Properties

Label 6525.2.a.bm.1.3
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,0,0,6,-3,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.240881.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 725)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.838718\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.838718 q^{2} -1.29655 q^{4} +2.46832 q^{7} +2.76488 q^{8} +1.49072 q^{11} +0.929772 q^{13} -2.07023 q^{14} +0.274153 q^{16} -2.80583 q^{17} -0.0373385 q^{19} -1.25030 q^{22} -6.79703 q^{23} -0.779816 q^{26} -3.20031 q^{28} -1.00000 q^{29} +2.15767 q^{31} -5.75969 q^{32} +2.35330 q^{34} +7.43182 q^{37} +0.0313164 q^{38} +1.97399 q^{41} +9.61550 q^{43} -1.93280 q^{44} +5.70079 q^{46} +5.17430 q^{47} -0.907373 q^{49} -1.20550 q^{52} +1.33750 q^{53} +6.82462 q^{56} +0.838718 q^{58} -4.57758 q^{59} +12.1506 q^{61} -1.80968 q^{62} +4.28245 q^{64} -0.291367 q^{67} +3.63790 q^{68} +10.7486 q^{71} +0.0141028 q^{73} -6.23320 q^{74} +0.0484113 q^{76} +3.67959 q^{77} +5.37881 q^{79} -1.65562 q^{82} -10.1503 q^{83} -8.06469 q^{86} +4.12167 q^{88} +6.88136 q^{89} +2.29498 q^{91} +8.81271 q^{92} -4.33978 q^{94} -9.42386 q^{97} +0.761030 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} + 6 q^{7} - 3 q^{8} + 2 q^{11} + 4 q^{13} - 11 q^{14} - 10 q^{16} - 9 q^{17} + 2 q^{19} + 4 q^{22} - q^{23} + 16 q^{26} + 10 q^{28} - 5 q^{29} - q^{31} + 2 q^{32} + 3 q^{34} + 14 q^{37}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.838718 −0.593063 −0.296532 0.955023i \(-0.595830\pi\)
−0.296532 + 0.955023i \(0.595830\pi\)
\(3\) 0 0
\(4\) −1.29655 −0.648276
\(5\) 0 0
\(6\) 0 0
\(7\) 2.46832 0.932939 0.466470 0.884537i \(-0.345526\pi\)
0.466470 + 0.884537i \(0.345526\pi\)
\(8\) 2.76488 0.977532
\(9\) 0 0
\(10\) 0 0
\(11\) 1.49072 0.449470 0.224735 0.974420i \(-0.427848\pi\)
0.224735 + 0.974420i \(0.427848\pi\)
\(12\) 0 0
\(13\) 0.929772 0.257872 0.128936 0.991653i \(-0.458844\pi\)
0.128936 + 0.991653i \(0.458844\pi\)
\(14\) −2.07023 −0.553292
\(15\) 0 0
\(16\) 0.274153 0.0685383
\(17\) −2.80583 −0.680513 −0.340257 0.940333i \(-0.610514\pi\)
−0.340257 + 0.940333i \(0.610514\pi\)
\(18\) 0 0
\(19\) −0.0373385 −0.00856603 −0.00428302 0.999991i \(-0.501363\pi\)
−0.00428302 + 0.999991i \(0.501363\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.25030 −0.266564
\(23\) −6.79703 −1.41728 −0.708639 0.705571i \(-0.750691\pi\)
−0.708639 + 0.705571i \(0.750691\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.779816 −0.152935
\(27\) 0 0
\(28\) −3.20031 −0.604802
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 2.15767 0.387529 0.193764 0.981048i \(-0.437930\pi\)
0.193764 + 0.981048i \(0.437930\pi\)
\(32\) −5.75969 −1.01818
\(33\) 0 0
\(34\) 2.35330 0.403587
\(35\) 0 0
\(36\) 0 0
\(37\) 7.43182 1.22178 0.610892 0.791714i \(-0.290811\pi\)
0.610892 + 0.791714i \(0.290811\pi\)
\(38\) 0.0313164 0.00508020
\(39\) 0 0
\(40\) 0 0
\(41\) 1.97399 0.308285 0.154143 0.988049i \(-0.450738\pi\)
0.154143 + 0.988049i \(0.450738\pi\)
\(42\) 0 0
\(43\) 9.61550 1.46635 0.733175 0.680040i \(-0.238037\pi\)
0.733175 + 0.680040i \(0.238037\pi\)
\(44\) −1.93280 −0.291381
\(45\) 0 0
\(46\) 5.70079 0.840536
\(47\) 5.17430 0.754749 0.377375 0.926061i \(-0.376827\pi\)
0.377375 + 0.926061i \(0.376827\pi\)
\(48\) 0 0
\(49\) −0.907373 −0.129625
\(50\) 0 0
\(51\) 0 0
\(52\) −1.20550 −0.167173
\(53\) 1.33750 0.183720 0.0918601 0.995772i \(-0.470719\pi\)
0.0918601 + 0.995772i \(0.470719\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.82462 0.911978
\(57\) 0 0
\(58\) 0.838718 0.110129
\(59\) −4.57758 −0.595951 −0.297975 0.954574i \(-0.596311\pi\)
−0.297975 + 0.954574i \(0.596311\pi\)
\(60\) 0 0
\(61\) 12.1506 1.55572 0.777860 0.628437i \(-0.216305\pi\)
0.777860 + 0.628437i \(0.216305\pi\)
\(62\) −1.80968 −0.229829
\(63\) 0 0
\(64\) 4.28245 0.535306
\(65\) 0 0
\(66\) 0 0
\(67\) −0.291367 −0.0355961 −0.0177981 0.999842i \(-0.505666\pi\)
−0.0177981 + 0.999842i \(0.505666\pi\)
\(68\) 3.63790 0.441161
\(69\) 0 0
\(70\) 0 0
\(71\) 10.7486 1.27563 0.637813 0.770191i \(-0.279839\pi\)
0.637813 + 0.770191i \(0.279839\pi\)
\(72\) 0 0
\(73\) 0.0141028 0.00165061 0.000825303 1.00000i \(-0.499737\pi\)
0.000825303 1.00000i \(0.499737\pi\)
\(74\) −6.23320 −0.724595
\(75\) 0 0
\(76\) 0.0484113 0.00555315
\(77\) 3.67959 0.419328
\(78\) 0 0
\(79\) 5.37881 0.605163 0.302582 0.953123i \(-0.402152\pi\)
0.302582 + 0.953123i \(0.402152\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.65562 −0.182833
\(83\) −10.1503 −1.11414 −0.557072 0.830464i \(-0.688075\pi\)
−0.557072 + 0.830464i \(0.688075\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.06469 −0.869638
\(87\) 0 0
\(88\) 4.12167 0.439371
\(89\) 6.88136 0.729423 0.364711 0.931121i \(-0.381168\pi\)
0.364711 + 0.931121i \(0.381168\pi\)
\(90\) 0 0
\(91\) 2.29498 0.240579
\(92\) 8.81271 0.918788
\(93\) 0 0
\(94\) −4.33978 −0.447614
\(95\) 0 0
\(96\) 0 0
\(97\) −9.42386 −0.956848 −0.478424 0.878129i \(-0.658792\pi\)
−0.478424 + 0.878129i \(0.658792\pi\)
\(98\) 0.761030 0.0768756
\(99\) 0 0
\(100\) 0 0
\(101\) −11.0204 −1.09657 −0.548284 0.836293i \(-0.684719\pi\)
−0.548284 + 0.836293i \(0.684719\pi\)
\(102\) 0 0
\(103\) −4.51423 −0.444801 −0.222400 0.974955i \(-0.571389\pi\)
−0.222400 + 0.974955i \(0.571389\pi\)
\(104\) 2.57071 0.252078
\(105\) 0 0
\(106\) −1.12179 −0.108958
\(107\) 0.277920 0.0268675 0.0134338 0.999910i \(-0.495724\pi\)
0.0134338 + 0.999910i \(0.495724\pi\)
\(108\) 0 0
\(109\) −16.6659 −1.59630 −0.798150 0.602459i \(-0.794188\pi\)
−0.798150 + 0.602459i \(0.794188\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.676699 0.0639420
\(113\) 14.9017 1.40183 0.700916 0.713244i \(-0.252775\pi\)
0.700916 + 0.713244i \(0.252775\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.29655 0.120382
\(117\) 0 0
\(118\) 3.83930 0.353436
\(119\) −6.92570 −0.634877
\(120\) 0 0
\(121\) −8.77774 −0.797977
\(122\) −10.1909 −0.922640
\(123\) 0 0
\(124\) −2.79753 −0.251226
\(125\) 0 0
\(126\) 0 0
\(127\) 14.2274 1.26248 0.631240 0.775587i \(-0.282546\pi\)
0.631240 + 0.775587i \(0.282546\pi\)
\(128\) 7.92762 0.700709
\(129\) 0 0
\(130\) 0 0
\(131\) −19.7992 −1.72987 −0.864933 0.501888i \(-0.832639\pi\)
−0.864933 + 0.501888i \(0.832639\pi\)
\(132\) 0 0
\(133\) −0.0921635 −0.00799159
\(134\) 0.244374 0.0211107
\(135\) 0 0
\(136\) −7.75777 −0.665223
\(137\) 0.954829 0.0815765 0.0407883 0.999168i \(-0.487013\pi\)
0.0407883 + 0.999168i \(0.487013\pi\)
\(138\) 0 0
\(139\) −22.5382 −1.91166 −0.955831 0.293916i \(-0.905041\pi\)
−0.955831 + 0.293916i \(0.905041\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.01506 −0.756527
\(143\) 1.38603 0.115906
\(144\) 0 0
\(145\) 0 0
\(146\) −0.0118282 −0.000978913 0
\(147\) 0 0
\(148\) −9.63575 −0.792054
\(149\) −8.56867 −0.701972 −0.350986 0.936381i \(-0.614154\pi\)
−0.350986 + 0.936381i \(0.614154\pi\)
\(150\) 0 0
\(151\) 13.2588 1.07898 0.539491 0.841991i \(-0.318617\pi\)
0.539491 + 0.841991i \(0.318617\pi\)
\(152\) −0.103236 −0.00837357
\(153\) 0 0
\(154\) −3.08614 −0.248688
\(155\) 0 0
\(156\) 0 0
\(157\) 14.1001 1.12531 0.562656 0.826691i \(-0.309780\pi\)
0.562656 + 0.826691i \(0.309780\pi\)
\(158\) −4.51130 −0.358900
\(159\) 0 0
\(160\) 0 0
\(161\) −16.7773 −1.32223
\(162\) 0 0
\(163\) 17.2267 1.34930 0.674650 0.738138i \(-0.264295\pi\)
0.674650 + 0.738138i \(0.264295\pi\)
\(164\) −2.55938 −0.199854
\(165\) 0 0
\(166\) 8.51326 0.660757
\(167\) 14.4358 1.11707 0.558537 0.829480i \(-0.311363\pi\)
0.558537 + 0.829480i \(0.311363\pi\)
\(168\) 0 0
\(169\) −12.1355 −0.933502
\(170\) 0 0
\(171\) 0 0
\(172\) −12.4670 −0.950600
\(173\) 15.5680 1.18362 0.591808 0.806079i \(-0.298414\pi\)
0.591808 + 0.806079i \(0.298414\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.408687 0.0308059
\(177\) 0 0
\(178\) −5.77152 −0.432594
\(179\) −20.5247 −1.53409 −0.767044 0.641594i \(-0.778273\pi\)
−0.767044 + 0.641594i \(0.778273\pi\)
\(180\) 0 0
\(181\) 17.5111 1.30159 0.650794 0.759255i \(-0.274436\pi\)
0.650794 + 0.759255i \(0.274436\pi\)
\(182\) −1.92484 −0.142679
\(183\) 0 0
\(184\) −18.7930 −1.38543
\(185\) 0 0
\(186\) 0 0
\(187\) −4.18272 −0.305870
\(188\) −6.70875 −0.489286
\(189\) 0 0
\(190\) 0 0
\(191\) −15.5726 −1.12680 −0.563398 0.826186i \(-0.690506\pi\)
−0.563398 + 0.826186i \(0.690506\pi\)
\(192\) 0 0
\(193\) −8.44449 −0.607847 −0.303924 0.952696i \(-0.598297\pi\)
−0.303924 + 0.952696i \(0.598297\pi\)
\(194\) 7.90396 0.567471
\(195\) 0 0
\(196\) 1.17646 0.0840326
\(197\) 10.1937 0.726272 0.363136 0.931736i \(-0.381706\pi\)
0.363136 + 0.931736i \(0.381706\pi\)
\(198\) 0 0
\(199\) 6.54034 0.463633 0.231816 0.972760i \(-0.425533\pi\)
0.231816 + 0.972760i \(0.425533\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 9.24297 0.650333
\(203\) −2.46832 −0.173242
\(204\) 0 0
\(205\) 0 0
\(206\) 3.78617 0.263795
\(207\) 0 0
\(208\) 0.254900 0.0176741
\(209\) −0.0556614 −0.00385018
\(210\) 0 0
\(211\) 15.5988 1.07386 0.536932 0.843625i \(-0.319583\pi\)
0.536932 + 0.843625i \(0.319583\pi\)
\(212\) −1.73414 −0.119101
\(213\) 0 0
\(214\) −0.233096 −0.0159341
\(215\) 0 0
\(216\) 0 0
\(217\) 5.32583 0.361541
\(218\) 13.9780 0.946707
\(219\) 0 0
\(220\) 0 0
\(221\) −2.60878 −0.175486
\(222\) 0 0
\(223\) 23.7662 1.59150 0.795751 0.605623i \(-0.207076\pi\)
0.795751 + 0.605623i \(0.207076\pi\)
\(224\) −14.2168 −0.949899
\(225\) 0 0
\(226\) −12.4983 −0.831375
\(227\) 9.10250 0.604154 0.302077 0.953284i \(-0.402320\pi\)
0.302077 + 0.953284i \(0.402320\pi\)
\(228\) 0 0
\(229\) 24.3822 1.61122 0.805611 0.592445i \(-0.201837\pi\)
0.805611 + 0.592445i \(0.201837\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.76488 −0.181523
\(233\) −18.6324 −1.22065 −0.610325 0.792151i \(-0.708961\pi\)
−0.610325 + 0.792151i \(0.708961\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.93508 0.386341
\(237\) 0 0
\(238\) 5.80870 0.376522
\(239\) −1.69469 −0.109620 −0.0548101 0.998497i \(-0.517455\pi\)
−0.0548101 + 0.998497i \(0.517455\pi\)
\(240\) 0 0
\(241\) 8.57531 0.552384 0.276192 0.961102i \(-0.410927\pi\)
0.276192 + 0.961102i \(0.410927\pi\)
\(242\) 7.36205 0.473250
\(243\) 0 0
\(244\) −15.7538 −1.00854
\(245\) 0 0
\(246\) 0 0
\(247\) −0.0347163 −0.00220894
\(248\) 5.96569 0.378822
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6230 1.74355 0.871774 0.489909i \(-0.162970\pi\)
0.871774 + 0.489909i \(0.162970\pi\)
\(252\) 0 0
\(253\) −10.1325 −0.637025
\(254\) −11.9328 −0.748731
\(255\) 0 0
\(256\) −15.2139 −0.950871
\(257\) −6.02021 −0.375530 −0.187765 0.982214i \(-0.560124\pi\)
−0.187765 + 0.982214i \(0.560124\pi\)
\(258\) 0 0
\(259\) 18.3442 1.13985
\(260\) 0 0
\(261\) 0 0
\(262\) 16.6060 1.02592
\(263\) −8.13397 −0.501562 −0.250781 0.968044i \(-0.580687\pi\)
−0.250781 + 0.968044i \(0.580687\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.0772991 0.00473951
\(267\) 0 0
\(268\) 0.377772 0.0230761
\(269\) 3.43905 0.209682 0.104841 0.994489i \(-0.466567\pi\)
0.104841 + 0.994489i \(0.466567\pi\)
\(270\) 0 0
\(271\) −10.4822 −0.636748 −0.318374 0.947965i \(-0.603137\pi\)
−0.318374 + 0.947965i \(0.603137\pi\)
\(272\) −0.769227 −0.0466412
\(273\) 0 0
\(274\) −0.800832 −0.0483800
\(275\) 0 0
\(276\) 0 0
\(277\) 18.9262 1.13716 0.568582 0.822627i \(-0.307492\pi\)
0.568582 + 0.822627i \(0.307492\pi\)
\(278\) 18.9032 1.13374
\(279\) 0 0
\(280\) 0 0
\(281\) 24.6790 1.47223 0.736113 0.676859i \(-0.236659\pi\)
0.736113 + 0.676859i \(0.236659\pi\)
\(282\) 0 0
\(283\) 3.12685 0.185872 0.0929361 0.995672i \(-0.470375\pi\)
0.0929361 + 0.995672i \(0.470375\pi\)
\(284\) −13.9361 −0.826958
\(285\) 0 0
\(286\) −1.16249 −0.0687395
\(287\) 4.87244 0.287611
\(288\) 0 0
\(289\) −9.12733 −0.536902
\(290\) 0 0
\(291\) 0 0
\(292\) −0.0182850 −0.00107005
\(293\) 6.95025 0.406038 0.203019 0.979175i \(-0.434925\pi\)
0.203019 + 0.979175i \(0.434925\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 20.5481 1.19433
\(297\) 0 0
\(298\) 7.18669 0.416314
\(299\) −6.31969 −0.365477
\(300\) 0 0
\(301\) 23.7342 1.36802
\(302\) −11.1203 −0.639904
\(303\) 0 0
\(304\) −0.0102365 −0.000587101 0
\(305\) 0 0
\(306\) 0 0
\(307\) 15.4392 0.881160 0.440580 0.897713i \(-0.354773\pi\)
0.440580 + 0.897713i \(0.354773\pi\)
\(308\) −4.77078 −0.271841
\(309\) 0 0
\(310\) 0 0
\(311\) 12.9889 0.736534 0.368267 0.929720i \(-0.379951\pi\)
0.368267 + 0.929720i \(0.379951\pi\)
\(312\) 0 0
\(313\) 24.8765 1.40611 0.703053 0.711138i \(-0.251820\pi\)
0.703053 + 0.711138i \(0.251820\pi\)
\(314\) −11.8260 −0.667381
\(315\) 0 0
\(316\) −6.97391 −0.392313
\(317\) 17.1132 0.961176 0.480588 0.876947i \(-0.340423\pi\)
0.480588 + 0.876947i \(0.340423\pi\)
\(318\) 0 0
\(319\) −1.49072 −0.0834645
\(320\) 0 0
\(321\) 0 0
\(322\) 14.0714 0.784169
\(323\) 0.104765 0.00582930
\(324\) 0 0
\(325\) 0 0
\(326\) −14.4483 −0.800219
\(327\) 0 0
\(328\) 5.45783 0.301359
\(329\) 12.7719 0.704135
\(330\) 0 0
\(331\) −25.9203 −1.42471 −0.712353 0.701821i \(-0.752371\pi\)
−0.712353 + 0.701821i \(0.752371\pi\)
\(332\) 13.1604 0.722273
\(333\) 0 0
\(334\) −12.1075 −0.662495
\(335\) 0 0
\(336\) 0 0
\(337\) −18.9557 −1.03258 −0.516290 0.856414i \(-0.672687\pi\)
−0.516290 + 0.856414i \(0.672687\pi\)
\(338\) 10.1783 0.553625
\(339\) 0 0
\(340\) 0 0
\(341\) 3.21649 0.174183
\(342\) 0 0
\(343\) −19.5180 −1.05387
\(344\) 26.5857 1.43340
\(345\) 0 0
\(346\) −13.0572 −0.701959
\(347\) −7.70815 −0.413795 −0.206898 0.978363i \(-0.566337\pi\)
−0.206898 + 0.978363i \(0.566337\pi\)
\(348\) 0 0
\(349\) −15.0015 −0.803014 −0.401507 0.915856i \(-0.631513\pi\)
−0.401507 + 0.915856i \(0.631513\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.58611 −0.457641
\(353\) 16.9486 0.902085 0.451043 0.892502i \(-0.351052\pi\)
0.451043 + 0.892502i \(0.351052\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8.92205 −0.472867
\(357\) 0 0
\(358\) 17.2144 0.909811
\(359\) 5.23876 0.276491 0.138246 0.990398i \(-0.455854\pi\)
0.138246 + 0.990398i \(0.455854\pi\)
\(360\) 0 0
\(361\) −18.9986 −0.999927
\(362\) −14.6868 −0.771923
\(363\) 0 0
\(364\) −2.97556 −0.155962
\(365\) 0 0
\(366\) 0 0
\(367\) 15.2817 0.797701 0.398850 0.917016i \(-0.369409\pi\)
0.398850 + 0.917016i \(0.369409\pi\)
\(368\) −1.86343 −0.0971378
\(369\) 0 0
\(370\) 0 0
\(371\) 3.30139 0.171400
\(372\) 0 0
\(373\) 24.3674 1.26169 0.630847 0.775907i \(-0.282708\pi\)
0.630847 + 0.775907i \(0.282708\pi\)
\(374\) 3.50812 0.181400
\(375\) 0 0
\(376\) 14.3063 0.737791
\(377\) −0.929772 −0.0478857
\(378\) 0 0
\(379\) −12.1058 −0.621832 −0.310916 0.950437i \(-0.600636\pi\)
−0.310916 + 0.950437i \(0.600636\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 13.0610 0.668261
\(383\) −21.0250 −1.07432 −0.537162 0.843479i \(-0.680504\pi\)
−0.537162 + 0.843479i \(0.680504\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.08254 0.360492
\(387\) 0 0
\(388\) 12.2185 0.620302
\(389\) 10.3647 0.525509 0.262755 0.964863i \(-0.415369\pi\)
0.262755 + 0.964863i \(0.415369\pi\)
\(390\) 0 0
\(391\) 19.0713 0.964477
\(392\) −2.50877 −0.126712
\(393\) 0 0
\(394\) −8.54964 −0.430725
\(395\) 0 0
\(396\) 0 0
\(397\) −17.7864 −0.892673 −0.446337 0.894865i \(-0.647272\pi\)
−0.446337 + 0.894865i \(0.647272\pi\)
\(398\) −5.48550 −0.274963
\(399\) 0 0
\(400\) 0 0
\(401\) 29.9868 1.49747 0.748734 0.662870i \(-0.230662\pi\)
0.748734 + 0.662870i \(0.230662\pi\)
\(402\) 0 0
\(403\) 2.00614 0.0999330
\(404\) 14.2885 0.710878
\(405\) 0 0
\(406\) 2.07023 0.102744
\(407\) 11.0788 0.549156
\(408\) 0 0
\(409\) 30.6717 1.51662 0.758309 0.651896i \(-0.226026\pi\)
0.758309 + 0.651896i \(0.226026\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.85294 0.288354
\(413\) −11.2990 −0.555986
\(414\) 0 0
\(415\) 0 0
\(416\) −5.35520 −0.262560
\(417\) 0 0
\(418\) 0.0466842 0.00228340
\(419\) 15.0395 0.734729 0.367364 0.930077i \(-0.380260\pi\)
0.367364 + 0.930077i \(0.380260\pi\)
\(420\) 0 0
\(421\) −31.3625 −1.52852 −0.764258 0.644911i \(-0.776894\pi\)
−0.764258 + 0.644911i \(0.776894\pi\)
\(422\) −13.0830 −0.636869
\(423\) 0 0
\(424\) 3.69803 0.179592
\(425\) 0 0
\(426\) 0 0
\(427\) 29.9915 1.45139
\(428\) −0.360338 −0.0174176
\(429\) 0 0
\(430\) 0 0
\(431\) 28.7116 1.38299 0.691495 0.722381i \(-0.256952\pi\)
0.691495 + 0.722381i \(0.256952\pi\)
\(432\) 0 0
\(433\) 30.9086 1.48537 0.742686 0.669640i \(-0.233552\pi\)
0.742686 + 0.669640i \(0.233552\pi\)
\(434\) −4.46687 −0.214417
\(435\) 0 0
\(436\) 21.6082 1.03484
\(437\) 0.253791 0.0121405
\(438\) 0 0
\(439\) 18.5828 0.886907 0.443454 0.896297i \(-0.353753\pi\)
0.443454 + 0.896297i \(0.353753\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.18803 0.104074
\(443\) 32.4127 1.53997 0.769986 0.638061i \(-0.220263\pi\)
0.769986 + 0.638061i \(0.220263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −19.9331 −0.943862
\(447\) 0 0
\(448\) 10.5705 0.499408
\(449\) 12.7486 0.601645 0.300822 0.953680i \(-0.402739\pi\)
0.300822 + 0.953680i \(0.402739\pi\)
\(450\) 0 0
\(451\) 2.94267 0.138565
\(452\) −19.3208 −0.908775
\(453\) 0 0
\(454\) −7.63443 −0.358301
\(455\) 0 0
\(456\) 0 0
\(457\) −20.5383 −0.960742 −0.480371 0.877065i \(-0.659498\pi\)
−0.480371 + 0.877065i \(0.659498\pi\)
\(458\) −20.4498 −0.955556
\(459\) 0 0
\(460\) 0 0
\(461\) −15.0965 −0.703114 −0.351557 0.936167i \(-0.614348\pi\)
−0.351557 + 0.936167i \(0.614348\pi\)
\(462\) 0 0
\(463\) −1.19501 −0.0555367 −0.0277684 0.999614i \(-0.508840\pi\)
−0.0277684 + 0.999614i \(0.508840\pi\)
\(464\) −0.274153 −0.0127272
\(465\) 0 0
\(466\) 15.6273 0.723922
\(467\) 7.08659 0.327929 0.163964 0.986466i \(-0.447572\pi\)
0.163964 + 0.986466i \(0.447572\pi\)
\(468\) 0 0
\(469\) −0.719188 −0.0332090
\(470\) 0 0
\(471\) 0 0
\(472\) −12.6565 −0.582561
\(473\) 14.3341 0.659081
\(474\) 0 0
\(475\) 0 0
\(476\) 8.97953 0.411576
\(477\) 0 0
\(478\) 1.42136 0.0650117
\(479\) −38.8768 −1.77633 −0.888163 0.459528i \(-0.848019\pi\)
−0.888163 + 0.459528i \(0.848019\pi\)
\(480\) 0 0
\(481\) 6.90990 0.315064
\(482\) −7.19226 −0.327599
\(483\) 0 0
\(484\) 11.3808 0.517309
\(485\) 0 0
\(486\) 0 0
\(487\) 30.3083 1.37340 0.686701 0.726940i \(-0.259058\pi\)
0.686701 + 0.726940i \(0.259058\pi\)
\(488\) 33.5948 1.52077
\(489\) 0 0
\(490\) 0 0
\(491\) 9.84537 0.444315 0.222158 0.975011i \(-0.428690\pi\)
0.222158 + 0.975011i \(0.428690\pi\)
\(492\) 0 0
\(493\) 2.80583 0.126368
\(494\) 0.0291171 0.00131004
\(495\) 0 0
\(496\) 0.591532 0.0265606
\(497\) 26.5311 1.19008
\(498\) 0 0
\(499\) 20.9719 0.938829 0.469415 0.882978i \(-0.344465\pi\)
0.469415 + 0.882978i \(0.344465\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −23.1679 −1.03403
\(503\) −42.2017 −1.88168 −0.940841 0.338849i \(-0.889963\pi\)
−0.940841 + 0.338849i \(0.889963\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8.49831 0.377796
\(507\) 0 0
\(508\) −18.4466 −0.818436
\(509\) −7.00080 −0.310305 −0.155153 0.987891i \(-0.549587\pi\)
−0.155153 + 0.987891i \(0.549587\pi\)
\(510\) 0 0
\(511\) 0.0348102 0.00153991
\(512\) −3.09504 −0.136783
\(513\) 0 0
\(514\) 5.04925 0.222713
\(515\) 0 0
\(516\) 0 0
\(517\) 7.71345 0.339237
\(518\) −15.3856 −0.676003
\(519\) 0 0
\(520\) 0 0
\(521\) −12.0767 −0.529091 −0.264545 0.964373i \(-0.585222\pi\)
−0.264545 + 0.964373i \(0.585222\pi\)
\(522\) 0 0
\(523\) 30.9879 1.35500 0.677502 0.735521i \(-0.263062\pi\)
0.677502 + 0.735521i \(0.263062\pi\)
\(524\) 25.6707 1.12143
\(525\) 0 0
\(526\) 6.82211 0.297458
\(527\) −6.05405 −0.263719
\(528\) 0 0
\(529\) 23.1996 1.00868
\(530\) 0 0
\(531\) 0 0
\(532\) 0.119495 0.00518075
\(533\) 1.83536 0.0794982
\(534\) 0 0
\(535\) 0 0
\(536\) −0.805593 −0.0347963
\(537\) 0 0
\(538\) −2.88439 −0.124355
\(539\) −1.35264 −0.0582624
\(540\) 0 0
\(541\) −5.40732 −0.232479 −0.116240 0.993221i \(-0.537084\pi\)
−0.116240 + 0.993221i \(0.537084\pi\)
\(542\) 8.79161 0.377632
\(543\) 0 0
\(544\) 16.1607 0.692885
\(545\) 0 0
\(546\) 0 0
\(547\) −0.766804 −0.0327862 −0.0163931 0.999866i \(-0.505218\pi\)
−0.0163931 + 0.999866i \(0.505218\pi\)
\(548\) −1.23799 −0.0528841
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0373385 0.00159067
\(552\) 0 0
\(553\) 13.2766 0.564580
\(554\) −15.8737 −0.674410
\(555\) 0 0
\(556\) 29.2219 1.23929
\(557\) 38.2414 1.62034 0.810170 0.586195i \(-0.199375\pi\)
0.810170 + 0.586195i \(0.199375\pi\)
\(558\) 0 0
\(559\) 8.94023 0.378131
\(560\) 0 0
\(561\) 0 0
\(562\) −20.6987 −0.873123
\(563\) −36.0317 −1.51855 −0.759277 0.650768i \(-0.774447\pi\)
−0.759277 + 0.650768i \(0.774447\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.62255 −0.110234
\(567\) 0 0
\(568\) 29.7186 1.24697
\(569\) 17.6536 0.740077 0.370038 0.929016i \(-0.379345\pi\)
0.370038 + 0.929016i \(0.379345\pi\)
\(570\) 0 0
\(571\) −3.66464 −0.153360 −0.0766801 0.997056i \(-0.524432\pi\)
−0.0766801 + 0.997056i \(0.524432\pi\)
\(572\) −1.79707 −0.0751391
\(573\) 0 0
\(574\) −4.08661 −0.170572
\(575\) 0 0
\(576\) 0 0
\(577\) −25.9865 −1.08183 −0.540917 0.841076i \(-0.681923\pi\)
−0.540917 + 0.841076i \(0.681923\pi\)
\(578\) 7.65525 0.318417
\(579\) 0 0
\(580\) 0 0
\(581\) −25.0543 −1.03943
\(582\) 0 0
\(583\) 1.99385 0.0825768
\(584\) 0.0389924 0.00161352
\(585\) 0 0
\(586\) −5.82930 −0.240806
\(587\) 26.3857 1.08905 0.544527 0.838744i \(-0.316709\pi\)
0.544527 + 0.838744i \(0.316709\pi\)
\(588\) 0 0
\(589\) −0.0805641 −0.00331958
\(590\) 0 0
\(591\) 0 0
\(592\) 2.03746 0.0837390
\(593\) 37.1560 1.52581 0.762907 0.646508i \(-0.223771\pi\)
0.762907 + 0.646508i \(0.223771\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.1097 0.455072
\(597\) 0 0
\(598\) 5.30044 0.216751
\(599\) 5.96103 0.243561 0.121781 0.992557i \(-0.461140\pi\)
0.121781 + 0.992557i \(0.461140\pi\)
\(600\) 0 0
\(601\) 9.40636 0.383693 0.191847 0.981425i \(-0.438552\pi\)
0.191847 + 0.981425i \(0.438552\pi\)
\(602\) −19.9063 −0.811320
\(603\) 0 0
\(604\) −17.1907 −0.699478
\(605\) 0 0
\(606\) 0 0
\(607\) −11.5121 −0.467263 −0.233632 0.972325i \(-0.575061\pi\)
−0.233632 + 0.972325i \(0.575061\pi\)
\(608\) 0.215058 0.00872176
\(609\) 0 0
\(610\) 0 0
\(611\) 4.81092 0.194629
\(612\) 0 0
\(613\) −33.9655 −1.37185 −0.685927 0.727670i \(-0.740603\pi\)
−0.685927 + 0.727670i \(0.740603\pi\)
\(614\) −12.9491 −0.522583
\(615\) 0 0
\(616\) 10.1736 0.409907
\(617\) −18.1241 −0.729650 −0.364825 0.931076i \(-0.618871\pi\)
−0.364825 + 0.931076i \(0.618871\pi\)
\(618\) 0 0
\(619\) −43.7822 −1.75976 −0.879878 0.475200i \(-0.842376\pi\)
−0.879878 + 0.475200i \(0.842376\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.8940 −0.436811
\(623\) 16.9854 0.680507
\(624\) 0 0
\(625\) 0 0
\(626\) −20.8644 −0.833909
\(627\) 0 0
\(628\) −18.2815 −0.729513
\(629\) −20.8524 −0.831440
\(630\) 0 0
\(631\) −31.8836 −1.26927 −0.634633 0.772814i \(-0.718849\pi\)
−0.634633 + 0.772814i \(0.718849\pi\)
\(632\) 14.8717 0.591566
\(633\) 0 0
\(634\) −14.3532 −0.570038
\(635\) 0 0
\(636\) 0 0
\(637\) −0.843650 −0.0334266
\(638\) 1.25030 0.0494997
\(639\) 0 0
\(640\) 0 0
\(641\) 7.56055 0.298624 0.149312 0.988790i \(-0.452294\pi\)
0.149312 + 0.988790i \(0.452294\pi\)
\(642\) 0 0
\(643\) −6.78946 −0.267750 −0.133875 0.990998i \(-0.542742\pi\)
−0.133875 + 0.990998i \(0.542742\pi\)
\(644\) 21.7526 0.857173
\(645\) 0 0
\(646\) −0.0878685 −0.00345714
\(647\) −32.4336 −1.27510 −0.637549 0.770410i \(-0.720051\pi\)
−0.637549 + 0.770410i \(0.720051\pi\)
\(648\) 0 0
\(649\) −6.82391 −0.267862
\(650\) 0 0
\(651\) 0 0
\(652\) −22.3353 −0.874718
\(653\) −20.3067 −0.794661 −0.397331 0.917676i \(-0.630063\pi\)
−0.397331 + 0.917676i \(0.630063\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.541175 0.0211293
\(657\) 0 0
\(658\) −10.7120 −0.417597
\(659\) 47.3789 1.84562 0.922809 0.385257i \(-0.125887\pi\)
0.922809 + 0.385257i \(0.125887\pi\)
\(660\) 0 0
\(661\) 23.1097 0.898862 0.449431 0.893315i \(-0.351627\pi\)
0.449431 + 0.893315i \(0.351627\pi\)
\(662\) 21.7398 0.844941
\(663\) 0 0
\(664\) −28.0644 −1.08911
\(665\) 0 0
\(666\) 0 0
\(667\) 6.79703 0.263182
\(668\) −18.7167 −0.724172
\(669\) 0 0
\(670\) 0 0
\(671\) 18.1131 0.699250
\(672\) 0 0
\(673\) 0.691021 0.0266369 0.0133184 0.999911i \(-0.495760\pi\)
0.0133184 + 0.999911i \(0.495760\pi\)
\(674\) 15.8984 0.612385
\(675\) 0 0
\(676\) 15.7343 0.605167
\(677\) −10.2253 −0.392989 −0.196494 0.980505i \(-0.562956\pi\)
−0.196494 + 0.980505i \(0.562956\pi\)
\(678\) 0 0
\(679\) −23.2611 −0.892681
\(680\) 0 0
\(681\) 0 0
\(682\) −2.69773 −0.103301
\(683\) 9.74838 0.373012 0.186506 0.982454i \(-0.440284\pi\)
0.186506 + 0.982454i \(0.440284\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.3701 0.625012
\(687\) 0 0
\(688\) 2.63612 0.100501
\(689\) 1.24357 0.0473764
\(690\) 0 0
\(691\) −32.7638 −1.24639 −0.623197 0.782065i \(-0.714167\pi\)
−0.623197 + 0.782065i \(0.714167\pi\)
\(692\) −20.1848 −0.767311
\(693\) 0 0
\(694\) 6.46496 0.245407
\(695\) 0 0
\(696\) 0 0
\(697\) −5.53867 −0.209792
\(698\) 12.5821 0.476238
\(699\) 0 0
\(700\) 0 0
\(701\) 14.7894 0.558588 0.279294 0.960206i \(-0.409900\pi\)
0.279294 + 0.960206i \(0.409900\pi\)
\(702\) 0 0
\(703\) −0.277493 −0.0104658
\(704\) 6.38395 0.240604
\(705\) 0 0
\(706\) −14.2151 −0.534993
\(707\) −27.2018 −1.02303
\(708\) 0 0
\(709\) 42.1665 1.58360 0.791799 0.610782i \(-0.209145\pi\)
0.791799 + 0.610782i \(0.209145\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 19.0261 0.713034
\(713\) −14.6657 −0.549236
\(714\) 0 0
\(715\) 0 0
\(716\) 26.6114 0.994513
\(717\) 0 0
\(718\) −4.39384 −0.163977
\(719\) 16.2819 0.607211 0.303606 0.952798i \(-0.401809\pi\)
0.303606 + 0.952798i \(0.401809\pi\)
\(720\) 0 0
\(721\) −11.1426 −0.414972
\(722\) 15.9345 0.593020
\(723\) 0 0
\(724\) −22.7040 −0.843788
\(725\) 0 0
\(726\) 0 0
\(727\) 10.2431 0.379894 0.189947 0.981794i \(-0.439168\pi\)
0.189947 + 0.981794i \(0.439168\pi\)
\(728\) 6.34534 0.235174
\(729\) 0 0
\(730\) 0 0
\(731\) −26.9795 −0.997871
\(732\) 0 0
\(733\) 1.34776 0.0497807 0.0248904 0.999690i \(-0.492076\pi\)
0.0248904 + 0.999690i \(0.492076\pi\)
\(734\) −12.8171 −0.473087
\(735\) 0 0
\(736\) 39.1488 1.44304
\(737\) −0.434347 −0.0159994
\(738\) 0 0
\(739\) −33.2111 −1.22169 −0.610844 0.791751i \(-0.709170\pi\)
−0.610844 + 0.791751i \(0.709170\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.76894 −0.101651
\(743\) 36.6826 1.34576 0.672878 0.739754i \(-0.265058\pi\)
0.672878 + 0.739754i \(0.265058\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20.4373 −0.748264
\(747\) 0 0
\(748\) 5.42311 0.198289
\(749\) 0.685996 0.0250658
\(750\) 0 0
\(751\) −16.0304 −0.584959 −0.292480 0.956272i \(-0.594480\pi\)
−0.292480 + 0.956272i \(0.594480\pi\)
\(752\) 1.41855 0.0517292
\(753\) 0 0
\(754\) 0.779816 0.0283992
\(755\) 0 0
\(756\) 0 0
\(757\) −42.4991 −1.54466 −0.772328 0.635224i \(-0.780908\pi\)
−0.772328 + 0.635224i \(0.780908\pi\)
\(758\) 10.1533 0.368786
\(759\) 0 0
\(760\) 0 0
\(761\) −24.7756 −0.898114 −0.449057 0.893503i \(-0.648240\pi\)
−0.449057 + 0.893503i \(0.648240\pi\)
\(762\) 0 0
\(763\) −41.1368 −1.48925
\(764\) 20.1907 0.730475
\(765\) 0 0
\(766\) 17.6340 0.637142
\(767\) −4.25611 −0.153679
\(768\) 0 0
\(769\) 22.9249 0.826694 0.413347 0.910573i \(-0.364360\pi\)
0.413347 + 0.910573i \(0.364360\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.9487 0.394053
\(773\) 46.2921 1.66501 0.832506 0.554016i \(-0.186905\pi\)
0.832506 + 0.554016i \(0.186905\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −26.0558 −0.935349
\(777\) 0 0
\(778\) −8.69302 −0.311660
\(779\) −0.0737057 −0.00264078
\(780\) 0 0
\(781\) 16.0232 0.573356
\(782\) −15.9954 −0.571996
\(783\) 0 0
\(784\) −0.248759 −0.00888425
\(785\) 0 0
\(786\) 0 0
\(787\) 3.89849 0.138966 0.0694832 0.997583i \(-0.477865\pi\)
0.0694832 + 0.997583i \(0.477865\pi\)
\(788\) −13.2167 −0.470825
\(789\) 0 0
\(790\) 0 0
\(791\) 36.7822 1.30782
\(792\) 0 0
\(793\) 11.2973 0.401177
\(794\) 14.9178 0.529411
\(795\) 0 0
\(796\) −8.47990 −0.300562
\(797\) −21.1877 −0.750506 −0.375253 0.926922i \(-0.622444\pi\)
−0.375253 + 0.926922i \(0.622444\pi\)
\(798\) 0 0
\(799\) −14.5182 −0.513617
\(800\) 0 0
\(801\) 0 0
\(802\) −25.1504 −0.888093
\(803\) 0.0210233 0.000741898 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.68259 −0.0592666
\(807\) 0 0
\(808\) −30.4699 −1.07193
\(809\) −23.9959 −0.843651 −0.421826 0.906677i \(-0.638611\pi\)
−0.421826 + 0.906677i \(0.638611\pi\)
\(810\) 0 0
\(811\) −8.15390 −0.286322 −0.143161 0.989699i \(-0.545727\pi\)
−0.143161 + 0.989699i \(0.545727\pi\)
\(812\) 3.20031 0.112309
\(813\) 0 0
\(814\) −9.29198 −0.325684
\(815\) 0 0
\(816\) 0 0
\(817\) −0.359028 −0.0125608
\(818\) −25.7249 −0.899450
\(819\) 0 0
\(820\) 0 0
\(821\) 8.76657 0.305955 0.152978 0.988230i \(-0.451114\pi\)
0.152978 + 0.988230i \(0.451114\pi\)
\(822\) 0 0
\(823\) 49.1112 1.71191 0.855955 0.517050i \(-0.172970\pi\)
0.855955 + 0.517050i \(0.172970\pi\)
\(824\) −12.4813 −0.434807
\(825\) 0 0
\(826\) 9.47664 0.329734
\(827\) −34.1055 −1.18597 −0.592983 0.805215i \(-0.702050\pi\)
−0.592983 + 0.805215i \(0.702050\pi\)
\(828\) 0 0
\(829\) 1.20117 0.0417183 0.0208591 0.999782i \(-0.493360\pi\)
0.0208591 + 0.999782i \(0.493360\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.98170 0.138041
\(833\) 2.54593 0.0882113
\(834\) 0 0
\(835\) 0 0
\(836\) 0.0721679 0.00249598
\(837\) 0 0
\(838\) −12.6139 −0.435740
\(839\) 1.87849 0.0648526 0.0324263 0.999474i \(-0.489677\pi\)
0.0324263 + 0.999474i \(0.489677\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 26.3043 0.906506
\(843\) 0 0
\(844\) −20.2246 −0.696161
\(845\) 0 0
\(846\) 0 0
\(847\) −21.6663 −0.744463
\(848\) 0.366681 0.0125919
\(849\) 0 0
\(850\) 0 0
\(851\) −50.5143 −1.73161
\(852\) 0 0
\(853\) −33.0917 −1.13304 −0.566519 0.824049i \(-0.691710\pi\)
−0.566519 + 0.824049i \(0.691710\pi\)
\(854\) −25.1544 −0.860767
\(855\) 0 0
\(856\) 0.768414 0.0262639
\(857\) 47.6859 1.62892 0.814460 0.580220i \(-0.197034\pi\)
0.814460 + 0.580220i \(0.197034\pi\)
\(858\) 0 0
\(859\) 0.746091 0.0254563 0.0127281 0.999919i \(-0.495948\pi\)
0.0127281 + 0.999919i \(0.495948\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24.0810 −0.820201
\(863\) 46.8245 1.59392 0.796962 0.604030i \(-0.206439\pi\)
0.796962 + 0.604030i \(0.206439\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −25.9236 −0.880919
\(867\) 0 0
\(868\) −6.90522 −0.234378
\(869\) 8.01832 0.272003
\(870\) 0 0
\(871\) −0.270905 −0.00917925
\(872\) −46.0791 −1.56043
\(873\) 0 0
\(874\) −0.212859 −0.00720005
\(875\) 0 0
\(876\) 0 0
\(877\) 0.970257 0.0327632 0.0163816 0.999866i \(-0.494785\pi\)
0.0163816 + 0.999866i \(0.494785\pi\)
\(878\) −15.5857 −0.525992
\(879\) 0 0
\(880\) 0 0
\(881\) −0.755979 −0.0254696 −0.0127348 0.999919i \(-0.504054\pi\)
−0.0127348 + 0.999919i \(0.504054\pi\)
\(882\) 0 0
\(883\) 15.8839 0.534536 0.267268 0.963622i \(-0.413879\pi\)
0.267268 + 0.963622i \(0.413879\pi\)
\(884\) 3.38242 0.113763
\(885\) 0 0
\(886\) −27.1851 −0.913300
\(887\) 12.5061 0.419915 0.209958 0.977710i \(-0.432667\pi\)
0.209958 + 0.977710i \(0.432667\pi\)
\(888\) 0 0
\(889\) 35.1179 1.17782
\(890\) 0 0
\(891\) 0 0
\(892\) −30.8141 −1.03173
\(893\) −0.193200 −0.00646521
\(894\) 0 0
\(895\) 0 0
\(896\) 19.5679 0.653719
\(897\) 0 0
\(898\) −10.6925 −0.356813
\(899\) −2.15767 −0.0719623
\(900\) 0 0
\(901\) −3.75281 −0.125024
\(902\) −2.46807 −0.0821778
\(903\) 0 0
\(904\) 41.2013 1.37034
\(905\) 0 0
\(906\) 0 0
\(907\) 0.966094 0.0320786 0.0160393 0.999871i \(-0.494894\pi\)
0.0160393 + 0.999871i \(0.494894\pi\)
\(908\) −11.8019 −0.391659
\(909\) 0 0
\(910\) 0 0
\(911\) 21.2288 0.703340 0.351670 0.936124i \(-0.385614\pi\)
0.351670 + 0.936124i \(0.385614\pi\)
\(912\) 0 0
\(913\) −15.1313 −0.500774
\(914\) 17.2259 0.569781
\(915\) 0 0
\(916\) −31.6128 −1.04452
\(917\) −48.8709 −1.61386
\(918\) 0 0
\(919\) 16.9547 0.559284 0.279642 0.960104i \(-0.409784\pi\)
0.279642 + 0.960104i \(0.409784\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 12.6617 0.416991
\(923\) 9.99377 0.328949
\(924\) 0 0
\(925\) 0 0
\(926\) 1.00227 0.0329368
\(927\) 0 0
\(928\) 5.75969 0.189071
\(929\) 26.0792 0.855632 0.427816 0.903866i \(-0.359283\pi\)
0.427816 + 0.903866i \(0.359283\pi\)
\(930\) 0 0
\(931\) 0.0338799 0.00111037
\(932\) 24.1579 0.791318
\(933\) 0 0
\(934\) −5.94365 −0.194482
\(935\) 0 0
\(936\) 0 0
\(937\) 6.07903 0.198593 0.0992967 0.995058i \(-0.468341\pi\)
0.0992967 + 0.995058i \(0.468341\pi\)
\(938\) 0.603196 0.0196950
\(939\) 0 0
\(940\) 0 0
\(941\) −49.5166 −1.61419 −0.807097 0.590419i \(-0.798963\pi\)
−0.807097 + 0.590419i \(0.798963\pi\)
\(942\) 0 0
\(943\) −13.4173 −0.436926
\(944\) −1.25496 −0.0408454
\(945\) 0 0
\(946\) −12.0222 −0.390877
\(947\) 26.9125 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(948\) 0 0
\(949\) 0.0131124 0.000425645 0
\(950\) 0 0
\(951\) 0 0
\(952\) −19.1487 −0.620613
\(953\) −30.8022 −0.997781 −0.498891 0.866665i \(-0.666259\pi\)
−0.498891 + 0.866665i \(0.666259\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 2.19725 0.0710642
\(957\) 0 0
\(958\) 32.6067 1.05347
\(959\) 2.35683 0.0761059
\(960\) 0 0
\(961\) −26.3445 −0.849821
\(962\) −5.79546 −0.186853
\(963\) 0 0
\(964\) −11.1183 −0.358098
\(965\) 0 0
\(966\) 0 0
\(967\) 50.1110 1.61146 0.805730 0.592283i \(-0.201773\pi\)
0.805730 + 0.592283i \(0.201773\pi\)
\(968\) −24.2694 −0.780047
\(969\) 0 0
\(970\) 0 0
\(971\) 13.0301 0.418156 0.209078 0.977899i \(-0.432954\pi\)
0.209078 + 0.977899i \(0.432954\pi\)
\(972\) 0 0
\(973\) −55.6315 −1.78346
\(974\) −25.4201 −0.814514
\(975\) 0 0
\(976\) 3.33111 0.106626
\(977\) 3.50116 0.112012 0.0560060 0.998430i \(-0.482163\pi\)
0.0560060 + 0.998430i \(0.482163\pi\)
\(978\) 0 0
\(979\) 10.2582 0.327854
\(980\) 0 0
\(981\) 0 0
\(982\) −8.25748 −0.263507
\(983\) 41.2281 1.31497 0.657486 0.753467i \(-0.271620\pi\)
0.657486 + 0.753467i \(0.271620\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.35330 −0.0749443
\(987\) 0 0
\(988\) 0.0450115 0.00143201
\(989\) −65.3569 −2.07823
\(990\) 0 0
\(991\) 3.17997 0.101015 0.0505076 0.998724i \(-0.483916\pi\)
0.0505076 + 0.998724i \(0.483916\pi\)
\(992\) −12.4275 −0.394574
\(993\) 0 0
\(994\) −22.2521 −0.705793
\(995\) 0 0
\(996\) 0 0
\(997\) 33.8545 1.07218 0.536092 0.844160i \(-0.319900\pi\)
0.536092 + 0.844160i \(0.319900\pi\)
\(998\) −17.5895 −0.556785
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bm.1.3 5
3.2 odd 2 725.2.a.k.1.3 yes 5
5.4 even 2 6525.2.a.bq.1.3 5
15.2 even 4 725.2.b.f.349.6 10
15.8 even 4 725.2.b.f.349.5 10
15.14 odd 2 725.2.a.h.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.h.1.3 5 15.14 odd 2
725.2.a.k.1.3 yes 5 3.2 odd 2
725.2.b.f.349.5 10 15.8 even 4
725.2.b.f.349.6 10 15.2 even 4
6525.2.a.bm.1.3 5 1.1 even 1 trivial
6525.2.a.bq.1.3 5 5.4 even 2