Properties

Label 725.2.b.f.349.5
Level $725$
Weight $2$
Character 725.349
Analytic conductor $5.789$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(349,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-8,0,-2,0,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.59416223908864.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 14x^{8} + 71x^{6} + 159x^{4} + 151x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.5
Root \(-0.838718i\) of defining polynomial
Character \(\chi\) \(=\) 725.349
Dual form 725.2.b.f.349.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.838718i q^{2} -1.90376i q^{3} +1.29655 q^{4} -1.59672 q^{6} -2.46832i q^{7} -2.76488i q^{8} -0.624302 q^{9} -1.49072 q^{11} -2.46832i q^{12} +0.929772i q^{13} -2.07023 q^{14} +0.274153 q^{16} -2.80583i q^{17} +0.523614i q^{18} +0.0373385 q^{19} -4.69910 q^{21} +1.25030i q^{22} +6.79703i q^{23} -5.26366 q^{24} +0.779816 q^{26} -4.52276i q^{27} -3.20031i q^{28} -1.00000 q^{29} +2.15767 q^{31} -5.75969i q^{32} +2.83798i q^{33} -2.35330 q^{34} -0.809441 q^{36} -7.43182i q^{37} -0.0313164i q^{38} +1.77006 q^{39} -1.97399 q^{41} +3.94122i q^{42} +9.61550i q^{43} -1.93280 q^{44} +5.70079 q^{46} +5.17430i q^{47} -0.521922i q^{48} +0.907373 q^{49} -5.34162 q^{51} +1.20550i q^{52} -1.33750i q^{53} -3.79332 q^{54} -6.82462 q^{56} -0.0710835i q^{57} +0.838718i q^{58} -4.57758 q^{59} +12.1506 q^{61} -1.80968i q^{62} +1.54098i q^{63} -4.28245 q^{64} +2.38027 q^{66} +0.291367i q^{67} -3.63790i q^{68} +12.9399 q^{69} -10.7486 q^{71} +1.72612i q^{72} +0.0141028i q^{73} -6.23320 q^{74} +0.0484113 q^{76} +3.67959i q^{77} -1.48458i q^{78} -5.37881 q^{79} -10.4832 q^{81} +1.65562i q^{82} +10.1503i q^{83} -6.09263 q^{84} +8.06469 q^{86} +1.90376i q^{87} +4.12167i q^{88} +6.88136 q^{89} +2.29498 q^{91} +8.81271i q^{92} -4.10769i q^{93} +4.33978 q^{94} -10.9651 q^{96} +9.42386i q^{97} -0.761030i q^{98} +0.930663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{4} - 2 q^{6} - 22 q^{9} - 4 q^{11} - 22 q^{14} - 20 q^{16} - 4 q^{19} - 2 q^{21} - 26 q^{24} - 32 q^{26} - 10 q^{29} - 2 q^{31} - 6 q^{34} - 26 q^{36} + 12 q^{39} + 10 q^{41} - 14 q^{44} - 40 q^{46}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.838718i − 0.593063i −0.955023 0.296532i \(-0.904170\pi\)
0.955023 0.296532i \(-0.0958300\pi\)
\(3\) − 1.90376i − 1.09914i −0.835449 0.549568i \(-0.814792\pi\)
0.835449 0.549568i \(-0.185208\pi\)
\(4\) 1.29655 0.648276
\(5\) 0 0
\(6\) −1.59672 −0.651857
\(7\) − 2.46832i − 0.932939i −0.884537 0.466470i \(-0.845526\pi\)
0.884537 0.466470i \(-0.154474\pi\)
\(8\) − 2.76488i − 0.977532i
\(9\) −0.624302 −0.208101
\(10\) 0 0
\(11\) −1.49072 −0.449470 −0.224735 0.974420i \(-0.572152\pi\)
−0.224735 + 0.974420i \(0.572152\pi\)
\(12\) − 2.46832i − 0.712544i
\(13\) 0.929772i 0.257872i 0.991653 + 0.128936i \(0.0411562\pi\)
−0.991653 + 0.128936i \(0.958844\pi\)
\(14\) −2.07023 −0.553292
\(15\) 0 0
\(16\) 0.274153 0.0685383
\(17\) − 2.80583i − 0.680513i −0.940333 0.340257i \(-0.889486\pi\)
0.940333 0.340257i \(-0.110514\pi\)
\(18\) 0.523614i 0.123417i
\(19\) 0.0373385 0.00856603 0.00428302 0.999991i \(-0.498637\pi\)
0.00428302 + 0.999991i \(0.498637\pi\)
\(20\) 0 0
\(21\) −4.69910 −1.02543
\(22\) 1.25030i 0.266564i
\(23\) 6.79703i 1.41728i 0.705571 + 0.708639i \(0.250691\pi\)
−0.705571 + 0.708639i \(0.749309\pi\)
\(24\) −5.26366 −1.07444
\(25\) 0 0
\(26\) 0.779816 0.152935
\(27\) − 4.52276i − 0.870405i
\(28\) − 3.20031i − 0.604802i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 2.15767 0.387529 0.193764 0.981048i \(-0.437930\pi\)
0.193764 + 0.981048i \(0.437930\pi\)
\(32\) − 5.75969i − 1.01818i
\(33\) 2.83798i 0.494029i
\(34\) −2.35330 −0.403587
\(35\) 0 0
\(36\) −0.809441 −0.134907
\(37\) − 7.43182i − 1.22178i −0.791714 0.610892i \(-0.790811\pi\)
0.791714 0.610892i \(-0.209189\pi\)
\(38\) − 0.0313164i − 0.00508020i
\(39\) 1.77006 0.283437
\(40\) 0 0
\(41\) −1.97399 −0.308285 −0.154143 0.988049i \(-0.549262\pi\)
−0.154143 + 0.988049i \(0.549262\pi\)
\(42\) 3.94122i 0.608143i
\(43\) 9.61550i 1.46635i 0.680040 + 0.733175i \(0.261963\pi\)
−0.680040 + 0.733175i \(0.738037\pi\)
\(44\) −1.93280 −0.291381
\(45\) 0 0
\(46\) 5.70079 0.840536
\(47\) 5.17430i 0.754749i 0.926061 + 0.377375i \(0.123173\pi\)
−0.926061 + 0.377375i \(0.876827\pi\)
\(48\) − 0.521922i − 0.0753329i
\(49\) 0.907373 0.129625
\(50\) 0 0
\(51\) −5.34162 −0.747977
\(52\) 1.20550i 0.167173i
\(53\) − 1.33750i − 0.183720i −0.995772 0.0918601i \(-0.970719\pi\)
0.995772 0.0918601i \(-0.0292813\pi\)
\(54\) −3.79332 −0.516205
\(55\) 0 0
\(56\) −6.82462 −0.911978
\(57\) − 0.0710835i − 0.00941524i
\(58\) 0.838718i 0.110129i
\(59\) −4.57758 −0.595951 −0.297975 0.954574i \(-0.596311\pi\)
−0.297975 + 0.954574i \(0.596311\pi\)
\(60\) 0 0
\(61\) 12.1506 1.55572 0.777860 0.628437i \(-0.216305\pi\)
0.777860 + 0.628437i \(0.216305\pi\)
\(62\) − 1.80968i − 0.229829i
\(63\) 1.54098i 0.194145i
\(64\) −4.28245 −0.535306
\(65\) 0 0
\(66\) 2.38027 0.292990
\(67\) 0.291367i 0.0355961i 0.999842 + 0.0177981i \(0.00566560\pi\)
−0.999842 + 0.0177981i \(0.994334\pi\)
\(68\) − 3.63790i − 0.441161i
\(69\) 12.9399 1.55778
\(70\) 0 0
\(71\) −10.7486 −1.27563 −0.637813 0.770191i \(-0.720161\pi\)
−0.637813 + 0.770191i \(0.720161\pi\)
\(72\) 1.72612i 0.203425i
\(73\) 0.0141028i 0.00165061i 1.00000 0.000825303i \(0.000262702\pi\)
−1.00000 0.000825303i \(0.999737\pi\)
\(74\) −6.23320 −0.724595
\(75\) 0 0
\(76\) 0.0484113 0.00555315
\(77\) 3.67959i 0.419328i
\(78\) − 1.48458i − 0.168096i
\(79\) −5.37881 −0.605163 −0.302582 0.953123i \(-0.597848\pi\)
−0.302582 + 0.953123i \(0.597848\pi\)
\(80\) 0 0
\(81\) −10.4832 −1.16479
\(82\) 1.65562i 0.182833i
\(83\) 10.1503i 1.11414i 0.830464 + 0.557072i \(0.188075\pi\)
−0.830464 + 0.557072i \(0.811925\pi\)
\(84\) −6.09263 −0.664760
\(85\) 0 0
\(86\) 8.06469 0.869638
\(87\) 1.90376i 0.204105i
\(88\) 4.12167i 0.439371i
\(89\) 6.88136 0.729423 0.364711 0.931121i \(-0.381168\pi\)
0.364711 + 0.931121i \(0.381168\pi\)
\(90\) 0 0
\(91\) 2.29498 0.240579
\(92\) 8.81271i 0.918788i
\(93\) − 4.10769i − 0.425947i
\(94\) 4.33978 0.447614
\(95\) 0 0
\(96\) −10.9651 −1.11912
\(97\) 9.42386i 0.956848i 0.878129 + 0.478424i \(0.158792\pi\)
−0.878129 + 0.478424i \(0.841208\pi\)
\(98\) − 0.761030i − 0.0768756i
\(99\) 0.930663 0.0935351
\(100\) 0 0
\(101\) 11.0204 1.09657 0.548284 0.836293i \(-0.315281\pi\)
0.548284 + 0.836293i \(0.315281\pi\)
\(102\) 4.48012i 0.443598i
\(103\) − 4.51423i − 0.444801i −0.974955 0.222400i \(-0.928611\pi\)
0.974955 0.222400i \(-0.0713892\pi\)
\(104\) 2.57071 0.252078
\(105\) 0 0
\(106\) −1.12179 −0.108958
\(107\) 0.277920i 0.0268675i 0.999910 + 0.0134338i \(0.00427623\pi\)
−0.999910 + 0.0134338i \(0.995724\pi\)
\(108\) − 5.86399i − 0.564263i
\(109\) 16.6659 1.59630 0.798150 0.602459i \(-0.205812\pi\)
0.798150 + 0.602459i \(0.205812\pi\)
\(110\) 0 0
\(111\) −14.1484 −1.34291
\(112\) − 0.676699i − 0.0639420i
\(113\) − 14.9017i − 1.40183i −0.713244 0.700916i \(-0.752775\pi\)
0.713244 0.700916i \(-0.247225\pi\)
\(114\) −0.0596190 −0.00558383
\(115\) 0 0
\(116\) −1.29655 −0.120382
\(117\) − 0.580459i − 0.0536635i
\(118\) 3.83930i 0.353436i
\(119\) −6.92570 −0.634877
\(120\) 0 0
\(121\) −8.77774 −0.797977
\(122\) − 10.1909i − 0.922640i
\(123\) 3.75800i 0.338847i
\(124\) 2.79753 0.251226
\(125\) 0 0
\(126\) 1.29245 0.115140
\(127\) − 14.2274i − 1.26248i −0.775587 0.631240i \(-0.782546\pi\)
0.775587 0.631240i \(-0.217454\pi\)
\(128\) − 7.92762i − 0.700709i
\(129\) 18.3056 1.61172
\(130\) 0 0
\(131\) 19.7992 1.72987 0.864933 0.501888i \(-0.167361\pi\)
0.864933 + 0.501888i \(0.167361\pi\)
\(132\) 3.67959i 0.320267i
\(133\) − 0.0921635i − 0.00799159i
\(134\) 0.244374 0.0211107
\(135\) 0 0
\(136\) −7.75777 −0.665223
\(137\) 0.954829i 0.0815765i 0.999168 + 0.0407883i \(0.0129869\pi\)
−0.999168 + 0.0407883i \(0.987013\pi\)
\(138\) − 10.8529i − 0.923863i
\(139\) 22.5382 1.91166 0.955831 0.293916i \(-0.0949585\pi\)
0.955831 + 0.293916i \(0.0949585\pi\)
\(140\) 0 0
\(141\) 9.85063 0.829572
\(142\) 9.01506i 0.756527i
\(143\) − 1.38603i − 0.115906i
\(144\) −0.171154 −0.0142629
\(145\) 0 0
\(146\) 0.0118282 0.000978913 0
\(147\) − 1.72742i − 0.142475i
\(148\) − 9.63575i − 0.792054i
\(149\) −8.56867 −0.701972 −0.350986 0.936381i \(-0.614154\pi\)
−0.350986 + 0.936381i \(0.614154\pi\)
\(150\) 0 0
\(151\) 13.2588 1.07898 0.539491 0.841991i \(-0.318617\pi\)
0.539491 + 0.841991i \(0.318617\pi\)
\(152\) − 0.103236i − 0.00837357i
\(153\) 1.75169i 0.141615i
\(154\) 3.08614 0.248688
\(155\) 0 0
\(156\) 2.29498 0.183745
\(157\) − 14.1001i − 1.12531i −0.826691 0.562656i \(-0.809780\pi\)
0.826691 0.562656i \(-0.190220\pi\)
\(158\) 4.51130i 0.358900i
\(159\) −2.54629 −0.201934
\(160\) 0 0
\(161\) 16.7773 1.32223
\(162\) 8.79241i 0.690797i
\(163\) 17.2267i 1.34930i 0.738138 + 0.674650i \(0.235705\pi\)
−0.738138 + 0.674650i \(0.764295\pi\)
\(164\) −2.55938 −0.199854
\(165\) 0 0
\(166\) 8.51326 0.660757
\(167\) 14.4358i 1.11707i 0.829480 + 0.558537i \(0.188637\pi\)
−0.829480 + 0.558537i \(0.811363\pi\)
\(168\) 12.9924i 1.00239i
\(169\) 12.1355 0.933502
\(170\) 0 0
\(171\) −0.0233105 −0.00178260
\(172\) 12.4670i 0.950600i
\(173\) − 15.5680i − 1.18362i −0.806079 0.591808i \(-0.798414\pi\)
0.806079 0.591808i \(-0.201586\pi\)
\(174\) 1.59672 0.121047
\(175\) 0 0
\(176\) −0.408687 −0.0308059
\(177\) 8.71462i 0.655031i
\(178\) − 5.77152i − 0.432594i
\(179\) −20.5247 −1.53409 −0.767044 0.641594i \(-0.778273\pi\)
−0.767044 + 0.641594i \(0.778273\pi\)
\(180\) 0 0
\(181\) 17.5111 1.30159 0.650794 0.759255i \(-0.274436\pi\)
0.650794 + 0.759255i \(0.274436\pi\)
\(182\) − 1.92484i − 0.142679i
\(183\) − 23.1318i − 1.70995i
\(184\) 18.7930 1.38543
\(185\) 0 0
\(186\) −3.44519 −0.252613
\(187\) 4.18272i 0.305870i
\(188\) 6.70875i 0.489286i
\(189\) −11.1636 −0.812035
\(190\) 0 0
\(191\) 15.5726 1.12680 0.563398 0.826186i \(-0.309494\pi\)
0.563398 + 0.826186i \(0.309494\pi\)
\(192\) 8.15276i 0.588375i
\(193\) − 8.44449i − 0.607847i −0.952696 0.303924i \(-0.901703\pi\)
0.952696 0.303924i \(-0.0982968\pi\)
\(194\) 7.90396 0.567471
\(195\) 0 0
\(196\) 1.17646 0.0840326
\(197\) 10.1937i 0.726272i 0.931736 + 0.363136i \(0.118294\pi\)
−0.931736 + 0.363136i \(0.881706\pi\)
\(198\) − 0.780563i − 0.0554722i
\(199\) −6.54034 −0.463633 −0.231816 0.972760i \(-0.574467\pi\)
−0.231816 + 0.972760i \(0.574467\pi\)
\(200\) 0 0
\(201\) 0.554692 0.0391250
\(202\) − 9.24297i − 0.650333i
\(203\) 2.46832i 0.173242i
\(204\) −6.92570 −0.484896
\(205\) 0 0
\(206\) −3.78617 −0.263795
\(207\) − 4.24340i − 0.294937i
\(208\) 0.254900i 0.0176741i
\(209\) −0.0556614 −0.00385018
\(210\) 0 0
\(211\) 15.5988 1.07386 0.536932 0.843625i \(-0.319583\pi\)
0.536932 + 0.843625i \(0.319583\pi\)
\(212\) − 1.73414i − 0.119101i
\(213\) 20.4628i 1.40209i
\(214\) 0.233096 0.0159341
\(215\) 0 0
\(216\) −12.5049 −0.850849
\(217\) − 5.32583i − 0.361541i
\(218\) − 13.9780i − 0.946707i
\(219\) 0.0268483 0.00181424
\(220\) 0 0
\(221\) 2.60878 0.175486
\(222\) 11.8665i 0.796429i
\(223\) 23.7662i 1.59150i 0.605623 + 0.795751i \(0.292924\pi\)
−0.605623 + 0.795751i \(0.707076\pi\)
\(224\) −14.2168 −0.949899
\(225\) 0 0
\(226\) −12.4983 −0.831375
\(227\) 9.10250i 0.604154i 0.953284 + 0.302077i \(0.0976800\pi\)
−0.953284 + 0.302077i \(0.902320\pi\)
\(228\) − 0.0921635i − 0.00610367i
\(229\) −24.3822 −1.61122 −0.805611 0.592445i \(-0.798163\pi\)
−0.805611 + 0.592445i \(0.798163\pi\)
\(230\) 0 0
\(231\) 7.00506 0.460899
\(232\) 2.76488i 0.181523i
\(233\) 18.6324i 1.22065i 0.792151 + 0.610325i \(0.208961\pi\)
−0.792151 + 0.610325i \(0.791039\pi\)
\(234\) −0.486841 −0.0318258
\(235\) 0 0
\(236\) −5.93508 −0.386341
\(237\) 10.2400i 0.665157i
\(238\) 5.80870i 0.376522i
\(239\) −1.69469 −0.109620 −0.0548101 0.998497i \(-0.517455\pi\)
−0.0548101 + 0.998497i \(0.517455\pi\)
\(240\) 0 0
\(241\) 8.57531 0.552384 0.276192 0.961102i \(-0.410927\pi\)
0.276192 + 0.961102i \(0.410927\pi\)
\(242\) 7.36205i 0.473250i
\(243\) 6.38914i 0.409863i
\(244\) 15.7538 1.00854
\(245\) 0 0
\(246\) 3.15190 0.200958
\(247\) 0.0347163i 0.00220894i
\(248\) − 5.96569i − 0.378822i
\(249\) 19.3238 1.22460
\(250\) 0 0
\(251\) −27.6230 −1.74355 −0.871774 0.489909i \(-0.837030\pi\)
−0.871774 + 0.489909i \(0.837030\pi\)
\(252\) 1.99796i 0.125860i
\(253\) − 10.1325i − 0.637025i
\(254\) −11.9328 −0.748731
\(255\) 0 0
\(256\) −15.2139 −0.950871
\(257\) − 6.02021i − 0.375530i −0.982214 0.187765i \(-0.939876\pi\)
0.982214 0.187765i \(-0.0601244\pi\)
\(258\) − 15.3532i − 0.955851i
\(259\) −18.3442 −1.13985
\(260\) 0 0
\(261\) 0.624302 0.0386434
\(262\) − 16.6060i − 1.02592i
\(263\) 8.13397i 0.501562i 0.968044 + 0.250781i \(0.0806874\pi\)
−0.968044 + 0.250781i \(0.919313\pi\)
\(264\) 7.84667 0.482929
\(265\) 0 0
\(266\) −0.0772991 −0.00473951
\(267\) − 13.1005i − 0.801735i
\(268\) 0.377772i 0.0230761i
\(269\) 3.43905 0.209682 0.104841 0.994489i \(-0.466567\pi\)
0.104841 + 0.994489i \(0.466567\pi\)
\(270\) 0 0
\(271\) −10.4822 −0.636748 −0.318374 0.947965i \(-0.603137\pi\)
−0.318374 + 0.947965i \(0.603137\pi\)
\(272\) − 0.769227i − 0.0466412i
\(273\) − 4.36909i − 0.264429i
\(274\) 0.800832 0.0483800
\(275\) 0 0
\(276\) 16.7773 1.00987
\(277\) − 18.9262i − 1.13716i −0.822627 0.568582i \(-0.807492\pi\)
0.822627 0.568582i \(-0.192508\pi\)
\(278\) − 18.9032i − 1.13374i
\(279\) −1.34704 −0.0806451
\(280\) 0 0
\(281\) −24.6790 −1.47223 −0.736113 0.676859i \(-0.763341\pi\)
−0.736113 + 0.676859i \(0.763341\pi\)
\(282\) − 8.26190i − 0.491989i
\(283\) 3.12685i 0.185872i 0.995672 + 0.0929361i \(0.0296252\pi\)
−0.995672 + 0.0929361i \(0.970375\pi\)
\(284\) −13.9361 −0.826958
\(285\) 0 0
\(286\) −1.16249 −0.0687395
\(287\) 4.87244i 0.287611i
\(288\) 3.59579i 0.211884i
\(289\) 9.12733 0.536902
\(290\) 0 0
\(291\) 17.9408 1.05171
\(292\) 0.0182850i 0.00107005i
\(293\) − 6.95025i − 0.406038i −0.979175 0.203019i \(-0.934925\pi\)
0.979175 0.203019i \(-0.0650753\pi\)
\(294\) −1.44882 −0.0844968
\(295\) 0 0
\(296\) −20.5481 −1.19433
\(297\) 6.74218i 0.391221i
\(298\) 7.18669i 0.416314i
\(299\) −6.31969 −0.365477
\(300\) 0 0
\(301\) 23.7342 1.36802
\(302\) − 11.1203i − 0.639904i
\(303\) − 20.9801i − 1.20528i
\(304\) 0.0102365 0.000587101 0
\(305\) 0 0
\(306\) 1.46917 0.0839869
\(307\) − 15.4392i − 0.881160i −0.897713 0.440580i \(-0.854773\pi\)
0.897713 0.440580i \(-0.145227\pi\)
\(308\) 4.77078i 0.271841i
\(309\) −8.59402 −0.488896
\(310\) 0 0
\(311\) −12.9889 −0.736534 −0.368267 0.929720i \(-0.620049\pi\)
−0.368267 + 0.929720i \(0.620049\pi\)
\(312\) − 4.89401i − 0.277069i
\(313\) 24.8765i 1.40611i 0.711138 + 0.703053i \(0.248180\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(314\) −11.8260 −0.667381
\(315\) 0 0
\(316\) −6.97391 −0.392313
\(317\) 17.1132i 0.961176i 0.876947 + 0.480588i \(0.159577\pi\)
−0.876947 + 0.480588i \(0.840423\pi\)
\(318\) 2.13562i 0.119759i
\(319\) 1.49072 0.0834645
\(320\) 0 0
\(321\) 0.529093 0.0295311
\(322\) − 14.0714i − 0.784169i
\(323\) − 0.104765i − 0.00582930i
\(324\) −13.5920 −0.755109
\(325\) 0 0
\(326\) 14.4483 0.800219
\(327\) − 31.7278i − 1.75455i
\(328\) 5.45783i 0.301359i
\(329\) 12.7719 0.704135
\(330\) 0 0
\(331\) −25.9203 −1.42471 −0.712353 0.701821i \(-0.752371\pi\)
−0.712353 + 0.701821i \(0.752371\pi\)
\(332\) 13.1604i 0.722273i
\(333\) 4.63971i 0.254254i
\(334\) 12.1075 0.662495
\(335\) 0 0
\(336\) −1.28827 −0.0702810
\(337\) 18.9557i 1.03258i 0.856414 + 0.516290i \(0.172687\pi\)
−0.856414 + 0.516290i \(0.827313\pi\)
\(338\) − 10.1783i − 0.553625i
\(339\) −28.3692 −1.54081
\(340\) 0 0
\(341\) −3.21649 −0.174183
\(342\) 0.0195509i 0.00105719i
\(343\) − 19.5180i − 1.05387i
\(344\) 26.5857 1.43340
\(345\) 0 0
\(346\) −13.0572 −0.701959
\(347\) − 7.70815i − 0.413795i −0.978363 0.206898i \(-0.933663\pi\)
0.978363 0.206898i \(-0.0663367\pi\)
\(348\) 2.46832i 0.132316i
\(349\) 15.0015 0.803014 0.401507 0.915856i \(-0.368487\pi\)
0.401507 + 0.915856i \(0.368487\pi\)
\(350\) 0 0
\(351\) 4.20513 0.224453
\(352\) 8.58611i 0.457641i
\(353\) − 16.9486i − 0.902085i −0.892502 0.451043i \(-0.851052\pi\)
0.892502 0.451043i \(-0.148948\pi\)
\(354\) 7.30911 0.388475
\(355\) 0 0
\(356\) 8.92205 0.472867
\(357\) 13.1849i 0.697817i
\(358\) 17.2144i 0.909811i
\(359\) 5.23876 0.276491 0.138246 0.990398i \(-0.455854\pi\)
0.138246 + 0.990398i \(0.455854\pi\)
\(360\) 0 0
\(361\) −18.9986 −0.999927
\(362\) − 14.6868i − 0.771923i
\(363\) 16.7107i 0.877085i
\(364\) 2.97556 0.155962
\(365\) 0 0
\(366\) −19.4010 −1.01411
\(367\) − 15.2817i − 0.797701i −0.917016 0.398850i \(-0.869409\pi\)
0.917016 0.398850i \(-0.130591\pi\)
\(368\) 1.86343i 0.0971378i
\(369\) 1.23237 0.0641544
\(370\) 0 0
\(371\) −3.30139 −0.171400
\(372\) − 5.32583i − 0.276131i
\(373\) 24.3674i 1.26169i 0.775907 + 0.630847i \(0.217292\pi\)
−0.775907 + 0.630847i \(0.782708\pi\)
\(374\) 3.50812 0.181400
\(375\) 0 0
\(376\) 14.3063 0.737791
\(377\) − 0.929772i − 0.0478857i
\(378\) 9.36314i 0.481588i
\(379\) 12.1058 0.621832 0.310916 0.950437i \(-0.399364\pi\)
0.310916 + 0.950437i \(0.399364\pi\)
\(380\) 0 0
\(381\) −27.0856 −1.38764
\(382\) − 13.0610i − 0.668261i
\(383\) 21.0250i 1.07432i 0.843479 + 0.537162i \(0.180504\pi\)
−0.843479 + 0.537162i \(0.819496\pi\)
\(384\) −15.0923 −0.770175
\(385\) 0 0
\(386\) −7.08254 −0.360492
\(387\) − 6.00298i − 0.305149i
\(388\) 12.2185i 0.620302i
\(389\) 10.3647 0.525509 0.262755 0.964863i \(-0.415369\pi\)
0.262755 + 0.964863i \(0.415369\pi\)
\(390\) 0 0
\(391\) 19.0713 0.964477
\(392\) − 2.50877i − 0.126712i
\(393\) − 37.6929i − 1.90136i
\(394\) 8.54964 0.430725
\(395\) 0 0
\(396\) 1.20665 0.0606366
\(397\) 17.7864i 0.892673i 0.894865 + 0.446337i \(0.147272\pi\)
−0.894865 + 0.446337i \(0.852728\pi\)
\(398\) 5.48550i 0.274963i
\(399\) −0.175457 −0.00878384
\(400\) 0 0
\(401\) −29.9868 −1.49747 −0.748734 0.662870i \(-0.769338\pi\)
−0.748734 + 0.662870i \(0.769338\pi\)
\(402\) − 0.465230i − 0.0232036i
\(403\) 2.00614i 0.0999330i
\(404\) 14.2885 0.710878
\(405\) 0 0
\(406\) 2.07023 0.102744
\(407\) 11.0788i 0.549156i
\(408\) 14.7689i 0.731171i
\(409\) −30.6717 −1.51662 −0.758309 0.651896i \(-0.773974\pi\)
−0.758309 + 0.651896i \(0.773974\pi\)
\(410\) 0 0
\(411\) 1.81776 0.0896637
\(412\) − 5.85294i − 0.288354i
\(413\) 11.2990i 0.555986i
\(414\) −3.55902 −0.174916
\(415\) 0 0
\(416\) 5.35520 0.262560
\(417\) − 42.9073i − 2.10118i
\(418\) 0.0466842i 0.00228340i
\(419\) 15.0395 0.734729 0.367364 0.930077i \(-0.380260\pi\)
0.367364 + 0.930077i \(0.380260\pi\)
\(420\) 0 0
\(421\) −31.3625 −1.52852 −0.764258 0.644911i \(-0.776894\pi\)
−0.764258 + 0.644911i \(0.776894\pi\)
\(422\) − 13.0830i − 0.636869i
\(423\) − 3.23033i − 0.157064i
\(424\) −3.69803 −0.179592
\(425\) 0 0
\(426\) 17.1625 0.831526
\(427\) − 29.9915i − 1.45139i
\(428\) 0.360338i 0.0174176i
\(429\) −2.63868 −0.127396
\(430\) 0 0
\(431\) −28.7116 −1.38299 −0.691495 0.722381i \(-0.743048\pi\)
−0.691495 + 0.722381i \(0.743048\pi\)
\(432\) − 1.23993i − 0.0596561i
\(433\) 30.9086i 1.48537i 0.669640 + 0.742686i \(0.266448\pi\)
−0.669640 + 0.742686i \(0.733552\pi\)
\(434\) −4.46687 −0.214417
\(435\) 0 0
\(436\) 21.6082 1.03484
\(437\) 0.253791i 0.0121405i
\(438\) − 0.0225181i − 0.00107596i
\(439\) −18.5828 −0.886907 −0.443454 0.896297i \(-0.646247\pi\)
−0.443454 + 0.896297i \(0.646247\pi\)
\(440\) 0 0
\(441\) −0.566475 −0.0269750
\(442\) − 2.18803i − 0.104074i
\(443\) − 32.4127i − 1.53997i −0.638061 0.769986i \(-0.720263\pi\)
0.638061 0.769986i \(-0.279737\pi\)
\(444\) −18.3442 −0.870575
\(445\) 0 0
\(446\) 19.9331 0.943862
\(447\) 16.3127i 0.771563i
\(448\) 10.5705i 0.499408i
\(449\) 12.7486 0.601645 0.300822 0.953680i \(-0.402739\pi\)
0.300822 + 0.953680i \(0.402739\pi\)
\(450\) 0 0
\(451\) 2.94267 0.138565
\(452\) − 19.3208i − 0.908775i
\(453\) − 25.2415i − 1.18595i
\(454\) 7.63443 0.358301
\(455\) 0 0
\(456\) −0.196537 −0.00920369
\(457\) 20.5383i 0.960742i 0.877065 + 0.480371i \(0.159498\pi\)
−0.877065 + 0.480371i \(0.840502\pi\)
\(458\) 20.4498i 0.955556i
\(459\) −12.6901 −0.592322
\(460\) 0 0
\(461\) 15.0965 0.703114 0.351557 0.936167i \(-0.385652\pi\)
0.351557 + 0.936167i \(0.385652\pi\)
\(462\) − 5.87527i − 0.273342i
\(463\) − 1.19501i − 0.0555367i −0.999614 0.0277684i \(-0.991160\pi\)
0.999614 0.0277684i \(-0.00884008\pi\)
\(464\) −0.274153 −0.0127272
\(465\) 0 0
\(466\) 15.6273 0.723922
\(467\) 7.08659i 0.327929i 0.986466 + 0.163964i \(0.0524282\pi\)
−0.986466 + 0.163964i \(0.947572\pi\)
\(468\) − 0.752596i − 0.0347887i
\(469\) 0.719188 0.0332090
\(470\) 0 0
\(471\) −26.8432 −1.23687
\(472\) 12.6565i 0.582561i
\(473\) − 14.3341i − 0.659081i
\(474\) 8.58844 0.394480
\(475\) 0 0
\(476\) −8.97953 −0.411576
\(477\) 0.835007i 0.0382323i
\(478\) 1.42136i 0.0650117i
\(479\) −38.8768 −1.77633 −0.888163 0.459528i \(-0.848019\pi\)
−0.888163 + 0.459528i \(0.848019\pi\)
\(480\) 0 0
\(481\) 6.90990 0.315064
\(482\) − 7.19226i − 0.327599i
\(483\) − 31.9399i − 1.45332i
\(484\) −11.3808 −0.517309
\(485\) 0 0
\(486\) 5.35868 0.243075
\(487\) − 30.3083i − 1.37340i −0.726940 0.686701i \(-0.759058\pi\)
0.726940 0.686701i \(-0.240942\pi\)
\(488\) − 33.5948i − 1.52077i
\(489\) 32.7955 1.48306
\(490\) 0 0
\(491\) −9.84537 −0.444315 −0.222158 0.975011i \(-0.571310\pi\)
−0.222158 + 0.975011i \(0.571310\pi\)
\(492\) 4.87244i 0.219667i
\(493\) 2.80583i 0.126368i
\(494\) 0.0291171 0.00131004
\(495\) 0 0
\(496\) 0.591532 0.0265606
\(497\) 26.5311i 1.19008i
\(498\) − 16.2072i − 0.726262i
\(499\) −20.9719 −0.938829 −0.469415 0.882978i \(-0.655535\pi\)
−0.469415 + 0.882978i \(0.655535\pi\)
\(500\) 0 0
\(501\) 27.4822 1.22782
\(502\) 23.1679i 1.03403i
\(503\) 42.2017i 1.88168i 0.338849 + 0.940841i \(0.389963\pi\)
−0.338849 + 0.940841i \(0.610037\pi\)
\(504\) 4.26062 0.189783
\(505\) 0 0
\(506\) −8.49831 −0.377796
\(507\) − 23.1031i − 1.02605i
\(508\) − 18.4466i − 0.818436i
\(509\) −7.00080 −0.310305 −0.155153 0.987891i \(-0.549587\pi\)
−0.155153 + 0.987891i \(0.549587\pi\)
\(510\) 0 0
\(511\) 0.0348102 0.00153991
\(512\) − 3.09504i − 0.136783i
\(513\) − 0.168873i − 0.00745592i
\(514\) −5.04925 −0.222713
\(515\) 0 0
\(516\) 23.7342 1.04484
\(517\) − 7.71345i − 0.339237i
\(518\) 15.3856i 0.676003i
\(519\) −29.6378 −1.30096
\(520\) 0 0
\(521\) 12.0767 0.529091 0.264545 0.964373i \(-0.414778\pi\)
0.264545 + 0.964373i \(0.414778\pi\)
\(522\) − 0.523614i − 0.0229179i
\(523\) 30.9879i 1.35500i 0.735521 + 0.677502i \(0.236938\pi\)
−0.735521 + 0.677502i \(0.763062\pi\)
\(524\) 25.6707 1.12143
\(525\) 0 0
\(526\) 6.82211 0.297458
\(527\) − 6.05405i − 0.263719i
\(528\) 0.778041i 0.0338599i
\(529\) −23.1996 −1.00868
\(530\) 0 0
\(531\) 2.85780 0.124018
\(532\) − 0.119495i − 0.00518075i
\(533\) − 1.83536i − 0.0794982i
\(534\) −10.9876 −0.475479
\(535\) 0 0
\(536\) 0.805593 0.0347963
\(537\) 39.0741i 1.68617i
\(538\) − 2.88439i − 0.124355i
\(539\) −1.35264 −0.0582624
\(540\) 0 0
\(541\) −5.40732 −0.232479 −0.116240 0.993221i \(-0.537084\pi\)
−0.116240 + 0.993221i \(0.537084\pi\)
\(542\) 8.79161i 0.377632i
\(543\) − 33.3369i − 1.43062i
\(544\) −16.1607 −0.692885
\(545\) 0 0
\(546\) −3.66443 −0.156823
\(547\) 0.766804i 0.0327862i 0.999866 + 0.0163931i \(0.00521832\pi\)
−0.999866 + 0.0163931i \(0.994782\pi\)
\(548\) 1.23799i 0.0528841i
\(549\) −7.58563 −0.323747
\(550\) 0 0
\(551\) −0.0373385 −0.00159067
\(552\) − 35.7773i − 1.52278i
\(553\) 13.2766i 0.564580i
\(554\) −15.8737 −0.674410
\(555\) 0 0
\(556\) 29.2219 1.23929
\(557\) 38.2414i 1.62034i 0.586195 + 0.810170i \(0.300625\pi\)
−0.586195 + 0.810170i \(0.699375\pi\)
\(558\) 1.12979i 0.0478276i
\(559\) −8.94023 −0.378131
\(560\) 0 0
\(561\) 7.96289 0.336193
\(562\) 20.6987i 0.873123i
\(563\) 36.0317i 1.51855i 0.650768 + 0.759277i \(0.274447\pi\)
−0.650768 + 0.759277i \(0.725553\pi\)
\(564\) 12.7719 0.537792
\(565\) 0 0
\(566\) 2.62255 0.110234
\(567\) 25.8758i 1.08668i
\(568\) 29.7186i 1.24697i
\(569\) 17.6536 0.740077 0.370038 0.929016i \(-0.379345\pi\)
0.370038 + 0.929016i \(0.379345\pi\)
\(570\) 0 0
\(571\) −3.66464 −0.153360 −0.0766801 0.997056i \(-0.524432\pi\)
−0.0766801 + 0.997056i \(0.524432\pi\)
\(572\) − 1.79707i − 0.0751391i
\(573\) − 29.6466i − 1.23850i
\(574\) 4.08661 0.170572
\(575\) 0 0
\(576\) 2.67354 0.111398
\(577\) 25.9865i 1.08183i 0.841076 + 0.540917i \(0.181923\pi\)
−0.841076 + 0.540917i \(0.818077\pi\)
\(578\) − 7.65525i − 0.318417i
\(579\) −16.0763 −0.668107
\(580\) 0 0
\(581\) 25.0543 1.03943
\(582\) − 15.0472i − 0.623728i
\(583\) 1.99385i 0.0825768i
\(584\) 0.0389924 0.00161352
\(585\) 0 0
\(586\) −5.82930 −0.240806
\(587\) 26.3857i 1.08905i 0.838744 + 0.544527i \(0.183291\pi\)
−0.838744 + 0.544527i \(0.816709\pi\)
\(588\) − 2.23969i − 0.0923633i
\(589\) 0.0805641 0.00331958
\(590\) 0 0
\(591\) 19.4064 0.798272
\(592\) − 2.03746i − 0.0837390i
\(593\) − 37.1560i − 1.52581i −0.646508 0.762907i \(-0.723771\pi\)
0.646508 0.762907i \(-0.276229\pi\)
\(594\) 5.65479 0.232019
\(595\) 0 0
\(596\) −11.1097 −0.455072
\(597\) 12.4512i 0.509596i
\(598\) 5.30044i 0.216751i
\(599\) 5.96103 0.243561 0.121781 0.992557i \(-0.461140\pi\)
0.121781 + 0.992557i \(0.461140\pi\)
\(600\) 0 0
\(601\) 9.40636 0.383693 0.191847 0.981425i \(-0.438552\pi\)
0.191847 + 0.981425i \(0.438552\pi\)
\(602\) − 19.9063i − 0.811320i
\(603\) − 0.181901i − 0.00740758i
\(604\) 17.1907 0.699478
\(605\) 0 0
\(606\) −17.5964 −0.714805
\(607\) 11.5121i 0.467263i 0.972325 + 0.233632i \(0.0750610\pi\)
−0.972325 + 0.233632i \(0.924939\pi\)
\(608\) − 0.215058i − 0.00872176i
\(609\) 4.69910 0.190417
\(610\) 0 0
\(611\) −4.81092 −0.194629
\(612\) 2.27115i 0.0918059i
\(613\) − 33.9655i − 1.37185i −0.727670 0.685927i \(-0.759397\pi\)
0.727670 0.685927i \(-0.240603\pi\)
\(614\) −12.9491 −0.522583
\(615\) 0 0
\(616\) 10.1736 0.409907
\(617\) − 18.1241i − 0.729650i −0.931076 0.364825i \(-0.881129\pi\)
0.931076 0.364825i \(-0.118871\pi\)
\(618\) 7.20795i 0.289946i
\(619\) 43.7822 1.75976 0.879878 0.475200i \(-0.157624\pi\)
0.879878 + 0.475200i \(0.157624\pi\)
\(620\) 0 0
\(621\) 30.7413 1.23361
\(622\) 10.8940i 0.436811i
\(623\) − 16.9854i − 0.680507i
\(624\) 0.485268 0.0194263
\(625\) 0 0
\(626\) 20.8644 0.833909
\(627\) 0.105966i 0.00423187i
\(628\) − 18.2815i − 0.729513i
\(629\) −20.8524 −0.831440
\(630\) 0 0
\(631\) −31.8836 −1.26927 −0.634633 0.772814i \(-0.718849\pi\)
−0.634633 + 0.772814i \(0.718849\pi\)
\(632\) 14.8717i 0.591566i
\(633\) − 29.6963i − 1.18032i
\(634\) 14.3532 0.570038
\(635\) 0 0
\(636\) −3.30139 −0.130909
\(637\) 0.843650i 0.0334266i
\(638\) − 1.25030i − 0.0494997i
\(639\) 6.71039 0.265459
\(640\) 0 0
\(641\) −7.56055 −0.298624 −0.149312 0.988790i \(-0.547706\pi\)
−0.149312 + 0.988790i \(0.547706\pi\)
\(642\) − 0.443759i − 0.0175138i
\(643\) − 6.78946i − 0.267750i −0.990998 0.133875i \(-0.957258\pi\)
0.990998 0.133875i \(-0.0427421\pi\)
\(644\) 21.7526 0.857173
\(645\) 0 0
\(646\) −0.0878685 −0.00345714
\(647\) − 32.4336i − 1.27510i −0.770410 0.637549i \(-0.779949\pi\)
0.770410 0.637549i \(-0.220051\pi\)
\(648\) 28.9846i 1.13862i
\(649\) 6.82391 0.267862
\(650\) 0 0
\(651\) −10.1391 −0.397383
\(652\) 22.3353i 0.874718i
\(653\) 20.3067i 0.794661i 0.917676 + 0.397331i \(0.130063\pi\)
−0.917676 + 0.397331i \(0.869937\pi\)
\(654\) −26.6107 −1.04056
\(655\) 0 0
\(656\) −0.541175 −0.0211293
\(657\) − 0.00880440i 0 0.000343492i
\(658\) − 10.7120i − 0.417597i
\(659\) 47.3789 1.84562 0.922809 0.385257i \(-0.125887\pi\)
0.922809 + 0.385257i \(0.125887\pi\)
\(660\) 0 0
\(661\) 23.1097 0.898862 0.449431 0.893315i \(-0.351627\pi\)
0.449431 + 0.893315i \(0.351627\pi\)
\(662\) 21.7398i 0.844941i
\(663\) − 4.96649i − 0.192883i
\(664\) 28.0644 1.08911
\(665\) 0 0
\(666\) 3.89140 0.150789
\(667\) − 6.79703i − 0.263182i
\(668\) 18.7167i 0.724172i
\(669\) 45.2452 1.74928
\(670\) 0 0
\(671\) −18.1131 −0.699250
\(672\) 27.0654i 1.04407i
\(673\) 0.691021i 0.0266369i 0.999911 + 0.0133184i \(0.00423952\pi\)
−0.999911 + 0.0133184i \(0.995760\pi\)
\(674\) 15.8984 0.612385
\(675\) 0 0
\(676\) 15.7343 0.605167
\(677\) − 10.2253i − 0.392989i −0.980505 0.196494i \(-0.937044\pi\)
0.980505 0.196494i \(-0.0629557\pi\)
\(678\) 23.7938i 0.913795i
\(679\) 23.2611 0.892681
\(680\) 0 0
\(681\) 17.3290 0.664048
\(682\) 2.69773i 0.103301i
\(683\) − 9.74838i − 0.373012i −0.982454 0.186506i \(-0.940284\pi\)
0.982454 0.186506i \(-0.0597163\pi\)
\(684\) −0.0302233 −0.00115562
\(685\) 0 0
\(686\) −16.3701 −0.625012
\(687\) 46.4179i 1.77095i
\(688\) 2.63612i 0.100501i
\(689\) 1.24357 0.0473764
\(690\) 0 0
\(691\) −32.7638 −1.24639 −0.623197 0.782065i \(-0.714167\pi\)
−0.623197 + 0.782065i \(0.714167\pi\)
\(692\) − 20.1848i − 0.767311i
\(693\) − 2.29718i − 0.0872626i
\(694\) −6.46496 −0.245407
\(695\) 0 0
\(696\) 5.26366 0.199519
\(697\) 5.53867i 0.209792i
\(698\) − 12.5821i − 0.476238i
\(699\) 35.4716 1.34166
\(700\) 0 0
\(701\) −14.7894 −0.558588 −0.279294 0.960206i \(-0.590100\pi\)
−0.279294 + 0.960206i \(0.590100\pi\)
\(702\) − 3.52692i − 0.133115i
\(703\) − 0.277493i − 0.0104658i
\(704\) 6.38395 0.240604
\(705\) 0 0
\(706\) −14.2151 −0.534993
\(707\) − 27.2018i − 1.02303i
\(708\) 11.2990i 0.424641i
\(709\) −42.1665 −1.58360 −0.791799 0.610782i \(-0.790855\pi\)
−0.791799 + 0.610782i \(0.790855\pi\)
\(710\) 0 0
\(711\) 3.35800 0.125935
\(712\) − 19.0261i − 0.713034i
\(713\) 14.6657i 0.549236i
\(714\) 11.0584 0.413849
\(715\) 0 0
\(716\) −26.6114 −0.994513
\(717\) 3.22628i 0.120488i
\(718\) − 4.39384i − 0.163977i
\(719\) 16.2819 0.607211 0.303606 0.952798i \(-0.401809\pi\)
0.303606 + 0.952798i \(0.401809\pi\)
\(720\) 0 0
\(721\) −11.1426 −0.414972
\(722\) 15.9345i 0.593020i
\(723\) − 16.3253i − 0.607146i
\(724\) 22.7040 0.843788
\(725\) 0 0
\(726\) 14.0156 0.520167
\(727\) − 10.2431i − 0.379894i −0.981794 0.189947i \(-0.939168\pi\)
0.981794 0.189947i \(-0.0608317\pi\)
\(728\) − 6.34534i − 0.235174i
\(729\) −19.2861 −0.714299
\(730\) 0 0
\(731\) 26.9795 0.997871
\(732\) − 29.9915i − 1.10852i
\(733\) 1.34776i 0.0497807i 0.999690 + 0.0248904i \(0.00792367\pi\)
−0.999690 + 0.0248904i \(0.992076\pi\)
\(734\) −12.8171 −0.473087
\(735\) 0 0
\(736\) 39.1488 1.44304
\(737\) − 0.434347i − 0.0159994i
\(738\) − 1.03361i − 0.0380476i
\(739\) 33.2111 1.22169 0.610844 0.791751i \(-0.290830\pi\)
0.610844 + 0.791751i \(0.290830\pi\)
\(740\) 0 0
\(741\) 0.0660914 0.00242793
\(742\) 2.76894i 0.101651i
\(743\) − 36.6826i − 1.34576i −0.739754 0.672878i \(-0.765058\pi\)
0.739754 0.672878i \(-0.234942\pi\)
\(744\) −11.3572 −0.416377
\(745\) 0 0
\(746\) 20.4373 0.748264
\(747\) − 6.33688i − 0.231854i
\(748\) 5.42311i 0.198289i
\(749\) 0.685996 0.0250658
\(750\) 0 0
\(751\) −16.0304 −0.584959 −0.292480 0.956272i \(-0.594480\pi\)
−0.292480 + 0.956272i \(0.594480\pi\)
\(752\) 1.41855i 0.0517292i
\(753\) 52.5875i 1.91640i
\(754\) −0.779816 −0.0283992
\(755\) 0 0
\(756\) −14.4742 −0.526423
\(757\) 42.4991i 1.54466i 0.635224 + 0.772328i \(0.280908\pi\)
−0.635224 + 0.772328i \(0.719092\pi\)
\(758\) − 10.1533i − 0.368786i
\(759\) −19.2898 −0.700177
\(760\) 0 0
\(761\) 24.7756 0.898114 0.449057 0.893503i \(-0.351760\pi\)
0.449057 + 0.893503i \(0.351760\pi\)
\(762\) 22.7172i 0.822957i
\(763\) − 41.1368i − 1.48925i
\(764\) 20.1907 0.730475
\(765\) 0 0
\(766\) 17.6340 0.637142
\(767\) − 4.25611i − 0.153679i
\(768\) 28.9637i 1.04514i
\(769\) −22.9249 −0.826694 −0.413347 0.910573i \(-0.635640\pi\)
−0.413347 + 0.910573i \(0.635640\pi\)
\(770\) 0 0
\(771\) −11.4610 −0.412759
\(772\) − 10.9487i − 0.394053i
\(773\) − 46.2921i − 1.66501i −0.554016 0.832506i \(-0.686905\pi\)
0.554016 0.832506i \(-0.313095\pi\)
\(774\) −5.03481 −0.180972
\(775\) 0 0
\(776\) 26.0558 0.935349
\(777\) 34.9229i 1.25285i
\(778\) − 8.69302i − 0.311660i
\(779\) −0.0737057 −0.00264078
\(780\) 0 0
\(781\) 16.0232 0.573356
\(782\) − 15.9954i − 0.571996i
\(783\) 4.52276i 0.161630i
\(784\) 0.248759 0.00888425
\(785\) 0 0
\(786\) −31.6137 −1.12762
\(787\) − 3.89849i − 0.138966i −0.997583 0.0694832i \(-0.977865\pi\)
0.997583 0.0694832i \(-0.0221350\pi\)
\(788\) 13.2167i 0.470825i
\(789\) 15.4851 0.551285
\(790\) 0 0
\(791\) −36.7822 −1.30782
\(792\) − 2.57317i − 0.0914336i
\(793\) 11.2973i 0.401177i
\(794\) 14.9178 0.529411
\(795\) 0 0
\(796\) −8.47990 −0.300562
\(797\) − 21.1877i − 0.750506i −0.926922 0.375253i \(-0.877556\pi\)
0.926922 0.375253i \(-0.122444\pi\)
\(798\) 0.147159i 0.00520937i
\(799\) 14.5182 0.513617
\(800\) 0 0
\(801\) −4.29605 −0.151793
\(802\) 25.1504i 0.888093i
\(803\) − 0.0210233i 0 0.000741898i
\(804\) 0.719188 0.0253638
\(805\) 0 0
\(806\) 1.68259 0.0592666
\(807\) − 6.54712i − 0.230470i
\(808\) − 30.4699i − 1.07193i
\(809\) −23.9959 −0.843651 −0.421826 0.906677i \(-0.638611\pi\)
−0.421826 + 0.906677i \(0.638611\pi\)
\(810\) 0 0
\(811\) −8.15390 −0.286322 −0.143161 0.989699i \(-0.545727\pi\)
−0.143161 + 0.989699i \(0.545727\pi\)
\(812\) 3.20031i 0.112309i
\(813\) 19.9556i 0.699873i
\(814\) 9.29198 0.325684
\(815\) 0 0
\(816\) −1.46442 −0.0512651
\(817\) 0.359028i 0.0125608i
\(818\) 25.7249i 0.899450i
\(819\) −1.43276 −0.0500647
\(820\) 0 0
\(821\) −8.76657 −0.305955 −0.152978 0.988230i \(-0.548886\pi\)
−0.152978 + 0.988230i \(0.548886\pi\)
\(822\) − 1.52459i − 0.0531762i
\(823\) 49.1112i 1.71191i 0.517050 + 0.855955i \(0.327030\pi\)
−0.517050 + 0.855955i \(0.672970\pi\)
\(824\) −12.4813 −0.434807
\(825\) 0 0
\(826\) 9.47664 0.329734
\(827\) − 34.1055i − 1.18597i −0.805215 0.592983i \(-0.797950\pi\)
0.805215 0.592983i \(-0.202050\pi\)
\(828\) − 5.50179i − 0.191201i
\(829\) −1.20117 −0.0417183 −0.0208591 0.999782i \(-0.506640\pi\)
−0.0208591 + 0.999782i \(0.506640\pi\)
\(830\) 0 0
\(831\) −36.0309 −1.24990
\(832\) − 3.98170i − 0.138041i
\(833\) − 2.54593i − 0.0882113i
\(834\) −35.9871 −1.24613
\(835\) 0 0
\(836\) −0.0721679 −0.00249598
\(837\) − 9.75862i − 0.337307i
\(838\) − 12.6139i − 0.435740i
\(839\) 1.87849 0.0648526 0.0324263 0.999474i \(-0.489677\pi\)
0.0324263 + 0.999474i \(0.489677\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 26.3043i 0.906506i
\(843\) 46.9829i 1.61818i
\(844\) 20.2246 0.696161
\(845\) 0 0
\(846\) −2.70933 −0.0931488
\(847\) 21.6663i 0.744463i
\(848\) − 0.366681i − 0.0125919i
\(849\) 5.95278 0.204299
\(850\) 0 0
\(851\) 50.5143 1.73161
\(852\) 26.5311i 0.908940i
\(853\) − 33.0917i − 1.13304i −0.824049 0.566519i \(-0.808290\pi\)
0.824049 0.566519i \(-0.191710\pi\)
\(854\) −25.1544 −0.860767
\(855\) 0 0
\(856\) 0.768414 0.0262639
\(857\) 47.6859i 1.62892i 0.580220 + 0.814460i \(0.302966\pi\)
−0.580220 + 0.814460i \(0.697034\pi\)
\(858\) 2.21310i 0.0755541i
\(859\) −0.746091 −0.0254563 −0.0127281 0.999919i \(-0.504052\pi\)
−0.0127281 + 0.999919i \(0.504052\pi\)
\(860\) 0 0
\(861\) 9.27596 0.316124
\(862\) 24.0810i 0.820201i
\(863\) − 46.8245i − 1.59392i −0.604030 0.796962i \(-0.706439\pi\)
0.604030 0.796962i \(-0.293561\pi\)
\(864\) −26.0497 −0.886229
\(865\) 0 0
\(866\) 25.9236 0.880919
\(867\) − 17.3762i − 0.590128i
\(868\) − 6.90522i − 0.234378i
\(869\) 8.01832 0.272003
\(870\) 0 0
\(871\) −0.270905 −0.00917925
\(872\) − 46.0791i − 1.56043i
\(873\) − 5.88334i − 0.199121i
\(874\) 0.212859 0.00720005
\(875\) 0 0
\(876\) 0.0348102 0.00117613
\(877\) − 0.970257i − 0.0327632i −0.999866 0.0163816i \(-0.994785\pi\)
0.999866 0.0163816i \(-0.00521466\pi\)
\(878\) 15.5857i 0.525992i
\(879\) −13.2316 −0.446291
\(880\) 0 0
\(881\) 0.755979 0.0254696 0.0127348 0.999919i \(-0.495946\pi\)
0.0127348 + 0.999919i \(0.495946\pi\)
\(882\) 0.475113i 0.0159979i
\(883\) 15.8839i 0.534536i 0.963622 + 0.267268i \(0.0861209\pi\)
−0.963622 + 0.267268i \(0.913879\pi\)
\(884\) 3.38242 0.113763
\(885\) 0 0
\(886\) −27.1851 −0.913300
\(887\) 12.5061i 0.419915i 0.977710 + 0.209958i \(0.0673326\pi\)
−0.977710 + 0.209958i \(0.932667\pi\)
\(888\) 39.1186i 1.31273i
\(889\) −35.1179 −1.17782
\(890\) 0 0
\(891\) 15.6275 0.523541
\(892\) 30.8141i 1.03173i
\(893\) 0.193200i 0.00646521i
\(894\) 13.6817 0.457586
\(895\) 0 0
\(896\) −19.5679 −0.653719
\(897\) 12.0312i 0.401709i
\(898\) − 10.6925i − 0.356813i
\(899\) −2.15767 −0.0719623
\(900\) 0 0
\(901\) −3.75281 −0.125024
\(902\) − 2.46807i − 0.0821778i
\(903\) − 45.1842i − 1.50364i
\(904\) −41.2013 −1.37034
\(905\) 0 0
\(906\) −21.1705 −0.703342
\(907\) − 0.966094i − 0.0320786i −0.999871 0.0160393i \(-0.994894\pi\)
0.999871 0.0160393i \(-0.00510569\pi\)
\(908\) 11.8019i 0.391659i
\(909\) −6.88004 −0.228197
\(910\) 0 0
\(911\) −21.2288 −0.703340 −0.351670 0.936124i \(-0.614386\pi\)
−0.351670 + 0.936124i \(0.614386\pi\)
\(912\) − 0.0194878i 0 0.000645304i
\(913\) − 15.1313i − 0.500774i
\(914\) 17.2259 0.569781
\(915\) 0 0
\(916\) −31.6128 −1.04452
\(917\) − 48.8709i − 1.61386i
\(918\) 10.6434i 0.351284i
\(919\) −16.9547 −0.559284 −0.279642 0.960104i \(-0.590216\pi\)
−0.279642 + 0.960104i \(0.590216\pi\)
\(920\) 0 0
\(921\) −29.3925 −0.968515
\(922\) − 12.6617i − 0.416991i
\(923\) − 9.99377i − 0.328949i
\(924\) 9.08243 0.298790
\(925\) 0 0
\(926\) −1.00227 −0.0329368
\(927\) 2.81825i 0.0925634i
\(928\) 5.75969i 0.189071i
\(929\) 26.0792 0.855632 0.427816 0.903866i \(-0.359283\pi\)
0.427816 + 0.903866i \(0.359283\pi\)
\(930\) 0 0
\(931\) 0.0338799 0.00111037
\(932\) 24.1579i 0.791318i
\(933\) 24.7278i 0.809552i
\(934\) 5.94365 0.194482
\(935\) 0 0
\(936\) −1.60490 −0.0524577
\(937\) − 6.07903i − 0.198593i −0.995058 0.0992967i \(-0.968341\pi\)
0.995058 0.0992967i \(-0.0316593\pi\)
\(938\) − 0.603196i − 0.0196950i
\(939\) 47.3590 1.54550
\(940\) 0 0
\(941\) 49.5166 1.61419 0.807097 0.590419i \(-0.201037\pi\)
0.807097 + 0.590419i \(0.201037\pi\)
\(942\) 22.5139i 0.733542i
\(943\) − 13.4173i − 0.436926i
\(944\) −1.25496 −0.0408454
\(945\) 0 0
\(946\) −12.0222 −0.390877
\(947\) 26.9125i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(948\) 13.2766i 0.431205i
\(949\) −0.0131124 −0.000425645 0
\(950\) 0 0
\(951\) 32.5795 1.05646
\(952\) 19.1487i 0.620613i
\(953\) 30.8022i 0.997781i 0.866665 + 0.498891i \(0.166259\pi\)
−0.866665 + 0.498891i \(0.833741\pi\)
\(954\) 0.700335 0.0226742
\(955\) 0 0
\(956\) −2.19725 −0.0710642
\(957\) − 2.83798i − 0.0917389i
\(958\) 32.6067i 1.05347i
\(959\) 2.35683 0.0761059
\(960\) 0 0
\(961\) −26.3445 −0.849821
\(962\) − 5.79546i − 0.186853i
\(963\) − 0.173506i − 0.00559115i
\(964\) 11.1183 0.358098
\(965\) 0 0
\(966\) −26.7886 −0.861908
\(967\) − 50.1110i − 1.61146i −0.592283 0.805730i \(-0.701773\pi\)
0.592283 0.805730i \(-0.298227\pi\)
\(968\) 24.2694i 0.780047i
\(969\) −0.199448 −0.00640719
\(970\) 0 0
\(971\) −13.0301 −0.418156 −0.209078 0.977899i \(-0.567046\pi\)
−0.209078 + 0.977899i \(0.567046\pi\)
\(972\) 8.28385i 0.265705i
\(973\) − 55.6315i − 1.78346i
\(974\) −25.4201 −0.814514
\(975\) 0 0
\(976\) 3.33111 0.106626
\(977\) 3.50116i 0.112012i 0.998430 + 0.0560060i \(0.0178366\pi\)
−0.998430 + 0.0560060i \(0.982163\pi\)
\(978\) − 27.5062i − 0.879550i
\(979\) −10.2582 −0.327854
\(980\) 0 0
\(981\) −10.4045 −0.332191
\(982\) 8.25748i 0.263507i
\(983\) − 41.2281i − 1.31497i −0.753467 0.657486i \(-0.771620\pi\)
0.753467 0.657486i \(-0.228380\pi\)
\(984\) 10.3904 0.331234
\(985\) 0 0
\(986\) 2.35330 0.0749443
\(987\) − 24.3145i − 0.773941i
\(988\) 0.0450115i 0.00143201i
\(989\) −65.3569 −2.07823
\(990\) 0 0
\(991\) 3.17997 0.101015 0.0505076 0.998724i \(-0.483916\pi\)
0.0505076 + 0.998724i \(0.483916\pi\)
\(992\) − 12.4275i − 0.394574i
\(993\) 49.3460i 1.56595i
\(994\) 22.2521 0.705793
\(995\) 0 0
\(996\) 25.0543 0.793876
\(997\) − 33.8545i − 1.07218i −0.844160 0.536092i \(-0.819900\pi\)
0.844160 0.536092i \(-0.180100\pi\)
\(998\) 17.5895i 0.556785i
\(999\) −33.6123 −1.06345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.b.f.349.5 10
5.2 odd 4 725.2.a.k.1.3 yes 5
5.3 odd 4 725.2.a.h.1.3 5
5.4 even 2 inner 725.2.b.f.349.6 10
15.2 even 4 6525.2.a.bm.1.3 5
15.8 even 4 6525.2.a.bq.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.h.1.3 5 5.3 odd 4
725.2.a.k.1.3 yes 5 5.2 odd 4
725.2.b.f.349.5 10 1.1 even 1 trivial
725.2.b.f.349.6 10 5.4 even 2 inner
6525.2.a.bm.1.3 5 15.2 even 4
6525.2.a.bq.1.3 5 15.8 even 4