Properties

Label 45.3.d.a.44.1
Level $45$
Weight $3$
Character 45.44
Analytic conductor $1.226$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,3,Mod(44,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 44.1
Root \(-2.57794i\) of defining polynomial
Character \(\chi\) \(=\) 45.44
Dual form 45.3.d.a.44.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64575 q^{2} +3.00000 q^{4} +(2.64575 - 4.24264i) q^{5} -11.2250i q^{7} +2.64575 q^{8} +O(q^{10})\) \(q-2.64575 q^{2} +3.00000 q^{4} +(2.64575 - 4.24264i) q^{5} -11.2250i q^{7} +2.64575 q^{8} +(-7.00000 + 11.2250i) q^{10} -4.24264i q^{11} +11.2250i q^{13} +29.6985i q^{14} -19.0000 q^{16} -10.5830 q^{17} +20.0000 q^{19} +(7.93725 - 12.7279i) q^{20} +11.2250i q^{22} +5.29150 q^{23} +(-11.0000 - 22.4499i) q^{25} -29.6985i q^{26} -33.6749i q^{28} +8.48528i q^{29} +26.0000 q^{31} +39.6863 q^{32} +28.0000 q^{34} +(-47.6235 - 29.6985i) q^{35} +33.6749i q^{37} -52.9150 q^{38} +(7.00000 - 11.2250i) q^{40} +55.1543i q^{41} +22.4499i q^{43} -12.7279i q^{44} -14.0000 q^{46} +21.1660 q^{47} -77.0000 q^{49} +(29.1033 + 59.3970i) q^{50} +33.6749i q^{52} +84.6640 q^{53} +(-18.0000 - 11.2250i) q^{55} -29.6985i q^{56} -22.4499i q^{58} -46.6690i q^{59} -22.0000 q^{61} -68.7895 q^{62} -29.0000 q^{64} +(47.6235 + 29.6985i) q^{65} -89.7998i q^{67} -31.7490 q^{68} +(126.000 + 78.5748i) q^{70} +50.9117i q^{71} +67.3498i q^{73} -89.0955i q^{74} +60.0000 q^{76} -47.6235 q^{77} +14.0000 q^{79} +(-50.2693 + 80.6102i) q^{80} -145.925i q^{82} -74.0810 q^{83} +(-28.0000 + 44.8999i) q^{85} -59.3970i q^{86} -11.2250i q^{88} -89.0955i q^{89} +126.000 q^{91} +15.8745 q^{92} -56.0000 q^{94} +(52.9150 - 84.8528i) q^{95} +22.4499i q^{97} +203.723 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{4} - 28 q^{10} - 76 q^{16} + 80 q^{19} - 44 q^{25} + 104 q^{31} + 112 q^{34} + 28 q^{40} - 56 q^{46} - 308 q^{49} - 72 q^{55} - 88 q^{61} - 116 q^{64} + 504 q^{70} + 240 q^{76} + 56 q^{79} - 112 q^{85} + 504 q^{91} - 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.64575 −1.32288 −0.661438 0.750000i \(-0.730053\pi\)
−0.661438 + 0.750000i \(0.730053\pi\)
\(3\) 0 0
\(4\) 3.00000 0.750000
\(5\) 2.64575 4.24264i 0.529150 0.848528i
\(6\) 0 0
\(7\) 11.2250i 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 2.64575 0.330719
\(9\) 0 0
\(10\) −7.00000 + 11.2250i −0.700000 + 1.12250i
\(11\) 4.24264i 0.385695i −0.981229 0.192847i \(-0.938228\pi\)
0.981229 0.192847i \(-0.0617722\pi\)
\(12\) 0 0
\(13\) 11.2250i 0.863459i 0.902003 + 0.431730i \(0.142097\pi\)
−0.902003 + 0.431730i \(0.857903\pi\)
\(14\) 29.6985i 2.12132i
\(15\) 0 0
\(16\) −19.0000 −1.18750
\(17\) −10.5830 −0.622530 −0.311265 0.950323i \(-0.600753\pi\)
−0.311265 + 0.950323i \(0.600753\pi\)
\(18\) 0 0
\(19\) 20.0000 1.05263 0.526316 0.850289i \(-0.323573\pi\)
0.526316 + 0.850289i \(0.323573\pi\)
\(20\) 7.93725 12.7279i 0.396863 0.636396i
\(21\) 0 0
\(22\) 11.2250i 0.510226i
\(23\) 5.29150 0.230065 0.115033 0.993362i \(-0.463303\pi\)
0.115033 + 0.993362i \(0.463303\pi\)
\(24\) 0 0
\(25\) −11.0000 22.4499i −0.440000 0.897998i
\(26\) 29.6985i 1.14225i
\(27\) 0 0
\(28\) 33.6749i 1.20268i
\(29\) 8.48528i 0.292596i 0.989241 + 0.146298i \(0.0467358\pi\)
−0.989241 + 0.146298i \(0.953264\pi\)
\(30\) 0 0
\(31\) 26.0000 0.838710 0.419355 0.907822i \(-0.362256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(32\) 39.6863 1.24020
\(33\) 0 0
\(34\) 28.0000 0.823529
\(35\) −47.6235 29.6985i −1.36067 0.848528i
\(36\) 0 0
\(37\) 33.6749i 0.910133i 0.890457 + 0.455066i \(0.150384\pi\)
−0.890457 + 0.455066i \(0.849616\pi\)
\(38\) −52.9150 −1.39250
\(39\) 0 0
\(40\) 7.00000 11.2250i 0.175000 0.280624i
\(41\) 55.1543i 1.34523i 0.739994 + 0.672614i \(0.234828\pi\)
−0.739994 + 0.672614i \(0.765172\pi\)
\(42\) 0 0
\(43\) 22.4499i 0.522092i 0.965326 + 0.261046i \(0.0840674\pi\)
−0.965326 + 0.261046i \(0.915933\pi\)
\(44\) 12.7279i 0.289271i
\(45\) 0 0
\(46\) −14.0000 −0.304348
\(47\) 21.1660 0.450341 0.225170 0.974319i \(-0.427706\pi\)
0.225170 + 0.974319i \(0.427706\pi\)
\(48\) 0 0
\(49\) −77.0000 −1.57143
\(50\) 29.1033 + 59.3970i 0.582065 + 1.18794i
\(51\) 0 0
\(52\) 33.6749i 0.647595i
\(53\) 84.6640 1.59743 0.798717 0.601706i \(-0.205512\pi\)
0.798717 + 0.601706i \(0.205512\pi\)
\(54\) 0 0
\(55\) −18.0000 11.2250i −0.327273 0.204090i
\(56\) 29.6985i 0.530330i
\(57\) 0 0
\(58\) 22.4499i 0.387068i
\(59\) 46.6690i 0.791001i −0.918466 0.395500i \(-0.870571\pi\)
0.918466 0.395500i \(-0.129429\pi\)
\(60\) 0 0
\(61\) −22.0000 −0.360656 −0.180328 0.983607i \(-0.557716\pi\)
−0.180328 + 0.983607i \(0.557716\pi\)
\(62\) −68.7895 −1.10951
\(63\) 0 0
\(64\) −29.0000 −0.453125
\(65\) 47.6235 + 29.6985i 0.732670 + 0.456900i
\(66\) 0 0
\(67\) 89.7998i 1.34030i −0.742228 0.670148i \(-0.766231\pi\)
0.742228 0.670148i \(-0.233769\pi\)
\(68\) −31.7490 −0.466897
\(69\) 0 0
\(70\) 126.000 + 78.5748i 1.80000 + 1.12250i
\(71\) 50.9117i 0.717066i 0.933517 + 0.358533i \(0.116723\pi\)
−0.933517 + 0.358533i \(0.883277\pi\)
\(72\) 0 0
\(73\) 67.3498i 0.922600i 0.887244 + 0.461300i \(0.152617\pi\)
−0.887244 + 0.461300i \(0.847383\pi\)
\(74\) 89.0955i 1.20399i
\(75\) 0 0
\(76\) 60.0000 0.789474
\(77\) −47.6235 −0.618487
\(78\) 0 0
\(79\) 14.0000 0.177215 0.0886076 0.996067i \(-0.471758\pi\)
0.0886076 + 0.996067i \(0.471758\pi\)
\(80\) −50.2693 + 80.6102i −0.628366 + 1.00763i
\(81\) 0 0
\(82\) 145.925i 1.77957i
\(83\) −74.0810 −0.892543 −0.446271 0.894898i \(-0.647248\pi\)
−0.446271 + 0.894898i \(0.647248\pi\)
\(84\) 0 0
\(85\) −28.0000 + 44.8999i −0.329412 + 0.528234i
\(86\) 59.3970i 0.690662i
\(87\) 0 0
\(88\) 11.2250i 0.127557i
\(89\) 89.0955i 1.00107i −0.865716 0.500536i \(-0.833136\pi\)
0.865716 0.500536i \(-0.166864\pi\)
\(90\) 0 0
\(91\) 126.000 1.38462
\(92\) 15.8745 0.172549
\(93\) 0 0
\(94\) −56.0000 −0.595745
\(95\) 52.9150 84.8528i 0.557000 0.893188i
\(96\) 0 0
\(97\) 22.4499i 0.231443i 0.993282 + 0.115721i \(0.0369180\pi\)
−0.993282 + 0.115721i \(0.963082\pi\)
\(98\) 203.723 2.07880
\(99\) 0 0
\(100\) −33.0000 67.3498i −0.330000 0.673498i
\(101\) 135.765i 1.34420i 0.740459 + 0.672101i \(0.234608\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(102\) 0 0
\(103\) 56.1249i 0.544902i −0.962170 0.272451i \(-0.912166\pi\)
0.962170 0.272451i \(-0.0878342\pi\)
\(104\) 29.6985i 0.285562i
\(105\) 0 0
\(106\) −224.000 −2.11321
\(107\) −10.5830 −0.0989066 −0.0494533 0.998776i \(-0.515748\pi\)
−0.0494533 + 0.998776i \(0.515748\pi\)
\(108\) 0 0
\(109\) −70.0000 −0.642202 −0.321101 0.947045i \(-0.604053\pi\)
−0.321101 + 0.947045i \(0.604053\pi\)
\(110\) 47.6235 + 29.6985i 0.432941 + 0.269986i
\(111\) 0 0
\(112\) 213.274i 1.90424i
\(113\) −137.579 −1.21751 −0.608757 0.793357i \(-0.708332\pi\)
−0.608757 + 0.793357i \(0.708332\pi\)
\(114\) 0 0
\(115\) 14.0000 22.4499i 0.121739 0.195217i
\(116\) 25.4558i 0.219447i
\(117\) 0 0
\(118\) 123.475i 1.04640i
\(119\) 118.794i 0.998268i
\(120\) 0 0
\(121\) 103.000 0.851240
\(122\) 58.2065 0.477103
\(123\) 0 0
\(124\) 78.0000 0.629032
\(125\) −124.350 12.7279i −0.994802 0.101823i
\(126\) 0 0
\(127\) 168.375i 1.32578i 0.748715 + 0.662892i \(0.230671\pi\)
−0.748715 + 0.662892i \(0.769329\pi\)
\(128\) −82.0183 −0.640768
\(129\) 0 0
\(130\) −126.000 78.5748i −0.969231 0.604422i
\(131\) 148.492i 1.13353i −0.823880 0.566765i \(-0.808195\pi\)
0.823880 0.566765i \(-0.191805\pi\)
\(132\) 0 0
\(133\) 224.499i 1.68797i
\(134\) 237.588i 1.77304i
\(135\) 0 0
\(136\) −28.0000 −0.205882
\(137\) 211.660 1.54496 0.772482 0.635036i \(-0.219015\pi\)
0.772482 + 0.635036i \(0.219015\pi\)
\(138\) 0 0
\(139\) 206.000 1.48201 0.741007 0.671497i \(-0.234348\pi\)
0.741007 + 0.671497i \(0.234348\pi\)
\(140\) −142.871 89.0955i −1.02050 0.636396i
\(141\) 0 0
\(142\) 134.700i 0.948589i
\(143\) 47.6235 0.333032
\(144\) 0 0
\(145\) 36.0000 + 22.4499i 0.248276 + 0.154827i
\(146\) 178.191i 1.22049i
\(147\) 0 0
\(148\) 101.025i 0.682600i
\(149\) 135.765i 0.911171i −0.890192 0.455586i \(-0.849430\pi\)
0.890192 0.455586i \(-0.150570\pi\)
\(150\) 0 0
\(151\) −202.000 −1.33775 −0.668874 0.743376i \(-0.733224\pi\)
−0.668874 + 0.743376i \(0.733224\pi\)
\(152\) 52.9150 0.348125
\(153\) 0 0
\(154\) 126.000 0.818182
\(155\) 68.7895 110.309i 0.443803 0.711669i
\(156\) 0 0
\(157\) 56.1249i 0.357483i −0.983896 0.178742i \(-0.942797\pi\)
0.983896 0.178742i \(-0.0572026\pi\)
\(158\) −37.0405 −0.234434
\(159\) 0 0
\(160\) 105.000 168.375i 0.656250 1.05234i
\(161\) 59.3970i 0.368925i
\(162\) 0 0
\(163\) 202.049i 1.23957i −0.784773 0.619784i \(-0.787220\pi\)
0.784773 0.619784i \(-0.212780\pi\)
\(164\) 165.463i 1.00892i
\(165\) 0 0
\(166\) 196.000 1.18072
\(167\) −185.203 −1.10900 −0.554499 0.832185i \(-0.687090\pi\)
−0.554499 + 0.832185i \(0.687090\pi\)
\(168\) 0 0
\(169\) 43.0000 0.254438
\(170\) 74.0810 118.794i 0.435771 0.698788i
\(171\) 0 0
\(172\) 67.3498i 0.391569i
\(173\) 21.1660 0.122347 0.0611734 0.998127i \(-0.480516\pi\)
0.0611734 + 0.998127i \(0.480516\pi\)
\(174\) 0 0
\(175\) −252.000 + 123.475i −1.44000 + 0.705570i
\(176\) 80.6102i 0.458012i
\(177\) 0 0
\(178\) 235.724i 1.32429i
\(179\) 241.831i 1.35101i 0.737356 + 0.675504i \(0.236074\pi\)
−0.737356 + 0.675504i \(0.763926\pi\)
\(180\) 0 0
\(181\) 74.0000 0.408840 0.204420 0.978883i \(-0.434469\pi\)
0.204420 + 0.978883i \(0.434469\pi\)
\(182\) −333.365 −1.83167
\(183\) 0 0
\(184\) 14.0000 0.0760870
\(185\) 142.871 + 89.0955i 0.772273 + 0.481597i
\(186\) 0 0
\(187\) 44.8999i 0.240106i
\(188\) 63.4980 0.337755
\(189\) 0 0
\(190\) −140.000 + 224.499i −0.736842 + 1.18158i
\(191\) 161.220i 0.844086i 0.906576 + 0.422043i \(0.138687\pi\)
−0.906576 + 0.422043i \(0.861313\pi\)
\(192\) 0 0
\(193\) 179.600i 0.930568i 0.885162 + 0.465284i \(0.154048\pi\)
−0.885162 + 0.465284i \(0.845952\pi\)
\(194\) 59.3970i 0.306170i
\(195\) 0 0
\(196\) −231.000 −1.17857
\(197\) 37.0405 0.188023 0.0940115 0.995571i \(-0.470031\pi\)
0.0940115 + 0.995571i \(0.470031\pi\)
\(198\) 0 0
\(199\) −250.000 −1.25628 −0.628141 0.778100i \(-0.716184\pi\)
−0.628141 + 0.778100i \(0.716184\pi\)
\(200\) −29.1033 59.3970i −0.145516 0.296985i
\(201\) 0 0
\(202\) 359.199i 1.77821i
\(203\) 95.2470 0.469197
\(204\) 0 0
\(205\) 234.000 + 145.925i 1.14146 + 0.711828i
\(206\) 148.492i 0.720837i
\(207\) 0 0
\(208\) 213.274i 1.02536i
\(209\) 84.8528i 0.405994i
\(210\) 0 0
\(211\) −154.000 −0.729858 −0.364929 0.931035i \(-0.618907\pi\)
−0.364929 + 0.931035i \(0.618907\pi\)
\(212\) 253.992 1.19808
\(213\) 0 0
\(214\) 28.0000 0.130841
\(215\) 95.2470 + 59.3970i 0.443010 + 0.276265i
\(216\) 0 0
\(217\) 291.849i 1.34493i
\(218\) 185.203 0.849553
\(219\) 0 0
\(220\) −54.0000 33.6749i −0.245455 0.153068i
\(221\) 118.794i 0.537529i
\(222\) 0 0
\(223\) 392.874i 1.76177i 0.473333 + 0.880883i \(0.343051\pi\)
−0.473333 + 0.880883i \(0.656949\pi\)
\(224\) 445.477i 1.98874i
\(225\) 0 0
\(226\) 364.000 1.61062
\(227\) 21.1660 0.0932423 0.0466212 0.998913i \(-0.485155\pi\)
0.0466212 + 0.998913i \(0.485155\pi\)
\(228\) 0 0
\(229\) −118.000 −0.515284 −0.257642 0.966240i \(-0.582945\pi\)
−0.257642 + 0.966240i \(0.582945\pi\)
\(230\) −37.0405 + 59.3970i −0.161046 + 0.258248i
\(231\) 0 0
\(232\) 22.4499i 0.0967670i
\(233\) −391.571 −1.68056 −0.840282 0.542150i \(-0.817610\pi\)
−0.840282 + 0.542150i \(0.817610\pi\)
\(234\) 0 0
\(235\) 56.0000 89.7998i 0.238298 0.382127i
\(236\) 140.007i 0.593251i
\(237\) 0 0
\(238\) 314.299i 1.32058i
\(239\) 347.897i 1.45563i 0.685771 + 0.727817i \(0.259465\pi\)
−0.685771 + 0.727817i \(0.740535\pi\)
\(240\) 0 0
\(241\) −40.0000 −0.165975 −0.0829876 0.996551i \(-0.526446\pi\)
−0.0829876 + 0.996551i \(0.526446\pi\)
\(242\) −272.512 −1.12608
\(243\) 0 0
\(244\) −66.0000 −0.270492
\(245\) −203.723 + 326.683i −0.831522 + 1.33340i
\(246\) 0 0
\(247\) 224.499i 0.908905i
\(248\) 68.7895 0.277377
\(249\) 0 0
\(250\) 329.000 + 33.6749i 1.31600 + 0.134700i
\(251\) 241.831i 0.963468i −0.876317 0.481734i \(-0.840007\pi\)
0.876317 0.481734i \(-0.159993\pi\)
\(252\) 0 0
\(253\) 22.4499i 0.0887350i
\(254\) 445.477i 1.75385i
\(255\) 0 0
\(256\) 333.000 1.30078
\(257\) −232.826 −0.905938 −0.452969 0.891526i \(-0.649635\pi\)
−0.452969 + 0.891526i \(0.649635\pi\)
\(258\) 0 0
\(259\) 378.000 1.45946
\(260\) 142.871 + 89.0955i 0.549502 + 0.342675i
\(261\) 0 0
\(262\) 392.874i 1.49952i
\(263\) 164.037 0.623713 0.311857 0.950129i \(-0.399049\pi\)
0.311857 + 0.950129i \(0.399049\pi\)
\(264\) 0 0
\(265\) 224.000 359.199i 0.845283 1.35547i
\(266\) 593.970i 2.23297i
\(267\) 0 0
\(268\) 269.399i 1.00522i
\(269\) 534.573i 1.98726i −0.112695 0.993630i \(-0.535948\pi\)
0.112695 0.993630i \(-0.464052\pi\)
\(270\) 0 0
\(271\) −286.000 −1.05535 −0.527675 0.849446i \(-0.676936\pi\)
−0.527675 + 0.849446i \(0.676936\pi\)
\(272\) 201.077 0.739254
\(273\) 0 0
\(274\) −560.000 −2.04380
\(275\) −95.2470 + 46.6690i −0.346353 + 0.169706i
\(276\) 0 0
\(277\) 190.825i 0.688897i 0.938805 + 0.344449i \(0.111934\pi\)
−0.938805 + 0.344449i \(0.888066\pi\)
\(278\) −545.025 −1.96052
\(279\) 0 0
\(280\) −126.000 78.5748i −0.450000 0.280624i
\(281\) 80.6102i 0.286869i −0.989660 0.143434i \(-0.954185\pi\)
0.989660 0.143434i \(-0.0458146\pi\)
\(282\) 0 0
\(283\) 89.7998i 0.317314i −0.987334 0.158657i \(-0.949284\pi\)
0.987334 0.158657i \(-0.0507164\pi\)
\(284\) 152.735i 0.537800i
\(285\) 0 0
\(286\) −126.000 −0.440559
\(287\) 619.106 2.15716
\(288\) 0 0
\(289\) −177.000 −0.612457
\(290\) −95.2470 59.3970i −0.328438 0.204817i
\(291\) 0 0
\(292\) 202.049i 0.691950i
\(293\) 576.774 1.96851 0.984256 0.176751i \(-0.0565587\pi\)
0.984256 + 0.176751i \(0.0565587\pi\)
\(294\) 0 0
\(295\) −198.000 123.475i −0.671186 0.418558i
\(296\) 89.0955i 0.300998i
\(297\) 0 0
\(298\) 359.199i 1.20537i
\(299\) 59.3970i 0.198652i
\(300\) 0 0
\(301\) 252.000 0.837209
\(302\) 534.442 1.76967
\(303\) 0 0
\(304\) −380.000 −1.25000
\(305\) −58.2065 + 93.3381i −0.190841 + 0.306027i
\(306\) 0 0
\(307\) 269.399i 0.877522i −0.898604 0.438761i \(-0.855417\pi\)
0.898604 0.438761i \(-0.144583\pi\)
\(308\) −142.871 −0.463865
\(309\) 0 0
\(310\) −182.000 + 291.849i −0.587097 + 0.941449i
\(311\) 59.3970i 0.190987i −0.995430 0.0954935i \(-0.969557\pi\)
0.995430 0.0954935i \(-0.0304429\pi\)
\(312\) 0 0
\(313\) 179.600i 0.573800i −0.957960 0.286900i \(-0.907375\pi\)
0.957960 0.286900i \(-0.0926248\pi\)
\(314\) 148.492i 0.472906i
\(315\) 0 0
\(316\) 42.0000 0.132911
\(317\) −312.199 −0.984854 −0.492427 0.870354i \(-0.663890\pi\)
−0.492427 + 0.870354i \(0.663890\pi\)
\(318\) 0 0
\(319\) 36.0000 0.112853
\(320\) −76.7268 + 123.037i −0.239771 + 0.384489i
\(321\) 0 0
\(322\) 157.150i 0.488042i
\(323\) −211.660 −0.655294
\(324\) 0 0
\(325\) 252.000 123.475i 0.775385 0.379922i
\(326\) 534.573i 1.63979i
\(327\) 0 0
\(328\) 145.925i 0.444892i
\(329\) 237.588i 0.722152i
\(330\) 0 0
\(331\) −112.000 −0.338369 −0.169184 0.985584i \(-0.554113\pi\)
−0.169184 + 0.985584i \(0.554113\pi\)
\(332\) −222.243 −0.669407
\(333\) 0 0
\(334\) 490.000 1.46707
\(335\) −380.988 237.588i −1.13728 0.709218i
\(336\) 0 0
\(337\) 112.250i 0.333085i 0.986034 + 0.166543i \(0.0532603\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(338\) −113.767 −0.336590
\(339\) 0 0
\(340\) −84.0000 + 134.700i −0.247059 + 0.396175i
\(341\) 110.309i 0.323486i
\(342\) 0 0
\(343\) 314.299i 0.916324i
\(344\) 59.3970i 0.172666i
\(345\) 0 0
\(346\) −56.0000 −0.161850
\(347\) −518.567 −1.49443 −0.747215 0.664582i \(-0.768610\pi\)
−0.747215 + 0.664582i \(0.768610\pi\)
\(348\) 0 0
\(349\) 122.000 0.349570 0.174785 0.984607i \(-0.444077\pi\)
0.174785 + 0.984607i \(0.444077\pi\)
\(350\) 666.729 326.683i 1.90494 0.933381i
\(351\) 0 0
\(352\) 168.375i 0.478337i
\(353\) 402.154 1.13925 0.569624 0.821906i \(-0.307089\pi\)
0.569624 + 0.821906i \(0.307089\pi\)
\(354\) 0 0
\(355\) 216.000 + 134.700i 0.608451 + 0.379436i
\(356\) 267.286i 0.750804i
\(357\) 0 0
\(358\) 639.823i 1.78722i
\(359\) 636.396i 1.77269i 0.463024 + 0.886346i \(0.346764\pi\)
−0.463024 + 0.886346i \(0.653236\pi\)
\(360\) 0 0
\(361\) 39.0000 0.108033
\(362\) −195.786 −0.540844
\(363\) 0 0
\(364\) 378.000 1.03846
\(365\) 285.741 + 178.191i 0.782852 + 0.488194i
\(366\) 0 0
\(367\) 684.723i 1.86573i −0.360225 0.932866i \(-0.617300\pi\)
0.360225 0.932866i \(-0.382700\pi\)
\(368\) −100.539 −0.273203
\(369\) 0 0
\(370\) −378.000 235.724i −1.02162 0.637093i
\(371\) 950.352i 2.56159i
\(372\) 0 0
\(373\) 145.925i 0.391219i 0.980682 + 0.195609i \(0.0626685\pi\)
−0.980682 + 0.195609i \(0.937332\pi\)
\(374\) 118.794i 0.317631i
\(375\) 0 0
\(376\) 56.0000 0.148936
\(377\) −95.2470 −0.252645
\(378\) 0 0
\(379\) 362.000 0.955145 0.477573 0.878592i \(-0.341517\pi\)
0.477573 + 0.878592i \(0.341517\pi\)
\(380\) 158.745 254.558i 0.417750 0.669891i
\(381\) 0 0
\(382\) 426.549i 1.11662i
\(383\) −42.3320 −0.110527 −0.0552637 0.998472i \(-0.517600\pi\)
−0.0552637 + 0.998472i \(0.517600\pi\)
\(384\) 0 0
\(385\) −126.000 + 202.049i −0.327273 + 0.524804i
\(386\) 475.176i 1.23103i
\(387\) 0 0
\(388\) 67.3498i 0.173582i
\(389\) 263.044i 0.676205i 0.941109 + 0.338102i \(0.109785\pi\)
−0.941109 + 0.338102i \(0.890215\pi\)
\(390\) 0 0
\(391\) −56.0000 −0.143223
\(392\) −203.723 −0.519701
\(393\) 0 0
\(394\) −98.0000 −0.248731
\(395\) 37.0405 59.3970i 0.0937735 0.150372i
\(396\) 0 0
\(397\) 33.6749i 0.0848235i −0.999100 0.0424117i \(-0.986496\pi\)
0.999100 0.0424117i \(-0.0135041\pi\)
\(398\) 661.438 1.66190
\(399\) 0 0
\(400\) 209.000 + 426.549i 0.522500 + 1.06637i
\(401\) 462.448i 1.15324i 0.817014 + 0.576618i \(0.195628\pi\)
−0.817014 + 0.576618i \(0.804372\pi\)
\(402\) 0 0
\(403\) 291.849i 0.724192i
\(404\) 407.294i 1.00815i
\(405\) 0 0
\(406\) −252.000 −0.620690
\(407\) 142.871 0.351033
\(408\) 0 0
\(409\) −82.0000 −0.200489 −0.100244 0.994963i \(-0.531962\pi\)
−0.100244 + 0.994963i \(0.531962\pi\)
\(410\) −619.106 386.080i −1.51001 0.941659i
\(411\) 0 0
\(412\) 168.375i 0.408676i
\(413\) −523.859 −1.26842
\(414\) 0 0
\(415\) −196.000 + 314.299i −0.472289 + 0.757348i
\(416\) 445.477i 1.07086i
\(417\) 0 0
\(418\) 224.499i 0.537080i
\(419\) 207.889i 0.496156i 0.968740 + 0.248078i \(0.0797989\pi\)
−0.968740 + 0.248078i \(0.920201\pi\)
\(420\) 0 0
\(421\) −490.000 −1.16390 −0.581948 0.813226i \(-0.697709\pi\)
−0.581948 + 0.813226i \(0.697709\pi\)
\(422\) 407.446 0.965511
\(423\) 0 0
\(424\) 224.000 0.528302
\(425\) 116.413 + 237.588i 0.273913 + 0.559030i
\(426\) 0 0
\(427\) 246.949i 0.578336i
\(428\) −31.7490 −0.0741799
\(429\) 0 0
\(430\) −252.000 157.150i −0.586047 0.365464i
\(431\) 687.308i 1.59468i 0.603529 + 0.797341i \(0.293761\pi\)
−0.603529 + 0.797341i \(0.706239\pi\)
\(432\) 0 0
\(433\) 202.049i 0.466627i 0.972402 + 0.233314i \(0.0749568\pi\)
−0.972402 + 0.233314i \(0.925043\pi\)
\(434\) 772.161i 1.77917i
\(435\) 0 0
\(436\) −210.000 −0.481651
\(437\) 105.830 0.242174
\(438\) 0 0
\(439\) 302.000 0.687927 0.343964 0.938983i \(-0.388230\pi\)
0.343964 + 0.938983i \(0.388230\pi\)
\(440\) −47.6235 29.6985i −0.108235 0.0674966i
\(441\) 0 0
\(442\) 314.299i 0.711084i
\(443\) −264.575 −0.597235 −0.298618 0.954373i \(-0.596525\pi\)
−0.298618 + 0.954373i \(0.596525\pi\)
\(444\) 0 0
\(445\) −378.000 235.724i −0.849438 0.529718i
\(446\) 1039.45i 2.33060i
\(447\) 0 0
\(448\) 325.524i 0.726617i
\(449\) 216.375i 0.481904i −0.970537 0.240952i \(-0.922540\pi\)
0.970537 0.240952i \(-0.0774596\pi\)
\(450\) 0 0
\(451\) 234.000 0.518847
\(452\) −412.737 −0.913135
\(453\) 0 0
\(454\) −56.0000 −0.123348
\(455\) 333.365 534.573i 0.732670 1.17489i
\(456\) 0 0
\(457\) 561.249i 1.22812i 0.789261 + 0.614058i \(0.210464\pi\)
−0.789261 + 0.614058i \(0.789536\pi\)
\(458\) 312.199 0.681656
\(459\) 0 0
\(460\) 42.0000 67.3498i 0.0913043 0.146413i
\(461\) 237.588i 0.515375i 0.966228 + 0.257688i \(0.0829605\pi\)
−0.966228 + 0.257688i \(0.917039\pi\)
\(462\) 0 0
\(463\) 729.623i 1.57586i −0.615765 0.787930i \(-0.711153\pi\)
0.615765 0.787930i \(-0.288847\pi\)
\(464\) 161.220i 0.347458i
\(465\) 0 0
\(466\) 1036.00 2.22318
\(467\) 465.652 0.997114 0.498557 0.866857i \(-0.333863\pi\)
0.498557 + 0.866857i \(0.333863\pi\)
\(468\) 0 0
\(469\) −1008.00 −2.14925
\(470\) −148.162 + 237.588i −0.315238 + 0.505506i
\(471\) 0 0
\(472\) 123.475i 0.261599i
\(473\) 95.2470 0.201368
\(474\) 0 0
\(475\) −220.000 448.999i −0.463158 0.945261i
\(476\) 356.382i 0.748701i
\(477\) 0 0
\(478\) 920.448i 1.92562i
\(479\) 475.176i 0.992016i −0.868318 0.496008i \(-0.834799\pi\)
0.868318 0.496008i \(-0.165201\pi\)
\(480\) 0 0
\(481\) −378.000 −0.785863
\(482\) 105.830 0.219564
\(483\) 0 0
\(484\) 309.000 0.638430
\(485\) 95.2470 + 59.3970i 0.196386 + 0.122468i
\(486\) 0 0
\(487\) 505.124i 1.03722i 0.855012 + 0.518608i \(0.173549\pi\)
−0.855012 + 0.518608i \(0.826451\pi\)
\(488\) −58.2065 −0.119276
\(489\) 0 0
\(490\) 539.000 864.323i 1.10000 1.76392i
\(491\) 275.772i 0.561653i −0.959759 0.280827i \(-0.909391\pi\)
0.959759 0.280827i \(-0.0906086\pi\)
\(492\) 0 0
\(493\) 89.7998i 0.182150i
\(494\) 593.970i 1.20237i
\(495\) 0 0
\(496\) −494.000 −0.995968
\(497\) 571.482 1.14986
\(498\) 0 0
\(499\) 368.000 0.737475 0.368737 0.929534i \(-0.379790\pi\)
0.368737 + 0.929534i \(0.379790\pi\)
\(500\) −373.051 38.1838i −0.746102 0.0763675i
\(501\) 0 0
\(502\) 639.823i 1.27455i
\(503\) 275.158 0.547034 0.273517 0.961867i \(-0.411813\pi\)
0.273517 + 0.961867i \(0.411813\pi\)
\(504\) 0 0
\(505\) 576.000 + 359.199i 1.14059 + 0.711285i
\(506\) 59.3970i 0.117385i
\(507\) 0 0
\(508\) 505.124i 0.994338i
\(509\) 118.794i 0.233387i 0.993168 + 0.116693i \(0.0372295\pi\)
−0.993168 + 0.116693i \(0.962770\pi\)
\(510\) 0 0
\(511\) 756.000 1.47945
\(512\) −552.962 −1.08000
\(513\) 0 0
\(514\) 616.000 1.19844
\(515\) −238.118 148.492i −0.462364 0.288335i
\(516\) 0 0
\(517\) 89.7998i 0.173694i
\(518\) −1000.09 −1.93068
\(519\) 0 0
\(520\) 126.000 + 78.5748i 0.242308 + 0.151105i
\(521\) 89.0955i 0.171009i −0.996338 0.0855043i \(-0.972750\pi\)
0.996338 0.0855043i \(-0.0272501\pi\)
\(522\) 0 0
\(523\) 875.548i 1.67409i −0.547136 0.837044i \(-0.684282\pi\)
0.547136 0.837044i \(-0.315718\pi\)
\(524\) 445.477i 0.850147i
\(525\) 0 0
\(526\) −434.000 −0.825095
\(527\) −275.158 −0.522122
\(528\) 0 0
\(529\) −501.000 −0.947070
\(530\) −592.648 + 950.352i −1.11820 + 1.79312i
\(531\) 0 0
\(532\) 673.498i 1.26597i
\(533\) −619.106 −1.16155
\(534\) 0 0
\(535\) −28.0000 + 44.8999i −0.0523364 + 0.0839250i
\(536\) 237.588i 0.443261i
\(537\) 0 0
\(538\) 1414.35i 2.62890i
\(539\) 326.683i 0.606092i
\(540\) 0 0
\(541\) 434.000 0.802218 0.401109 0.916030i \(-0.368625\pi\)
0.401109 + 0.916030i \(0.368625\pi\)
\(542\) 756.685 1.39610
\(543\) 0 0
\(544\) −420.000 −0.772059
\(545\) −185.203 + 296.985i −0.339821 + 0.544926i
\(546\) 0 0
\(547\) 112.250i 0.205210i −0.994722 0.102605i \(-0.967282\pi\)
0.994722 0.102605i \(-0.0327177\pi\)
\(548\) 634.980 1.15872
\(549\) 0 0
\(550\) 252.000 123.475i 0.458182 0.224499i
\(551\) 169.706i 0.307996i
\(552\) 0 0
\(553\) 157.150i 0.284177i
\(554\) 504.874i 0.911325i
\(555\) 0 0
\(556\) 618.000 1.11151
\(557\) 465.652 0.836000 0.418000 0.908447i \(-0.362731\pi\)
0.418000 + 0.908447i \(0.362731\pi\)
\(558\) 0 0
\(559\) −252.000 −0.450805
\(560\) 904.847 + 564.271i 1.61580 + 1.00763i
\(561\) 0 0
\(562\) 213.274i 0.379492i
\(563\) 52.9150 0.0939876 0.0469938 0.998895i \(-0.485036\pi\)
0.0469938 + 0.998895i \(0.485036\pi\)
\(564\) 0 0
\(565\) −364.000 + 583.699i −0.644248 + 1.03309i
\(566\) 237.588i 0.419767i
\(567\) 0 0
\(568\) 134.700i 0.237147i
\(569\) 640.639i 1.12590i −0.826490 0.562951i \(-0.809666\pi\)
0.826490 0.562951i \(-0.190334\pi\)
\(570\) 0 0
\(571\) −568.000 −0.994746 −0.497373 0.867537i \(-0.665702\pi\)
−0.497373 + 0.867537i \(0.665702\pi\)
\(572\) 142.871 0.249774
\(573\) 0 0
\(574\) −1638.00 −2.85366
\(575\) −58.2065 118.794i −0.101229 0.206598i
\(576\) 0 0
\(577\) 67.3498i 0.116724i −0.998295 0.0583621i \(-0.981412\pi\)
0.998295 0.0583621i \(-0.0185878\pi\)
\(578\) 468.298 0.810204
\(579\) 0 0
\(580\) 108.000 + 67.3498i 0.186207 + 0.116120i
\(581\) 831.558i 1.43125i
\(582\) 0 0
\(583\) 359.199i 0.616122i
\(584\) 178.191i 0.305121i
\(585\) 0 0
\(586\) −1526.00 −2.60410
\(587\) −1026.55 −1.74881 −0.874405 0.485197i \(-0.838748\pi\)
−0.874405 + 0.485197i \(0.838748\pi\)
\(588\) 0 0
\(589\) 520.000 0.882852
\(590\) 523.859 + 326.683i 0.887896 + 0.553701i
\(591\) 0 0
\(592\) 639.823i 1.08078i
\(593\) 656.146 1.10649 0.553243 0.833020i \(-0.313390\pi\)
0.553243 + 0.833020i \(0.313390\pi\)
\(594\) 0 0
\(595\) 504.000 + 314.299i 0.847059 + 0.528234i
\(596\) 407.294i 0.683378i
\(597\) 0 0
\(598\) 157.150i 0.262792i
\(599\) 924.896i 1.54407i −0.635582 0.772033i \(-0.719240\pi\)
0.635582 0.772033i \(-0.280760\pi\)
\(600\) 0 0
\(601\) 788.000 1.31115 0.655574 0.755131i \(-0.272427\pi\)
0.655574 + 0.755131i \(0.272427\pi\)
\(602\) −666.729 −1.10752
\(603\) 0 0
\(604\) −606.000 −1.00331
\(605\) 272.512 436.992i 0.450434 0.722301i
\(606\) 0 0
\(607\) 11.2250i 0.0184925i 0.999957 + 0.00924627i \(0.00294322\pi\)
−0.999957 + 0.00924627i \(0.997057\pi\)
\(608\) 793.725 1.30547
\(609\) 0 0
\(610\) 154.000 246.949i 0.252459 0.404835i
\(611\) 237.588i 0.388851i
\(612\) 0 0
\(613\) 572.474i 0.933888i 0.884287 + 0.466944i \(0.154645\pi\)
−0.884287 + 0.466944i \(0.845355\pi\)
\(614\) 712.764i 1.16085i
\(615\) 0 0
\(616\) −126.000 −0.204545
\(617\) −423.320 −0.686094 −0.343047 0.939318i \(-0.611459\pi\)
−0.343047 + 0.939318i \(0.611459\pi\)
\(618\) 0 0
\(619\) 194.000 0.313409 0.156704 0.987646i \(-0.449913\pi\)
0.156704 + 0.987646i \(0.449913\pi\)
\(620\) 206.369 330.926i 0.332853 0.533752i
\(621\) 0 0
\(622\) 157.150i 0.252652i
\(623\) −1000.09 −1.60529
\(624\) 0 0
\(625\) −383.000 + 493.899i −0.612800 + 0.790238i
\(626\) 475.176i 0.759067i
\(627\) 0 0
\(628\) 168.375i 0.268112i
\(629\) 356.382i 0.566585i
\(630\) 0 0
\(631\) 1190.00 1.88590 0.942948 0.332941i \(-0.108041\pi\)
0.942948 + 0.332941i \(0.108041\pi\)
\(632\) 37.0405 0.0586084
\(633\) 0 0
\(634\) 826.000 1.30284
\(635\) 714.353 + 445.477i 1.12497 + 0.701539i
\(636\) 0 0
\(637\) 864.323i 1.35686i
\(638\) −95.2470 −0.149290
\(639\) 0 0
\(640\) −217.000 + 347.974i −0.339062 + 0.543710i
\(641\) 708.521i 1.10534i 0.833401 + 0.552668i \(0.186390\pi\)
−0.833401 + 0.552668i \(0.813610\pi\)
\(642\) 0 0
\(643\) 651.048i 1.01252i 0.862382 + 0.506258i \(0.168972\pi\)
−0.862382 + 0.506258i \(0.831028\pi\)
\(644\) 178.191i 0.276694i
\(645\) 0 0
\(646\) 560.000 0.866873
\(647\) −1058.30 −1.63570 −0.817852 0.575429i \(-0.804835\pi\)
−0.817852 + 0.575429i \(0.804835\pi\)
\(648\) 0 0
\(649\) −198.000 −0.305085
\(650\) −666.729 + 326.683i −1.02574 + 0.502590i
\(651\) 0 0
\(652\) 606.148i 0.929676i
\(653\) −470.944 −0.721200 −0.360600 0.932721i \(-0.617428\pi\)
−0.360600 + 0.932721i \(0.617428\pi\)
\(654\) 0 0
\(655\) −630.000 392.874i −0.961832 0.599808i
\(656\) 1047.93i 1.59746i
\(657\) 0 0
\(658\) 628.598i 0.955317i
\(659\) 80.6102i 0.122322i −0.998128 0.0611610i \(-0.980520\pi\)
0.998128 0.0611610i \(-0.0194803\pi\)
\(660\) 0 0
\(661\) 170.000 0.257186 0.128593 0.991697i \(-0.458954\pi\)
0.128593 + 0.991697i \(0.458954\pi\)
\(662\) 296.324 0.447620
\(663\) 0 0
\(664\) −196.000 −0.295181
\(665\) −952.470 593.970i −1.43229 0.893188i
\(666\) 0 0
\(667\) 44.8999i 0.0673162i
\(668\) −555.608 −0.831748
\(669\) 0 0
\(670\) 1008.00 + 628.598i 1.50448 + 0.938207i
\(671\) 93.3381i 0.139103i
\(672\) 0 0
\(673\) 1055.15i 1.56783i −0.620870 0.783913i \(-0.713221\pi\)
0.620870 0.783913i \(-0.286779\pi\)
\(674\) 296.985i 0.440630i
\(675\) 0 0
\(676\) 129.000 0.190828
\(677\) 830.766 1.22713 0.613564 0.789645i \(-0.289735\pi\)
0.613564 + 0.789645i \(0.289735\pi\)
\(678\) 0 0
\(679\) 252.000 0.371134
\(680\) −74.0810 + 118.794i −0.108943 + 0.174697i
\(681\) 0 0
\(682\) 291.849i 0.427931i
\(683\) 1037.13 1.51850 0.759249 0.650800i \(-0.225566\pi\)
0.759249 + 0.650800i \(0.225566\pi\)
\(684\) 0 0
\(685\) 560.000 897.998i 0.817518 1.31095i
\(686\) 831.558i 1.21218i
\(687\) 0 0
\(688\) 426.549i 0.619984i
\(689\) 950.352i 1.37932i
\(690\) 0 0
\(691\) −652.000 −0.943560 −0.471780 0.881716i \(-0.656388\pi\)
−0.471780 + 0.881716i \(0.656388\pi\)
\(692\) 63.4980 0.0917602
\(693\) 0 0
\(694\) 1372.00 1.97695
\(695\) 545.025 873.984i 0.784208 1.25753i
\(696\) 0 0
\(697\) 583.699i 0.837444i
\(698\) −322.782 −0.462438
\(699\) 0 0
\(700\) −756.000 + 370.424i −1.08000 + 0.529177i
\(701\) 763.675i 1.08941i −0.838628 0.544704i \(-0.816642\pi\)
0.838628 0.544704i \(-0.183358\pi\)
\(702\) 0 0
\(703\) 673.498i 0.958035i
\(704\) 123.037i 0.174768i
\(705\) 0 0
\(706\) −1064.00 −1.50708
\(707\) 1523.95 2.15552
\(708\) 0 0
\(709\) 158.000 0.222849 0.111425 0.993773i \(-0.464459\pi\)
0.111425 + 0.993773i \(0.464459\pi\)
\(710\) −571.482 356.382i −0.804905 0.501946i
\(711\) 0 0
\(712\) 235.724i 0.331074i
\(713\) 137.579 0.192958
\(714\) 0 0
\(715\) 126.000 202.049i 0.176224 0.282587i
\(716\) 725.492i 1.01326i
\(717\) 0 0
\(718\) 1683.75i 2.34505i
\(719\) 127.279i 0.177023i 0.996075 + 0.0885113i \(0.0282109\pi\)
−0.996075 + 0.0885113i \(0.971789\pi\)
\(720\) 0 0
\(721\) −630.000 −0.873786
\(722\) −103.184 −0.142915
\(723\) 0 0
\(724\) 222.000 0.306630
\(725\) 190.494 93.3381i 0.262750 0.128742i
\(726\) 0 0
\(727\) 662.273i 0.910967i 0.890244 + 0.455484i \(0.150534\pi\)
−0.890244 + 0.455484i \(0.849466\pi\)
\(728\) 333.365 0.457918
\(729\) 0 0
\(730\) −756.000 471.449i −1.03562 0.645820i
\(731\) 237.588i 0.325018i
\(732\) 0 0
\(733\) 684.723i 0.934138i 0.884221 + 0.467069i \(0.154690\pi\)
−0.884221 + 0.467069i \(0.845310\pi\)
\(734\) 1811.61i 2.46813i
\(735\) 0 0
\(736\) 210.000 0.285326
\(737\) −380.988 −0.516945
\(738\) 0 0
\(739\) −1240.00 −1.67794 −0.838972 0.544175i \(-0.816843\pi\)
−0.838972 + 0.544175i \(0.816843\pi\)
\(740\) 428.612 + 267.286i 0.579205 + 0.361198i
\(741\) 0 0
\(742\) 2514.39i 3.38867i
\(743\) −42.3320 −0.0569745 −0.0284872 0.999594i \(-0.509069\pi\)
−0.0284872 + 0.999594i \(0.509069\pi\)
\(744\) 0 0
\(745\) −576.000 359.199i −0.773154 0.482146i
\(746\) 386.080i 0.517534i
\(747\) 0 0
\(748\) 134.700i 0.180080i
\(749\) 118.794i 0.158603i
\(750\) 0 0
\(751\) −154.000 −0.205060 −0.102530 0.994730i \(-0.532694\pi\)
−0.102530 + 0.994730i \(0.532694\pi\)
\(752\) −402.154 −0.534780
\(753\) 0 0
\(754\) 252.000 0.334218
\(755\) −534.442 + 857.013i −0.707870 + 1.13512i
\(756\) 0 0
\(757\) 1313.32i 1.73490i 0.497522 + 0.867452i \(0.334244\pi\)
−0.497522 + 0.867452i \(0.665756\pi\)
\(758\) −957.762 −1.26354
\(759\) 0 0
\(760\) 140.000 224.499i 0.184211 0.295394i
\(761\) 504.874i 0.663435i −0.943379 0.331718i \(-0.892372\pi\)
0.943379 0.331718i \(-0.107628\pi\)
\(762\) 0 0
\(763\) 785.748i 1.02981i
\(764\) 483.661i 0.633064i
\(765\) 0 0
\(766\) 112.000 0.146214
\(767\) 523.859 0.682997
\(768\) 0 0
\(769\) 368.000 0.478544 0.239272 0.970953i \(-0.423091\pi\)
0.239272 + 0.970953i \(0.423091\pi\)
\(770\) 333.365 534.573i 0.432941 0.694250i
\(771\) 0 0
\(772\) 538.799i 0.697926i
\(773\) −153.454 −0.198517 −0.0992585 0.995062i \(-0.531647\pi\)
−0.0992585 + 0.995062i \(0.531647\pi\)
\(774\) 0 0
\(775\) −286.000 583.699i −0.369032 0.753159i
\(776\) 59.3970i 0.0765425i
\(777\) 0 0
\(778\) 695.948i 0.894535i
\(779\) 1103.09i 1.41603i
\(780\) 0 0
\(781\) 216.000 0.276569
\(782\) 148.162 0.189466
\(783\) 0 0
\(784\) 1463.00 1.86607
\(785\) −238.118 148.492i −0.303335 0.189162i
\(786\) 0 0
\(787\) 426.549i 0.541994i −0.962580 0.270997i \(-0.912647\pi\)
0.962580 0.270997i \(-0.0873533\pi\)
\(788\) 111.122 0.141017