Properties

Label 720.3.c.a.449.4
Level $720$
Weight $3$
Character 720.449
Analytic conductor $19.619$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,3,Mod(449,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.4
Root \(-1.16372i\) of defining polynomial
Character \(\chi\) \(=\) 720.449
Dual form 720.3.c.a.449.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.64575 + 4.24264i) q^{5} -11.2250i q^{7} -4.24264i q^{11} -11.2250i q^{13} -10.5830 q^{17} -20.0000 q^{19} -5.29150 q^{23} +(-11.0000 + 22.4499i) q^{25} -8.48528i q^{29} -26.0000 q^{31} +(47.6235 - 29.6985i) q^{35} -33.6749i q^{37} -55.1543i q^{41} +22.4499i q^{43} -21.1660 q^{47} -77.0000 q^{49} +84.6640 q^{53} +(18.0000 - 11.2250i) q^{55} -46.6690i q^{59} -22.0000 q^{61} +(47.6235 - 29.6985i) q^{65} -89.7998i q^{67} +50.9117i q^{71} -67.3498i q^{73} -47.6235 q^{77} -14.0000 q^{79} +74.0810 q^{83} +(-28.0000 - 44.8999i) q^{85} +89.0955i q^{89} -126.000 q^{91} +(-52.9150 - 84.8528i) q^{95} -22.4499i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 80 q^{19} - 44 q^{25} - 104 q^{31} - 308 q^{49} + 72 q^{55} - 88 q^{61} - 56 q^{79} - 112 q^{85} - 504 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 + 4.24264i 0.529150 + 0.848528i
\(6\) 0 0
\(7\) 11.2250i 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264i 0.385695i −0.981229 0.192847i \(-0.938228\pi\)
0.981229 0.192847i \(-0.0617722\pi\)
\(12\) 0 0
\(13\) 11.2250i 0.863459i −0.902003 0.431730i \(-0.857903\pi\)
0.902003 0.431730i \(-0.142097\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −10.5830 −0.622530 −0.311265 0.950323i \(-0.600753\pi\)
−0.311265 + 0.950323i \(0.600753\pi\)
\(18\) 0 0
\(19\) −20.0000 −1.05263 −0.526316 0.850289i \(-0.676427\pi\)
−0.526316 + 0.850289i \(0.676427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.29150 −0.230065 −0.115033 0.993362i \(-0.536697\pi\)
−0.115033 + 0.993362i \(0.536697\pi\)
\(24\) 0 0
\(25\) −11.0000 + 22.4499i −0.440000 + 0.897998i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.48528i 0.292596i −0.989241 0.146298i \(-0.953264\pi\)
0.989241 0.146298i \(-0.0467358\pi\)
\(30\) 0 0
\(31\) −26.0000 −0.838710 −0.419355 0.907822i \(-0.637744\pi\)
−0.419355 + 0.907822i \(0.637744\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 47.6235 29.6985i 1.36067 0.848528i
\(36\) 0 0
\(37\) 33.6749i 0.910133i −0.890457 0.455066i \(-0.849616\pi\)
0.890457 0.455066i \(-0.150384\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 55.1543i 1.34523i −0.739994 0.672614i \(-0.765172\pi\)
0.739994 0.672614i \(-0.234828\pi\)
\(42\) 0 0
\(43\) 22.4499i 0.522092i 0.965326 + 0.261046i \(0.0840674\pi\)
−0.965326 + 0.261046i \(0.915933\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −21.1660 −0.450341 −0.225170 0.974319i \(-0.572294\pi\)
−0.225170 + 0.974319i \(0.572294\pi\)
\(48\) 0 0
\(49\) −77.0000 −1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 84.6640 1.59743 0.798717 0.601706i \(-0.205512\pi\)
0.798717 + 0.601706i \(0.205512\pi\)
\(54\) 0 0
\(55\) 18.0000 11.2250i 0.327273 0.204090i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 46.6690i 0.791001i −0.918466 0.395500i \(-0.870571\pi\)
0.918466 0.395500i \(-0.129429\pi\)
\(60\) 0 0
\(61\) −22.0000 −0.360656 −0.180328 0.983607i \(-0.557716\pi\)
−0.180328 + 0.983607i \(0.557716\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 47.6235 29.6985i 0.732670 0.456900i
\(66\) 0 0
\(67\) 89.7998i 1.34030i −0.742228 0.670148i \(-0.766231\pi\)
0.742228 0.670148i \(-0.233769\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 50.9117i 0.717066i 0.933517 + 0.358533i \(0.116723\pi\)
−0.933517 + 0.358533i \(0.883277\pi\)
\(72\) 0 0
\(73\) 67.3498i 0.922600i −0.887244 0.461300i \(-0.847383\pi\)
0.887244 0.461300i \(-0.152617\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −47.6235 −0.618487
\(78\) 0 0
\(79\) −14.0000 −0.177215 −0.0886076 0.996067i \(-0.528242\pi\)
−0.0886076 + 0.996067i \(0.528242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 74.0810 0.892543 0.446271 0.894898i \(-0.352752\pi\)
0.446271 + 0.894898i \(0.352752\pi\)
\(84\) 0 0
\(85\) −28.0000 44.8999i −0.329412 0.528234i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 89.0955i 1.00107i 0.865716 + 0.500536i \(0.166864\pi\)
−0.865716 + 0.500536i \(0.833136\pi\)
\(90\) 0 0
\(91\) −126.000 −1.38462
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −52.9150 84.8528i −0.557000 0.893188i
\(96\) 0 0
\(97\) 22.4499i 0.231443i −0.993282 0.115721i \(-0.963082\pi\)
0.993282 0.115721i \(-0.0369180\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 135.765i 1.34420i −0.740459 0.672101i \(-0.765392\pi\)
0.740459 0.672101i \(-0.234608\pi\)
\(102\) 0 0
\(103\) 56.1249i 0.544902i −0.962170 0.272451i \(-0.912166\pi\)
0.962170 0.272451i \(-0.0878342\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.5830 0.0989066 0.0494533 0.998776i \(-0.484252\pi\)
0.0494533 + 0.998776i \(0.484252\pi\)
\(108\) 0 0
\(109\) −70.0000 −0.642202 −0.321101 0.947045i \(-0.604053\pi\)
−0.321101 + 0.947045i \(0.604053\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −137.579 −1.21751 −0.608757 0.793357i \(-0.708332\pi\)
−0.608757 + 0.793357i \(0.708332\pi\)
\(114\) 0 0
\(115\) −14.0000 22.4499i −0.121739 0.195217i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 118.794i 0.998268i
\(120\) 0 0
\(121\) 103.000 0.851240
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −124.350 + 12.7279i −0.994802 + 0.101823i
\(126\) 0 0
\(127\) 168.375i 1.32578i 0.748715 + 0.662892i \(0.230671\pi\)
−0.748715 + 0.662892i \(0.769329\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 148.492i 1.13353i −0.823880 0.566765i \(-0.808195\pi\)
0.823880 0.566765i \(-0.191805\pi\)
\(132\) 0 0
\(133\) 224.499i 1.68797i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 211.660 1.54496 0.772482 0.635036i \(-0.219015\pi\)
0.772482 + 0.635036i \(0.219015\pi\)
\(138\) 0 0
\(139\) −206.000 −1.48201 −0.741007 0.671497i \(-0.765652\pi\)
−0.741007 + 0.671497i \(0.765652\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −47.6235 −0.333032
\(144\) 0 0
\(145\) 36.0000 22.4499i 0.248276 0.154827i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 135.765i 0.911171i 0.890192 + 0.455586i \(0.150570\pi\)
−0.890192 + 0.455586i \(0.849430\pi\)
\(150\) 0 0
\(151\) 202.000 1.33775 0.668874 0.743376i \(-0.266776\pi\)
0.668874 + 0.743376i \(0.266776\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −68.7895 110.309i −0.443803 0.711669i
\(156\) 0 0
\(157\) 56.1249i 0.357483i 0.983896 + 0.178742i \(0.0572026\pi\)
−0.983896 + 0.178742i \(0.942797\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 59.3970i 0.368925i
\(162\) 0 0
\(163\) 202.049i 1.23957i −0.784773 0.619784i \(-0.787220\pi\)
0.784773 0.619784i \(-0.212780\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 185.203 1.10900 0.554499 0.832185i \(-0.312910\pi\)
0.554499 + 0.832185i \(0.312910\pi\)
\(168\) 0 0
\(169\) 43.0000 0.254438
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.1660 0.122347 0.0611734 0.998127i \(-0.480516\pi\)
0.0611734 + 0.998127i \(0.480516\pi\)
\(174\) 0 0
\(175\) 252.000 + 123.475i 1.44000 + 0.705570i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 241.831i 1.35101i 0.737356 + 0.675504i \(0.236074\pi\)
−0.737356 + 0.675504i \(0.763926\pi\)
\(180\) 0 0
\(181\) 74.0000 0.408840 0.204420 0.978883i \(-0.434469\pi\)
0.204420 + 0.978883i \(0.434469\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 142.871 89.0955i 0.772273 0.481597i
\(186\) 0 0
\(187\) 44.8999i 0.240106i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 161.220i 0.844086i 0.906576 + 0.422043i \(0.138687\pi\)
−0.906576 + 0.422043i \(0.861313\pi\)
\(192\) 0 0
\(193\) 179.600i 0.930568i −0.885162 0.465284i \(-0.845952\pi\)
0.885162 0.465284i \(-0.154048\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 37.0405 0.188023 0.0940115 0.995571i \(-0.470031\pi\)
0.0940115 + 0.995571i \(0.470031\pi\)
\(198\) 0 0
\(199\) 250.000 1.25628 0.628141 0.778100i \(-0.283816\pi\)
0.628141 + 0.778100i \(0.283816\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −95.2470 −0.469197
\(204\) 0 0
\(205\) 234.000 145.925i 1.14146 0.711828i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 84.8528i 0.405994i
\(210\) 0 0
\(211\) 154.000 0.729858 0.364929 0.931035i \(-0.381093\pi\)
0.364929 + 0.931035i \(0.381093\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −95.2470 + 59.3970i −0.443010 + 0.276265i
\(216\) 0 0
\(217\) 291.849i 1.34493i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 118.794i 0.537529i
\(222\) 0 0
\(223\) 392.874i 1.76177i 0.473333 + 0.880883i \(0.343051\pi\)
−0.473333 + 0.880883i \(0.656949\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.1660 −0.0932423 −0.0466212 0.998913i \(-0.514845\pi\)
−0.0466212 + 0.998913i \(0.514845\pi\)
\(228\) 0 0
\(229\) −118.000 −0.515284 −0.257642 0.966240i \(-0.582945\pi\)
−0.257642 + 0.966240i \(0.582945\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −391.571 −1.68056 −0.840282 0.542150i \(-0.817610\pi\)
−0.840282 + 0.542150i \(0.817610\pi\)
\(234\) 0 0
\(235\) −56.0000 89.7998i −0.238298 0.382127i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 347.897i 1.45563i 0.685771 + 0.727817i \(0.259465\pi\)
−0.685771 + 0.727817i \(0.740535\pi\)
\(240\) 0 0
\(241\) −40.0000 −0.165975 −0.0829876 0.996551i \(-0.526446\pi\)
−0.0829876 + 0.996551i \(0.526446\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −203.723 326.683i −0.831522 1.33340i
\(246\) 0 0
\(247\) 224.499i 0.908905i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 241.831i 0.963468i −0.876317 0.481734i \(-0.840007\pi\)
0.876317 0.481734i \(-0.159993\pi\)
\(252\) 0 0
\(253\) 22.4499i 0.0887350i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −232.826 −0.905938 −0.452969 0.891526i \(-0.649635\pi\)
−0.452969 + 0.891526i \(0.649635\pi\)
\(258\) 0 0
\(259\) −378.000 −1.45946
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −164.037 −0.623713 −0.311857 0.950129i \(-0.600951\pi\)
−0.311857 + 0.950129i \(0.600951\pi\)
\(264\) 0 0
\(265\) 224.000 + 359.199i 0.845283 + 1.35547i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 534.573i 1.98726i 0.112695 + 0.993630i \(0.464052\pi\)
−0.112695 + 0.993630i \(0.535948\pi\)
\(270\) 0 0
\(271\) 286.000 1.05535 0.527675 0.849446i \(-0.323064\pi\)
0.527675 + 0.849446i \(0.323064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 95.2470 + 46.6690i 0.346353 + 0.169706i
\(276\) 0 0
\(277\) 190.825i 0.688897i −0.938805 0.344449i \(-0.888066\pi\)
0.938805 0.344449i \(-0.111934\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 80.6102i 0.286869i 0.989660 + 0.143434i \(0.0458146\pi\)
−0.989660 + 0.143434i \(0.954185\pi\)
\(282\) 0 0
\(283\) 89.7998i 0.317314i −0.987334 0.158657i \(-0.949284\pi\)
0.987334 0.158657i \(-0.0507164\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −619.106 −2.15716
\(288\) 0 0
\(289\) −177.000 −0.612457
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 576.774 1.96851 0.984256 0.176751i \(-0.0565587\pi\)
0.984256 + 0.176751i \(0.0565587\pi\)
\(294\) 0 0
\(295\) 198.000 123.475i 0.671186 0.418558i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 59.3970i 0.198652i
\(300\) 0 0
\(301\) 252.000 0.837209
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −58.2065 93.3381i −0.190841 0.306027i
\(306\) 0 0
\(307\) 269.399i 0.877522i −0.898604 0.438761i \(-0.855417\pi\)
0.898604 0.438761i \(-0.144583\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 59.3970i 0.190987i −0.995430 0.0954935i \(-0.969557\pi\)
0.995430 0.0954935i \(-0.0304429\pi\)
\(312\) 0 0
\(313\) 179.600i 0.573800i 0.957960 + 0.286900i \(0.0926248\pi\)
−0.957960 + 0.286900i \(0.907375\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −312.199 −0.984854 −0.492427 0.870354i \(-0.663890\pi\)
−0.492427 + 0.870354i \(0.663890\pi\)
\(318\) 0 0
\(319\) −36.0000 −0.112853
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 211.660 0.655294
\(324\) 0 0
\(325\) 252.000 + 123.475i 0.775385 + 0.379922i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 237.588i 0.722152i
\(330\) 0 0
\(331\) 112.000 0.338369 0.169184 0.985584i \(-0.445887\pi\)
0.169184 + 0.985584i \(0.445887\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 380.988 237.588i 1.13728 0.709218i
\(336\) 0 0
\(337\) 112.250i 0.333085i −0.986034 0.166543i \(-0.946740\pi\)
0.986034 0.166543i \(-0.0532603\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 110.309i 0.323486i
\(342\) 0 0
\(343\) 314.299i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 518.567 1.49443 0.747215 0.664582i \(-0.231390\pi\)
0.747215 + 0.664582i \(0.231390\pi\)
\(348\) 0 0
\(349\) 122.000 0.349570 0.174785 0.984607i \(-0.444077\pi\)
0.174785 + 0.984607i \(0.444077\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 402.154 1.13925 0.569624 0.821906i \(-0.307089\pi\)
0.569624 + 0.821906i \(0.307089\pi\)
\(354\) 0 0
\(355\) −216.000 + 134.700i −0.608451 + 0.379436i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 636.396i 1.77269i 0.463024 + 0.886346i \(0.346764\pi\)
−0.463024 + 0.886346i \(0.653236\pi\)
\(360\) 0 0
\(361\) 39.0000 0.108033
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 285.741 178.191i 0.782852 0.488194i
\(366\) 0 0
\(367\) 684.723i 1.86573i −0.360225 0.932866i \(-0.617300\pi\)
0.360225 0.932866i \(-0.382700\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 950.352i 2.56159i
\(372\) 0 0
\(373\) 145.925i 0.391219i −0.980682 0.195609i \(-0.937332\pi\)
0.980682 0.195609i \(-0.0626685\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −95.2470 −0.252645
\(378\) 0 0
\(379\) −362.000 −0.955145 −0.477573 0.878592i \(-0.658483\pi\)
−0.477573 + 0.878592i \(0.658483\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 42.3320 0.110527 0.0552637 0.998472i \(-0.482400\pi\)
0.0552637 + 0.998472i \(0.482400\pi\)
\(384\) 0 0
\(385\) −126.000 202.049i −0.327273 0.524804i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 263.044i 0.676205i −0.941109 0.338102i \(-0.890215\pi\)
0.941109 0.338102i \(-0.109785\pi\)
\(390\) 0 0
\(391\) 56.0000 0.143223
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −37.0405 59.3970i −0.0937735 0.150372i
\(396\) 0 0
\(397\) 33.6749i 0.0848235i 0.999100 + 0.0424117i \(0.0135041\pi\)
−0.999100 + 0.0424117i \(0.986496\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 462.448i 1.15324i −0.817014 0.576618i \(-0.804372\pi\)
0.817014 0.576618i \(-0.195628\pi\)
\(402\) 0 0
\(403\) 291.849i 0.724192i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −142.871 −0.351033
\(408\) 0 0
\(409\) −82.0000 −0.200489 −0.100244 0.994963i \(-0.531962\pi\)
−0.100244 + 0.994963i \(0.531962\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −523.859 −1.26842
\(414\) 0 0
\(415\) 196.000 + 314.299i 0.472289 + 0.757348i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 207.889i 0.496156i 0.968740 + 0.248078i \(0.0797989\pi\)
−0.968740 + 0.248078i \(0.920201\pi\)
\(420\) 0 0
\(421\) −490.000 −1.16390 −0.581948 0.813226i \(-0.697709\pi\)
−0.581948 + 0.813226i \(0.697709\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 116.413 237.588i 0.273913 0.559030i
\(426\) 0 0
\(427\) 246.949i 0.578336i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 687.308i 1.59468i 0.603529 + 0.797341i \(0.293761\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(432\) 0 0
\(433\) 202.049i 0.466627i −0.972402 0.233314i \(-0.925043\pi\)
0.972402 0.233314i \(-0.0749568\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 105.830 0.242174
\(438\) 0 0
\(439\) −302.000 −0.687927 −0.343964 0.938983i \(-0.611770\pi\)
−0.343964 + 0.938983i \(0.611770\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 264.575 0.597235 0.298618 0.954373i \(-0.403475\pi\)
0.298618 + 0.954373i \(0.403475\pi\)
\(444\) 0 0
\(445\) −378.000 + 235.724i −0.849438 + 0.529718i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 216.375i 0.481904i 0.970537 + 0.240952i \(0.0774596\pi\)
−0.970537 + 0.240952i \(0.922540\pi\)
\(450\) 0 0
\(451\) −234.000 −0.518847
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −333.365 534.573i −0.732670 1.17489i
\(456\) 0 0
\(457\) 561.249i 1.22812i −0.789261 0.614058i \(-0.789536\pi\)
0.789261 0.614058i \(-0.210464\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 237.588i 0.515375i −0.966228 0.257688i \(-0.917039\pi\)
0.966228 0.257688i \(-0.0829605\pi\)
\(462\) 0 0
\(463\) 729.623i 1.57586i −0.615765 0.787930i \(-0.711153\pi\)
0.615765 0.787930i \(-0.288847\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −465.652 −0.997114 −0.498557 0.866857i \(-0.666137\pi\)
−0.498557 + 0.866857i \(0.666137\pi\)
\(468\) 0 0
\(469\) −1008.00 −2.14925
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 95.2470 0.201368
\(474\) 0 0
\(475\) 220.000 448.999i 0.463158 0.945261i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 475.176i 0.992016i −0.868318 0.496008i \(-0.834799\pi\)
0.868318 0.496008i \(-0.165201\pi\)
\(480\) 0 0
\(481\) −378.000 −0.785863
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 95.2470 59.3970i 0.196386 0.122468i
\(486\) 0 0
\(487\) 505.124i 1.03722i 0.855012 + 0.518608i \(0.173549\pi\)
−0.855012 + 0.518608i \(0.826451\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 275.772i 0.561653i −0.959759 0.280827i \(-0.909391\pi\)
0.959759 0.280827i \(-0.0906086\pi\)
\(492\) 0 0
\(493\) 89.7998i 0.182150i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 571.482 1.14986
\(498\) 0 0
\(499\) −368.000 −0.737475 −0.368737 0.929534i \(-0.620210\pi\)
−0.368737 + 0.929534i \(0.620210\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −275.158 −0.547034 −0.273517 0.961867i \(-0.588187\pi\)
−0.273517 + 0.961867i \(0.588187\pi\)
\(504\) 0 0
\(505\) 576.000 359.199i 1.14059 0.711285i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 118.794i 0.233387i −0.993168 0.116693i \(-0.962770\pi\)
0.993168 0.116693i \(-0.0372295\pi\)
\(510\) 0 0
\(511\) −756.000 −1.47945
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 238.118 148.492i 0.462364 0.288335i
\(516\) 0 0
\(517\) 89.7998i 0.173694i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 89.0955i 0.171009i 0.996338 + 0.0855043i \(0.0272501\pi\)
−0.996338 + 0.0855043i \(0.972750\pi\)
\(522\) 0 0
\(523\) 875.548i 1.67409i −0.547136 0.837044i \(-0.684282\pi\)
0.547136 0.837044i \(-0.315718\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 275.158 0.522122
\(528\) 0 0
\(529\) −501.000 −0.947070
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −619.106 −1.16155
\(534\) 0 0
\(535\) 28.0000 + 44.8999i 0.0523364 + 0.0839250i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 326.683i 0.606092i
\(540\) 0 0
\(541\) 434.000 0.802218 0.401109 0.916030i \(-0.368625\pi\)
0.401109 + 0.916030i \(0.368625\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −185.203 296.985i −0.339821 0.544926i
\(546\) 0 0
\(547\) 112.250i 0.205210i −0.994722 0.102605i \(-0.967282\pi\)
0.994722 0.102605i \(-0.0327177\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 169.706i 0.307996i
\(552\) 0 0
\(553\) 157.150i 0.284177i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 465.652 0.836000 0.418000 0.908447i \(-0.362731\pi\)
0.418000 + 0.908447i \(0.362731\pi\)
\(558\) 0 0
\(559\) 252.000 0.450805
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −52.9150 −0.0939876 −0.0469938 0.998895i \(-0.514964\pi\)
−0.0469938 + 0.998895i \(0.514964\pi\)
\(564\) 0 0
\(565\) −364.000 583.699i −0.644248 1.03309i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 640.639i 1.12590i 0.826490 + 0.562951i \(0.190334\pi\)
−0.826490 + 0.562951i \(0.809666\pi\)
\(570\) 0 0
\(571\) 568.000 0.994746 0.497373 0.867537i \(-0.334298\pi\)
0.497373 + 0.867537i \(0.334298\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 58.2065 118.794i 0.101229 0.206598i
\(576\) 0 0
\(577\) 67.3498i 0.116724i 0.998295 + 0.0583621i \(0.0185878\pi\)
−0.998295 + 0.0583621i \(0.981412\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 831.558i 1.43125i
\(582\) 0 0
\(583\) 359.199i 0.616122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1026.55 1.74881 0.874405 0.485197i \(-0.161252\pi\)
0.874405 + 0.485197i \(0.161252\pi\)
\(588\) 0 0
\(589\) 520.000 0.882852
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 656.146 1.10649 0.553243 0.833020i \(-0.313390\pi\)
0.553243 + 0.833020i \(0.313390\pi\)
\(594\) 0 0
\(595\) −504.000 + 314.299i −0.847059 + 0.528234i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 924.896i 1.54407i −0.635582 0.772033i \(-0.719240\pi\)
0.635582 0.772033i \(-0.280760\pi\)
\(600\) 0 0
\(601\) 788.000 1.31115 0.655574 0.755131i \(-0.272427\pi\)
0.655574 + 0.755131i \(0.272427\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 272.512 + 436.992i 0.450434 + 0.722301i
\(606\) 0 0
\(607\) 11.2250i 0.0184925i 0.999957 + 0.00924627i \(0.00294322\pi\)
−0.999957 + 0.00924627i \(0.997057\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 237.588i 0.388851i
\(612\) 0 0
\(613\) 572.474i 0.933888i −0.884287 0.466944i \(-0.845355\pi\)
0.884287 0.466944i \(-0.154645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −423.320 −0.686094 −0.343047 0.939318i \(-0.611459\pi\)
−0.343047 + 0.939318i \(0.611459\pi\)
\(618\) 0 0
\(619\) −194.000 −0.313409 −0.156704 0.987646i \(-0.550087\pi\)
−0.156704 + 0.987646i \(0.550087\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1000.09 1.60529
\(624\) 0 0
\(625\) −383.000 493.899i −0.612800 0.790238i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 356.382i 0.566585i
\(630\) 0 0
\(631\) −1190.00 −1.88590 −0.942948 0.332941i \(-0.891959\pi\)
−0.942948 + 0.332941i \(0.891959\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −714.353 + 445.477i −1.12497 + 0.701539i
\(636\) 0 0
\(637\) 864.323i 1.35686i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 708.521i 1.10534i −0.833401 0.552668i \(-0.813610\pi\)
0.833401 0.552668i \(-0.186390\pi\)
\(642\) 0 0
\(643\) 651.048i 1.01252i 0.862382 + 0.506258i \(0.168972\pi\)
−0.862382 + 0.506258i \(0.831028\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1058.30 1.63570 0.817852 0.575429i \(-0.195165\pi\)
0.817852 + 0.575429i \(0.195165\pi\)
\(648\) 0 0
\(649\) −198.000 −0.305085
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −470.944 −0.721200 −0.360600 0.932721i \(-0.617428\pi\)
−0.360600 + 0.932721i \(0.617428\pi\)
\(654\) 0 0
\(655\) 630.000 392.874i 0.961832 0.599808i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 80.6102i 0.122322i −0.998128 0.0611610i \(-0.980520\pi\)
0.998128 0.0611610i \(-0.0194803\pi\)
\(660\) 0 0
\(661\) 170.000 0.257186 0.128593 0.991697i \(-0.458954\pi\)
0.128593 + 0.991697i \(0.458954\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −952.470 + 593.970i −1.43229 + 0.893188i
\(666\) 0 0
\(667\) 44.8999i 0.0673162i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 93.3381i 0.139103i
\(672\) 0 0
\(673\) 1055.15i 1.56783i 0.620870 + 0.783913i \(0.286779\pi\)
−0.620870 + 0.783913i \(0.713221\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 830.766 1.22713 0.613564 0.789645i \(-0.289735\pi\)
0.613564 + 0.789645i \(0.289735\pi\)
\(678\) 0 0
\(679\) −252.000 −0.371134
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1037.13 −1.51850 −0.759249 0.650800i \(-0.774434\pi\)
−0.759249 + 0.650800i \(0.774434\pi\)
\(684\) 0 0
\(685\) 560.000 + 897.998i 0.817518 + 1.31095i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 950.352i 1.37932i
\(690\) 0 0
\(691\) 652.000 0.943560 0.471780 0.881716i \(-0.343612\pi\)
0.471780 + 0.881716i \(0.343612\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −545.025 873.984i −0.784208 1.25753i
\(696\) 0 0
\(697\) 583.699i 0.837444i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 763.675i 1.08941i 0.838628 + 0.544704i \(0.183358\pi\)
−0.838628 + 0.544704i \(0.816642\pi\)
\(702\) 0 0
\(703\) 673.498i 0.958035i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1523.95 −2.15552
\(708\) 0 0
\(709\) 158.000 0.222849 0.111425 0.993773i \(-0.464459\pi\)
0.111425 + 0.993773i \(0.464459\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 137.579 0.192958
\(714\) 0 0
\(715\) −126.000 202.049i −0.176224 0.282587i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 127.279i 0.177023i 0.996075 + 0.0885113i \(0.0282109\pi\)
−0.996075 + 0.0885113i \(0.971789\pi\)
\(720\) 0 0
\(721\) −630.000 −0.873786
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 190.494 + 93.3381i 0.262750 + 0.128742i
\(726\) 0 0
\(727\) 662.273i 0.910967i 0.890244 + 0.455484i \(0.150534\pi\)
−0.890244 + 0.455484i \(0.849466\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 237.588i 0.325018i
\(732\) 0 0
\(733\) 684.723i 0.934138i −0.884221 0.467069i \(-0.845310\pi\)
0.884221 0.467069i \(-0.154690\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −380.988 −0.516945
\(738\) 0 0
\(739\) 1240.00 1.67794 0.838972 0.544175i \(-0.183157\pi\)
0.838972 + 0.544175i \(0.183157\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.3320 0.0569745 0.0284872 0.999594i \(-0.490931\pi\)
0.0284872 + 0.999594i \(0.490931\pi\)
\(744\) 0 0
\(745\) −576.000 + 359.199i −0.773154 + 0.482146i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 118.794i 0.158603i
\(750\) 0 0
\(751\) 154.000 0.205060 0.102530 0.994730i \(-0.467306\pi\)
0.102530 + 0.994730i \(0.467306\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 534.442 + 857.013i 0.707870 + 1.13512i
\(756\) 0 0
\(757\) 1313.32i 1.73490i −0.497522 0.867452i \(-0.665756\pi\)
0.497522 0.867452i \(-0.334244\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 504.874i 0.663435i 0.943379 + 0.331718i \(0.107628\pi\)
−0.943379 + 0.331718i \(0.892372\pi\)
\(762\) 0 0
\(763\) 785.748i 1.02981i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −523.859 −0.682997
\(768\) 0 0
\(769\) 368.000 0.478544 0.239272 0.970953i \(-0.423091\pi\)
0.239272 + 0.970953i \(0.423091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −153.454 −0.198517 −0.0992585 0.995062i \(-0.531647\pi\)
−0.0992585 + 0.995062i \(0.531647\pi\)
\(774\) 0 0
\(775\) 286.000 583.699i 0.369032 0.753159i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1103.09i 1.41603i
\(780\) 0 0
\(781\) 216.000 0.276569
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −238.118 + 148.492i −0.303335 + 0.189162i
\(786\) 0 0
\(787\) 426.549i 0.541994i −0.962580 0.270997i \(-0.912647\pi\)
0.962580 0.270997i \(-0.0873533\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1544.32i 1.95237i
\(792\) 0 0
\(793\) 246.949i 0.311412i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −232.826 −0.292128 −0.146064 0.989275i \(-0.546661\pi\)
−0.146064 + 0.989275i \(0.546661\pi\)
\(798\) 0 0
\(799\) 224.000 0.280350
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −285.741 −0.355842
\(804\) 0 0
\(805\) −252.000 + 157.150i −0.313043 + 0.195217i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 420.021i 0.519186i 0.965718 + 0.259593i \(0.0835884\pi\)
−0.965718 + 0.259593i \(0.916412\pi\)
\(810\) 0 0
\(811\) 970.000 1.19605 0.598027 0.801476i \(-0.295951\pi\)
0.598027 + 0.801476i \(0.295951\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 857.223 534.573i 1.05181 0.655917i
\(816\) 0 0
\(817\) 448.999i 0.549570i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.4264i 0.0516765i 0.999666 + 0.0258383i \(0.00822549\pi\)
−0.999666 + 0.0258383i \(0.991775\pi\)
\(822\) 0 0
\(823\) 392.874i 0.477368i −0.971097 0.238684i \(-0.923284\pi\)
0.971097 0.238684i \(-0.0767160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −560.899 −0.678234 −0.339117 0.940744i \(-0.610128\pi\)
−0.339117 + 0.940744i \(0.610128\pi\)
\(828\) 0 0
\(829\) 1010.00 1.21834 0.609168 0.793041i \(-0.291504\pi\)
0.609168 + 0.793041i \(0.291504\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 814.891 0.978261
\(834\) 0 0
\(835\) 490.000 + 785.748i 0.586826 + 0.941016i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 449.720i 0.536019i −0.963416 0.268009i \(-0.913634\pi\)
0.963416 0.268009i \(-0.0863659\pi\)
\(840\) 0 0
\(841\) 769.000 0.914388
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 113.767 + 182.434i 0.134636 + 0.215898i
\(846\) 0 0
\(847\) 1156.17i 1.36502i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 178.191i 0.209390i
\(852\) 0 0
\(853\) 931.673i 1.09223i −0.837710 0.546115i \(-0.816106\pi\)
0.837710 0.546115i \(-0.183894\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1312.29 −1.53126 −0.765632 0.643279i \(-0.777573\pi\)
−0.765632 + 0.643279i \(0.777573\pi\)
\(858\) 0 0
\(859\) 694.000 0.807916 0.403958 0.914777i \(-0.367634\pi\)
0.403958 + 0.914777i \(0.367634\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −799.017 −0.925860 −0.462930 0.886395i \(-0.653202\pi\)
−0.462930 + 0.886395i \(0.653202\pi\)
\(864\) 0 0
\(865\) 56.0000 + 89.7998i 0.0647399 + 0.103815i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 59.3970i 0.0683509i
\(870\) 0 0
\(871\) −1008.00 −1.15729
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 142.871 + 1395.83i 0.163281 + 1.59523i
\(876\) 0 0
\(877\) 796.973i 0.908749i 0.890811 + 0.454375i \(0.150137\pi\)
−0.890811 + 0.454375i \(0.849863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 827.315i 0.939063i 0.882916 + 0.469532i \(0.155577\pi\)
−0.882916 + 0.469532i \(0.844423\pi\)
\(882\) 0 0
\(883\) 471.449i 0.533917i 0.963708 + 0.266959i \(0.0860187\pi\)
−0.963708 + 0.266959i \(0.913981\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1137.67 1.28261 0.641304 0.767287i \(-0.278394\pi\)
0.641304 + 0.767287i \(0.278394\pi\)
\(888\) 0 0
\(889\) 1890.00 2.12598
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 423.320 0.474043
\(894\) 0 0
\(895\) −1026.00 + 639.823i −1.14637 + 0.714886i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 220.617i 0.245403i
\(900\) 0 0
\(901\) −896.000 −0.994451
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 195.786 + 313.955i 0.216338 + 0.346912i
\(906\) 0 0
\(907\) 1234.75i 1.36135i 0.732584 + 0.680676i \(0.238314\pi\)
−0.732584 + 0.680676i \(0.761686\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 288.500i 0.316684i 0.987384 + 0.158342i \(0.0506149\pi\)
−0.987384 + 0.158342i \(0.949385\pi\)
\(912\) 0 0
\(913\) 314.299i 0.344249i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1666.82 −1.81769
\(918\) 0 0
\(919\) 1078.00 1.17301 0.586507 0.809944i \(-0.300503\pi\)
0.586507 + 0.809944i \(0.300503\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 571.482 0.619157
\(924\) 0 0
\(925\) 756.000 + 370.424i 0.817297 + 0.400458i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1752.21i 1.88613i −0.332615 0.943063i \(-0.607931\pi\)
0.332615 0.943063i \(-0.392069\pi\)
\(930\) 0 0
\(931\) 1540.00 1.65414
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −190.494 + 118.794i −0.203737 + 0.127052i
\(936\) 0 0
\(937\) 942.898i 1.00629i 0.864201 + 0.503147i \(0.167825\pi\)
−0.864201 + 0.503147i \(0.832175\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1026.72i 1.09109i 0.838080 + 0.545547i \(0.183678\pi\)
−0.838080 + 0.545547i \(0.816322\pi\)
\(942\) 0 0
\(943\) 291.849i 0.309490i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −497.401 −0.525239 −0.262619 0.964899i \(-0.584586\pi\)
−0.262619 + 0.964899i \(0.584586\pi\)
\(948\) 0 0
\(949\) −756.000 −0.796628
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −486.818 −0.510827 −0.255414 0.966832i \(-0.582212\pi\)
−0.255414 + 0.966832i \(0.582212\pi\)
\(954\) 0 0
\(955\) −684.000 + 426.549i −0.716230 + 0.446648i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2375.88i 2.47745i
\(960\) 0 0
\(961\) −285.000 −0.296566
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 761.976 475.176i 0.789613 0.492410i
\(966\) 0 0
\(967\) 662.273i 0.684874i −0.939541 0.342437i \(-0.888748\pi\)
0.939541 0.342437i \(-0.111252\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1641.90i 1.69094i −0.534024 0.845470i \(-0.679321\pi\)
0.534024 0.845470i \(-0.320679\pi\)
\(972\) 0 0
\(973\) 2312.34i 2.37651i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1291.13 1.32152 0.660761 0.750597i \(-0.270234\pi\)
0.660761 + 0.750597i \(0.270234\pi\)
\(978\) 0 0
\(979\) 378.000 0.386108
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −592.648 −0.602898 −0.301449 0.953482i \(-0.597470\pi\)
−0.301449 + 0.953482i \(0.597470\pi\)
\(984\) 0 0
\(985\) 98.0000 + 157.150i 0.0994924 + 0.159543i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 118.794i 0.120115i
\(990\) 0 0
\(991\) −1694.00 −1.70938 −0.854692 0.519135i \(-0.826254\pi\)
−0.854692 + 0.519135i \(0.826254\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 661.438 + 1060.66i 0.664762 + 1.06599i
\(996\) 0 0
\(997\) 954.123i 0.956994i 0.878089 + 0.478497i \(0.158818\pi\)
−0.878089 + 0.478497i \(0.841182\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.c.a.449.4 4
3.2 odd 2 inner 720.3.c.a.449.1 4
4.3 odd 2 45.3.d.a.44.2 yes 4
5.2 odd 4 3600.3.l.s.1601.3 4
5.3 odd 4 3600.3.l.s.1601.1 4
5.4 even 2 inner 720.3.c.a.449.2 4
8.3 odd 2 2880.3.c.b.449.1 4
8.5 even 2 2880.3.c.g.449.1 4
12.11 even 2 45.3.d.a.44.3 yes 4
15.2 even 4 3600.3.l.s.1601.4 4
15.8 even 4 3600.3.l.s.1601.2 4
15.14 odd 2 inner 720.3.c.a.449.3 4
20.3 even 4 225.3.c.d.26.4 4
20.7 even 4 225.3.c.d.26.1 4
20.19 odd 2 45.3.d.a.44.4 yes 4
24.5 odd 2 2880.3.c.g.449.4 4
24.11 even 2 2880.3.c.b.449.4 4
36.7 odd 6 405.3.h.j.134.3 8
36.11 even 6 405.3.h.j.134.2 8
36.23 even 6 405.3.h.j.269.1 8
36.31 odd 6 405.3.h.j.269.4 8
40.19 odd 2 2880.3.c.b.449.3 4
40.29 even 2 2880.3.c.g.449.3 4
60.23 odd 4 225.3.c.d.26.2 4
60.47 odd 4 225.3.c.d.26.3 4
60.59 even 2 45.3.d.a.44.1 4
120.29 odd 2 2880.3.c.g.449.2 4
120.59 even 2 2880.3.c.b.449.2 4
180.59 even 6 405.3.h.j.269.3 8
180.79 odd 6 405.3.h.j.134.1 8
180.119 even 6 405.3.h.j.134.4 8
180.139 odd 6 405.3.h.j.269.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.d.a.44.1 4 60.59 even 2
45.3.d.a.44.2 yes 4 4.3 odd 2
45.3.d.a.44.3 yes 4 12.11 even 2
45.3.d.a.44.4 yes 4 20.19 odd 2
225.3.c.d.26.1 4 20.7 even 4
225.3.c.d.26.2 4 60.23 odd 4
225.3.c.d.26.3 4 60.47 odd 4
225.3.c.d.26.4 4 20.3 even 4
405.3.h.j.134.1 8 180.79 odd 6
405.3.h.j.134.2 8 36.11 even 6
405.3.h.j.134.3 8 36.7 odd 6
405.3.h.j.134.4 8 180.119 even 6
405.3.h.j.269.1 8 36.23 even 6
405.3.h.j.269.2 8 180.139 odd 6
405.3.h.j.269.3 8 180.59 even 6
405.3.h.j.269.4 8 36.31 odd 6
720.3.c.a.449.1 4 3.2 odd 2 inner
720.3.c.a.449.2 4 5.4 even 2 inner
720.3.c.a.449.3 4 15.14 odd 2 inner
720.3.c.a.449.4 4 1.1 even 1 trivial
2880.3.c.b.449.1 4 8.3 odd 2
2880.3.c.b.449.2 4 120.59 even 2
2880.3.c.b.449.3 4 40.19 odd 2
2880.3.c.b.449.4 4 24.11 even 2
2880.3.c.g.449.1 4 8.5 even 2
2880.3.c.g.449.2 4 120.29 odd 2
2880.3.c.g.449.3 4 40.29 even 2
2880.3.c.g.449.4 4 24.5 odd 2
3600.3.l.s.1601.1 4 5.3 odd 4
3600.3.l.s.1601.2 4 15.8 even 4
3600.3.l.s.1601.3 4 5.2 odd 4
3600.3.l.s.1601.4 4 15.2 even 4