Defining parameters
Level: | \( N \) | \(=\) | \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7200.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(53\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(37\), \(41\), \(53\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1536 | 92 | 1444 |
Cusp forms | 1344 | 88 | 1256 |
Eisenstein series | 192 | 4 | 188 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(7200, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(7200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1800, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2400, [\chi])\)\(^{\oplus 2}\)