Properties

Label 7200.2.d.s.2449.5
Level $7200$
Weight $2$
Character 7200.2449
Analytic conductor $57.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7200,2,Mod(2449,7200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7200.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -8,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(53)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.214798336.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.5
Root \(1.23291 - 0.692769i\) of defining polynomial
Character \(\chi\) \(=\) 7200.2449
Dual form 7200.2.d.s.2449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0802864i q^{7} +2.41649i q^{11} +5.26785 q^{13} -0.255918i q^{17} -6.95864i q^{19} -1.64542i q^{23} -4.51516i q^{29} -8.29484 q^{31} -2.67241 q^{37} +8.11921 q^{41} +4.08890 q^{43} -5.70272i q^{47} +6.99355 q^{49} -11.5627 q^{53} +12.6963i q^{59} -11.9403i q^{61} -7.27979 q^{67} -11.3481 q^{71} -12.0779i q^{73} -0.194011 q^{77} +5.50539 q^{79} -9.20811 q^{83} +11.9173 q^{89} +0.422937i q^{91} -8.50539i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{31} - 8 q^{43} + 8 q^{53} + 24 q^{67} - 40 q^{71} - 24 q^{77} - 16 q^{79} + 32 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.0802864i 0.0303454i 0.999885 + 0.0151727i \(0.00482980\pi\)
−0.999885 + 0.0151727i \(0.995170\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.41649i 0.728599i 0.931282 + 0.364300i \(0.118692\pi\)
−0.931282 + 0.364300i \(0.881308\pi\)
\(12\) 0 0
\(13\) 5.26785 1.46104 0.730520 0.682892i \(-0.239278\pi\)
0.730520 + 0.682892i \(0.239278\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 0.255918i − 0.0620692i −0.999518 0.0310346i \(-0.990120\pi\)
0.999518 0.0310346i \(-0.00988021\pi\)
\(18\) 0 0
\(19\) − 6.95864i − 1.59642i −0.602378 0.798211i \(-0.705780\pi\)
0.602378 0.798211i \(-0.294220\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.64542i − 0.343093i −0.985176 0.171546i \(-0.945124\pi\)
0.985176 0.171546i \(-0.0548764\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 4.51516i − 0.838444i −0.907884 0.419222i \(-0.862303\pi\)
0.907884 0.419222i \(-0.137697\pi\)
\(30\) 0 0
\(31\) −8.29484 −1.48980 −0.744899 0.667177i \(-0.767502\pi\)
−0.744899 + 0.667177i \(0.767502\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.67241 −0.439341 −0.219671 0.975574i \(-0.570498\pi\)
−0.219671 + 0.975574i \(0.570498\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.11921 1.26801 0.634004 0.773330i \(-0.281410\pi\)
0.634004 + 0.773330i \(0.281410\pi\)
\(42\) 0 0
\(43\) 4.08890 0.623551 0.311776 0.950156i \(-0.399076\pi\)
0.311776 + 0.950156i \(0.399076\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 5.70272i − 0.831827i −0.909404 0.415914i \(-0.863462\pi\)
0.909404 0.415914i \(-0.136538\pi\)
\(48\) 0 0
\(49\) 6.99355 0.999079
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.5627 −1.58826 −0.794129 0.607749i \(-0.792073\pi\)
−0.794129 + 0.607749i \(0.792073\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.6963i 1.65291i 0.563000 + 0.826457i \(0.309647\pi\)
−0.563000 + 0.826457i \(0.690353\pi\)
\(60\) 0 0
\(61\) − 11.9403i − 1.52879i −0.644746 0.764397i \(-0.723037\pi\)
0.644746 0.764397i \(-0.276963\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.27979 −0.889367 −0.444684 0.895688i \(-0.646684\pi\)
−0.444684 + 0.895688i \(0.646684\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.3481 −1.34678 −0.673388 0.739289i \(-0.735162\pi\)
−0.673388 + 0.739289i \(0.735162\pi\)
\(72\) 0 0
\(73\) − 12.0779i − 1.41361i −0.707411 0.706803i \(-0.750137\pi\)
0.707411 0.706803i \(-0.249863\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.194011 −0.0221096
\(78\) 0 0
\(79\) 5.50539 0.619405 0.309702 0.950834i \(-0.399771\pi\)
0.309702 + 0.950834i \(0.399771\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.20811 −1.01072 −0.505361 0.862908i \(-0.668641\pi\)
−0.505361 + 0.862908i \(0.668641\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.9173 1.26323 0.631615 0.775283i \(-0.282393\pi\)
0.631615 + 0.775283i \(0.282393\pi\)
\(90\) 0 0
\(91\) 0.422937i 0.0443358i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.50539i − 0.863592i −0.901971 0.431796i \(-0.857880\pi\)
0.901971 0.431796i \(-0.142120\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.56270i 0.752516i 0.926515 + 0.376258i \(0.122789\pi\)
−0.926515 + 0.376258i \(0.877211\pi\)
\(102\) 0 0
\(103\) 1.78544i 0.175925i 0.996124 + 0.0879624i \(0.0280355\pi\)
−0.996124 + 0.0879624i \(0.971964\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.4705 1.01222 0.506110 0.862469i \(-0.331083\pi\)
0.506110 + 0.862469i \(0.331083\pi\)
\(108\) 0 0
\(109\) − 3.64298i − 0.348934i −0.984663 0.174467i \(-0.944180\pi\)
0.984663 0.174467i \(-0.0558203\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 8.83298i − 0.830937i −0.909608 0.415468i \(-0.863618\pi\)
0.909608 0.415468i \(-0.136382\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.0205467 0.00188351
\(120\) 0 0
\(121\) 5.16057 0.469143
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.69628i − 0.771670i −0.922568 0.385835i \(-0.873913\pi\)
0.922568 0.385835i \(-0.126087\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.7916i 0.942868i 0.881901 + 0.471434i \(0.156264\pi\)
−0.881901 + 0.471434i \(0.843736\pi\)
\(132\) 0 0
\(133\) 0.558684 0.0484440
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.5421i 0.986112i 0.869997 + 0.493056i \(0.164120\pi\)
−0.869997 + 0.493056i \(0.835880\pi\)
\(138\) 0 0
\(139\) − 0.214558i − 0.0181986i −0.999959 0.00909928i \(-0.997104\pi\)
0.999959 0.00909928i \(-0.00289643\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.7297i 1.06451i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 23.0475i 1.88813i 0.329762 + 0.944064i \(0.393031\pi\)
−0.329762 + 0.944064i \(0.606969\pi\)
\(150\) 0 0
\(151\) −9.48573 −0.771938 −0.385969 0.922512i \(-0.626133\pi\)
−0.385969 + 0.922512i \(0.626133\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.34413 0.506316 0.253158 0.967425i \(-0.418531\pi\)
0.253158 + 0.967425i \(0.418531\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.132104 0.0104113
\(162\) 0 0
\(163\) 12.4100 0.972030 0.486015 0.873951i \(-0.338450\pi\)
0.486015 + 0.873951i \(0.338450\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 23.2654i − 1.80033i −0.435547 0.900166i \(-0.643445\pi\)
0.435547 0.900166i \(-0.356555\pi\)
\(168\) 0 0
\(169\) 14.7503 1.13464
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.63897 −0.656809 −0.328404 0.944537i \(-0.606511\pi\)
−0.328404 + 0.944537i \(0.606511\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 9.40544i − 0.702996i −0.936189 0.351498i \(-0.885672\pi\)
0.936189 0.351498i \(-0.114328\pi\)
\(180\) 0 0
\(181\) 6.43487i 0.478300i 0.970983 + 0.239150i \(0.0768688\pi\)
−0.970983 + 0.239150i \(0.923131\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.618423 0.0452236
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.56270 −0.402503 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(192\) 0 0
\(193\) − 18.4227i − 1.32609i −0.748578 0.663046i \(-0.769263\pi\)
0.748578 0.663046i \(-0.230737\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0239 1.28415 0.642074 0.766643i \(-0.278074\pi\)
0.642074 + 0.766643i \(0.278074\pi\)
\(198\) 0 0
\(199\) 20.1214 1.42637 0.713183 0.700977i \(-0.247253\pi\)
0.713183 + 0.700977i \(0.247253\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.362505 0.0254429
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.8155 1.16315
\(210\) 0 0
\(211\) − 3.25592i − 0.224147i −0.993700 0.112073i \(-0.964251\pi\)
0.993700 0.112073i \(-0.0357492\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 0.665963i − 0.0452085i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 1.34814i − 0.0906856i
\(222\) 0 0
\(223\) − 26.9911i − 1.80746i −0.428104 0.903730i \(-0.640818\pi\)
0.428104 0.903730i \(-0.359182\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.8219 −1.31563 −0.657814 0.753180i \(-0.728519\pi\)
−0.657814 + 0.753180i \(0.728519\pi\)
\(228\) 0 0
\(229\) − 21.6797i − 1.43264i −0.697773 0.716319i \(-0.745826\pi\)
0.697773 0.716319i \(-0.254174\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 17.2733i − 1.13161i −0.824538 0.565807i \(-0.808565\pi\)
0.824538 0.565807i \(-0.191435\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.3718 1.05900 0.529502 0.848309i \(-0.322379\pi\)
0.529502 + 0.848309i \(0.322379\pi\)
\(240\) 0 0
\(241\) −6.82654 −0.439736 −0.219868 0.975530i \(-0.570563\pi\)
−0.219868 + 0.975530i \(0.570563\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 36.6571i − 2.33243i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 2.96969i − 0.187445i −0.995598 0.0937225i \(-0.970123\pi\)
0.995598 0.0937225i \(-0.0298766\pi\)
\(252\) 0 0
\(253\) 3.97613 0.249977
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.03031i 0.313782i 0.987616 + 0.156891i \(0.0501472\pi\)
−0.987616 + 0.156891i \(0.949853\pi\)
\(258\) 0 0
\(259\) − 0.214558i − 0.0133320i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.70585i − 0.166850i −0.996514 0.0834248i \(-0.973414\pi\)
0.996514 0.0834248i \(-0.0265859\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 22.3718i − 1.36403i −0.731337 0.682017i \(-0.761103\pi\)
0.731337 0.682017i \(-0.238897\pi\)
\(270\) 0 0
\(271\) 0.869741 0.0528330 0.0264165 0.999651i \(-0.491590\pi\)
0.0264165 + 0.999651i \(0.491590\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −28.6733 −1.72281 −0.861406 0.507918i \(-0.830415\pi\)
−0.861406 + 0.507918i \(0.830415\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.1429 −0.903349 −0.451674 0.892183i \(-0.649173\pi\)
−0.451674 + 0.892183i \(0.649173\pi\)
\(282\) 0 0
\(283\) 6.23225 0.370469 0.185234 0.982694i \(-0.440696\pi\)
0.185234 + 0.982694i \(0.440696\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.651862i 0.0384782i
\(288\) 0 0
\(289\) 16.9345 0.996147
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 21.5054 1.25636 0.628179 0.778069i \(-0.283800\pi\)
0.628179 + 0.778069i \(0.283800\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 8.66781i − 0.501272i
\(300\) 0 0
\(301\) 0.328283i 0.0189219i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.57706 0.204154 0.102077 0.994777i \(-0.467451\pi\)
0.102077 + 0.994777i \(0.467451\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.49461 −0.141456 −0.0707282 0.997496i \(-0.522532\pi\)
−0.0707282 + 0.997496i \(0.522532\pi\)
\(312\) 0 0
\(313\) 9.57246i 0.541068i 0.962710 + 0.270534i \(0.0872002\pi\)
−0.962710 + 0.270534i \(0.912800\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.16702 −0.177877 −0.0889387 0.996037i \(-0.528348\pi\)
−0.0889387 + 0.996037i \(0.528348\pi\)
\(318\) 0 0
\(319\) 10.9108 0.610889
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.78084 −0.0990887
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.457851 0.0252421
\(330\) 0 0
\(331\) − 16.5118i − 0.907573i −0.891111 0.453786i \(-0.850073\pi\)
0.891111 0.453786i \(-0.149927\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.8330i 0.644584i 0.946640 + 0.322292i \(0.104453\pi\)
−0.946640 + 0.322292i \(0.895547\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 20.0444i − 1.08547i
\(342\) 0 0
\(343\) 1.12349i 0.0606628i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.9713 −1.28684 −0.643422 0.765511i \(-0.722486\pi\)
−0.643422 + 0.765511i \(0.722486\pi\)
\(348\) 0 0
\(349\) 8.91570i 0.477247i 0.971112 + 0.238623i \(0.0766961\pi\)
−0.971112 + 0.238623i \(0.923304\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.35606i 0.391524i 0.980651 + 0.195762i \(0.0627179\pi\)
−0.980651 + 0.195762i \(0.937282\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.2114 −1.33061 −0.665304 0.746572i \(-0.731698\pi\)
−0.665304 + 0.746572i \(0.731698\pi\)
\(360\) 0 0
\(361\) −29.4227 −1.54856
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.86573i 0.306189i 0.988212 + 0.153094i \(0.0489238\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 0.928327i − 0.0481963i
\(372\) 0 0
\(373\) −27.5063 −1.42422 −0.712111 0.702067i \(-0.752261\pi\)
−0.712111 + 0.702067i \(0.752261\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 23.7852i − 1.22500i
\(378\) 0 0
\(379\) 11.7549i 0.603807i 0.953339 + 0.301903i \(0.0976220\pi\)
−0.953339 + 0.301903i \(0.902378\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 34.3335i − 1.75436i −0.480162 0.877180i \(-0.659422\pi\)
0.480162 0.877180i \(-0.340578\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.89515i 0.146790i 0.997303 + 0.0733951i \(0.0233834\pi\)
−0.997303 + 0.0733951i \(0.976617\pi\)
\(390\) 0 0
\(391\) −0.421092 −0.0212955
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.9099 1.14982 0.574909 0.818218i \(-0.305038\pi\)
0.574909 + 0.818218i \(0.305038\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.4337 0.620910 0.310455 0.950588i \(-0.399519\pi\)
0.310455 + 0.950588i \(0.399519\pi\)
\(402\) 0 0
\(403\) −43.6960 −2.17665
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 6.45785i − 0.320104i
\(408\) 0 0
\(409\) 32.0886 1.58668 0.793340 0.608778i \(-0.208340\pi\)
0.793340 + 0.608778i \(0.208340\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.01934 −0.0501583
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 16.1364i − 0.788317i −0.919043 0.394158i \(-0.871036\pi\)
0.919043 0.394158i \(-0.128964\pi\)
\(420\) 0 0
\(421\) 28.7675i 1.40204i 0.713141 + 0.701021i \(0.247272\pi\)
−0.713141 + 0.701021i \(0.752728\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.958640 0.0463918
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.7297 1.19119 0.595594 0.803285i \(-0.296917\pi\)
0.595594 + 0.803285i \(0.296917\pi\)
\(432\) 0 0
\(433\) − 4.48816i − 0.215687i −0.994168 0.107844i \(-0.965605\pi\)
0.994168 0.107844i \(-0.0343946\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.4499 −0.547721
\(438\) 0 0
\(439\) 5.96081 0.284494 0.142247 0.989831i \(-0.454567\pi\)
0.142247 + 0.989831i \(0.454567\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.2924 0.679053 0.339526 0.940597i \(-0.389733\pi\)
0.339526 + 0.940597i \(0.389733\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.5529 1.15872 0.579362 0.815070i \(-0.303302\pi\)
0.579362 + 0.815070i \(0.303302\pi\)
\(450\) 0 0
\(451\) 19.6200i 0.923870i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 28.9108i − 1.35239i −0.736722 0.676196i \(-0.763627\pi\)
0.736722 0.676196i \(-0.236373\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.35458i 0.202813i 0.994845 + 0.101407i \(0.0323343\pi\)
−0.994845 + 0.101407i \(0.967666\pi\)
\(462\) 0 0
\(463\) − 11.1303i − 0.517267i −0.965976 0.258634i \(-0.916728\pi\)
0.965976 0.258634i \(-0.0832722\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.1257 0.885030 0.442515 0.896761i \(-0.354086\pi\)
0.442515 + 0.896761i \(0.354086\pi\)
\(468\) 0 0
\(469\) − 0.584467i − 0.0269882i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.88079i 0.454319i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.6358 1.17133 0.585666 0.810553i \(-0.300833\pi\)
0.585666 + 0.810553i \(0.300833\pi\)
\(480\) 0 0
\(481\) −14.0779 −0.641895
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 12.8434i − 0.581992i −0.956724 0.290996i \(-0.906013\pi\)
0.956724 0.290996i \(-0.0939866\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 16.9887i − 0.766689i −0.923605 0.383344i \(-0.874772\pi\)
0.923605 0.383344i \(-0.125228\pi\)
\(492\) 0 0
\(493\) −1.15551 −0.0520415
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 0.911101i − 0.0408684i
\(498\) 0 0
\(499\) 14.0521i 0.629060i 0.949248 + 0.314530i \(0.101847\pi\)
−0.949248 + 0.314530i \(0.898153\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 9.53258i − 0.425037i −0.977157 0.212518i \(-0.931833\pi\)
0.977157 0.212518i \(-0.0681665\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 30.3450i − 1.34502i −0.740088 0.672510i \(-0.765216\pi\)
0.740088 0.672510i \(-0.234784\pi\)
\(510\) 0 0
\(511\) 0.969687 0.0428964
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 13.7806 0.606069
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.4245 −0.631949 −0.315975 0.948768i \(-0.602331\pi\)
−0.315975 + 0.948768i \(0.602331\pi\)
\(522\) 0 0
\(523\) −28.2207 −1.23401 −0.617003 0.786961i \(-0.711654\pi\)
−0.617003 + 0.786961i \(0.711654\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.12280i 0.0924706i
\(528\) 0 0
\(529\) 20.2926 0.882287
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 42.7708 1.85261
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 16.8999i 0.727928i
\(540\) 0 0
\(541\) 13.4695i 0.579100i 0.957163 + 0.289550i \(0.0935056\pi\)
−0.957163 + 0.289550i \(0.906494\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.42773 0.189316 0.0946581 0.995510i \(-0.469824\pi\)
0.0946581 + 0.995510i \(0.469824\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −31.4193 −1.33851
\(552\) 0 0
\(553\) 0.442008i 0.0187961i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −40.2017 −1.70340 −0.851700 0.524030i \(-0.824428\pi\)
−0.851700 + 0.524030i \(0.824428\pi\)
\(558\) 0 0
\(559\) 21.5397 0.911033
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.1128 0.552637 0.276319 0.961066i \(-0.410885\pi\)
0.276319 + 0.961066i \(0.410885\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.0257 −0.462222 −0.231111 0.972927i \(-0.574236\pi\)
−0.231111 + 0.972927i \(0.574236\pi\)
\(570\) 0 0
\(571\) 45.6960i 1.91232i 0.292847 + 0.956159i \(0.405397\pi\)
−0.292847 + 0.956159i \(0.594603\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 17.2685i − 0.718899i −0.933165 0.359449i \(-0.882965\pi\)
0.933165 0.359449i \(-0.117035\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 0.739286i − 0.0306707i
\(582\) 0 0
\(583\) − 27.9411i − 1.15720i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.7155 1.43286 0.716432 0.697657i \(-0.245774\pi\)
0.716432 + 0.697657i \(0.245774\pi\)
\(588\) 0 0
\(589\) 57.7208i 2.37835i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 9.34022i − 0.383557i −0.981438 0.191778i \(-0.938575\pi\)
0.981438 0.191778i \(-0.0614255\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13.9110 0.568389 0.284195 0.958767i \(-0.408274\pi\)
0.284195 + 0.958767i \(0.408274\pi\)
\(600\) 0 0
\(601\) 11.7330 0.478600 0.239300 0.970946i \(-0.423082\pi\)
0.239300 + 0.970946i \(0.423082\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10.8158i 0.438998i 0.975613 + 0.219499i \(0.0704423\pi\)
−0.975613 + 0.219499i \(0.929558\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 30.0411i − 1.21533i
\(612\) 0 0
\(613\) −17.9632 −0.725528 −0.362764 0.931881i \(-0.618167\pi\)
−0.362764 + 0.931881i \(0.618167\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 12.3576i − 0.497500i −0.968568 0.248750i \(-0.919980\pi\)
0.968568 0.248750i \(-0.0800197\pi\)
\(618\) 0 0
\(619\) − 4.99540i − 0.200782i −0.994948 0.100391i \(-0.967991\pi\)
0.994948 0.100391i \(-0.0320094\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.956795i 0.0383332i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.683917i 0.0272696i
\(630\) 0 0
\(631\) 17.9674 0.715273 0.357636 0.933861i \(-0.383583\pi\)
0.357636 + 0.933861i \(0.383583\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 36.8410 1.45969
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −27.3638 −1.08081 −0.540403 0.841406i \(-0.681728\pi\)
−0.540403 + 0.841406i \(0.681728\pi\)
\(642\) 0 0
\(643\) −2.27518 −0.0897245 −0.0448623 0.998993i \(-0.514285\pi\)
−0.0448623 + 0.998993i \(0.514285\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.4769i 0.490516i 0.969458 + 0.245258i \(0.0788726\pi\)
−0.969458 + 0.245258i \(0.921127\pi\)
\(648\) 0 0
\(649\) −30.6804 −1.20431
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.3055 −1.14681 −0.573406 0.819271i \(-0.694378\pi\)
−0.573406 + 0.819271i \(0.694378\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.6009i 0.724589i 0.932064 + 0.362295i \(0.118007\pi\)
−0.932064 + 0.362295i \(0.881993\pi\)
\(660\) 0 0
\(661\) − 16.1318i − 0.627456i −0.949513 0.313728i \(-0.898422\pi\)
0.949513 0.313728i \(-0.101578\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.42931 −0.287664
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 28.8535 1.11388
\(672\) 0 0
\(673\) 34.1385i 1.31594i 0.753043 + 0.657971i \(0.228585\pi\)
−0.753043 + 0.657971i \(0.771415\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.1940 0.468654 0.234327 0.972158i \(-0.424711\pi\)
0.234327 + 0.972158i \(0.424711\pi\)
\(678\) 0 0
\(679\) 0.682867 0.0262060
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.8567 0.836322 0.418161 0.908373i \(-0.362675\pi\)
0.418161 + 0.908373i \(0.362675\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −60.9106 −2.32051
\(690\) 0 0
\(691\) 6.17780i 0.235015i 0.993072 + 0.117507i \(0.0374903\pi\)
−0.993072 + 0.117507i \(0.962510\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.07785i − 0.0787043i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.9746i 1.28320i 0.767038 + 0.641601i \(0.221730\pi\)
−0.767038 + 0.641601i \(0.778270\pi\)
\(702\) 0 0
\(703\) 18.5963i 0.701374i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.607181 −0.0228354
\(708\) 0 0
\(709\) − 22.3441i − 0.839151i −0.907720 0.419576i \(-0.862179\pi\)
0.907720 0.419576i \(-0.137821\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.6485i 0.511139i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.8427 0.665422 0.332711 0.943029i \(-0.392037\pi\)
0.332711 + 0.943029i \(0.392037\pi\)
\(720\) 0 0
\(721\) −0.143347 −0.00533851
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23.9148i 0.886953i 0.896286 + 0.443476i \(0.146255\pi\)
−0.896286 + 0.443476i \(0.853745\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1.04642i − 0.0387034i
\(732\) 0 0
\(733\) 15.6789 0.579112 0.289556 0.957161i \(-0.406492\pi\)
0.289556 + 0.957161i \(0.406492\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 17.5915i − 0.647992i
\(738\) 0 0
\(739\) − 22.3083i − 0.820622i −0.911946 0.410311i \(-0.865420\pi\)
0.911946 0.410311i \(-0.134580\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 9.78057i − 0.358814i −0.983775 0.179407i \(-0.942582\pi\)
0.983775 0.179407i \(-0.0574180\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.840636i 0.0307162i
\(750\) 0 0
\(751\) 8.05399 0.293894 0.146947 0.989144i \(-0.453055\pi\)
0.146947 + 0.989144i \(0.453055\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −28.4889 −1.03545 −0.517723 0.855549i \(-0.673220\pi\)
−0.517723 + 0.855549i \(0.673220\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.5005 0.779393 0.389697 0.920943i \(-0.372580\pi\)
0.389697 + 0.920943i \(0.372580\pi\)
\(762\) 0 0
\(763\) 0.292482 0.0105886
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 66.8821i 2.41497i
\(768\) 0 0
\(769\) −23.5596 −0.849580 −0.424790 0.905292i \(-0.639652\pi\)
−0.424790 + 0.905292i \(0.639652\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.1655 1.12094 0.560472 0.828173i \(-0.310620\pi\)
0.560472 + 0.828173i \(0.310620\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 56.4987i − 2.02428i
\(780\) 0 0
\(781\) − 27.4227i − 0.981260i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −5.07812 −0.181015 −0.0905077 0.995896i \(-0.528849\pi\)
−0.0905077 + 0.995896i \(0.528849\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.709168 0.0252151
\(792\) 0 0
\(793\) − 62.8995i − 2.23363i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.43418 −0.0508012 −0.0254006 0.999677i \(-0.508086\pi\)
−0.0254006 + 0.999677i \(0.508086\pi\)
\(798\) 0 0
\(799\) −1.45943 −0.0516309
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 29.1860 1.02995
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.7153 0.833787 0.416894 0.908955i \(-0.363119\pi\)
0.416894 + 0.908955i \(0.363119\pi\)
\(810\) 0 0
\(811\) − 47.8394i − 1.67987i −0.542689 0.839933i \(-0.682594\pi\)
0.542689 0.839933i \(-0.317406\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 28.4532i − 0.995451i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 51.9216i − 1.81208i −0.423195 0.906038i \(-0.639092\pi\)
0.423195 0.906038i \(-0.360908\pi\)
\(822\) 0 0
\(823\) 27.8542i 0.970937i 0.874254 + 0.485469i \(0.161351\pi\)
−0.874254 + 0.485469i \(0.838649\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −43.9365 −1.52782 −0.763912 0.645321i \(-0.776724\pi\)
−0.763912 + 0.645321i \(0.776724\pi\)
\(828\) 0 0
\(829\) 41.6898i 1.44795i 0.689827 + 0.723974i \(0.257686\pi\)
−0.689827 + 0.723974i \(0.742314\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1.78978i − 0.0620121i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.4733 0.879437 0.439719 0.898136i \(-0.355078\pi\)
0.439719 + 0.898136i \(0.355078\pi\)
\(840\) 0 0
\(841\) 8.61336 0.297012
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.414324i 0.0142363i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.39722i 0.150735i
\(852\) 0 0
\(853\) 12.5366 0.429245 0.214622 0.976697i \(-0.431148\pi\)
0.214622 + 0.976697i \(0.431148\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.61409i − 0.0892956i −0.999003 0.0446478i \(-0.985783\pi\)
0.999003 0.0446478i \(-0.0142166\pi\)
\(858\) 0 0
\(859\) − 31.8438i − 1.08650i −0.839573 0.543248i \(-0.817195\pi\)
0.839573 0.543248i \(-0.182805\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.3335i 0.760241i 0.924937 + 0.380121i \(0.124118\pi\)
−0.924937 + 0.380121i \(0.875882\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.3037i 0.451298i
\(870\) 0 0
\(871\) −38.3488 −1.29940
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.4408 −1.26429 −0.632143 0.774852i \(-0.717824\pi\)
−0.632143 + 0.774852i \(0.717824\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −53.1952 −1.79219 −0.896096 0.443860i \(-0.853609\pi\)
−0.896096 + 0.443860i \(0.853609\pi\)
\(882\) 0 0
\(883\) 36.0907 1.21455 0.607274 0.794493i \(-0.292263\pi\)
0.607274 + 0.794493i \(0.292263\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 43.3018i − 1.45393i −0.686673 0.726966i \(-0.740930\pi\)
0.686673 0.726966i \(-0.259070\pi\)
\(888\) 0 0
\(889\) 0.698192 0.0234166
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −39.6832 −1.32795
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 37.4525i 1.24911i
\(900\) 0 0
\(901\) 2.95910i 0.0985820i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 8.75026 0.290548 0.145274 0.989391i \(-0.453594\pi\)
0.145274 + 0.989391i \(0.453594\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −13.7438 −0.455353 −0.227676 0.973737i \(-0.573113\pi\)
−0.227676 + 0.973737i \(0.573113\pi\)
\(912\) 0 0
\(913\) − 22.2513i − 0.736411i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.866420 −0.0286117
\(918\) 0 0
\(919\) −0.989347 −0.0326355 −0.0163178 0.999867i \(-0.505194\pi\)
−0.0163178 + 0.999867i \(0.505194\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −59.7803 −1.96769
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.49434 −0.278690 −0.139345 0.990244i \(-0.544500\pi\)
−0.139345 + 0.990244i \(0.544500\pi\)
\(930\) 0 0
\(931\) − 48.6656i − 1.59495i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 18.6912i 0.610615i 0.952254 + 0.305308i \(0.0987593\pi\)
−0.952254 + 0.305308i \(0.901241\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 3.03170i − 0.0988305i −0.998778 0.0494152i \(-0.984264\pi\)
0.998778 0.0494152i \(-0.0157358\pi\)
\(942\) 0 0
\(943\) − 13.3595i − 0.435045i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.8327 0.546990 0.273495 0.961873i \(-0.411820\pi\)
0.273495 + 0.961873i \(0.411820\pi\)
\(948\) 0 0
\(949\) − 63.6243i − 2.06533i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.73948i 0.0563473i 0.999603 + 0.0281737i \(0.00896914\pi\)
−0.999603 + 0.0281737i \(0.991031\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.926677 −0.0299240
\(960\) 0 0
\(961\) 37.8044 1.21950
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17.3399i 0.557615i 0.960347 + 0.278808i \(0.0899392\pi\)
−0.960347 + 0.278808i \(0.910061\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45.4054i 1.45713i 0.684977 + 0.728565i \(0.259812\pi\)
−0.684977 + 0.728565i \(0.740188\pi\)
\(972\) 0 0
\(973\) 0.0172261 0.000552243 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 43.4336i − 1.38957i −0.719220 0.694783i \(-0.755501\pi\)
0.719220 0.694783i \(-0.244499\pi\)
\(978\) 0 0
\(979\) 28.7980i 0.920388i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 47.4465i 1.51331i 0.653815 + 0.756655i \(0.273168\pi\)
−0.653815 + 0.756655i \(0.726832\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 6.72794i − 0.213936i
\(990\) 0 0
\(991\) 28.8434 0.916242 0.458121 0.888890i \(-0.348523\pi\)
0.458121 + 0.888890i \(0.348523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −33.1449 −1.04971 −0.524855 0.851192i \(-0.675881\pi\)
−0.524855 + 0.851192i \(0.675881\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.d.s.2449.5 8
3.2 odd 2 2400.2.d.g.49.5 8
4.3 odd 2 1800.2.d.s.1549.5 8
5.2 odd 4 7200.2.k.s.3601.4 8
5.3 odd 4 7200.2.k.r.3601.6 8
5.4 even 2 7200.2.d.t.2449.4 8
8.3 odd 2 1800.2.d.t.1549.3 8
8.5 even 2 7200.2.d.t.2449.5 8
12.11 even 2 600.2.d.h.349.4 8
15.2 even 4 2400.2.k.e.1201.6 8
15.8 even 4 2400.2.k.d.1201.3 8
15.14 odd 2 2400.2.d.h.49.4 8
20.3 even 4 1800.2.k.t.901.1 8
20.7 even 4 1800.2.k.q.901.8 8
20.19 odd 2 1800.2.d.t.1549.4 8
24.5 odd 2 2400.2.d.h.49.5 8
24.11 even 2 600.2.d.g.349.6 8
40.3 even 4 1800.2.k.t.901.2 8
40.13 odd 4 7200.2.k.r.3601.5 8
40.19 odd 2 1800.2.d.s.1549.6 8
40.27 even 4 1800.2.k.q.901.7 8
40.29 even 2 inner 7200.2.d.s.2449.4 8
40.37 odd 4 7200.2.k.s.3601.3 8
60.23 odd 4 600.2.k.d.301.8 yes 8
60.47 odd 4 600.2.k.e.301.1 yes 8
60.59 even 2 600.2.d.g.349.5 8
120.29 odd 2 2400.2.d.g.49.4 8
120.53 even 4 2400.2.k.d.1201.7 8
120.59 even 2 600.2.d.h.349.3 8
120.77 even 4 2400.2.k.e.1201.2 8
120.83 odd 4 600.2.k.d.301.7 8
120.107 odd 4 600.2.k.e.301.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.d.g.349.5 8 60.59 even 2
600.2.d.g.349.6 8 24.11 even 2
600.2.d.h.349.3 8 120.59 even 2
600.2.d.h.349.4 8 12.11 even 2
600.2.k.d.301.7 8 120.83 odd 4
600.2.k.d.301.8 yes 8 60.23 odd 4
600.2.k.e.301.1 yes 8 60.47 odd 4
600.2.k.e.301.2 yes 8 120.107 odd 4
1800.2.d.s.1549.5 8 4.3 odd 2
1800.2.d.s.1549.6 8 40.19 odd 2
1800.2.d.t.1549.3 8 8.3 odd 2
1800.2.d.t.1549.4 8 20.19 odd 2
1800.2.k.q.901.7 8 40.27 even 4
1800.2.k.q.901.8 8 20.7 even 4
1800.2.k.t.901.1 8 20.3 even 4
1800.2.k.t.901.2 8 40.3 even 4
2400.2.d.g.49.4 8 120.29 odd 2
2400.2.d.g.49.5 8 3.2 odd 2
2400.2.d.h.49.4 8 15.14 odd 2
2400.2.d.h.49.5 8 24.5 odd 2
2400.2.k.d.1201.3 8 15.8 even 4
2400.2.k.d.1201.7 8 120.53 even 4
2400.2.k.e.1201.2 8 120.77 even 4
2400.2.k.e.1201.6 8 15.2 even 4
7200.2.d.s.2449.4 8 40.29 even 2 inner
7200.2.d.s.2449.5 8 1.1 even 1 trivial
7200.2.d.t.2449.4 8 5.4 even 2
7200.2.d.t.2449.5 8 8.5 even 2
7200.2.k.r.3601.5 8 40.13 odd 4
7200.2.k.r.3601.6 8 5.3 odd 4
7200.2.k.s.3601.3 8 40.37 odd 4
7200.2.k.s.3601.4 8 5.2 odd 4