i \(0.258998\pi\)
\(728\) −4.89948 −0.181587
\(729\) 21.3899 + 16.4765i 0.792217 + 0.610239i
\(730\) −21.1607 −0.783192
\(731\) 4.77358i 0.176557i
\(732\) 6.57025 2.88854i 0.242843 0.106764i
\(733\) 28.3043i 1.04544i −0.852503 0.522722i \(-0.824917\pi\)
0.852503 0.522722i \(-0.175083\pi\)
\(734\) 25.7202 0.949350
\(735\) 29.6535 13.0369i 1.09379 0.480872i
\(736\) 7.41381i 0.273277i
\(737\) 0 0
\(738\) 5.64104 6.14844i 0.207650 0.226327i
\(739\) 21.0634i 0.774829i −0.921906 0.387415i \(-0.873368\pi\)
0.921906 0.387415i \(-0.126632\pi\)
\(740\) 15.5308i 0.570924i
\(741\) −20.1133 45.7494i −0.738879 1.68065i
\(742\) 7.07545 0.259748
\(743\) 25.9704 0.952763 0.476381 0.879239i \(-0.341948\pi\)
0.476381 + 0.879239i \(0.341948\pi\)
\(744\) −4.98194 11.3319i −0.182647 0.415447i
\(745\) 39.6410i 1.45233i
\(746\) 15.4647i 0.566201i
\(747\) 12.4249 13.5425i 0.454602 0.495492i
\(748\) 0 0
\(749\) 10.6931i 0.390718i
\(750\) 8.06445 3.54545i 0.294472 0.129462i
\(751\) 20.8196 0.759717 0.379858 0.925045i \(-0.375973\pi\)
0.379858 + 0.925045i \(0.375973\pi\)
\(752\) 4.48648i 0.163605i
\(753\) −28.2555 + 12.4222i −1.02969 + 0.452692i
\(754\) 39.2007i 1.42761i
\(755\) 0.774980 0.0282044
\(756\) −1.15989 + 3.40648i −0.0421847 + 0.123892i
\(757\) −6.52788 −0.237260 −0.118630 0.992939i \(-0.537850\pi\)
−0.118630 + 0.992939i \(0.537850\pi\)
\(758\) −17.3617 −0.630606
\(759\) 0 0
\(760\) 11.6978 0.424324
\(761\) −18.3169 −0.663985 −0.331993 0.943282i \(-0.607721\pi\)
−0.331993 + 0.943282i \(0.607721\pi\)
\(762\) 8.57158 3.76841i 0.310516 0.136515i
\(763\) 4.47989 0.162183
\(764\) 6.69934i 0.242374i
\(765\) 8.61337 + 7.90255i 0.311417 + 0.285717i
\(766\) 13.4690i 0.486656i
\(767\) −16.4235 −0.593019
\(768\) −0.697085 1.58558i −0.0251539 0.0572148i
\(769\) 25.7532i 0.928683i −0.885656 0.464341i \(-0.846291\pi\)
0.885656 0.464341i \(-0.153709\pi\)
\(770\) 0 0
\(771\) 32.8304 14.4335i 1.18236 0.519811i
\(772\) 13.2669i 0.477486i
\(773\) 26.8939i 0.967307i −0.875260 0.483654i \(-0.839309\pi\)
0.875260 0.483654i \(-0.160691\pi\)
\(774\) 7.76774 + 7.12671i 0.279206 + 0.256164i
\(775\) −23.0610 −0.828374
\(776\) −7.11258 −0.255327
\(777\) 5.94583 2.61402i 0.213306 0.0937776i
\(778\) 12.8348i 0.460152i
\(779\) 11.3436i 0.406426i
\(780\) 14.1451 + 32.1743i 0.506476 + 1.15202i
\(781\) 0 0
\(782\) 10.0715i 0.360157i
\(783\) −27.2552 9.28025i −0.974023 0.331649i
\(784\) 6.52039 0.232871
\(785\) 18.1235i 0.646857i
\(786\) −4.20427 9.56300i −0.149961 0.341101i
\(787\) 22.6418i 0.807094i 0.914959 + 0.403547i \(0.132223\pi\)
−0.914959 + 0.403547i \(0.867777\pi\)
\(788\) −0.314252 −0.0111948
\(789\) −13.5265 30.7672i −0.481556 1.09534i
\(790\) 38.3135 1.36313
\(791\) −2.00165 −0.0711704
\(792\) 0 0
\(793\) −29.3156 −1.04103
\(794\) 13.4148 0.476072
\(795\) −20.4273 46.4637i −0.724481 1.64790i
\(796\) −9.31425 −0.330135
\(797\) 25.2386i 0.893999i 0.894534 + 0.446999i \(0.147507\pi\)
−0.894534 + 0.446999i \(0.852493\pi\)
\(798\) −1.96888 4.47840i −0.0696977 0.158534i
\(799\) 6.09481i 0.215619i
\(800\) −3.22674 −0.114083
\(801\) 3.97186 + 3.64408i 0.140339 + 0.128757i
\(802\) 20.3361i 0.718091i
\(803\) 0 0
\(804\) −3.85769 8.77467i −0.136050 0.309459i
\(805\) 14.7265i 0.519040i
\(806\) 50.5614i 1.78095i
\(807\) −11.1363 + 4.89595i −0.392015 + 0.172346i
\(808\) 10.3087 0.362660
\(809\) 29.5257 1.03807 0.519034 0.854754i \(-0.326292\pi\)
0.519034 + 0.854754i \(0.326292\pi\)
\(810\) 25.7186 2.21788i 0.903660 0.0779284i
\(811\) 16.7554i 0.588362i 0.955750 + 0.294181i \(0.0950468\pi\)
−0.955750 + 0.294181i \(0.904953\pi\)
\(812\) 3.83735i 0.134665i
\(813\) 18.0765 7.94713i 0.633969 0.278718i
\(814\) 0 0
\(815\) 21.8141i 0.764113i
\(816\) 0.946979 + 2.15399i 0.0331509 + 0.0754047i
\(817\) −14.3311 −0.501383
\(818\) 24.3271i 0.850576i
\(819\) 9.93685 10.8307i 0.347222 0.378454i
\(820\) 7.97763i 0.278591i
\(821\) −49.1558 −1.71555 −0.857774 0.514027i \(-0.828153\pi\)
−0.857774 + 0.514027i \(0.828153\pi\)
\(822\) −12.1418 + 5.33803i −0.423495 + 0.186185i
\(823\) −41.4743 −1.44570 −0.722852 0.691003i \(-0.757169\pi\)
−0.722852 + 0.691003i \(0.757169\pi\)
\(824\) 0.112579 0.00392188
\(825\) 0 0
\(826\) −1.60770 −0.0559389
\(827\) 24.1327 0.839176 0.419588 0.907715i \(-0.362175\pi\)
0.419588 + 0.907715i \(0.362175\pi\)
\(828\) −16.3888 15.0363i −0.569549 0.522547i
\(829\) −22.0169 −0.764680 −0.382340 0.924022i \(-0.624882\pi\)
−0.382340 + 0.924022i \(0.624882\pi\)
\(830\) 17.5714i 0.609913i
\(831\) −27.0278 + 11.8825i −0.937583 + 0.412199i
\(832\) 7.07467i 0.245270i
\(833\) −8.85785 −0.306906
\(834\) −11.2230 + 4.93406i −0.388619 + 0.170852i
\(835\) 9.50604i 0.328970i
\(836\) 0 0
\(837\) 35.1540 + 11.9697i 1.21510 + 0.413735i
\(838\) 36.1710i 1.24951i
\(839\) 21.6672i 0.748035i 0.927422 + 0.374018i \(0.122020\pi\)
−0.927422 + 0.374018i \(0.877980\pi\)
\(840\) 1.38466 + 3.14953i 0.0477753 + 0.108669i
\(841\) 1.70262 0.0587111
\(842\) −29.2490 −1.00799
\(843\) −14.7934 33.6490i −0.509513 1.15893i
\(844\) 0.943585i 0.0324795i
\(845\) 106.271i 3.65582i
\(846\) 9.91769 + 9.09923i 0.340977 + 0.312838i
\(847\) 0 0
\(848\) 10.2167i 0.350843i
\(849\) −33.4743 + 14.7166i −1.14883 + 0.505073i
\(850\) 4.38348 0.150352
\(851\) 40.1441i 1.37612i
\(852\) 13.4541 5.91496i 0.460930 0.202643i
\(853\) 17.7700i 0.608434i 0.952603 + 0.304217i \(0.0983948\pi\)
−0.952603 + 0.304217i \(0.901605\pi\)
\(854\) −2.86970 −0.0981991
\(855\) −23.7248 + 25.8588i −0.811373 + 0.884354i
\(856\) −15.4405 −0.527745
\(857\) −36.0329 −1.23086 −0.615431 0.788191i \(-0.711018\pi\)
−0.615431 + 0.788191i \(0.711018\pi\)
\(858\) 0 0
\(859\) −37.2491 −1.27092 −0.635462 0.772132i \(-0.719190\pi\)
−0.635462 + 0.772132i \(0.719190\pi\)
\(860\) 10.0787 0.343680
\(861\) −3.05417 + 1.34273i −0.104086 + 0.0457602i
\(862\) 24.2837 0.827105
\(863\) 24.6107i 0.837758i −0.908042 0.418879i \(-0.862423\pi\)
0.908042 0.418879i \(-0.137577\pi\)
\(864\) 4.91883 + 1.67483i 0.167342 + 0.0569790i
\(865\) 32.2009i 1.09486i
\(866\) 0.546515 0.0185713
\(867\) 10.5640 + 24.0287i 0.358772 + 0.816059i
\(868\) 4.94945i 0.167995i
\(869\) 0 0
\(870\) −25.1994 + 11.0787i −0.854340 + 0.375602i
\(871\) 39.1515i 1.32660i
\(872\) 6.46880i 0.219061i
\(873\) 14.4253 15.7229i 0.488224 0.532138i
\(874\) 30.2365 1.02277
\(875\) −3.52232 −0.119076
\(876\) 11.6978 5.14282i 0.395232 0.173760i
\(877\) 54.1443i 1.82832i 0.405351 + 0.914161i \(0.367149\pi\)
−0.405351 + 0.914161i \(0.632851\pi\)
\(878\) 23.6963i 0.799710i
\(879\) 9.39999 + 21.3811i 0.317054 + 0.721167i
\(880\) 0 0
\(881\) 41.9541i 1.41347i 0.707478 + 0.706735i \(0.249833\pi\)
−0.707478 + 0.706735i \(0.750167\pi\)
\(882\) −13.2243 + 14.4138i −0.445285 + 0.485338i
\(883\) 0.273470 0.00920299 0.00460150 0.999989i \(-0.498535\pi\)
0.00460150 + 0.999989i \(0.498535\pi\)
\(884\) 9.61083i 0.323247i
\(885\) 4.64152 + 10.5575i 0.156023 + 0.354888i
\(886\) 10.9852i 0.369056i
\(887\) 3.11676 0.104651 0.0523253 0.998630i \(-0.483337\pi\)
0.0523253 + 0.998630i \(0.483337\pi\)
\(888\) −3.77456 8.58557i −0.126666 0.288113i
\(889\) −3.74383 −0.125564
\(890\) 5.15350 0.172746
\(891\) 0 0
\(892\) 25.3819 0.849849
\(893\) −18.2977 −0.612309
\(894\) 9.63422 + 21.9139i 0.322216 + 0.732910i
\(895\) 36.8945 1.23325
\(896\) 0.692538i 0.0231361i
\(897\) 36.5623 + 83.1642i 1.22078 + 2.77677i
\(898\) 8.49609i 0.283518i
\(899\) −39.6005 −1.32075
\(900\) 6.54430 7.13295i 0.218143 0.237765i
\(901\) 13.8792i 0.462384i
\(902\) 0 0
\(903\) −1.69636 3.85853i −0.0564515 0.128404i
\(904\) 2.89031i 0.0961301i
\(905\) 3.95432i 0.131446i
\(906\) −0.428415 + 0.188348i −0.0142332 + 0.00625746i
\(907\) 47.4171 1.57446 0.787229 0.616661i \(-0.211515\pi\)
0.787229 + 0.616661i \(0.211515\pi\)
\(908\) 25.9590 0.861480
\(909\) −20.9076 + 22.7882i −0.693461 + 0.755837i
\(910\) 14.0528i 0.465847i
\(911\) 52.4704i 1.73842i 0.494442 + 0.869211i \(0.335373\pi\)
−0.494442 + 0.869211i \(0.664627\pi\)
\(912\) −6.46665 + 2.84300i −0.214132 + 0.0941410i
\(913\) 0 0
\(914\) 22.1681i 0.733254i
\(915\) 8.28500 + 18.8450i 0.273894 + 0.622996i
\(916\) 8.26939 0.273228
\(917\) 4.17685i 0.137932i
\(918\) −6.68216 2.27524i −0.220544 0.0750940i
\(919\) 38.4251i 1.26753i −0.773527 0.633764i \(-0.781509\pi\)
0.773527 0.633764i \(-0.218491\pi\)
\(920\) −21.2645 −0.701070
\(921\) 36.0727 15.8590i 1.18864 0.522571i
\(922\) −29.1890 −0.961290
\(923\) −60.0306 −1.97593
\(924\) 0 0
\(925\) −17.4721 −0.574478
\(926\) −13.8641 −0.455602
\(927\) −0.228327 + 0.248864i −0.00749923 + 0.00817377i
\(928\) −5.54099 −0.181892
\(929\) 15.6785i 0.514396i −0.966359 0.257198i \(-0.917201\pi\)
0.966359 0.257198i \(-0.0827993\pi\)
\(930\) 32.5024 14.2894i 1.06580 0.468567i
\(931\) 26.5928i 0.871544i
\(932\) 26.8578 0.879758
\(933\) 49.5338 21.7770i 1.62166 0.712948i
\(934\) 2.67846i 0.0876419i
\(935\) 0 0
\(936\) −15.6391 14.3485i −0.511179 0.468994i
\(937\) 21.0384i 0.687296i −0.939099 0.343648i \(-0.888337\pi\)
0.939099 0.343648i \(-0.111663\pi\)
\(938\) 3.83253i 0.125136i
\(939\) −13.1150 29.8312i −0.427991 0.973505i
\(940\) 12.8683 0.419716
\(941\) −14.3191 −0.466791 −0.233395 0.972382i \(-0.574984\pi\)
−0.233395 + 0.972382i \(0.574984\pi\)
\(942\) −4.40468 10.0188i −0.143512 0.326432i
\(943\) 20.6206i 0.671499i
\(944\) 2.32145i 0.0755569i
\(945\) −9.77057 3.32682i −0.317837 0.108221i
\(946\) 0 0
\(947\) 0.365709i 0.0118839i −0.999982 0.00594197i \(-0.998109\pi\)
0.999982 0.00594197i \(-0.00189140\pi\)
\(948\) −21.1801 + 9.31160i −0.687897 + 0.302427i
\(949\) −52.1941 −1.69429
\(950\) 13.1600i 0.426966i
\(951\) 20.6086 9.06037i 0.668281 0.293803i
\(952\) 0.940802i 0.0304916i
\(953\) 15.0810 0.488521 0.244260 0.969710i \(-0.421455\pi\)
0.244260 + 0.969710i \(0.421455\pi\)
\(954\) 22.5847 + 20.7209i 0.731208 + 0.670865i
\(955\) 19.2152 0.621791
\(956\) 15.0121 0.485525
\(957\) 0 0
\(958\) 14.4574 0.467098
\(959\) 5.30321 0.171250
\(960\) 4.54782 1.99940i 0.146780 0.0645304i
\(961\) 20.0771 0.647648
\(962\) 38.3077i 1.23509i
\(963\) 31.3155 34.1323i 1.00913 1.09990i
\(964\) 9.11248i 0.293493i
\(965\) 38.0525 1.22495
\(966\) 3.57907 + 8.14092i 0.115155 + 0.261930i
\(967\) 4.11107i 0.132203i −0.997813 0.0661016i \(-0.978944\pi\)
0.997813 0.0661016i \(-0.0210561\pi\)
\(968\) 0 0
\(969\) 8.78484 3.86216i 0.282210 0.124071i
\(970\) 20.4005i 0.655021i
\(971\) 26.5282i 0.851331i −0.904881 0.425665i \(-0.860040\pi\)
0.904881 0.425665i \(-0.139960\pi\)
\(972\) −13.6784 + 7.47663i −0.438736 + 0.239813i
\(973\) 4.90187 0.157147
\(974\) 2.05773 0.0659339
\(975\) −36.1959 + 15.9132i −1.15920 + 0.509629i
\(976\) 4.14374i 0.132638i
\(977\) 7.98679i 0.255520i 0.991805 + 0.127760i \(0.0407787\pi\)
−0.991805 + 0.127760i \(0.959221\pi\)
\(978\) −5.30161 12.0590i −0.169527 0.385604i
\(979\) 0 0
\(980\) 18.7020i 0.597413i
\(981\) 14.2997 + 13.1197i 0.456556 + 0.418879i
\(982\) −12.7847 −0.407976
\(983\) 18.1119i 0.577681i 0.957377 + 0.288841i \(0.0932698\pi\)
−0.957377 + 0.288841i \(0.906730\pi\)
\(984\) 1.93886 + 4.41011i 0.0618085 + 0.140589i
\(985\) 0.901347i 0.0287193i
\(986\) 7.52735 0.239720
\(987\) −2.16588 4.92650i −0.0689408 0.156812i
\(988\) 28.8534 0.917948
\(989\) 26.0514 0.828386
\(990\) 0 0
\(991\) −29.0245 −0.921995 −0.460997 0.887401i \(-0.652508\pi\)
−0.460997 + 0.887401i \(0.652508\pi\)
\(992\) 7.14682 0.226912
\(993\) 4.61789 + 10.5038i 0.146544 + 0.333328i
\(994\) −5.87638 −0.186387
\(995\) 26.7154i 0.846936i
\(996\) 4.27050 + 9.71363i 0.135316 + 0.307788i
\(997\) 57.2767i 1.81397i 0.421161 + 0.906986i \(0.361623\pi\)
−0.421161 + 0.906986i \(0.638377\pi\)
\(998\) −5.57668 −0.176527
\(999\) 26.6344 + 9.06885i 0.842674 + 0.286926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.b.f.725.1 yes 8
3.2 odd 2 726.2.b.d.725.2 yes 8
11.2 odd 10 726.2.h.l.161.1 32
11.3 even 5 726.2.h.k.233.8 32
11.4 even 5 726.2.h.k.215.5 32
11.5 even 5 726.2.h.k.239.6 32
11.6 odd 10 726.2.h.l.239.6 32
11.7 odd 10 726.2.h.l.215.5 32
11.8 odd 10 726.2.h.l.233.8 32
11.9 even 5 726.2.h.k.161.1 32
11.10 odd 2 726.2.b.d.725.1 8
33.2 even 10 726.2.h.k.161.6 32
33.5 odd 10 726.2.h.l.239.1 32
33.8 even 10 726.2.h.k.233.5 32
33.14 odd 10 726.2.h.l.233.5 32
33.17 even 10 726.2.h.k.239.1 32
33.20 odd 10 726.2.h.l.161.6 32
33.26 odd 10 726.2.h.l.215.8 32
33.29 even 10 726.2.h.k.215.8 32
33.32 even 2 inner 726.2.b.f.725.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
726.2.b.d.725.1 8 11.10 odd 2
726.2.b.d.725.2 yes 8 3.2 odd 2
726.2.b.f.725.1 yes 8 1.1 even 1 trivial
726.2.b.f.725.2 yes 8 33.32 even 2 inner
726.2.h.k.161.1 32 11.9 even 5
726.2.h.k.161.6 32 33.2 even 10
726.2.h.k.215.5 32 11.4 even 5
726.2.h.k.215.8 32 33.29 even 10
726.2.h.k.233.5 32 33.8 even 10
726.2.h.k.233.8 32 11.3 even 5
726.2.h.k.239.1 32 33.17 even 10
726.2.h.k.239.6 32 11.5 even 5
726.2.h.l.161.1 32 11.2 odd 10
726.2.h.l.161.6 32 33.20 odd 10
726.2.h.l.215.5 32 11.7 odd 10
726.2.h.l.215.8 32 33.26 odd 10
726.2.h.l.233.5 32 33.14 odd 10
726.2.h.l.233.8 32 11.8 odd 10
726.2.h.l.239.1 32 33.5 odd 10
726.2.h.l.239.6 32 11.6 odd 10