Properties

Label 725.2.a.h.1.3
Level $725$
Weight $2$
Character 725.1
Self dual yes
Analytic conductor $5.789$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(1,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.78915414654\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.240881.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.838718\) of defining polynomial
Character \(\chi\) \(=\) 725.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.838718 q^{2} +1.90376 q^{3} -1.29655 q^{4} -1.59672 q^{6} -2.46832 q^{7} +2.76488 q^{8} +0.624302 q^{9} -1.49072 q^{11} -2.46832 q^{12} -0.929772 q^{13} +2.07023 q^{14} +0.274153 q^{16} -2.80583 q^{17} -0.523614 q^{18} -0.0373385 q^{19} -4.69910 q^{21} +1.25030 q^{22} -6.79703 q^{23} +5.26366 q^{24} +0.779816 q^{26} -4.52276 q^{27} +3.20031 q^{28} +1.00000 q^{29} +2.15767 q^{31} -5.75969 q^{32} -2.83798 q^{33} +2.35330 q^{34} -0.809441 q^{36} -7.43182 q^{37} +0.0313164 q^{38} -1.77006 q^{39} -1.97399 q^{41} +3.94122 q^{42} -9.61550 q^{43} +1.93280 q^{44} +5.70079 q^{46} +5.17430 q^{47} +0.521922 q^{48} -0.907373 q^{49} -5.34162 q^{51} +1.20550 q^{52} +1.33750 q^{53} +3.79332 q^{54} -6.82462 q^{56} -0.0710835 q^{57} -0.838718 q^{58} +4.57758 q^{59} +12.1506 q^{61} -1.80968 q^{62} -1.54098 q^{63} +4.28245 q^{64} +2.38027 q^{66} +0.291367 q^{67} +3.63790 q^{68} -12.9399 q^{69} -10.7486 q^{71} +1.72612 q^{72} -0.0141028 q^{73} +6.23320 q^{74} +0.0484113 q^{76} +3.67959 q^{77} +1.48458 q^{78} +5.37881 q^{79} -10.4832 q^{81} +1.65562 q^{82} -10.1503 q^{83} +6.09263 q^{84} +8.06469 q^{86} +1.90376 q^{87} -4.12167 q^{88} -6.88136 q^{89} +2.29498 q^{91} +8.81271 q^{92} +4.10769 q^{93} -4.33978 q^{94} -10.9651 q^{96} +9.42386 q^{97} +0.761030 q^{98} -0.930663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} - 6 q^{3} + 4 q^{4} - q^{6} - 6 q^{7} - 3 q^{8} + 11 q^{9} - 2 q^{11} - 6 q^{12} - 4 q^{13} + 11 q^{14} - 10 q^{16} - 9 q^{17} + 2 q^{19} - q^{21} - 4 q^{22} - q^{23} + 13 q^{24} - 16 q^{26}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.838718 −0.593063 −0.296532 0.955023i \(-0.595830\pi\)
−0.296532 + 0.955023i \(0.595830\pi\)
\(3\) 1.90376 1.09914 0.549568 0.835449i \(-0.314792\pi\)
0.549568 + 0.835449i \(0.314792\pi\)
\(4\) −1.29655 −0.648276
\(5\) 0 0
\(6\) −1.59672 −0.651857
\(7\) −2.46832 −0.932939 −0.466470 0.884537i \(-0.654474\pi\)
−0.466470 + 0.884537i \(0.654474\pi\)
\(8\) 2.76488 0.977532
\(9\) 0.624302 0.208101
\(10\) 0 0
\(11\) −1.49072 −0.449470 −0.224735 0.974420i \(-0.572152\pi\)
−0.224735 + 0.974420i \(0.572152\pi\)
\(12\) −2.46832 −0.712544
\(13\) −0.929772 −0.257872 −0.128936 0.991653i \(-0.541156\pi\)
−0.128936 + 0.991653i \(0.541156\pi\)
\(14\) 2.07023 0.553292
\(15\) 0 0
\(16\) 0.274153 0.0685383
\(17\) −2.80583 −0.680513 −0.340257 0.940333i \(-0.610514\pi\)
−0.340257 + 0.940333i \(0.610514\pi\)
\(18\) −0.523614 −0.123417
\(19\) −0.0373385 −0.00856603 −0.00428302 0.999991i \(-0.501363\pi\)
−0.00428302 + 0.999991i \(0.501363\pi\)
\(20\) 0 0
\(21\) −4.69910 −1.02543
\(22\) 1.25030 0.266564
\(23\) −6.79703 −1.41728 −0.708639 0.705571i \(-0.750691\pi\)
−0.708639 + 0.705571i \(0.750691\pi\)
\(24\) 5.26366 1.07444
\(25\) 0 0
\(26\) 0.779816 0.152935
\(27\) −4.52276 −0.870405
\(28\) 3.20031 0.604802
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 2.15767 0.387529 0.193764 0.981048i \(-0.437930\pi\)
0.193764 + 0.981048i \(0.437930\pi\)
\(32\) −5.75969 −1.01818
\(33\) −2.83798 −0.494029
\(34\) 2.35330 0.403587
\(35\) 0 0
\(36\) −0.809441 −0.134907
\(37\) −7.43182 −1.22178 −0.610892 0.791714i \(-0.709189\pi\)
−0.610892 + 0.791714i \(0.709189\pi\)
\(38\) 0.0313164 0.00508020
\(39\) −1.77006 −0.283437
\(40\) 0 0
\(41\) −1.97399 −0.308285 −0.154143 0.988049i \(-0.549262\pi\)
−0.154143 + 0.988049i \(0.549262\pi\)
\(42\) 3.94122 0.608143
\(43\) −9.61550 −1.46635 −0.733175 0.680040i \(-0.761963\pi\)
−0.733175 + 0.680040i \(0.761963\pi\)
\(44\) 1.93280 0.291381
\(45\) 0 0
\(46\) 5.70079 0.840536
\(47\) 5.17430 0.754749 0.377375 0.926061i \(-0.376827\pi\)
0.377375 + 0.926061i \(0.376827\pi\)
\(48\) 0.521922 0.0753329
\(49\) −0.907373 −0.129625
\(50\) 0 0
\(51\) −5.34162 −0.747977
\(52\) 1.20550 0.167173
\(53\) 1.33750 0.183720 0.0918601 0.995772i \(-0.470719\pi\)
0.0918601 + 0.995772i \(0.470719\pi\)
\(54\) 3.79332 0.516205
\(55\) 0 0
\(56\) −6.82462 −0.911978
\(57\) −0.0710835 −0.00941524
\(58\) −0.838718 −0.110129
\(59\) 4.57758 0.595951 0.297975 0.954574i \(-0.403689\pi\)
0.297975 + 0.954574i \(0.403689\pi\)
\(60\) 0 0
\(61\) 12.1506 1.55572 0.777860 0.628437i \(-0.216305\pi\)
0.777860 + 0.628437i \(0.216305\pi\)
\(62\) −1.80968 −0.229829
\(63\) −1.54098 −0.194145
\(64\) 4.28245 0.535306
\(65\) 0 0
\(66\) 2.38027 0.292990
\(67\) 0.291367 0.0355961 0.0177981 0.999842i \(-0.494334\pi\)
0.0177981 + 0.999842i \(0.494334\pi\)
\(68\) 3.63790 0.441161
\(69\) −12.9399 −1.55778
\(70\) 0 0
\(71\) −10.7486 −1.27563 −0.637813 0.770191i \(-0.720161\pi\)
−0.637813 + 0.770191i \(0.720161\pi\)
\(72\) 1.72612 0.203425
\(73\) −0.0141028 −0.00165061 −0.000825303 1.00000i \(-0.500263\pi\)
−0.000825303 1.00000i \(0.500263\pi\)
\(74\) 6.23320 0.724595
\(75\) 0 0
\(76\) 0.0484113 0.00555315
\(77\) 3.67959 0.419328
\(78\) 1.48458 0.168096
\(79\) 5.37881 0.605163 0.302582 0.953123i \(-0.402152\pi\)
0.302582 + 0.953123i \(0.402152\pi\)
\(80\) 0 0
\(81\) −10.4832 −1.16479
\(82\) 1.65562 0.182833
\(83\) −10.1503 −1.11414 −0.557072 0.830464i \(-0.688075\pi\)
−0.557072 + 0.830464i \(0.688075\pi\)
\(84\) 6.09263 0.664760
\(85\) 0 0
\(86\) 8.06469 0.869638
\(87\) 1.90376 0.204105
\(88\) −4.12167 −0.439371
\(89\) −6.88136 −0.729423 −0.364711 0.931121i \(-0.618832\pi\)
−0.364711 + 0.931121i \(0.618832\pi\)
\(90\) 0 0
\(91\) 2.29498 0.240579
\(92\) 8.81271 0.918788
\(93\) 4.10769 0.425947
\(94\) −4.33978 −0.447614
\(95\) 0 0
\(96\) −10.9651 −1.11912
\(97\) 9.42386 0.956848 0.478424 0.878129i \(-0.341208\pi\)
0.478424 + 0.878129i \(0.341208\pi\)
\(98\) 0.761030 0.0768756
\(99\) −0.930663 −0.0935351
\(100\) 0 0
\(101\) 11.0204 1.09657 0.548284 0.836293i \(-0.315281\pi\)
0.548284 + 0.836293i \(0.315281\pi\)
\(102\) 4.48012 0.443598
\(103\) 4.51423 0.444801 0.222400 0.974955i \(-0.428611\pi\)
0.222400 + 0.974955i \(0.428611\pi\)
\(104\) −2.57071 −0.252078
\(105\) 0 0
\(106\) −1.12179 −0.108958
\(107\) 0.277920 0.0268675 0.0134338 0.999910i \(-0.495724\pi\)
0.0134338 + 0.999910i \(0.495724\pi\)
\(108\) 5.86399 0.564263
\(109\) −16.6659 −1.59630 −0.798150 0.602459i \(-0.794188\pi\)
−0.798150 + 0.602459i \(0.794188\pi\)
\(110\) 0 0
\(111\) −14.1484 −1.34291
\(112\) −0.676699 −0.0639420
\(113\) 14.9017 1.40183 0.700916 0.713244i \(-0.252775\pi\)
0.700916 + 0.713244i \(0.252775\pi\)
\(114\) 0.0596190 0.00558383
\(115\) 0 0
\(116\) −1.29655 −0.120382
\(117\) −0.580459 −0.0536635
\(118\) −3.83930 −0.353436
\(119\) 6.92570 0.634877
\(120\) 0 0
\(121\) −8.77774 −0.797977
\(122\) −10.1909 −0.922640
\(123\) −3.75800 −0.338847
\(124\) −2.79753 −0.251226
\(125\) 0 0
\(126\) 1.29245 0.115140
\(127\) −14.2274 −1.26248 −0.631240 0.775587i \(-0.717454\pi\)
−0.631240 + 0.775587i \(0.717454\pi\)
\(128\) 7.92762 0.700709
\(129\) −18.3056 −1.61172
\(130\) 0 0
\(131\) 19.7992 1.72987 0.864933 0.501888i \(-0.167361\pi\)
0.864933 + 0.501888i \(0.167361\pi\)
\(132\) 3.67959 0.320267
\(133\) 0.0921635 0.00799159
\(134\) −0.244374 −0.0211107
\(135\) 0 0
\(136\) −7.75777 −0.665223
\(137\) 0.954829 0.0815765 0.0407883 0.999168i \(-0.487013\pi\)
0.0407883 + 0.999168i \(0.487013\pi\)
\(138\) 10.8529 0.923863
\(139\) −22.5382 −1.91166 −0.955831 0.293916i \(-0.905041\pi\)
−0.955831 + 0.293916i \(0.905041\pi\)
\(140\) 0 0
\(141\) 9.85063 0.829572
\(142\) 9.01506 0.756527
\(143\) 1.38603 0.115906
\(144\) 0.171154 0.0142629
\(145\) 0 0
\(146\) 0.0118282 0.000978913 0
\(147\) −1.72742 −0.142475
\(148\) 9.63575 0.792054
\(149\) 8.56867 0.701972 0.350986 0.936381i \(-0.385846\pi\)
0.350986 + 0.936381i \(0.385846\pi\)
\(150\) 0 0
\(151\) 13.2588 1.07898 0.539491 0.841991i \(-0.318617\pi\)
0.539491 + 0.841991i \(0.318617\pi\)
\(152\) −0.103236 −0.00837357
\(153\) −1.75169 −0.141615
\(154\) −3.08614 −0.248688
\(155\) 0 0
\(156\) 2.29498 0.183745
\(157\) −14.1001 −1.12531 −0.562656 0.826691i \(-0.690220\pi\)
−0.562656 + 0.826691i \(0.690220\pi\)
\(158\) −4.51130 −0.358900
\(159\) 2.54629 0.201934
\(160\) 0 0
\(161\) 16.7773 1.32223
\(162\) 8.79241 0.690797
\(163\) −17.2267 −1.34930 −0.674650 0.738138i \(-0.735705\pi\)
−0.674650 + 0.738138i \(0.735705\pi\)
\(164\) 2.55938 0.199854
\(165\) 0 0
\(166\) 8.51326 0.660757
\(167\) 14.4358 1.11707 0.558537 0.829480i \(-0.311363\pi\)
0.558537 + 0.829480i \(0.311363\pi\)
\(168\) −12.9924 −1.00239
\(169\) −12.1355 −0.933502
\(170\) 0 0
\(171\) −0.0233105 −0.00178260
\(172\) 12.4670 0.950600
\(173\) 15.5680 1.18362 0.591808 0.806079i \(-0.298414\pi\)
0.591808 + 0.806079i \(0.298414\pi\)
\(174\) −1.59672 −0.121047
\(175\) 0 0
\(176\) −0.408687 −0.0308059
\(177\) 8.71462 0.655031
\(178\) 5.77152 0.432594
\(179\) 20.5247 1.53409 0.767044 0.641594i \(-0.221727\pi\)
0.767044 + 0.641594i \(0.221727\pi\)
\(180\) 0 0
\(181\) 17.5111 1.30159 0.650794 0.759255i \(-0.274436\pi\)
0.650794 + 0.759255i \(0.274436\pi\)
\(182\) −1.92484 −0.142679
\(183\) 23.1318 1.70995
\(184\) −18.7930 −1.38543
\(185\) 0 0
\(186\) −3.44519 −0.252613
\(187\) 4.18272 0.305870
\(188\) −6.70875 −0.489286
\(189\) 11.1636 0.812035
\(190\) 0 0
\(191\) 15.5726 1.12680 0.563398 0.826186i \(-0.309494\pi\)
0.563398 + 0.826186i \(0.309494\pi\)
\(192\) 8.15276 0.588375
\(193\) 8.44449 0.607847 0.303924 0.952696i \(-0.401703\pi\)
0.303924 + 0.952696i \(0.401703\pi\)
\(194\) −7.90396 −0.567471
\(195\) 0 0
\(196\) 1.17646 0.0840326
\(197\) 10.1937 0.726272 0.363136 0.931736i \(-0.381706\pi\)
0.363136 + 0.931736i \(0.381706\pi\)
\(198\) 0.780563 0.0554722
\(199\) 6.54034 0.463633 0.231816 0.972760i \(-0.425533\pi\)
0.231816 + 0.972760i \(0.425533\pi\)
\(200\) 0 0
\(201\) 0.554692 0.0391250
\(202\) −9.24297 −0.650333
\(203\) −2.46832 −0.173242
\(204\) 6.92570 0.484896
\(205\) 0 0
\(206\) −3.78617 −0.263795
\(207\) −4.24340 −0.294937
\(208\) −0.254900 −0.0176741
\(209\) 0.0556614 0.00385018
\(210\) 0 0
\(211\) 15.5988 1.07386 0.536932 0.843625i \(-0.319583\pi\)
0.536932 + 0.843625i \(0.319583\pi\)
\(212\) −1.73414 −0.119101
\(213\) −20.4628 −1.40209
\(214\) −0.233096 −0.0159341
\(215\) 0 0
\(216\) −12.5049 −0.850849
\(217\) −5.32583 −0.361541
\(218\) 13.9780 0.946707
\(219\) −0.0268483 −0.00181424
\(220\) 0 0
\(221\) 2.60878 0.175486
\(222\) 11.8665 0.796429
\(223\) −23.7662 −1.59150 −0.795751 0.605623i \(-0.792924\pi\)
−0.795751 + 0.605623i \(0.792924\pi\)
\(224\) 14.2168 0.949899
\(225\) 0 0
\(226\) −12.4983 −0.831375
\(227\) 9.10250 0.604154 0.302077 0.953284i \(-0.402320\pi\)
0.302077 + 0.953284i \(0.402320\pi\)
\(228\) 0.0921635 0.00610367
\(229\) 24.3822 1.61122 0.805611 0.592445i \(-0.201837\pi\)
0.805611 + 0.592445i \(0.201837\pi\)
\(230\) 0 0
\(231\) 7.00506 0.460899
\(232\) 2.76488 0.181523
\(233\) −18.6324 −1.22065 −0.610325 0.792151i \(-0.708961\pi\)
−0.610325 + 0.792151i \(0.708961\pi\)
\(234\) 0.486841 0.0318258
\(235\) 0 0
\(236\) −5.93508 −0.386341
\(237\) 10.2400 0.665157
\(238\) −5.80870 −0.376522
\(239\) 1.69469 0.109620 0.0548101 0.998497i \(-0.482545\pi\)
0.0548101 + 0.998497i \(0.482545\pi\)
\(240\) 0 0
\(241\) 8.57531 0.552384 0.276192 0.961102i \(-0.410927\pi\)
0.276192 + 0.961102i \(0.410927\pi\)
\(242\) 7.36205 0.473250
\(243\) −6.38914 −0.409863
\(244\) −15.7538 −1.00854
\(245\) 0 0
\(246\) 3.15190 0.200958
\(247\) 0.0347163 0.00220894
\(248\) 5.96569 0.378822
\(249\) −19.3238 −1.22460
\(250\) 0 0
\(251\) −27.6230 −1.74355 −0.871774 0.489909i \(-0.837030\pi\)
−0.871774 + 0.489909i \(0.837030\pi\)
\(252\) 1.99796 0.125860
\(253\) 10.1325 0.637025
\(254\) 11.9328 0.748731
\(255\) 0 0
\(256\) −15.2139 −0.950871
\(257\) −6.02021 −0.375530 −0.187765 0.982214i \(-0.560124\pi\)
−0.187765 + 0.982214i \(0.560124\pi\)
\(258\) 15.3532 0.955851
\(259\) 18.3442 1.13985
\(260\) 0 0
\(261\) 0.624302 0.0386434
\(262\) −16.6060 −1.02592
\(263\) −8.13397 −0.501562 −0.250781 0.968044i \(-0.580687\pi\)
−0.250781 + 0.968044i \(0.580687\pi\)
\(264\) −7.84667 −0.482929
\(265\) 0 0
\(266\) −0.0772991 −0.00473951
\(267\) −13.1005 −0.801735
\(268\) −0.377772 −0.0230761
\(269\) −3.43905 −0.209682 −0.104841 0.994489i \(-0.533433\pi\)
−0.104841 + 0.994489i \(0.533433\pi\)
\(270\) 0 0
\(271\) −10.4822 −0.636748 −0.318374 0.947965i \(-0.603137\pi\)
−0.318374 + 0.947965i \(0.603137\pi\)
\(272\) −0.769227 −0.0466412
\(273\) 4.36909 0.264429
\(274\) −0.800832 −0.0483800
\(275\) 0 0
\(276\) 16.7773 1.00987
\(277\) −18.9262 −1.13716 −0.568582 0.822627i \(-0.692508\pi\)
−0.568582 + 0.822627i \(0.692508\pi\)
\(278\) 18.9032 1.13374
\(279\) 1.34704 0.0806451
\(280\) 0 0
\(281\) −24.6790 −1.47223 −0.736113 0.676859i \(-0.763341\pi\)
−0.736113 + 0.676859i \(0.763341\pi\)
\(282\) −8.26190 −0.491989
\(283\) −3.12685 −0.185872 −0.0929361 0.995672i \(-0.529625\pi\)
−0.0929361 + 0.995672i \(0.529625\pi\)
\(284\) 13.9361 0.826958
\(285\) 0 0
\(286\) −1.16249 −0.0687395
\(287\) 4.87244 0.287611
\(288\) −3.59579 −0.211884
\(289\) −9.12733 −0.536902
\(290\) 0 0
\(291\) 17.9408 1.05171
\(292\) 0.0182850 0.00107005
\(293\) 6.95025 0.406038 0.203019 0.979175i \(-0.434925\pi\)
0.203019 + 0.979175i \(0.434925\pi\)
\(294\) 1.44882 0.0844968
\(295\) 0 0
\(296\) −20.5481 −1.19433
\(297\) 6.74218 0.391221
\(298\) −7.18669 −0.416314
\(299\) 6.31969 0.365477
\(300\) 0 0
\(301\) 23.7342 1.36802
\(302\) −11.1203 −0.639904
\(303\) 20.9801 1.20528
\(304\) −0.0102365 −0.000587101 0
\(305\) 0 0
\(306\) 1.46917 0.0839869
\(307\) −15.4392 −0.881160 −0.440580 0.897713i \(-0.645227\pi\)
−0.440580 + 0.897713i \(0.645227\pi\)
\(308\) −4.77078 −0.271841
\(309\) 8.59402 0.488896
\(310\) 0 0
\(311\) −12.9889 −0.736534 −0.368267 0.929720i \(-0.620049\pi\)
−0.368267 + 0.929720i \(0.620049\pi\)
\(312\) −4.89401 −0.277069
\(313\) −24.8765 −1.40611 −0.703053 0.711138i \(-0.748180\pi\)
−0.703053 + 0.711138i \(0.748180\pi\)
\(314\) 11.8260 0.667381
\(315\) 0 0
\(316\) −6.97391 −0.392313
\(317\) 17.1132 0.961176 0.480588 0.876947i \(-0.340423\pi\)
0.480588 + 0.876947i \(0.340423\pi\)
\(318\) −2.13562 −0.119759
\(319\) −1.49072 −0.0834645
\(320\) 0 0
\(321\) 0.529093 0.0295311
\(322\) −14.0714 −0.784169
\(323\) 0.104765 0.00582930
\(324\) 13.5920 0.755109
\(325\) 0 0
\(326\) 14.4483 0.800219
\(327\) −31.7278 −1.75455
\(328\) −5.45783 −0.301359
\(329\) −12.7719 −0.704135
\(330\) 0 0
\(331\) −25.9203 −1.42471 −0.712353 0.701821i \(-0.752371\pi\)
−0.712353 + 0.701821i \(0.752371\pi\)
\(332\) 13.1604 0.722273
\(333\) −4.63971 −0.254254
\(334\) −12.1075 −0.662495
\(335\) 0 0
\(336\) −1.28827 −0.0702810
\(337\) 18.9557 1.03258 0.516290 0.856414i \(-0.327313\pi\)
0.516290 + 0.856414i \(0.327313\pi\)
\(338\) 10.1783 0.553625
\(339\) 28.3692 1.54081
\(340\) 0 0
\(341\) −3.21649 −0.174183
\(342\) 0.0195509 0.00105719
\(343\) 19.5180 1.05387
\(344\) −26.5857 −1.43340
\(345\) 0 0
\(346\) −13.0572 −0.701959
\(347\) −7.70815 −0.413795 −0.206898 0.978363i \(-0.566337\pi\)
−0.206898 + 0.978363i \(0.566337\pi\)
\(348\) −2.46832 −0.132316
\(349\) −15.0015 −0.803014 −0.401507 0.915856i \(-0.631513\pi\)
−0.401507 + 0.915856i \(0.631513\pi\)
\(350\) 0 0
\(351\) 4.20513 0.224453
\(352\) 8.58611 0.457641
\(353\) 16.9486 0.902085 0.451043 0.892502i \(-0.351052\pi\)
0.451043 + 0.892502i \(0.351052\pi\)
\(354\) −7.30911 −0.388475
\(355\) 0 0
\(356\) 8.92205 0.472867
\(357\) 13.1849 0.697817
\(358\) −17.2144 −0.909811
\(359\) −5.23876 −0.276491 −0.138246 0.990398i \(-0.544146\pi\)
−0.138246 + 0.990398i \(0.544146\pi\)
\(360\) 0 0
\(361\) −18.9986 −0.999927
\(362\) −14.6868 −0.771923
\(363\) −16.7107 −0.877085
\(364\) −2.97556 −0.155962
\(365\) 0 0
\(366\) −19.4010 −1.01411
\(367\) −15.2817 −0.797701 −0.398850 0.917016i \(-0.630591\pi\)
−0.398850 + 0.917016i \(0.630591\pi\)
\(368\) −1.86343 −0.0971378
\(369\) −1.23237 −0.0641544
\(370\) 0 0
\(371\) −3.30139 −0.171400
\(372\) −5.32583 −0.276131
\(373\) −24.3674 −1.26169 −0.630847 0.775907i \(-0.717292\pi\)
−0.630847 + 0.775907i \(0.717292\pi\)
\(374\) −3.50812 −0.181400
\(375\) 0 0
\(376\) 14.3063 0.737791
\(377\) −0.929772 −0.0478857
\(378\) −9.36314 −0.481588
\(379\) −12.1058 −0.621832 −0.310916 0.950437i \(-0.600636\pi\)
−0.310916 + 0.950437i \(0.600636\pi\)
\(380\) 0 0
\(381\) −27.0856 −1.38764
\(382\) −13.0610 −0.668261
\(383\) −21.0250 −1.07432 −0.537162 0.843479i \(-0.680504\pi\)
−0.537162 + 0.843479i \(0.680504\pi\)
\(384\) 15.0923 0.770175
\(385\) 0 0
\(386\) −7.08254 −0.360492
\(387\) −6.00298 −0.305149
\(388\) −12.2185 −0.620302
\(389\) −10.3647 −0.525509 −0.262755 0.964863i \(-0.584631\pi\)
−0.262755 + 0.964863i \(0.584631\pi\)
\(390\) 0 0
\(391\) 19.0713 0.964477
\(392\) −2.50877 −0.126712
\(393\) 37.6929 1.90136
\(394\) −8.54964 −0.430725
\(395\) 0 0
\(396\) 1.20665 0.0606366
\(397\) 17.7864 0.892673 0.446337 0.894865i \(-0.352728\pi\)
0.446337 + 0.894865i \(0.352728\pi\)
\(398\) −5.48550 −0.274963
\(399\) 0.175457 0.00878384
\(400\) 0 0
\(401\) −29.9868 −1.49747 −0.748734 0.662870i \(-0.769338\pi\)
−0.748734 + 0.662870i \(0.769338\pi\)
\(402\) −0.465230 −0.0232036
\(403\) −2.00614 −0.0999330
\(404\) −14.2885 −0.710878
\(405\) 0 0
\(406\) 2.07023 0.102744
\(407\) 11.0788 0.549156
\(408\) −14.7689 −0.731171
\(409\) 30.6717 1.51662 0.758309 0.651896i \(-0.226026\pi\)
0.758309 + 0.651896i \(0.226026\pi\)
\(410\) 0 0
\(411\) 1.81776 0.0896637
\(412\) −5.85294 −0.288354
\(413\) −11.2990 −0.555986
\(414\) 3.55902 0.174916
\(415\) 0 0
\(416\) 5.35520 0.262560
\(417\) −42.9073 −2.10118
\(418\) −0.0466842 −0.00228340
\(419\) −15.0395 −0.734729 −0.367364 0.930077i \(-0.619740\pi\)
−0.367364 + 0.930077i \(0.619740\pi\)
\(420\) 0 0
\(421\) −31.3625 −1.52852 −0.764258 0.644911i \(-0.776894\pi\)
−0.764258 + 0.644911i \(0.776894\pi\)
\(422\) −13.0830 −0.636869
\(423\) 3.23033 0.157064
\(424\) 3.69803 0.179592
\(425\) 0 0
\(426\) 17.1625 0.831526
\(427\) −29.9915 −1.45139
\(428\) −0.360338 −0.0174176
\(429\) 2.63868 0.127396
\(430\) 0 0
\(431\) −28.7116 −1.38299 −0.691495 0.722381i \(-0.743048\pi\)
−0.691495 + 0.722381i \(0.743048\pi\)
\(432\) −1.23993 −0.0596561
\(433\) −30.9086 −1.48537 −0.742686 0.669640i \(-0.766448\pi\)
−0.742686 + 0.669640i \(0.766448\pi\)
\(434\) 4.46687 0.214417
\(435\) 0 0
\(436\) 21.6082 1.03484
\(437\) 0.253791 0.0121405
\(438\) 0.0225181 0.00107596
\(439\) 18.5828 0.886907 0.443454 0.896297i \(-0.353753\pi\)
0.443454 + 0.896297i \(0.353753\pi\)
\(440\) 0 0
\(441\) −0.566475 −0.0269750
\(442\) −2.18803 −0.104074
\(443\) 32.4127 1.53997 0.769986 0.638061i \(-0.220263\pi\)
0.769986 + 0.638061i \(0.220263\pi\)
\(444\) 18.3442 0.870575
\(445\) 0 0
\(446\) 19.9331 0.943862
\(447\) 16.3127 0.771563
\(448\) −10.5705 −0.499408
\(449\) −12.7486 −0.601645 −0.300822 0.953680i \(-0.597261\pi\)
−0.300822 + 0.953680i \(0.597261\pi\)
\(450\) 0 0
\(451\) 2.94267 0.138565
\(452\) −19.3208 −0.908775
\(453\) 25.2415 1.18595
\(454\) −7.63443 −0.358301
\(455\) 0 0
\(456\) −0.196537 −0.00920369
\(457\) 20.5383 0.960742 0.480371 0.877065i \(-0.340502\pi\)
0.480371 + 0.877065i \(0.340502\pi\)
\(458\) −20.4498 −0.955556
\(459\) 12.6901 0.592322
\(460\) 0 0
\(461\) 15.0965 0.703114 0.351557 0.936167i \(-0.385652\pi\)
0.351557 + 0.936167i \(0.385652\pi\)
\(462\) −5.87527 −0.273342
\(463\) 1.19501 0.0555367 0.0277684 0.999614i \(-0.491160\pi\)
0.0277684 + 0.999614i \(0.491160\pi\)
\(464\) 0.274153 0.0127272
\(465\) 0 0
\(466\) 15.6273 0.723922
\(467\) 7.08659 0.327929 0.163964 0.986466i \(-0.447572\pi\)
0.163964 + 0.986466i \(0.447572\pi\)
\(468\) 0.752596 0.0347887
\(469\) −0.719188 −0.0332090
\(470\) 0 0
\(471\) −26.8432 −1.23687
\(472\) 12.6565 0.582561
\(473\) 14.3341 0.659081
\(474\) −8.58844 −0.394480
\(475\) 0 0
\(476\) −8.97953 −0.411576
\(477\) 0.835007 0.0382323
\(478\) −1.42136 −0.0650117
\(479\) 38.8768 1.77633 0.888163 0.459528i \(-0.151981\pi\)
0.888163 + 0.459528i \(0.151981\pi\)
\(480\) 0 0
\(481\) 6.90990 0.315064
\(482\) −7.19226 −0.327599
\(483\) 31.9399 1.45332
\(484\) 11.3808 0.517309
\(485\) 0 0
\(486\) 5.35868 0.243075
\(487\) −30.3083 −1.37340 −0.686701 0.726940i \(-0.740942\pi\)
−0.686701 + 0.726940i \(0.740942\pi\)
\(488\) 33.5948 1.52077
\(489\) −32.7955 −1.48306
\(490\) 0 0
\(491\) −9.84537 −0.444315 −0.222158 0.975011i \(-0.571310\pi\)
−0.222158 + 0.975011i \(0.571310\pi\)
\(492\) 4.87244 0.219667
\(493\) −2.80583 −0.126368
\(494\) −0.0291171 −0.00131004
\(495\) 0 0
\(496\) 0.591532 0.0265606
\(497\) 26.5311 1.19008
\(498\) 16.2072 0.726262
\(499\) 20.9719 0.938829 0.469415 0.882978i \(-0.344465\pi\)
0.469415 + 0.882978i \(0.344465\pi\)
\(500\) 0 0
\(501\) 27.4822 1.22782
\(502\) 23.1679 1.03403
\(503\) −42.2017 −1.88168 −0.940841 0.338849i \(-0.889963\pi\)
−0.940841 + 0.338849i \(0.889963\pi\)
\(504\) −4.26062 −0.189783
\(505\) 0 0
\(506\) −8.49831 −0.377796
\(507\) −23.1031 −1.02605
\(508\) 18.4466 0.818436
\(509\) 7.00080 0.310305 0.155153 0.987891i \(-0.450413\pi\)
0.155153 + 0.987891i \(0.450413\pi\)
\(510\) 0 0
\(511\) 0.0348102 0.00153991
\(512\) −3.09504 −0.136783
\(513\) 0.168873 0.00745592
\(514\) 5.04925 0.222713
\(515\) 0 0
\(516\) 23.7342 1.04484
\(517\) −7.71345 −0.339237
\(518\) −15.3856 −0.676003
\(519\) 29.6378 1.30096
\(520\) 0 0
\(521\) 12.0767 0.529091 0.264545 0.964373i \(-0.414778\pi\)
0.264545 + 0.964373i \(0.414778\pi\)
\(522\) −0.523614 −0.0229179
\(523\) −30.9879 −1.35500 −0.677502 0.735521i \(-0.736938\pi\)
−0.677502 + 0.735521i \(0.736938\pi\)
\(524\) −25.6707 −1.12143
\(525\) 0 0
\(526\) 6.82211 0.297458
\(527\) −6.05405 −0.263719
\(528\) −0.778041 −0.0338599
\(529\) 23.1996 1.00868
\(530\) 0 0
\(531\) 2.85780 0.124018
\(532\) −0.119495 −0.00518075
\(533\) 1.83536 0.0794982
\(534\) 10.9876 0.475479
\(535\) 0 0
\(536\) 0.805593 0.0347963
\(537\) 39.0741 1.68617
\(538\) 2.88439 0.124355
\(539\) 1.35264 0.0582624
\(540\) 0 0
\(541\) −5.40732 −0.232479 −0.116240 0.993221i \(-0.537084\pi\)
−0.116240 + 0.993221i \(0.537084\pi\)
\(542\) 8.79161 0.377632
\(543\) 33.3369 1.43062
\(544\) 16.1607 0.692885
\(545\) 0 0
\(546\) −3.66443 −0.156823
\(547\) 0.766804 0.0327862 0.0163931 0.999866i \(-0.494782\pi\)
0.0163931 + 0.999866i \(0.494782\pi\)
\(548\) −1.23799 −0.0528841
\(549\) 7.58563 0.323747
\(550\) 0 0
\(551\) −0.0373385 −0.00159067
\(552\) −35.7773 −1.52278
\(553\) −13.2766 −0.564580
\(554\) 15.8737 0.674410
\(555\) 0 0
\(556\) 29.2219 1.23929
\(557\) 38.2414 1.62034 0.810170 0.586195i \(-0.199375\pi\)
0.810170 + 0.586195i \(0.199375\pi\)
\(558\) −1.12979 −0.0478276
\(559\) 8.94023 0.378131
\(560\) 0 0
\(561\) 7.96289 0.336193
\(562\) 20.6987 0.873123
\(563\) −36.0317 −1.51855 −0.759277 0.650768i \(-0.774447\pi\)
−0.759277 + 0.650768i \(0.774447\pi\)
\(564\) −12.7719 −0.537792
\(565\) 0 0
\(566\) 2.62255 0.110234
\(567\) 25.8758 1.08668
\(568\) −29.7186 −1.24697
\(569\) −17.6536 −0.740077 −0.370038 0.929016i \(-0.620655\pi\)
−0.370038 + 0.929016i \(0.620655\pi\)
\(570\) 0 0
\(571\) −3.66464 −0.153360 −0.0766801 0.997056i \(-0.524432\pi\)
−0.0766801 + 0.997056i \(0.524432\pi\)
\(572\) −1.79707 −0.0751391
\(573\) 29.6466 1.23850
\(574\) −4.08661 −0.170572
\(575\) 0 0
\(576\) 2.67354 0.111398
\(577\) 25.9865 1.08183 0.540917 0.841076i \(-0.318077\pi\)
0.540917 + 0.841076i \(0.318077\pi\)
\(578\) 7.65525 0.318417
\(579\) 16.0763 0.668107
\(580\) 0 0
\(581\) 25.0543 1.03943
\(582\) −15.0472 −0.623728
\(583\) −1.99385 −0.0825768
\(584\) −0.0389924 −0.00161352
\(585\) 0 0
\(586\) −5.82930 −0.240806
\(587\) 26.3857 1.08905 0.544527 0.838744i \(-0.316709\pi\)
0.544527 + 0.838744i \(0.316709\pi\)
\(588\) 2.23969 0.0923633
\(589\) −0.0805641 −0.00331958
\(590\) 0 0
\(591\) 19.4064 0.798272
\(592\) −2.03746 −0.0837390
\(593\) 37.1560 1.52581 0.762907 0.646508i \(-0.223771\pi\)
0.762907 + 0.646508i \(0.223771\pi\)
\(594\) −5.65479 −0.232019
\(595\) 0 0
\(596\) −11.1097 −0.455072
\(597\) 12.4512 0.509596
\(598\) −5.30044 −0.216751
\(599\) −5.96103 −0.243561 −0.121781 0.992557i \(-0.538860\pi\)
−0.121781 + 0.992557i \(0.538860\pi\)
\(600\) 0 0
\(601\) 9.40636 0.383693 0.191847 0.981425i \(-0.438552\pi\)
0.191847 + 0.981425i \(0.438552\pi\)
\(602\) −19.9063 −0.811320
\(603\) 0.181901 0.00740758
\(604\) −17.1907 −0.699478
\(605\) 0 0
\(606\) −17.5964 −0.714805
\(607\) 11.5121 0.467263 0.233632 0.972325i \(-0.424939\pi\)
0.233632 + 0.972325i \(0.424939\pi\)
\(608\) 0.215058 0.00872176
\(609\) −4.69910 −0.190417
\(610\) 0 0
\(611\) −4.81092 −0.194629
\(612\) 2.27115 0.0918059
\(613\) 33.9655 1.37185 0.685927 0.727670i \(-0.259397\pi\)
0.685927 + 0.727670i \(0.259397\pi\)
\(614\) 12.9491 0.522583
\(615\) 0 0
\(616\) 10.1736 0.409907
\(617\) −18.1241 −0.729650 −0.364825 0.931076i \(-0.618871\pi\)
−0.364825 + 0.931076i \(0.618871\pi\)
\(618\) −7.20795 −0.289946
\(619\) −43.7822 −1.75976 −0.879878 0.475200i \(-0.842376\pi\)
−0.879878 + 0.475200i \(0.842376\pi\)
\(620\) 0 0
\(621\) 30.7413 1.23361
\(622\) 10.8940 0.436811
\(623\) 16.9854 0.680507
\(624\) −0.485268 −0.0194263
\(625\) 0 0
\(626\) 20.8644 0.833909
\(627\) 0.105966 0.00423187
\(628\) 18.2815 0.729513
\(629\) 20.8524 0.831440
\(630\) 0 0
\(631\) −31.8836 −1.26927 −0.634633 0.772814i \(-0.718849\pi\)
−0.634633 + 0.772814i \(0.718849\pi\)
\(632\) 14.8717 0.591566
\(633\) 29.6963 1.18032
\(634\) −14.3532 −0.570038
\(635\) 0 0
\(636\) −3.30139 −0.130909
\(637\) 0.843650 0.0334266
\(638\) 1.25030 0.0494997
\(639\) −6.71039 −0.265459
\(640\) 0 0
\(641\) −7.56055 −0.298624 −0.149312 0.988790i \(-0.547706\pi\)
−0.149312 + 0.988790i \(0.547706\pi\)
\(642\) −0.443759 −0.0175138
\(643\) 6.78946 0.267750 0.133875 0.990998i \(-0.457258\pi\)
0.133875 + 0.990998i \(0.457258\pi\)
\(644\) −21.7526 −0.857173
\(645\) 0 0
\(646\) −0.0878685 −0.00345714
\(647\) −32.4336 −1.27510 −0.637549 0.770410i \(-0.720051\pi\)
−0.637549 + 0.770410i \(0.720051\pi\)
\(648\) −28.9846 −1.13862
\(649\) −6.82391 −0.267862
\(650\) 0 0
\(651\) −10.1391 −0.397383
\(652\) 22.3353 0.874718
\(653\) −20.3067 −0.794661 −0.397331 0.917676i \(-0.630063\pi\)
−0.397331 + 0.917676i \(0.630063\pi\)
\(654\) 26.6107 1.04056
\(655\) 0 0
\(656\) −0.541175 −0.0211293
\(657\) −0.00880440 −0.000343492 0
\(658\) 10.7120 0.417597
\(659\) −47.3789 −1.84562 −0.922809 0.385257i \(-0.874113\pi\)
−0.922809 + 0.385257i \(0.874113\pi\)
\(660\) 0 0
\(661\) 23.1097 0.898862 0.449431 0.893315i \(-0.351627\pi\)
0.449431 + 0.893315i \(0.351627\pi\)
\(662\) 21.7398 0.844941
\(663\) 4.96649 0.192883
\(664\) −28.0644 −1.08911
\(665\) 0 0
\(666\) 3.89140 0.150789
\(667\) −6.79703 −0.263182
\(668\) −18.7167 −0.724172
\(669\) −45.2452 −1.74928
\(670\) 0 0
\(671\) −18.1131 −0.699250
\(672\) 27.0654 1.04407
\(673\) −0.691021 −0.0266369 −0.0133184 0.999911i \(-0.504240\pi\)
−0.0133184 + 0.999911i \(0.504240\pi\)
\(674\) −15.8984 −0.612385
\(675\) 0 0
\(676\) 15.7343 0.605167
\(677\) −10.2253 −0.392989 −0.196494 0.980505i \(-0.562956\pi\)
−0.196494 + 0.980505i \(0.562956\pi\)
\(678\) −23.7938 −0.913795
\(679\) −23.2611 −0.892681
\(680\) 0 0
\(681\) 17.3290 0.664048
\(682\) 2.69773 0.103301
\(683\) 9.74838 0.373012 0.186506 0.982454i \(-0.440284\pi\)
0.186506 + 0.982454i \(0.440284\pi\)
\(684\) 0.0302233 0.00115562
\(685\) 0 0
\(686\) −16.3701 −0.625012
\(687\) 46.4179 1.77095
\(688\) −2.63612 −0.100501
\(689\) −1.24357 −0.0473764
\(690\) 0 0
\(691\) −32.7638 −1.24639 −0.623197 0.782065i \(-0.714167\pi\)
−0.623197 + 0.782065i \(0.714167\pi\)
\(692\) −20.1848 −0.767311
\(693\) 2.29718 0.0872626
\(694\) 6.46496 0.245407
\(695\) 0 0
\(696\) 5.26366 0.199519
\(697\) 5.53867 0.209792
\(698\) 12.5821 0.476238
\(699\) −35.4716 −1.34166
\(700\) 0 0
\(701\) −14.7894 −0.558588 −0.279294 0.960206i \(-0.590100\pi\)
−0.279294 + 0.960206i \(0.590100\pi\)
\(702\) −3.52692 −0.133115
\(703\) 0.277493 0.0104658
\(704\) −6.38395 −0.240604
\(705\) 0 0
\(706\) −14.2151 −0.534993
\(707\) −27.2018 −1.02303
\(708\) −11.2990 −0.424641
\(709\) 42.1665 1.58360 0.791799 0.610782i \(-0.209145\pi\)
0.791799 + 0.610782i \(0.209145\pi\)
\(710\) 0 0
\(711\) 3.35800 0.125935
\(712\) −19.0261 −0.713034
\(713\) −14.6657 −0.549236
\(714\) −11.0584 −0.413849
\(715\) 0 0
\(716\) −26.6114 −0.994513
\(717\) 3.22628 0.120488
\(718\) 4.39384 0.163977
\(719\) −16.2819 −0.607211 −0.303606 0.952798i \(-0.598191\pi\)
−0.303606 + 0.952798i \(0.598191\pi\)
\(720\) 0 0
\(721\) −11.1426 −0.414972
\(722\) 15.9345 0.593020
\(723\) 16.3253 0.607146
\(724\) −22.7040 −0.843788
\(725\) 0 0
\(726\) 14.0156 0.520167
\(727\) −10.2431 −0.379894 −0.189947 0.981794i \(-0.560832\pi\)
−0.189947 + 0.981794i \(0.560832\pi\)
\(728\) 6.34534 0.235174
\(729\) 19.2861 0.714299
\(730\) 0 0
\(731\) 26.9795 0.997871
\(732\) −29.9915 −1.10852
\(733\) −1.34776 −0.0497807 −0.0248904 0.999690i \(-0.507924\pi\)
−0.0248904 + 0.999690i \(0.507924\pi\)
\(734\) 12.8171 0.473087
\(735\) 0 0
\(736\) 39.1488 1.44304
\(737\) −0.434347 −0.0159994
\(738\) 1.03361 0.0380476
\(739\) −33.2111 −1.22169 −0.610844 0.791751i \(-0.709170\pi\)
−0.610844 + 0.791751i \(0.709170\pi\)
\(740\) 0 0
\(741\) 0.0660914 0.00242793
\(742\) 2.76894 0.101651
\(743\) 36.6826 1.34576 0.672878 0.739754i \(-0.265058\pi\)
0.672878 + 0.739754i \(0.265058\pi\)
\(744\) 11.3572 0.416377
\(745\) 0 0
\(746\) 20.4373 0.748264
\(747\) −6.33688 −0.231854
\(748\) −5.42311 −0.198289
\(749\) −0.685996 −0.0250658
\(750\) 0 0
\(751\) −16.0304 −0.584959 −0.292480 0.956272i \(-0.594480\pi\)
−0.292480 + 0.956272i \(0.594480\pi\)
\(752\) 1.41855 0.0517292
\(753\) −52.5875 −1.91640
\(754\) 0.779816 0.0283992
\(755\) 0 0
\(756\) −14.4742 −0.526423
\(757\) 42.4991 1.54466 0.772328 0.635224i \(-0.219092\pi\)
0.772328 + 0.635224i \(0.219092\pi\)
\(758\) 10.1533 0.368786
\(759\) 19.2898 0.700177
\(760\) 0 0
\(761\) 24.7756 0.898114 0.449057 0.893503i \(-0.351760\pi\)
0.449057 + 0.893503i \(0.351760\pi\)
\(762\) 22.7172 0.822957
\(763\) 41.1368 1.48925
\(764\) −20.1907 −0.730475
\(765\) 0 0
\(766\) 17.6340 0.637142
\(767\) −4.25611 −0.153679
\(768\) −28.9637 −1.04514
\(769\) 22.9249 0.826694 0.413347 0.910573i \(-0.364360\pi\)
0.413347 + 0.910573i \(0.364360\pi\)
\(770\) 0 0
\(771\) −11.4610 −0.412759
\(772\) −10.9487 −0.394053
\(773\) 46.2921 1.66501 0.832506 0.554016i \(-0.186905\pi\)
0.832506 + 0.554016i \(0.186905\pi\)
\(774\) 5.03481 0.180972
\(775\) 0 0
\(776\) 26.0558 0.935349
\(777\) 34.9229 1.25285
\(778\) 8.69302 0.311660
\(779\) 0.0737057 0.00264078
\(780\) 0 0
\(781\) 16.0232 0.573356
\(782\) −15.9954 −0.571996
\(783\) −4.52276 −0.161630
\(784\) −0.248759 −0.00888425
\(785\) 0 0
\(786\) −31.6137 −1.12762
\(787\) −3.89849 −0.138966 −0.0694832 0.997583i \(-0.522135\pi\)
−0.0694832 + 0.997583i \(0.522135\pi\)
\(788\) −13.2167 −0.470825
\(789\) −15.4851 −0.551285
\(790\) 0 0
\(791\) −36.7822 −1.30782
\(792\) −2.57317 −0.0914336
\(793\) −11.2973 −0.401177
\(794\) −14.9178 −0.529411
\(795\) 0 0
\(796\) −8.47990 −0.300562
\(797\) −21.1877 −0.750506 −0.375253 0.926922i \(-0.622444\pi\)
−0.375253 + 0.926922i \(0.622444\pi\)
\(798\) −0.147159 −0.00520937
\(799\) −14.5182 −0.513617
\(800\) 0 0
\(801\) −4.29605 −0.151793
\(802\) 25.1504 0.888093
\(803\) 0.0210233 0.000741898 0
\(804\) −0.719188 −0.0253638
\(805\) 0 0
\(806\) 1.68259 0.0592666
\(807\) −6.54712 −0.230470
\(808\) 30.4699 1.07193
\(809\) 23.9959 0.843651 0.421826 0.906677i \(-0.361389\pi\)
0.421826 + 0.906677i \(0.361389\pi\)
\(810\) 0 0
\(811\) −8.15390 −0.286322 −0.143161 0.989699i \(-0.545727\pi\)
−0.143161 + 0.989699i \(0.545727\pi\)
\(812\) 3.20031 0.112309
\(813\) −19.9556 −0.699873
\(814\) −9.29198 −0.325684
\(815\) 0 0
\(816\) −1.46442 −0.0512651
\(817\) 0.359028 0.0125608
\(818\) −25.7249 −0.899450
\(819\) 1.43276 0.0500647
\(820\) 0 0
\(821\) −8.76657 −0.305955 −0.152978 0.988230i \(-0.548886\pi\)
−0.152978 + 0.988230i \(0.548886\pi\)
\(822\) −1.52459 −0.0531762
\(823\) −49.1112 −1.71191 −0.855955 0.517050i \(-0.827030\pi\)
−0.855955 + 0.517050i \(0.827030\pi\)
\(824\) 12.4813 0.434807
\(825\) 0 0
\(826\) 9.47664 0.329734
\(827\) −34.1055 −1.18597 −0.592983 0.805215i \(-0.702050\pi\)
−0.592983 + 0.805215i \(0.702050\pi\)
\(828\) 5.50179 0.191201
\(829\) 1.20117 0.0417183 0.0208591 0.999782i \(-0.493360\pi\)
0.0208591 + 0.999782i \(0.493360\pi\)
\(830\) 0 0
\(831\) −36.0309 −1.24990
\(832\) −3.98170 −0.138041
\(833\) 2.54593 0.0882113
\(834\) 35.9871 1.24613
\(835\) 0 0
\(836\) −0.0721679 −0.00249598
\(837\) −9.75862 −0.337307
\(838\) 12.6139 0.435740
\(839\) −1.87849 −0.0648526 −0.0324263 0.999474i \(-0.510323\pi\)
−0.0324263 + 0.999474i \(0.510323\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 26.3043 0.906506
\(843\) −46.9829 −1.61818
\(844\) −20.2246 −0.696161
\(845\) 0 0
\(846\) −2.70933 −0.0931488
\(847\) 21.6663 0.744463
\(848\) 0.366681 0.0125919
\(849\) −5.95278 −0.204299
\(850\) 0 0
\(851\) 50.5143 1.73161
\(852\) 26.5311 0.908940
\(853\) 33.0917 1.13304 0.566519 0.824049i \(-0.308290\pi\)
0.566519 + 0.824049i \(0.308290\pi\)
\(854\) 25.1544 0.860767
\(855\) 0 0
\(856\) 0.768414 0.0262639
\(857\) 47.6859 1.62892 0.814460 0.580220i \(-0.197034\pi\)
0.814460 + 0.580220i \(0.197034\pi\)
\(858\) −2.21310 −0.0755541
\(859\) 0.746091 0.0254563 0.0127281 0.999919i \(-0.495948\pi\)
0.0127281 + 0.999919i \(0.495948\pi\)
\(860\) 0 0
\(861\) 9.27596 0.316124
\(862\) 24.0810 0.820201
\(863\) 46.8245 1.59392 0.796962 0.604030i \(-0.206439\pi\)
0.796962 + 0.604030i \(0.206439\pi\)
\(864\) 26.0497 0.886229
\(865\) 0 0
\(866\) 25.9236 0.880919
\(867\) −17.3762 −0.590128
\(868\) 6.90522 0.234378
\(869\) −8.01832 −0.272003
\(870\) 0 0
\(871\) −0.270905 −0.00917925
\(872\) −46.0791 −1.56043
\(873\) 5.88334 0.199121
\(874\) −0.212859 −0.00720005
\(875\) 0 0
\(876\) 0.0348102 0.00117613
\(877\) −0.970257 −0.0327632 −0.0163816 0.999866i \(-0.505215\pi\)
−0.0163816 + 0.999866i \(0.505215\pi\)
\(878\) −15.5857 −0.525992
\(879\) 13.2316 0.446291
\(880\) 0 0
\(881\) 0.755979 0.0254696 0.0127348 0.999919i \(-0.495946\pi\)
0.0127348 + 0.999919i \(0.495946\pi\)
\(882\) 0.475113 0.0159979
\(883\) −15.8839 −0.534536 −0.267268 0.963622i \(-0.586121\pi\)
−0.267268 + 0.963622i \(0.586121\pi\)
\(884\) −3.38242 −0.113763
\(885\) 0 0
\(886\) −27.1851 −0.913300
\(887\) 12.5061 0.419915 0.209958 0.977710i \(-0.432667\pi\)
0.209958 + 0.977710i \(0.432667\pi\)
\(888\) −39.1186 −1.31273
\(889\) 35.1179 1.17782
\(890\) 0 0
\(891\) 15.6275 0.523541
\(892\) 30.8141 1.03173
\(893\) −0.193200 −0.00646521
\(894\) −13.6817 −0.457586
\(895\) 0 0
\(896\) −19.5679 −0.653719
\(897\) 12.0312 0.401709
\(898\) 10.6925 0.356813
\(899\) 2.15767 0.0719623
\(900\) 0 0
\(901\) −3.75281 −0.125024
\(902\) −2.46807 −0.0821778
\(903\) 45.1842 1.50364
\(904\) 41.2013 1.37034
\(905\) 0 0
\(906\) −21.1705 −0.703342
\(907\) −0.966094 −0.0320786 −0.0160393 0.999871i \(-0.505106\pi\)
−0.0160393 + 0.999871i \(0.505106\pi\)
\(908\) −11.8019 −0.391659
\(909\) 6.88004 0.228197
\(910\) 0 0
\(911\) −21.2288 −0.703340 −0.351670 0.936124i \(-0.614386\pi\)
−0.351670 + 0.936124i \(0.614386\pi\)
\(912\) −0.0194878 −0.000645304 0
\(913\) 15.1313 0.500774
\(914\) −17.2259 −0.569781
\(915\) 0 0
\(916\) −31.6128 −1.04452
\(917\) −48.8709 −1.61386
\(918\) −10.6434 −0.351284
\(919\) 16.9547 0.559284 0.279642 0.960104i \(-0.409784\pi\)
0.279642 + 0.960104i \(0.409784\pi\)
\(920\) 0 0
\(921\) −29.3925 −0.968515
\(922\) −12.6617 −0.416991
\(923\) 9.99377 0.328949
\(924\) −9.08243 −0.298790
\(925\) 0 0
\(926\) −1.00227 −0.0329368
\(927\) 2.81825 0.0925634
\(928\) −5.75969 −0.189071
\(929\) −26.0792 −0.855632 −0.427816 0.903866i \(-0.640717\pi\)
−0.427816 + 0.903866i \(0.640717\pi\)
\(930\) 0 0
\(931\) 0.0338799 0.00111037
\(932\) 24.1579 0.791318
\(933\) −24.7278 −0.809552
\(934\) −5.94365 −0.194482
\(935\) 0 0
\(936\) −1.60490 −0.0524577
\(937\) −6.07903 −0.198593 −0.0992967 0.995058i \(-0.531659\pi\)
−0.0992967 + 0.995058i \(0.531659\pi\)
\(938\) 0.603196 0.0196950
\(939\) −47.3590 −1.54550
\(940\) 0 0
\(941\) 49.5166 1.61419 0.807097 0.590419i \(-0.201037\pi\)
0.807097 + 0.590419i \(0.201037\pi\)
\(942\) 22.5139 0.733542
\(943\) 13.4173 0.436926
\(944\) 1.25496 0.0408454
\(945\) 0 0
\(946\) −12.0222 −0.390877
\(947\) 26.9125 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(948\) −13.2766 −0.431205
\(949\) 0.0131124 0.000425645 0
\(950\) 0 0
\(951\) 32.5795 1.05646
\(952\) 19.1487 0.620613
\(953\) −30.8022 −0.997781 −0.498891 0.866665i \(-0.666259\pi\)
−0.498891 + 0.866665i \(0.666259\pi\)
\(954\) −0.700335 −0.0226742
\(955\) 0 0
\(956\) −2.19725 −0.0710642
\(957\) −2.83798 −0.0917389
\(958\) −32.6067 −1.05347
\(959\) −2.35683 −0.0761059
\(960\) 0 0
\(961\) −26.3445 −0.849821
\(962\) −5.79546 −0.186853
\(963\) 0.173506 0.00559115
\(964\) −11.1183 −0.358098
\(965\) 0 0
\(966\) −26.7886 −0.861908
\(967\) −50.1110 −1.61146 −0.805730 0.592283i \(-0.798227\pi\)
−0.805730 + 0.592283i \(0.798227\pi\)
\(968\) −24.2694 −0.780047
\(969\) 0.199448 0.00640719
\(970\) 0 0
\(971\) −13.0301 −0.418156 −0.209078 0.977899i \(-0.567046\pi\)
−0.209078 + 0.977899i \(0.567046\pi\)
\(972\) 8.28385 0.265705
\(973\) 55.6315 1.78346
\(974\) 25.4201 0.814514
\(975\) 0 0
\(976\) 3.33111 0.106626
\(977\) 3.50116 0.112012 0.0560060 0.998430i \(-0.482163\pi\)
0.0560060 + 0.998430i \(0.482163\pi\)
\(978\) 27.5062 0.879550
\(979\) 10.2582 0.327854
\(980\) 0 0
\(981\) −10.4045 −0.332191
\(982\) 8.25748 0.263507
\(983\) 41.2281 1.31497 0.657486 0.753467i \(-0.271620\pi\)
0.657486 + 0.753467i \(0.271620\pi\)
\(984\) −10.3904 −0.331234
\(985\) 0 0
\(986\) 2.35330 0.0749443
\(987\) −24.3145 −0.773941
\(988\) −0.0450115 −0.00143201
\(989\) 65.3569 2.07823
\(990\) 0 0
\(991\) 3.17997 0.101015 0.0505076 0.998724i \(-0.483916\pi\)
0.0505076 + 0.998724i \(0.483916\pi\)
\(992\) −12.4275 −0.394574
\(993\) −49.3460 −1.56595
\(994\) −22.2521 −0.705793
\(995\) 0 0
\(996\) 25.0543 0.793876
\(997\) −33.8545 −1.07218 −0.536092 0.844160i \(-0.680100\pi\)
−0.536092 + 0.844160i \(0.680100\pi\)
\(998\) −17.5895 −0.556785
\(999\) 33.6123 1.06345
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.a.h.1.3 5
3.2 odd 2 6525.2.a.bq.1.3 5
5.2 odd 4 725.2.b.f.349.5 10
5.3 odd 4 725.2.b.f.349.6 10
5.4 even 2 725.2.a.k.1.3 yes 5
15.14 odd 2 6525.2.a.bm.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.h.1.3 5 1.1 even 1 trivial
725.2.a.k.1.3 yes 5 5.4 even 2
725.2.b.f.349.5 10 5.2 odd 4
725.2.b.f.349.6 10 5.3 odd 4
6525.2.a.bm.1.3 5 15.14 odd 2
6525.2.a.bq.1.3 5 3.2 odd 2