Properties

Label 405.3.h.j.134.1
Level $405$
Weight $3$
Character 405.134
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 134.1
Root \(1.00781 - 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 405.134
Dual form 405.3.h.j.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 - 2.29129i) q^{2} +(-1.50000 + 2.59808i) q^{4} +(-2.35136 - 4.41261i) q^{5} +(-9.72111 + 5.61249i) q^{7} -2.64575 q^{8} +(-7.00000 + 11.2250i) q^{10} +(3.67423 - 2.12132i) q^{11} +(-9.72111 - 5.61249i) q^{13} +(25.7196 + 14.8492i) q^{14} +(9.50000 + 16.4545i) q^{16} +10.5830 q^{17} +20.0000 q^{19} +(14.9913 + 0.509903i) q^{20} +(-9.72111 - 5.61249i) q^{22} +(2.64575 - 4.58258i) q^{23} +(-13.9422 + 20.7513i) q^{25} +29.6985i q^{26} -33.6749i q^{28} +(-7.34847 + 4.24264i) q^{29} +(-13.0000 + 22.5167i) q^{31} +(19.8431 - 34.3693i) q^{32} +(-14.0000 - 24.2487i) q^{34} +(47.6235 + 29.6985i) q^{35} +33.6749i q^{37} +(-26.4575 - 45.8258i) q^{38} +(6.22111 + 11.6747i) q^{40} +(47.7650 + 27.5772i) q^{41} +(19.4422 - 11.2250i) q^{43} +12.7279i q^{44} -14.0000 q^{46} +(10.5830 + 18.3303i) q^{47} +(38.5000 - 66.6840i) q^{49} +(65.9909 + 4.49432i) q^{50} +(29.1633 - 16.8375i) q^{52} -84.6640 q^{53} +(-18.0000 - 11.2250i) q^{55} +(25.7196 - 14.8492i) q^{56} +(19.4422 + 11.2250i) q^{58} +(-40.4166 - 23.3345i) q^{59} +(11.0000 + 19.0526i) q^{61} +68.7895 q^{62} -29.0000 q^{64} +(-1.90788 + 56.0924i) q^{65} +(77.7689 + 44.8999i) q^{67} +(-15.8745 + 27.4955i) q^{68} +(5.04778 - 148.407i) q^{70} -50.9117i q^{71} +67.3498i q^{73} +(77.1589 - 44.5477i) q^{74} +(-30.0000 + 51.9615i) q^{76} +(-23.8118 + 41.2432i) q^{77} +(-7.00000 - 12.1244i) q^{79} +(50.2693 - 80.6102i) q^{80} -145.925i q^{82} +(-37.0405 - 64.1561i) q^{83} +(-24.8844 - 46.6987i) q^{85} +(-51.4393 - 29.6985i) q^{86} +(-9.72111 + 5.61249i) q^{88} +89.0955i q^{89} +126.000 q^{91} +(7.93725 + 13.7477i) q^{92} +(28.0000 - 48.4974i) q^{94} +(-47.0272 - 88.2522i) q^{95} +(19.4422 - 11.2250i) q^{97} -203.723 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} - 56 q^{10} + 76 q^{16} + 160 q^{19} + 44 q^{25} - 104 q^{31} - 112 q^{34} - 28 q^{40} - 112 q^{46} + 308 q^{49} - 144 q^{55} + 88 q^{61} - 232 q^{64} - 504 q^{70} - 240 q^{76} - 56 q^{79}+ \cdots + 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32288 2.29129i −0.661438 1.14564i −0.980238 0.197822i \(-0.936613\pi\)
0.318800 0.947822i \(-0.396720\pi\)
\(3\) 0 0
\(4\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(5\) −2.35136 4.41261i −0.470272 0.882522i
\(6\) 0 0
\(7\) −9.72111 + 5.61249i −1.38873 + 0.801784i −0.993172 0.116657i \(-0.962782\pi\)
−0.395558 + 0.918441i \(0.629449\pi\)
\(8\) −2.64575 −0.330719
\(9\) 0 0
\(10\) −7.00000 + 11.2250i −0.700000 + 1.12250i
\(11\) 3.67423 2.12132i 0.334021 0.192847i −0.323604 0.946193i \(-0.604894\pi\)
0.657625 + 0.753345i \(0.271561\pi\)
\(12\) 0 0
\(13\) −9.72111 5.61249i −0.747778 0.431730i 0.0771126 0.997022i \(-0.475430\pi\)
−0.824890 + 0.565293i \(0.808763\pi\)
\(14\) 25.7196 + 14.8492i 1.83712 + 1.06066i
\(15\) 0 0
\(16\) 9.50000 + 16.4545i 0.593750 + 1.02841i
\(17\) 10.5830 0.622530 0.311265 0.950323i \(-0.399247\pi\)
0.311265 + 0.950323i \(0.399247\pi\)
\(18\) 0 0
\(19\) 20.0000 1.05263 0.526316 0.850289i \(-0.323573\pi\)
0.526316 + 0.850289i \(0.323573\pi\)
\(20\) 14.9913 + 0.509903i 0.749567 + 0.0254951i
\(21\) 0 0
\(22\) −9.72111 5.61249i −0.441869 0.255113i
\(23\) 2.64575 4.58258i 0.115033 0.199242i −0.802760 0.596302i \(-0.796636\pi\)
0.917793 + 0.397060i \(0.129969\pi\)
\(24\) 0 0
\(25\) −13.9422 + 20.7513i −0.557689 + 0.830050i
\(26\) 29.6985i 1.14225i
\(27\) 0 0
\(28\) 33.6749i 1.20268i
\(29\) −7.34847 + 4.24264i −0.253395 + 0.146298i −0.621318 0.783558i \(-0.713402\pi\)
0.367923 + 0.929856i \(0.380069\pi\)
\(30\) 0 0
\(31\) −13.0000 + 22.5167i −0.419355 + 0.726344i −0.995875 0.0907393i \(-0.971077\pi\)
0.576520 + 0.817083i \(0.304410\pi\)
\(32\) 19.8431 34.3693i 0.620098 1.07404i
\(33\) 0 0
\(34\) −14.0000 24.2487i −0.411765 0.713197i
\(35\) 47.6235 + 29.6985i 1.36067 + 0.848528i
\(36\) 0 0
\(37\) 33.6749i 0.910133i 0.890457 + 0.455066i \(0.150384\pi\)
−0.890457 + 0.455066i \(0.849616\pi\)
\(38\) −26.4575 45.8258i −0.696250 1.20594i
\(39\) 0 0
\(40\) 6.22111 + 11.6747i 0.155528 + 0.291867i
\(41\) 47.7650 + 27.5772i 1.16500 + 0.672614i 0.952497 0.304546i \(-0.0985049\pi\)
0.212504 + 0.977160i \(0.431838\pi\)
\(42\) 0 0
\(43\) 19.4422 11.2250i 0.452145 0.261046i −0.256591 0.966520i \(-0.582599\pi\)
0.708736 + 0.705474i \(0.249266\pi\)
\(44\) 12.7279i 0.289271i
\(45\) 0 0
\(46\) −14.0000 −0.304348
\(47\) 10.5830 + 18.3303i 0.225170 + 0.390006i 0.956371 0.292156i \(-0.0943728\pi\)
−0.731200 + 0.682163i \(0.761039\pi\)
\(48\) 0 0
\(49\) 38.5000 66.6840i 0.785714 1.36090i
\(50\) 65.9909 + 4.49432i 1.31982 + 0.0898864i
\(51\) 0 0
\(52\) 29.1633 16.8375i 0.560833 0.323797i
\(53\) −84.6640 −1.59743 −0.798717 0.601706i \(-0.794488\pi\)
−0.798717 + 0.601706i \(0.794488\pi\)
\(54\) 0 0
\(55\) −18.0000 11.2250i −0.327273 0.204090i
\(56\) 25.7196 14.8492i 0.459279 0.265165i
\(57\) 0 0
\(58\) 19.4422 + 11.2250i 0.335211 + 0.193534i
\(59\) −40.4166 23.3345i −0.685027 0.395500i 0.116720 0.993165i \(-0.462762\pi\)
−0.801746 + 0.597665i \(0.796095\pi\)
\(60\) 0 0
\(61\) 11.0000 + 19.0526i 0.180328 + 0.312337i 0.941992 0.335635i \(-0.108951\pi\)
−0.761664 + 0.647972i \(0.775617\pi\)
\(62\) 68.7895 1.10951
\(63\) 0 0
\(64\) −29.0000 −0.453125
\(65\) −1.90788 + 56.0924i −0.0293520 + 0.862960i
\(66\) 0 0
\(67\) 77.7689 + 44.8999i 1.16073 + 0.670148i 0.951479 0.307714i \(-0.0995641\pi\)
0.209251 + 0.977862i \(0.432897\pi\)
\(68\) −15.8745 + 27.4955i −0.233449 + 0.404345i
\(69\) 0 0
\(70\) 5.04778 148.407i 0.0721111 2.12009i
\(71\) 50.9117i 0.717066i −0.933517 0.358533i \(-0.883277\pi\)
0.933517 0.358533i \(-0.116723\pi\)
\(72\) 0 0
\(73\) 67.3498i 0.922600i 0.887244 + 0.461300i \(0.152617\pi\)
−0.887244 + 0.461300i \(0.847383\pi\)
\(74\) 77.1589 44.5477i 1.04269 0.601996i
\(75\) 0 0
\(76\) −30.0000 + 51.9615i −0.394737 + 0.683704i
\(77\) −23.8118 + 41.2432i −0.309244 + 0.535626i
\(78\) 0 0
\(79\) −7.00000 12.1244i −0.0886076 0.153473i 0.818315 0.574770i \(-0.194908\pi\)
−0.906923 + 0.421297i \(0.861575\pi\)
\(80\) 50.2693 80.6102i 0.628366 1.00763i
\(81\) 0 0
\(82\) 145.925i 1.77957i
\(83\) −37.0405 64.1561i −0.446271 0.772965i 0.551869 0.833931i \(-0.313915\pi\)
−0.998140 + 0.0609666i \(0.980582\pi\)
\(84\) 0 0
\(85\) −24.8844 46.6987i −0.292758 0.549396i
\(86\) −51.4393 29.6985i −0.598131 0.345331i
\(87\) 0 0
\(88\) −9.72111 + 5.61249i −0.110467 + 0.0637783i
\(89\) 89.0955i 1.00107i 0.865716 + 0.500536i \(0.166864\pi\)
−0.865716 + 0.500536i \(0.833136\pi\)
\(90\) 0 0
\(91\) 126.000 1.38462
\(92\) 7.93725 + 13.7477i 0.0862745 + 0.149432i
\(93\) 0 0
\(94\) 28.0000 48.4974i 0.297872 0.515930i
\(95\) −47.0272 88.2522i −0.495023 0.928970i
\(96\) 0 0
\(97\) 19.4422 11.2250i 0.200435 0.115721i −0.396423 0.918068i \(-0.629749\pi\)
0.596858 + 0.802347i \(0.296415\pi\)
\(98\) −203.723 −2.07880
\(99\) 0 0
\(100\) −33.0000 67.3498i −0.330000 0.673498i
\(101\) −117.576 + 67.8823i −1.16411 + 0.672101i −0.952286 0.305206i \(-0.901275\pi\)
−0.211827 + 0.977307i \(0.567941\pi\)
\(102\) 0 0
\(103\) 48.6056 + 28.0624i 0.471899 + 0.272451i 0.717034 0.697038i \(-0.245499\pi\)
−0.245136 + 0.969489i \(0.578832\pi\)
\(104\) 25.7196 + 14.8492i 0.247304 + 0.142781i
\(105\) 0 0
\(106\) 112.000 + 193.990i 1.05660 + 1.83009i
\(107\) 10.5830 0.0989066 0.0494533 0.998776i \(-0.484252\pi\)
0.0494533 + 0.998776i \(0.484252\pi\)
\(108\) 0 0
\(109\) −70.0000 −0.642202 −0.321101 0.947045i \(-0.604053\pi\)
−0.321101 + 0.947045i \(0.604053\pi\)
\(110\) −1.90788 + 56.0924i −0.0173444 + 0.509931i
\(111\) 0 0
\(112\) −184.701 106.637i −1.64912 0.952118i
\(113\) −68.7895 + 119.147i −0.608757 + 1.05440i 0.382689 + 0.923877i \(0.374998\pi\)
−0.991446 + 0.130521i \(0.958335\pi\)
\(114\) 0 0
\(115\) −26.4422 0.899383i −0.229932 0.00782073i
\(116\) 25.4558i 0.219447i
\(117\) 0 0
\(118\) 123.475i 1.04640i
\(119\) −102.879 + 59.3970i −0.864526 + 0.499134i
\(120\) 0 0
\(121\) −51.5000 + 89.2006i −0.425620 + 0.737195i
\(122\) 29.1033 50.4083i 0.238551 0.413183i
\(123\) 0 0
\(124\) −39.0000 67.5500i −0.314516 0.544758i
\(125\) 124.350 + 12.7279i 0.994802 + 0.101823i
\(126\) 0 0
\(127\) 168.375i 1.32578i 0.748715 + 0.662892i \(0.230671\pi\)
−0.748715 + 0.662892i \(0.769329\pi\)
\(128\) −41.0091 71.0299i −0.320384 0.554921i
\(129\) 0 0
\(130\) 131.048 69.8318i 1.00806 0.537168i
\(131\) −128.598 74.2462i −0.981666 0.566765i −0.0788931 0.996883i \(-0.525139\pi\)
−0.902773 + 0.430118i \(0.858472\pi\)
\(132\) 0 0
\(133\) −194.422 + 112.250i −1.46182 + 0.843983i
\(134\) 237.588i 1.77304i
\(135\) 0 0
\(136\) −28.0000 −0.205882
\(137\) 105.830 + 183.303i 0.772482 + 1.33798i 0.936199 + 0.351471i \(0.114318\pi\)
−0.163717 + 0.986507i \(0.552348\pi\)
\(138\) 0 0
\(139\) −103.000 + 178.401i −0.741007 + 1.28346i 0.211030 + 0.977480i \(0.432318\pi\)
−0.952037 + 0.305983i \(0.901015\pi\)
\(140\) −148.594 + 79.1818i −1.06139 + 0.565584i
\(141\) 0 0
\(142\) −116.653 + 67.3498i −0.821502 + 0.474295i
\(143\) −47.6235 −0.333032
\(144\) 0 0
\(145\) 36.0000 + 22.4499i 0.248276 + 0.154827i
\(146\) 154.318 89.0955i 1.05697 0.610243i
\(147\) 0 0
\(148\) −87.4900 50.5124i −0.591149 0.341300i
\(149\) −117.576 67.8823i −0.789097 0.455586i 0.0505473 0.998722i \(-0.483903\pi\)
−0.839645 + 0.543136i \(0.817237\pi\)
\(150\) 0 0
\(151\) 101.000 + 174.937i 0.668874 + 1.15852i 0.978219 + 0.207574i \(0.0665568\pi\)
−0.309345 + 0.950950i \(0.600110\pi\)
\(152\) −52.9150 −0.348125
\(153\) 0 0
\(154\) 126.000 0.818182
\(155\) 129.925 + 4.41916i 0.838225 + 0.0285107i
\(156\) 0 0
\(157\) 48.6056 + 28.0624i 0.309590 + 0.178742i 0.646743 0.762708i \(-0.276131\pi\)
−0.337153 + 0.941450i \(0.609464\pi\)
\(158\) −18.5203 + 32.0780i −0.117217 + 0.203026i
\(159\) 0 0
\(160\) −198.317 6.74538i −1.23948 0.0421586i
\(161\) 59.3970i 0.368925i
\(162\) 0 0
\(163\) 202.049i 1.23957i −0.784773 0.619784i \(-0.787220\pi\)
0.784773 0.619784i \(-0.212780\pi\)
\(164\) −143.295 + 82.7315i −0.873751 + 0.504460i
\(165\) 0 0
\(166\) −98.0000 + 169.741i −0.590361 + 1.02254i
\(167\) −92.6013 + 160.390i −0.554499 + 0.960420i 0.443444 + 0.896302i \(0.353757\pi\)
−0.997942 + 0.0641178i \(0.979577\pi\)
\(168\) 0 0
\(169\) −21.5000 37.2391i −0.127219 0.220350i
\(170\) −74.0810 + 118.794i −0.435771 + 0.698788i
\(171\) 0 0
\(172\) 67.3498i 0.391569i
\(173\) 10.5830 + 18.3303i 0.0611734 + 0.105956i 0.894990 0.446086i \(-0.147182\pi\)
−0.833817 + 0.552041i \(0.813849\pi\)
\(174\) 0 0
\(175\) 19.0678 279.976i 0.108959 1.59986i
\(176\) 69.8105 + 40.3051i 0.396650 + 0.229006i
\(177\) 0 0
\(178\) 204.143 117.862i 1.14687 0.662147i
\(179\) 241.831i 1.35101i −0.737356 0.675504i \(-0.763926\pi\)
0.737356 0.675504i \(-0.236074\pi\)
\(180\) 0 0
\(181\) 74.0000 0.408840 0.204420 0.978883i \(-0.434469\pi\)
0.204420 + 0.978883i \(0.434469\pi\)
\(182\) −166.682 288.702i −0.915837 1.58628i
\(183\) 0 0
\(184\) −7.00000 + 12.1244i −0.0380435 + 0.0658932i
\(185\) 148.594 79.1818i 0.803212 0.428010i
\(186\) 0 0
\(187\) 38.8844 22.4499i 0.207938 0.120053i
\(188\) −63.4980 −0.337755
\(189\) 0 0
\(190\) −140.000 + 224.499i −0.736842 + 1.18158i
\(191\) −139.621 + 80.6102i −0.731000 + 0.422043i −0.818788 0.574096i \(-0.805353\pi\)
0.0877882 + 0.996139i \(0.472020\pi\)
\(192\) 0 0
\(193\) −155.538 89.7998i −0.805895 0.465284i 0.0396332 0.999214i \(-0.487381\pi\)
−0.845528 + 0.533930i \(0.820714\pi\)
\(194\) −51.4393 29.6985i −0.265151 0.153085i
\(195\) 0 0
\(196\) 115.500 + 200.052i 0.589286 + 1.02067i
\(197\) −37.0405 −0.188023 −0.0940115 0.995571i \(-0.529969\pi\)
−0.0940115 + 0.995571i \(0.529969\pi\)
\(198\) 0 0
\(199\) −250.000 −1.25628 −0.628141 0.778100i \(-0.716184\pi\)
−0.628141 + 0.778100i \(0.716184\pi\)
\(200\) 36.8877 54.9027i 0.184438 0.274513i
\(201\) 0 0
\(202\) 311.076 + 179.600i 1.53998 + 0.889107i
\(203\) 47.6235 82.4864i 0.234599 0.406337i
\(204\) 0 0
\(205\) 9.37444 275.612i 0.0457290 1.34445i
\(206\) 148.492i 0.720837i
\(207\) 0 0
\(208\) 213.274i 1.02536i
\(209\) 73.4847 42.4264i 0.351601 0.202997i
\(210\) 0 0
\(211\) 77.0000 133.368i 0.364929 0.632075i −0.623836 0.781555i \(-0.714427\pi\)
0.988765 + 0.149480i \(0.0477600\pi\)
\(212\) 126.996 219.964i 0.599038 1.03756i
\(213\) 0 0
\(214\) −14.0000 24.2487i −0.0654206 0.113312i
\(215\) −95.2470 59.3970i −0.443010 0.276265i
\(216\) 0 0
\(217\) 291.849i 1.34493i
\(218\) 92.6013 + 160.390i 0.424777 + 0.735735i
\(219\) 0 0
\(220\) 56.1633 29.9279i 0.255288 0.136036i
\(221\) −102.879 59.3970i −0.465514 0.268765i
\(222\) 0 0
\(223\) 340.239 196.437i 1.52573 0.880883i 0.526201 0.850360i \(-0.323616\pi\)
0.999534 0.0305232i \(-0.00971733\pi\)
\(224\) 445.477i 1.98874i
\(225\) 0 0
\(226\) 364.000 1.61062
\(227\) 10.5830 + 18.3303i 0.0466212 + 0.0807502i 0.888394 0.459081i \(-0.151821\pi\)
−0.841773 + 0.539831i \(0.818488\pi\)
\(228\) 0 0
\(229\) 59.0000 102.191i 0.257642 0.446249i −0.707968 0.706245i \(-0.750388\pi\)
0.965610 + 0.259996i \(0.0837212\pi\)
\(230\) 32.9190 + 61.7765i 0.143126 + 0.268594i
\(231\) 0 0
\(232\) 19.4422 11.2250i 0.0838027 0.0483835i
\(233\) 391.571 1.68056 0.840282 0.542150i \(-0.182390\pi\)
0.840282 + 0.542150i \(0.182390\pi\)
\(234\) 0 0
\(235\) 56.0000 89.7998i 0.238298 0.382127i
\(236\) 121.250 70.0036i 0.513770 0.296625i
\(237\) 0 0
\(238\) 272.191 + 157.150i 1.14366 + 0.660292i
\(239\) 301.287 + 173.948i 1.26062 + 0.727817i 0.973194 0.229987i \(-0.0738683\pi\)
0.287422 + 0.957804i \(0.407202\pi\)
\(240\) 0 0
\(241\) 20.0000 + 34.6410i 0.0829876 + 0.143739i 0.904532 0.426406i \(-0.140220\pi\)
−0.821544 + 0.570145i \(0.806887\pi\)
\(242\) 272.512 1.12608
\(243\) 0 0
\(244\) −66.0000 −0.270492
\(245\) −384.777 13.0875i −1.57052 0.0534184i
\(246\) 0 0
\(247\) −194.422 112.250i −0.787134 0.454452i
\(248\) 34.3948 59.5735i 0.138689 0.240216i
\(249\) 0 0
\(250\) −135.337 301.760i −0.541347 1.20704i
\(251\) 241.831i 0.963468i 0.876317 + 0.481734i \(0.159993\pi\)
−0.876317 + 0.481734i \(0.840007\pi\)
\(252\) 0 0
\(253\) 22.4499i 0.0887350i
\(254\) 385.795 222.739i 1.51888 0.876924i
\(255\) 0 0
\(256\) −166.500 + 288.386i −0.650391 + 1.12651i
\(257\) −116.413 + 201.633i −0.452969 + 0.784565i −0.998569 0.0534804i \(-0.982969\pi\)
0.545600 + 0.838046i \(0.316302\pi\)
\(258\) 0 0
\(259\) −189.000 327.358i −0.729730 1.26393i
\(260\) −142.871 89.0955i −0.549502 0.342675i
\(261\) 0 0
\(262\) 392.874i 1.49952i
\(263\) 82.0183 + 142.060i 0.311857 + 0.540152i 0.978764 0.204989i \(-0.0657158\pi\)
−0.666908 + 0.745140i \(0.732382\pi\)
\(264\) 0 0
\(265\) 199.076 + 373.589i 0.751229 + 1.40977i
\(266\) 514.393 + 296.985i 1.93381 + 1.11648i
\(267\) 0 0
\(268\) −233.307 + 134.700i −0.870547 + 0.502611i
\(269\) 534.573i 1.98726i 0.112695 + 0.993630i \(0.464052\pi\)
−0.112695 + 0.993630i \(0.535948\pi\)
\(270\) 0 0
\(271\) −286.000 −1.05535 −0.527675 0.849446i \(-0.676936\pi\)
−0.527675 + 0.849446i \(0.676936\pi\)
\(272\) 100.539 + 174.138i 0.369627 + 0.640213i
\(273\) 0 0
\(274\) 280.000 484.974i 1.02190 1.76998i
\(275\) −7.20694 + 105.821i −0.0262071 + 0.384803i
\(276\) 0 0
\(277\) 165.259 95.4123i 0.596602 0.344449i −0.171101 0.985253i \(-0.554733\pi\)
0.767704 + 0.640805i \(0.221399\pi\)
\(278\) 545.025 1.96052
\(279\) 0 0
\(280\) −126.000 78.5748i −0.450000 0.280624i
\(281\) 69.8105 40.3051i 0.248436 0.143434i −0.370612 0.928788i \(-0.620852\pi\)
0.619048 + 0.785353i \(0.287519\pi\)
\(282\) 0 0
\(283\) 77.7689 + 44.8999i 0.274802 + 0.158657i 0.631068 0.775728i \(-0.282617\pi\)
−0.356266 + 0.934385i \(0.615950\pi\)
\(284\) 132.272 + 76.3675i 0.465748 + 0.268900i
\(285\) 0 0
\(286\) 63.0000 + 109.119i 0.220280 + 0.381536i
\(287\) −619.106 −2.15716
\(288\) 0 0
\(289\) −177.000 −0.612457
\(290\) 3.81576 112.185i 0.0131578 0.386844i
\(291\) 0 0
\(292\) −174.980 101.025i −0.599247 0.345975i
\(293\) 288.387 499.501i 0.984256 1.70478i 0.339057 0.940766i \(-0.389892\pi\)
0.645199 0.764015i \(-0.276775\pi\)
\(294\) 0 0
\(295\) −7.93222 + 233.210i −0.0268889 + 0.790544i
\(296\) 89.0955i 0.300998i
\(297\) 0 0
\(298\) 359.199i 1.20537i
\(299\) −51.4393 + 29.6985i −0.172038 + 0.0993260i
\(300\) 0 0
\(301\) −126.000 + 218.238i −0.418605 + 0.725045i
\(302\) 267.221 462.840i 0.884837 1.53258i
\(303\) 0 0
\(304\) 190.000 + 329.090i 0.625000 + 1.08253i
\(305\) 58.2065 93.3381i 0.190841 0.306027i
\(306\) 0 0
\(307\) 269.399i 0.877522i −0.898604 0.438761i \(-0.855417\pi\)
0.898604 0.438761i \(-0.144583\pi\)
\(308\) −71.4353 123.730i −0.231933 0.401719i
\(309\) 0 0
\(310\) −161.749 303.541i −0.521771 0.979165i
\(311\) −51.4393 29.6985i −0.165400 0.0954935i 0.415015 0.909814i \(-0.363776\pi\)
−0.580415 + 0.814321i \(0.697110\pi\)
\(312\) 0 0
\(313\) −155.538 + 89.7998i −0.496926 + 0.286900i −0.727443 0.686168i \(-0.759291\pi\)
0.230517 + 0.973068i \(0.425958\pi\)
\(314\) 148.492i 0.472906i
\(315\) 0 0
\(316\) 42.0000 0.132911
\(317\) −156.099 270.372i −0.492427 0.852908i 0.507535 0.861631i \(-0.330557\pi\)
−0.999962 + 0.00872270i \(0.997223\pi\)
\(318\) 0 0
\(319\) −18.0000 + 31.1769i −0.0564263 + 0.0977333i
\(320\) 68.1894 + 127.966i 0.213092 + 0.399893i
\(321\) 0 0
\(322\) 136.096 78.5748i 0.422657 0.244021i
\(323\) 211.660 0.655294
\(324\) 0 0
\(325\) 252.000 123.475i 0.775385 0.379922i
\(326\) −462.954 + 267.286i −1.42010 + 0.819897i
\(327\) 0 0
\(328\) −126.374 72.9623i −0.385288 0.222446i
\(329\) −205.757 118.794i −0.625402 0.361076i
\(330\) 0 0
\(331\) 56.0000 + 96.9948i 0.169184 + 0.293036i 0.938133 0.346274i \(-0.112553\pi\)
−0.768949 + 0.639310i \(0.779220\pi\)
\(332\) 222.243 0.669407
\(333\) 0 0
\(334\) 490.000 1.46707
\(335\) 15.2630 448.739i 0.0455613 1.33952i
\(336\) 0 0
\(337\) −97.2111 56.1249i −0.288460 0.166543i 0.348787 0.937202i \(-0.386594\pi\)
−0.637247 + 0.770659i \(0.719927\pi\)
\(338\) −56.8837 + 98.5254i −0.168295 + 0.291495i
\(339\) 0 0
\(340\) 158.653 + 5.39630i 0.466627 + 0.0158715i
\(341\) 110.309i 0.323486i
\(342\) 0 0
\(343\) 314.299i 0.916324i
\(344\) −51.4393 + 29.6985i −0.149533 + 0.0863328i
\(345\) 0 0
\(346\) 28.0000 48.4974i 0.0809249 0.140166i
\(347\) −259.284 + 449.092i −0.747215 + 1.29421i 0.201938 + 0.979398i \(0.435276\pi\)
−0.949153 + 0.314816i \(0.898057\pi\)
\(348\) 0 0
\(349\) −61.0000 105.655i −0.174785 0.302737i 0.765302 0.643672i \(-0.222590\pi\)
−0.940087 + 0.340935i \(0.889256\pi\)
\(350\) −666.729 + 326.683i −1.90494 + 0.933381i
\(351\) 0 0
\(352\) 168.375i 0.478337i
\(353\) 201.077 + 348.276i 0.569624 + 0.986617i 0.996603 + 0.0823556i \(0.0262443\pi\)
−0.426979 + 0.904261i \(0.640422\pi\)
\(354\) 0 0
\(355\) −224.653 + 119.712i −0.632826 + 0.337216i
\(356\) −231.477 133.643i −0.650216 0.375402i
\(357\) 0 0
\(358\) −554.103 + 319.912i −1.54777 + 0.893608i
\(359\) 636.396i 1.77269i −0.463024 0.886346i \(-0.653236\pi\)
0.463024 0.886346i \(-0.346764\pi\)
\(360\) 0 0
\(361\) 39.0000 0.108033
\(362\) −97.8928 169.555i −0.270422 0.468385i
\(363\) 0 0
\(364\) −189.000 + 327.358i −0.519231 + 0.899334i
\(365\) 297.188 158.364i 0.814215 0.433873i
\(366\) 0 0
\(367\) −592.988 + 342.362i −1.61577 + 0.932866i −0.627773 + 0.778397i \(0.716033\pi\)
−0.987998 + 0.154469i \(0.950633\pi\)
\(368\) 100.539 0.273203
\(369\) 0 0
\(370\) −378.000 235.724i −1.02162 0.637093i
\(371\) 823.029 475.176i 2.21841 1.28080i
\(372\) 0 0
\(373\) −126.374 72.9623i −0.338805 0.195609i 0.320938 0.947100i \(-0.396002\pi\)
−0.659744 + 0.751491i \(0.729335\pi\)
\(374\) −102.879 59.3970i −0.275076 0.158815i
\(375\) 0 0
\(376\) −28.0000 48.4974i −0.0744681 0.128983i
\(377\) 95.2470 0.252645
\(378\) 0 0
\(379\) 362.000 0.955145 0.477573 0.878592i \(-0.341517\pi\)
0.477573 + 0.878592i \(0.341517\pi\)
\(380\) 299.827 + 10.1981i 0.789017 + 0.0268370i
\(381\) 0 0
\(382\) 369.402 + 213.274i 0.967022 + 0.558310i
\(383\) −21.1660 + 36.6606i −0.0552637 + 0.0957196i −0.892334 0.451376i \(-0.850933\pi\)
0.837070 + 0.547096i \(0.184267\pi\)
\(384\) 0 0
\(385\) 237.980 + 8.09445i 0.618130 + 0.0210245i
\(386\) 475.176i 1.23103i
\(387\) 0 0
\(388\) 67.3498i 0.173582i
\(389\) −227.803 + 131.522i −0.585611 + 0.338102i −0.763360 0.645973i \(-0.776452\pi\)
0.177749 + 0.984076i \(0.443118\pi\)
\(390\) 0 0
\(391\) 28.0000 48.4974i 0.0716113 0.124034i
\(392\) −101.861 + 176.429i −0.259851 + 0.450074i
\(393\) 0 0
\(394\) 49.0000 + 84.8705i 0.124365 + 0.215407i
\(395\) −37.0405 + 59.3970i −0.0937735 + 0.150372i
\(396\) 0 0
\(397\) 33.6749i 0.0848235i −0.999100 0.0424117i \(-0.986496\pi\)
0.999100 0.0424117i \(-0.0135041\pi\)
\(398\) 330.719 + 572.822i 0.830952 + 1.43925i
\(399\) 0 0
\(400\) −473.902 32.2752i −1.18476 0.0806879i
\(401\) 400.492 + 231.224i 0.998732 + 0.576618i 0.907873 0.419246i \(-0.137705\pi\)
0.0908592 + 0.995864i \(0.471039\pi\)
\(402\) 0 0
\(403\) 252.749 145.925i 0.627168 0.362096i
\(404\) 407.294i 1.00815i
\(405\) 0 0
\(406\) −252.000 −0.620690
\(407\) 71.4353 + 123.730i 0.175517 + 0.304004i
\(408\) 0 0
\(409\) 41.0000 71.0141i 0.100244 0.173629i −0.811541 0.584296i \(-0.801371\pi\)
0.911785 + 0.410667i \(0.134704\pi\)
\(410\) −643.908 + 343.121i −1.57051 + 0.836881i
\(411\) 0 0
\(412\) −145.817 + 84.1873i −0.353924 + 0.204338i
\(413\) 523.859 1.26842
\(414\) 0 0
\(415\) −196.000 + 314.299i −0.472289 + 0.757348i
\(416\) −385.795 + 222.739i −0.927391 + 0.535429i
\(417\) 0 0
\(418\) −194.422 112.250i −0.465125 0.268540i
\(419\) 180.037 + 103.945i 0.429684 + 0.248078i 0.699212 0.714914i \(-0.253534\pi\)
−0.269528 + 0.962993i \(0.586868\pi\)
\(420\) 0 0
\(421\) 245.000 + 424.352i 0.581948 + 1.00796i 0.995248 + 0.0973684i \(0.0310425\pi\)
−0.413301 + 0.910595i \(0.635624\pi\)
\(422\) −407.446 −0.965511
\(423\) 0 0
\(424\) 224.000 0.528302
\(425\) −147.551 + 219.611i −0.347178 + 0.516731i
\(426\) 0 0
\(427\) −213.864 123.475i −0.500853 0.289168i
\(428\) −15.8745 + 27.4955i −0.0370900 + 0.0642417i
\(429\) 0 0
\(430\) −10.0956 + 296.813i −0.0234780 + 0.690263i
\(431\) 687.308i 1.59468i −0.603529 0.797341i \(-0.706239\pi\)
0.603529 0.797341i \(-0.293761\pi\)
\(432\) 0 0
\(433\) 202.049i 0.466627i 0.972402 + 0.233314i \(0.0749568\pi\)
−0.972402 + 0.233314i \(0.925043\pi\)
\(434\) −668.711 + 386.080i −1.54081 + 0.889586i
\(435\) 0 0
\(436\) 105.000 181.865i 0.240826 0.417122i
\(437\) 52.9150 91.6515i 0.121087 0.209729i
\(438\) 0 0
\(439\) −151.000 261.540i −0.343964 0.595762i 0.641201 0.767373i \(-0.278436\pi\)
−0.985165 + 0.171610i \(0.945103\pi\)
\(440\) 47.6235 + 29.6985i 0.108235 + 0.0674966i
\(441\) 0 0
\(442\) 314.299i 0.711084i
\(443\) −132.288 229.129i −0.298618 0.517221i 0.677202 0.735797i \(-0.263192\pi\)
−0.975820 + 0.218576i \(0.929859\pi\)
\(444\) 0 0
\(445\) 393.143 209.495i 0.883468 0.470776i
\(446\) −900.187 519.723i −2.01836 1.16530i
\(447\) 0 0
\(448\) 281.912 162.762i 0.629268 0.363308i
\(449\) 216.375i 0.481904i 0.970537 + 0.240952i \(0.0774596\pi\)
−0.970537 + 0.240952i \(0.922540\pi\)
\(450\) 0 0
\(451\) 234.000 0.518847
\(452\) −206.369 357.441i −0.456568 0.790798i
\(453\) 0 0
\(454\) 28.0000 48.4974i 0.0616740 0.106823i
\(455\) −296.271 555.989i −0.651146 1.22195i
\(456\) 0 0
\(457\) 486.056 280.624i 1.06358 0.614058i 0.137159 0.990549i \(-0.456203\pi\)
0.926420 + 0.376492i \(0.122870\pi\)
\(458\) −312.199 −0.681656
\(459\) 0 0
\(460\) 42.0000 67.3498i 0.0913043 0.146413i
\(461\) −205.757 + 118.794i −0.446328 + 0.257688i −0.706278 0.707935i \(-0.749627\pi\)
0.259950 + 0.965622i \(0.416294\pi\)
\(462\) 0 0
\(463\) 631.872 + 364.812i 1.36473 + 0.787930i 0.990250 0.139303i \(-0.0444862\pi\)
0.374485 + 0.927233i \(0.377820\pi\)
\(464\) −139.621 80.6102i −0.300907 0.173729i
\(465\) 0 0
\(466\) −518.000 897.202i −1.11159 1.92533i
\(467\) −465.652 −0.997114 −0.498557 0.866857i \(-0.666137\pi\)
−0.498557 + 0.866857i \(0.666137\pi\)
\(468\) 0 0
\(469\) −1008.00 −2.14925
\(470\) −279.838 9.51818i −0.595400 0.0202514i
\(471\) 0 0
\(472\) 106.932 + 61.7373i 0.226551 + 0.130799i
\(473\) 47.6235 82.4864i 0.100684 0.174390i
\(474\) 0 0
\(475\) −278.844 + 415.025i −0.587041 + 0.873737i
\(476\) 356.382i 0.748701i
\(477\) 0 0
\(478\) 920.448i 1.92562i
\(479\) 411.514 237.588i 0.859111 0.496008i −0.00460334 0.999989i \(-0.501465\pi\)
0.863715 + 0.503981i \(0.168132\pi\)
\(480\) 0 0
\(481\) 189.000 327.358i 0.392931 0.680577i
\(482\) 52.9150 91.6515i 0.109782 0.190148i
\(483\) 0 0
\(484\) −154.500 267.602i −0.319215 0.552896i
\(485\) −95.2470 59.3970i −0.196386 0.122468i
\(486\) 0 0
\(487\) 505.124i 1.03722i 0.855012 + 0.518608i \(0.173549\pi\)
−0.855012 + 0.518608i \(0.826451\pi\)
\(488\) −29.1033 50.4083i −0.0596378 0.103296i
\(489\) 0 0
\(490\) 479.026 + 898.949i 0.977603 + 1.83459i
\(491\) −238.825 137.886i −0.486406 0.280827i 0.236676 0.971589i \(-0.423942\pi\)
−0.723082 + 0.690762i \(0.757275\pi\)
\(492\) 0 0
\(493\) −77.7689 + 44.8999i −0.157746 + 0.0910748i
\(494\) 593.970i 1.20237i
\(495\) 0 0
\(496\) −494.000 −0.995968
\(497\) 285.741 + 494.918i 0.574932 + 0.995811i
\(498\) 0 0
\(499\) −184.000 + 318.697i −0.368737 + 0.638672i −0.989368 0.145431i \(-0.953543\pi\)
0.620631 + 0.784103i \(0.286877\pi\)
\(500\) −219.594 + 303.980i −0.439187 + 0.607959i
\(501\) 0 0
\(502\) 554.103 319.912i 1.10379 0.637274i
\(503\) −275.158 −0.547034 −0.273517 0.961867i \(-0.588187\pi\)
−0.273517 + 0.961867i \(0.588187\pi\)
\(504\) 0 0
\(505\) 576.000 + 359.199i 1.14059 + 0.711285i
\(506\) −51.4393 + 29.6985i −0.101659 + 0.0586927i
\(507\) 0 0
\(508\) −437.450 252.562i −0.861122 0.497169i
\(509\) 102.879 + 59.3970i 0.202119 + 0.116693i 0.597643 0.801762i \(-0.296104\pi\)
−0.395524 + 0.918455i \(0.629437\pi\)
\(510\) 0 0
\(511\) −378.000 654.715i −0.739726 1.28124i
\(512\) 552.962 1.08000
\(513\) 0 0
\(514\) 616.000 1.19844
\(515\) 9.53940 280.462i 0.0185231 0.544587i
\(516\) 0 0
\(517\) 77.7689 + 44.8999i 0.150423 + 0.0868470i
\(518\) −500.047 + 866.107i −0.965342 + 1.67202i
\(519\) 0 0
\(520\) 5.04778 148.407i 0.00970726 0.285397i
\(521\) 89.0955i 0.171009i 0.996338 + 0.0855043i \(0.0272501\pi\)
−0.996338 + 0.0855043i \(0.972750\pi\)
\(522\) 0 0
\(523\) 875.548i 1.67409i −0.547136 0.837044i \(-0.684282\pi\)
0.547136 0.837044i \(-0.315718\pi\)
\(524\) 385.795 222.739i 0.736249 0.425074i
\(525\) 0 0
\(526\) 217.000 375.855i 0.412548 0.714553i
\(527\) −137.579 + 238.294i −0.261061 + 0.452171i
\(528\) 0 0
\(529\) 250.500 + 433.879i 0.473535 + 0.820187i
\(530\) 592.648 950.352i 1.11820 1.79312i
\(531\) 0 0
\(532\) 673.498i 1.26597i
\(533\) −309.553 536.161i −0.580775 1.00593i
\(534\) 0 0
\(535\) −24.8844 46.6987i −0.0465130 0.0872872i
\(536\) −205.757 118.794i −0.383875 0.221630i
\(537\) 0 0
\(538\) 1224.86 707.173i 2.27669 1.31445i
\(539\) 326.683i 0.606092i
\(540\) 0 0
\(541\) 434.000 0.802218 0.401109 0.916030i \(-0.368625\pi\)
0.401109 + 0.916030i \(0.368625\pi\)
\(542\) 378.342 + 655.308i 0.698049 + 1.20906i
\(543\) 0 0
\(544\) 210.000 363.731i 0.386029 0.668623i
\(545\) 164.595 + 308.883i 0.302009 + 0.566757i
\(546\) 0 0
\(547\) −97.2111 + 56.1249i −0.177717 + 0.102605i −0.586220 0.810152i \(-0.699384\pi\)
0.408503 + 0.912757i \(0.366051\pi\)
\(548\) −634.980 −1.15872
\(549\) 0 0
\(550\) 252.000 123.475i 0.458182 0.224499i
\(551\) −146.969 + 84.8528i −0.266732 + 0.153998i
\(552\) 0 0
\(553\) 136.096 + 78.5748i 0.246104 + 0.142088i
\(554\) −437.234 252.437i −0.789231 0.455663i
\(555\) 0 0
\(556\) −309.000 535.204i −0.555755 0.962597i
\(557\) −465.652 −0.836000 −0.418000 0.908447i \(-0.637269\pi\)
−0.418000 + 0.908447i \(0.637269\pi\)
\(558\) 0 0
\(559\) −252.000 −0.450805
\(560\) −36.2497 + 1065.76i −0.0647317 + 1.90314i
\(561\) 0 0
\(562\) −184.701 106.637i −0.328650 0.189746i
\(563\) 26.4575 45.8258i 0.0469938 0.0813957i −0.841572 0.540145i \(-0.818369\pi\)
0.888566 + 0.458750i \(0.151703\pi\)
\(564\) 0 0
\(565\) 687.498 + 23.3840i 1.21681 + 0.0413876i
\(566\) 237.588i 0.419767i
\(567\) 0 0
\(568\) 134.700i 0.237147i
\(569\) 554.809 320.319i 0.975061 0.562951i 0.0742853 0.997237i \(-0.476332\pi\)
0.900775 + 0.434286i \(0.142999\pi\)
\(570\) 0 0
\(571\) 284.000 491.902i 0.497373 0.861475i −0.502622 0.864506i \(-0.667631\pi\)
0.999995 + 0.00303071i \(0.000964707\pi\)
\(572\) 71.4353 123.730i 0.124887 0.216310i
\(573\) 0 0
\(574\) 819.000 + 1418.55i 1.42683 + 2.47134i
\(575\) 58.2065 + 118.794i 0.101229 + 0.206598i
\(576\) 0 0
\(577\) 67.3498i 0.116724i −0.998295 0.0583621i \(-0.981412\pi\)
0.998295 0.0583621i \(-0.0185878\pi\)
\(578\) 234.149 + 405.558i 0.405102 + 0.701657i
\(579\) 0 0
\(580\) −112.327 + 59.8558i −0.193667 + 0.103200i
\(581\) 720.150 + 415.779i 1.23950 + 0.715626i
\(582\) 0 0
\(583\) −311.076 + 179.600i −0.533577 + 0.308061i
\(584\) 178.191i 0.305121i
\(585\) 0 0
\(586\) −1526.00 −2.60410
\(587\) −513.276 889.020i −0.874405 1.51451i −0.857395 0.514659i \(-0.827919\pi\)
−0.0170098 0.999855i \(-0.505415\pi\)
\(588\) 0 0
\(589\) −260.000 + 450.333i −0.441426 + 0.764573i
\(590\) 544.845 290.333i 0.923467 0.492090i
\(591\) 0 0
\(592\) −554.103 + 319.912i −0.935985 + 0.540391i
\(593\) −656.146 −1.10649 −0.553243 0.833020i \(-0.686610\pi\)
−0.553243 + 0.833020i \(0.686610\pi\)
\(594\) 0 0
\(595\) 504.000 + 314.299i 0.847059 + 0.528234i
\(596\) 352.727 203.647i 0.591823 0.341689i
\(597\) 0 0
\(598\) 136.096 + 78.5748i 0.227585 + 0.131396i
\(599\) −800.983 462.448i −1.33720 0.772033i −0.350809 0.936447i \(-0.614093\pi\)
−0.986391 + 0.164414i \(0.947427\pi\)
\(600\) 0 0
\(601\) −394.000 682.428i −0.655574 1.13549i −0.981750 0.190178i \(-0.939093\pi\)
0.326176 0.945309i \(-0.394240\pi\)
\(602\) 666.729 1.10752
\(603\) 0 0
\(604\) −606.000 −1.00331
\(605\) 514.702 + 17.5067i 0.850748 + 0.0289366i
\(606\) 0 0
\(607\) −9.72111 5.61249i −0.0160150 0.00924627i 0.491971 0.870612i \(-0.336277\pi\)
−0.507986 + 0.861365i \(0.669610\pi\)
\(608\) 396.863 687.386i 0.652735 1.13057i
\(609\) 0 0
\(610\) −290.864 9.89322i −0.476827 0.0162184i
\(611\) 237.588i 0.388851i
\(612\) 0 0
\(613\) 572.474i 0.933888i 0.884287 + 0.466944i \(0.154645\pi\)
−0.884287 + 0.466944i \(0.845355\pi\)
\(614\) −617.271 + 356.382i −1.00533 + 0.580426i
\(615\) 0 0
\(616\) 63.0000 109.119i 0.102273 0.177142i
\(617\) −211.660 + 366.606i −0.343047 + 0.594175i −0.984997 0.172572i \(-0.944792\pi\)
0.641950 + 0.766747i \(0.278126\pi\)
\(618\) 0 0
\(619\) −97.0000 168.009i −0.156704 0.271420i 0.776974 0.629533i \(-0.216754\pi\)
−0.933678 + 0.358113i \(0.883420\pi\)
\(620\) −206.369 + 330.926i −0.332853 + 0.533752i
\(621\) 0 0
\(622\) 157.150i 0.252652i
\(623\) −500.047 866.107i −0.802644 1.39022i
\(624\) 0 0
\(625\) −236.229 578.637i −0.377966 0.925819i
\(626\) 411.514 + 237.588i 0.657371 + 0.379533i
\(627\) 0 0
\(628\) −145.817 + 84.1873i −0.232192 + 0.134056i
\(629\) 356.382i 0.566585i
\(630\) 0 0
\(631\) 1190.00 1.88590 0.942948 0.332941i \(-0.108041\pi\)
0.942948 + 0.332941i \(0.108041\pi\)
\(632\) 18.5203 + 32.0780i 0.0293042 + 0.0507564i
\(633\) 0 0
\(634\) −413.000 + 715.337i −0.651420 + 1.12829i
\(635\) 742.971 395.909i 1.17003 0.623479i
\(636\) 0 0
\(637\) −748.526 + 432.161i −1.17508 + 0.678432i
\(638\) 95.2470 0.149290
\(639\) 0 0
\(640\) −217.000 + 347.974i −0.339062 + 0.543710i
\(641\) −613.597 + 354.260i −0.957250 + 0.552668i −0.895326 0.445412i \(-0.853057\pi\)
−0.0619243 + 0.998081i \(0.519724\pi\)
\(642\) 0 0
\(643\) −563.824 325.524i −0.876865 0.506258i −0.00724179 0.999974i \(-0.502305\pi\)
−0.869624 + 0.493715i \(0.835638\pi\)
\(644\) −154.318 89.0955i −0.239624 0.138347i
\(645\) 0 0
\(646\) −280.000 484.974i −0.433437 0.750734i
\(647\) 1058.30 1.63570 0.817852 0.575429i \(-0.195165\pi\)
0.817852 + 0.575429i \(0.195165\pi\)
\(648\) 0 0
\(649\) −198.000 −0.305085
\(650\) −616.281 414.063i −0.948124 0.637020i
\(651\) 0 0
\(652\) 524.940 + 303.074i 0.805123 + 0.464838i
\(653\) −235.472 + 407.849i −0.360600 + 0.624578i −0.988060 0.154071i \(-0.950761\pi\)
0.627460 + 0.778649i \(0.284095\pi\)
\(654\) 0 0
\(655\) −25.2389 + 742.033i −0.0385327 + 1.13287i
\(656\) 1047.93i 1.59746i
\(657\) 0 0
\(658\) 628.598i 0.955317i
\(659\) 69.8105 40.3051i 0.105934 0.0611610i −0.446097 0.894985i \(-0.647186\pi\)
0.552031 + 0.833824i \(0.313853\pi\)
\(660\) 0 0
\(661\) −85.0000 + 147.224i −0.128593 + 0.222730i −0.923132 0.384484i \(-0.874379\pi\)
0.794539 + 0.607214i \(0.207713\pi\)
\(662\) 148.162 256.624i 0.223810 0.387650i
\(663\) 0 0
\(664\) 98.0000 + 169.741i 0.147590 + 0.255634i
\(665\) 952.470 + 593.970i 1.43229 + 0.893188i
\(666\) 0 0
\(667\) 44.8999i 0.0673162i
\(668\) −277.804 481.170i −0.415874 0.720315i
\(669\) 0 0
\(670\) −1048.38 + 558.654i −1.56475 + 0.833813i
\(671\) 80.8332 + 46.6690i 0.120467 + 0.0695515i
\(672\) 0 0
\(673\) −913.784 + 527.574i −1.35778 + 0.783913i −0.989324 0.145733i \(-0.953446\pi\)
−0.368454 + 0.929646i \(0.620113\pi\)
\(674\) 296.985i 0.440630i
\(675\) 0 0
\(676\) 129.000 0.190828
\(677\) 415.383 + 719.464i 0.613564 + 1.06272i 0.990635 + 0.136540i \(0.0435981\pi\)
−0.377070 + 0.926185i \(0.623069\pi\)
\(678\) 0 0
\(679\) −126.000 + 218.238i −0.185567 + 0.321411i
\(680\) 65.8381 + 123.553i 0.0968207 + 0.181696i
\(681\) 0 0
\(682\) 252.749 145.925i 0.370600 0.213966i
\(683\) −1037.13 −1.51850 −0.759249 0.650800i \(-0.774434\pi\)
−0.759249 + 0.650800i \(0.774434\pi\)
\(684\) 0 0
\(685\) 560.000 897.998i 0.817518 1.31095i
\(686\) 720.150 415.779i 1.04978 0.606092i
\(687\) 0 0
\(688\) 369.402 + 213.274i 0.536922 + 0.309992i
\(689\) 823.029 + 475.176i 1.19453 + 0.689660i
\(690\) 0 0
\(691\) 326.000 + 564.649i 0.471780 + 0.817147i 0.999479 0.0322847i \(-0.0102783\pi\)
−0.527699 + 0.849432i \(0.676945\pi\)
\(692\) −63.4980 −0.0917602
\(693\) 0 0
\(694\) 1372.00 1.97695
\(695\) 1029.40 + 35.0133i 1.48116 + 0.0503789i
\(696\) 0 0
\(697\) 505.498 + 291.849i 0.725248 + 0.418722i
\(698\) −161.391 + 279.537i −0.231219 + 0.400483i
\(699\) 0 0
\(700\) 698.797 + 469.503i 0.998281 + 0.670719i
\(701\) 763.675i 1.08941i 0.838628 + 0.544704i \(0.183358\pi\)
−0.838628 + 0.544704i \(0.816642\pi\)
\(702\) 0 0
\(703\) 673.498i 0.958035i
\(704\) −106.553 + 61.5183i −0.151353 + 0.0873839i
\(705\) 0 0
\(706\) 532.000 921.451i 0.753541 1.30517i
\(707\) 761.976 1319.78i 1.07776 1.86674i
\(708\) 0 0
\(709\) −79.0000 136.832i −0.111425 0.192993i 0.804920 0.593383i \(-0.202208\pi\)
−0.916345 + 0.400390i \(0.868875\pi\)
\(710\) 571.482 + 356.382i 0.804905 + 0.501946i
\(711\) 0 0
\(712\) 235.724i 0.331074i
\(713\) 68.7895 + 119.147i 0.0964790 + 0.167107i
\(714\) 0 0
\(715\) 111.980 + 210.144i 0.156615 + 0.293908i
\(716\) 628.294 + 362.746i 0.877506 + 0.506628i
\(717\) 0 0
\(718\) −1458.17 + 841.873i −2.03087 + 1.17252i
\(719\) 127.279i 0.177023i −0.996075 0.0885113i \(-0.971789\pi\)
0.996075 0.0885113i \(-0.0282109\pi\)
\(720\) 0 0
\(721\) −630.000 −0.873786
\(722\) −51.5922 89.3602i −0.0714573 0.123768i
\(723\) 0 0
\(724\) −111.000 + 192.258i −0.153315 + 0.265549i
\(725\) 14.4139 211.642i 0.0198812 0.291920i
\(726\) 0 0
\(727\) 573.546 331.137i 0.788921 0.455484i −0.0506616 0.998716i \(-0.516133\pi\)
0.839583 + 0.543232i \(0.182800\pi\)
\(728\) −333.365 −0.457918
\(729\) 0 0
\(730\) −756.000 471.449i −1.03562 0.645820i
\(731\) 205.757 118.794i 0.281474 0.162509i
\(732\) 0 0
\(733\) −592.988 342.362i −0.808987 0.467069i 0.0376167 0.999292i \(-0.488023\pi\)
−0.846604 + 0.532223i \(0.821357\pi\)
\(734\) 1568.90 + 905.804i 2.13746 + 1.23407i
\(735\) 0 0
\(736\) −105.000 181.865i −0.142663 0.247100i
\(737\) 380.988 0.516945
\(738\) 0 0
\(739\) −1240.00 −1.67794 −0.838972 0.544175i \(-0.816843\pi\)
−0.838972 + 0.544175i \(0.816843\pi\)
\(740\) −17.1709 + 504.832i −0.0232040 + 0.682205i
\(741\) 0 0
\(742\) −2177.53 1257.20i −2.93468 1.69434i
\(743\) −21.1660 + 36.6606i −0.0284872 + 0.0493413i −0.879918 0.475126i \(-0.842402\pi\)
0.851430 + 0.524468i \(0.175736\pi\)
\(744\) 0 0
\(745\) −23.0756 + 678.430i −0.0309739 + 0.910645i
\(746\) 386.080i 0.517534i
\(747\) 0 0
\(748\) 134.700i 0.180080i
\(749\) −102.879 + 59.3970i −0.137355 + 0.0793017i
\(750\) 0 0
\(751\) 77.0000 133.368i 0.102530 0.177587i −0.810196 0.586159i \(-0.800640\pi\)
0.912726 + 0.408571i \(0.133973\pi\)
\(752\) −201.077 + 348.276i −0.267390 + 0.463133i
\(753\) 0 0
\(754\) −126.000 218.238i −0.167109 0.289441i
\(755\) 534.442 857.013i 0.707870 1.13512i
\(756\) 0 0
\(757\) 1313.32i 1.73490i 0.497522 + 0.867452i \(0.334244\pi\)
−0.497522 + 0.867452i \(0.665756\pi\)
\(758\) −478.881 829.446i −0.631769 1.09426i
\(759\) 0 0
\(760\) 124.422 + 233.493i 0.163713 + 0.307228i
\(761\) −437.234 252.437i −0.574552 0.331718i 0.184413 0.982849i \(-0.440961\pi\)
−0.758965 + 0.651131i \(0.774295\pi\)
\(762\) 0 0
\(763\) 680.478 392.874i 0.891845 0.514907i
\(764\) 483.661i 0.633064i
\(765\) 0 0
\(766\) 112.000 0.146214
\(767\) 261.929 + 453.675i 0.341499 + 0.591493i
\(768\) 0 0
\(769\) −184.000 + 318.697i −0.239272 + 0.414431i −0.960506 0.278261i \(-0.910242\pi\)
0.721234 + 0.692692i \(0.243575\pi\)
\(770\) −296.271 555.989i −0.384768 0.722063i
\(771\) 0 0
\(772\) 466.613 269.399i 0.604421 0.348963i
\(773\) 153.454 0.198517 0.0992585 0.995062i \(-0.468353\pi\)
0.0992585 + 0.995062i \(0.468353\pi\)
\(774\) 0 0
\(775\) −286.000 583.699i −0.369032 0.753159i
\(776\) −51.4393 + 29.6985i −0.0662877 + 0.0382712i
\(777\) 0 0
\(778\) 602.709 + 347.974i 0.774690 + 0.447268i
\(779\) 955.301 + 551.543i 1.22632 + 0.708014i
\(780\) 0 0
\(781\) −108.000 187.061i −0.138284 0.239515i
\(782\) −148.162 −0.189466
\(783\) 0 0
\(784\) 1463.00 1.86607
\(785\) 9.53940 280.462i 0.0121521 0.357277i
\(786\) 0 0
\(787\) 369.402 + 213.274i 0.469380 + 0.270997i 0.715980 0.698121i \(-0.245980\pi\)
−0.246600 + 0.969117i \(0.579313\pi\)
\(788\) 55.5608 96.2341i 0.0705086 0.122124i
\(789\) 0 0
\(790\) 185.096 + 6.29568i 0.234298 + 0.00796922i
\(791\) 1544.32i 1.95237i
\(792\) 0 0
\(793\) 246.949i 0.311412i
\(794\) −77.1589 + 44.5477i −0.0971775 + 0.0561054i
\(795\) 0 0
\(796\) 375.000 649.519i 0.471106 0.815979i
\(797\) −116.413 + 201.633i −0.146064 + 0.252990i −0.929769 0.368142i \(-0.879994\pi\)
0.783705 + 0.621133i \(0.213327\pi\)
\(798\) 0 0
\(799\) 112.000 + 193.990i 0.140175 + 0.242791i
\(800\) 436.549 + 890.955i 0.545686 + 1.11369i
\(801\) 0 0
\(802\) 1223.52i 1.52559i
\(803\) 142.871 + 247.459i 0.177921 + 0.308168i
\(804\) 0 0
\(805\) 262.096 139.664i 0.325585 0.173495i
\(806\) −668.711 386.080i −0.829666 0.479008i
\(807\) 0 0
\(808\) 311.076 179.600i 0.384994 0.222277i
\(809\) 420.021i 0.519186i 0.965718 + 0.259593i \(0.0835884\pi\)
−0.965718 + 0.259593i \(0.916412\pi\)
\(810\) 0 0
\(811\) −970.000 −1.19605 −0.598027 0.801476i \(-0.704049\pi\)
−0.598027 + 0.801476i \(0.704049\pi\)
\(812\) 142.871 + 247.459i 0.175949 + 0.304753i
\(813\) 0 0
\(814\) 189.000 327.358i 0.232187 0.402159i
\(815\) −891.565 + 475.091i −1.09395 + 0.582934i
\(816\) 0 0
\(817\) 388.844 224.499i 0.475942 0.274785i
\(818\) −216.952 −0.265222
\(819\) 0 0
\(820\) 702.000 + 437.774i 0.856098 + 0.533871i
\(821\) 36.7423 21.2132i 0.0447532 0.0258383i −0.477456 0.878655i \(-0.658441\pi\)
0.522210 + 0.852817i \(0.325108\pi\)
\(822\) 0 0
\(823\) 340.239 + 196.437i 0.413413 + 0.238684i 0.692255 0.721653i \(-0.256617\pi\)
−0.278842 + 0.960337i \(0.589951\pi\)
\(824\) −128.598 74.2462i −0.156066 0.0901046i
\(825\) 0 0
\(826\) −693.000 1200.31i −0.838983 1.45316i
\(827\) −560.899 −0.678234 −0.339117 0.940744i \(-0.610128\pi\)
−0.339117 + 0.940744i \(0.610128\pi\)
\(828\) 0 0
\(829\) 1010.00 1.21834 0.609168 0.793041i \(-0.291504\pi\)
0.609168 + 0.793041i \(0.291504\pi\)
\(830\) 979.434 + 33.3136i 1.18004 + 0.0401369i
\(831\) 0 0
\(832\) 281.912 + 162.762i 0.338837 + 0.195628i
\(833\) 407.446 705.717i 0.489130 0.847199i
\(834\) 0 0
\(835\) 925.478 + 31.4784i 1.10836 + 0.0376987i
\(836\) 254.558i 0.304496i
\(837\) 0 0
\(838\) 550.024i 0.656353i
\(839\) 389.469 224.860i 0.464206 0.268009i −0.249605 0.968348i \(-0.580301\pi\)
0.713811 + 0.700338i \(0.246967\pi\)
\(840\) 0 0
\(841\) −384.500 + 665.974i −0.457194 + 0.791883i
\(842\) 648.209 1122.73i 0.769845 1.33341i
\(843\) 0 0
\(844\) 231.000 + 400.104i 0.273697 + 0.474057i
\(845\) −113.767 + 182.434i −0.134636 + 0.215898i
\(846\) 0 0
\(847\) 1156.17i 1.36502i
\(848\) −804.308 1393.10i −0.948477 1.64281i
\(849\) 0 0
\(850\) 698.382 + 47.5634i 0.821626 + 0.0559569i
\(851\) 154.318 + 89.0955i 0.181337 + 0.104695i
\(852\) 0 0
\(853\) 806.852 465.836i 0.945899 0.546115i 0.0540947 0.998536i \(-0.482773\pi\)
0.891805 + 0.452421i \(0.149439\pi\)
\(854\) 653.367i 0.765066i
\(855\) 0 0
\(856\) −28.0000 −0.0327103
\(857\) −656.146 1136.48i −0.765632 1.32611i −0.939912 0.341417i \(-0.889093\pi\)
0.174280 0.984696i \(-0.444240\pi\)
\(858\) 0 0
\(859\) 347.000 601.022i 0.403958 0.699676i −0.590242 0.807227i \(-0.700967\pi\)
0.994200 + 0.107551i \(0.0343008\pi\)
\(860\) 297.188 158.364i 0.345568 0.184144i
\(861\) 0 0
\(862\) −1574.82 + 909.223i −1.82694 + 1.05478i
\(863\) −799.017 −0.925860 −0.462930 0.886395i \(-0.653202\pi\)
−0.462930 + 0.886395i \(0.653202\pi\)
\(864\) 0 0
\(865\) 56.0000 89.7998i 0.0647399 0.103815i
\(866\) 462.954 267.286i 0.534588 0.308645i
\(867\) 0 0
\(868\) 758.247 + 437.774i 0.873556 + 0.504348i
\(869\) −51.4393 29.6985i −0.0591937 0.0341755i
\(870\) 0 0
\(871\) −504.000 872.954i −0.578645 1.00224i
\(872\) 185.203 0.212388
\(873\) 0 0
\(874\) −280.000 −0.320366
\(875\) −1280.26 + 574.185i −1.46315 + 0.656211i
\(876\) 0 0
\(877\) 690.199 + 398.487i 0.787000 + 0.454375i 0.838905 0.544277i \(-0.183196\pi\)
−0.0519054 + 0.998652i \(0.516529\pi\)
\(878\) −399.508 + 691.969i −0.455021 + 0.788120i
\(879\) 0 0
\(880\) 13.7011 402.818i 0.0155694 0.457748i
\(881\) 827.315i 0.939063i 0.882916 + 0.469532i \(0.155577\pi\)
−0.882916 + 0.469532i \(0.844423\pi\)
\(882\) 0 0
\(883\) 471.449i 0.533917i 0.963708 + 0.266959i \(0.0860187\pi\)
−0.963708 + 0.266959i \(0.913981\pi\)
\(884\) 308.636 178.191i 0.349135 0.201573i
\(885\) 0 0
\(886\) −350.000 + 606.218i −0.395034 + 0.684219i
\(887\) −568.837 + 985.254i −0.641304 + 1.11077i 0.343838 + 0.939029i \(0.388273\pi\)
−0.985142 + 0.171742i \(0.945060\pi\)
\(888\) 0 0
\(889\) −945.000 1636.79i −1.06299 1.84116i
\(890\) −1000.09 623.668i −1.12370 0.700751i
\(891\) 0 0
\(892\) 1178.62i 1.32133i
\(893\) 211.660 + 366.606i 0.237021 + 0.410533i
\(894\) 0 0
\(895\) −1067.10 + 568.630i −1.19229 + 0.635341i
\(896\) 797.309 + 460.327i 0.889854 + 0.513757i
\(897\) 0 0
\(898\) 495.777 286.237i 0.552090 0.318749i
\(899\) 220.617i 0.245403i
\(900\) 0 0
\(901\) −896.000 −0.994451
\(902\) −309.553 536.161i −0.343185 0.594414i
\(903\) 0 0
\(904\) 182.000 315.233i 0.201327 0.348709i
\(905\) −174.001 326.533i −0.192266 0.360810i
\(906\) 0 0
\(907\) 1069.32 617.373i 1.17897 0.680676i 0.223191 0.974775i \(-0.428353\pi\)
0.955775 + 0.294098i \(0.0950193\pi\)
\(908\) −63.4980 −0.0699318
\(909\) 0 0
\(910\) −882.000 + 1414.35i −0.969231 + 1.55423i
\(911\) −249.848 + 144.250i −0.274257 + 0.158342i −0.630821 0.775929i \(-0.717282\pi\)
0.356564 + 0.934271i \(0.383948\pi\)
\(912\) 0 0
\(913\) −272.191 157.150i −0.298128 0.172124i
\(914\) −1285.98 742.462i −1.40698 0.812322i
\(915\) 0 0
\(916\) 177.000 + 306.573i 0.193231 + 0.334687i
\(917\) 1666.82 1.81769
\(918\) 0 0
\(919\) −1078.00 −1.17301 −0.586507 0.809944i \(-0.699497\pi\)
−0.586507 + 0.809944i \(0.699497\pi\)
\(920\) 69.9595 + 2.37955i 0.0760430 + 0.00258646i
\(921\) 0 0
\(922\) 544.382 + 314.299i 0.590436 + 0.340889i
\(923\) −285.741 + 494.918i −0.309579 + 0.536206i
\(924\) 0 0
\(925\) −698.797 469.503i −0.755456 0.507571i
\(926\) 1930.40i 2.08467i
\(927\) 0 0
\(928\) 336.749i 0.362876i
\(929\) −1517.46 + 876.105i −1.63343 + 0.943063i −0.650409 + 0.759584i \(0.725402\pi\)
−0.983024 + 0.183478i \(0.941264\pi\)
\(930\) 0 0
\(931\) 770.000 1333.68i 0.827068 1.43252i
\(932\) −587.357 + 1017.33i −0.630211 + 1.09156i
\(933\) 0 0
\(934\) 616.000 + 1066.94i 0.659529 + 1.14234i
\(935\) −190.494 118.794i −0.203737 0.127052i
\(936\) 0 0
\(937\) 942.898i 1.00629i −0.864201 0.503147i \(-0.832175\pi\)
0.864201 0.503147i \(-0.167825\pi\)
\(938\) 1333.46 + 2309.62i 1.42160 + 2.46228i
\(939\) 0 0
\(940\) 149.307 + 280.192i 0.158837 + 0.298077i
\(941\) −889.165 513.360i −0.944915 0.545547i −0.0534172 0.998572i \(-0.517011\pi\)
−0.891498 + 0.453025i \(0.850345\pi\)
\(942\) 0 0
\(943\) 252.749 145.925i 0.268026 0.154745i
\(944\) 886.712i 0.939313i
\(945\) 0 0
\(946\) −252.000 −0.266385
\(947\) 248.701 + 430.762i 0.262619 + 0.454870i 0.966937 0.255015i \(-0.0820803\pi\)
−0.704318 + 0.709885i \(0.748747\pi\)
\(948\) 0 0
\(949\) 378.000 654.715i 0.398314 0.689900i
\(950\) 1319.82 + 89.8864i 1.38928 + 0.0946172i
\(951\) 0 0
\(952\) 272.191 157.150i 0.285915 0.165073i
\(953\) 486.818 0.510827 0.255414 0.966832i \(-0.417788\pi\)
0.255414 + 0.966832i \(0.417788\pi\)
\(954\) 0 0
\(955\) 684.000 + 426.549i 0.716230 + 0.446648i
\(956\) −903.862 + 521.845i −0.945462 + 0.545863i
\(957\) 0 0
\(958\) −1088.76 628.598i −1.13650 0.656157i
\(959\) −2057.57 1187.94i −2.14554 1.23873i
\(960\) 0 0
\(961\) 142.500 + 246.817i 0.148283 + 0.256834i
\(962\) −1000.09 −1.03960
\(963\) 0 0
\(964\) −120.000 −0.124481
\(965\) −30.5261 + 897.479i −0.0316333 + 0.930030i
\(966\) 0 0
\(967\) 573.546 + 331.137i 0.593118 + 0.342437i 0.766330 0.642448i \(-0.222081\pi\)
−0.173211 + 0.984885i \(0.555414\pi\)
\(968\) 136.256 236.003i 0.140761 0.243804i
\(969\) 0 0
\(970\) −10.0956 + 296.813i −0.0104078 + 0.305993i
\(971\) 1641.90i 1.69094i 0.534024 + 0.845470i \(0.320679\pi\)
−0.534024 + 0.845470i \(0.679321\pi\)
\(972\) 0 0
\(973\) 2312.34i 2.37651i
\(974\) 1157.38 668.216i 1.18828 0.686053i
\(975\) 0 0
\(976\) −209.000 + 361.999i −0.214139 + 0.370900i
\(977\) 645.563 1118.15i 0.660761 1.14447i −0.319655 0.947534i \(-0.603567\pi\)
0.980416 0.196937i \(-0.0630996\pi\)
\(978\) 0 0
\(979\) 189.000 + 327.358i 0.193054 + 0.334380i
\(980\) 611.169 980.050i 0.623641 1.00005i
\(981\) 0 0
\(982\) 729.623i 0.742997i
\(983\) 296.324 + 513.248i 0.301449 + 0.522125i 0.976464 0.215679i \(-0.0691964\pi\)
−0.675016 + 0.737803i \(0.735863\pi\)
\(984\) 0 0
\(985\) 87.0956 + 163.445i 0.0884219 + 0.165934i
\(986\) 205.757 + 118.794i 0.208679 + 0.120481i
\(987\) 0 0
\(988\) 583.267 336.749i 0.590351 0.340839i
\(989\) 118.794i 0.120115i
\(990\) 0 0
\(991\) 1694.00 1.70938 0.854692 0.519135i \(-0.173746\pi\)
0.854692 + 0.519135i \(0.173746\pi\)
\(992\) 515.922 + 893.602i 0.520082 + 0.900809i
\(993\) 0 0
\(994\) 756.000 1309.43i 0.760563 1.31733i
\(995\) 587.840 + 1103.15i 0.590794 + 1.10870i
\(996\) 0 0
\(997\) −826.294 + 477.061i −0.828781 + 0.478497i −0.853435 0.521199i \(-0.825485\pi\)
0.0246543 + 0.999696i \(0.492152\pi\)
\(998\) 973.636 0.975588
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.j.134.1 8
3.2 odd 2 inner 405.3.h.j.134.4 8
5.4 even 2 inner 405.3.h.j.134.3 8
9.2 odd 6 inner 405.3.h.j.269.3 8
9.4 even 3 45.3.d.a.44.4 yes 4
9.5 odd 6 45.3.d.a.44.1 4
9.7 even 3 inner 405.3.h.j.269.2 8
15.14 odd 2 inner 405.3.h.j.134.2 8
36.23 even 6 720.3.c.a.449.3 4
36.31 odd 6 720.3.c.a.449.2 4
45.4 even 6 45.3.d.a.44.2 yes 4
45.13 odd 12 225.3.c.d.26.1 4
45.14 odd 6 45.3.d.a.44.3 yes 4
45.22 odd 12 225.3.c.d.26.4 4
45.23 even 12 225.3.c.d.26.3 4
45.29 odd 6 inner 405.3.h.j.269.1 8
45.32 even 12 225.3.c.d.26.2 4
45.34 even 6 inner 405.3.h.j.269.4 8
72.5 odd 6 2880.3.c.b.449.2 4
72.13 even 6 2880.3.c.b.449.3 4
72.59 even 6 2880.3.c.g.449.2 4
72.67 odd 6 2880.3.c.g.449.3 4
180.23 odd 12 3600.3.l.s.1601.4 4
180.59 even 6 720.3.c.a.449.1 4
180.67 even 12 3600.3.l.s.1601.1 4
180.103 even 12 3600.3.l.s.1601.3 4
180.139 odd 6 720.3.c.a.449.4 4
180.167 odd 12 3600.3.l.s.1601.2 4
360.59 even 6 2880.3.c.g.449.4 4
360.139 odd 6 2880.3.c.g.449.1 4
360.149 odd 6 2880.3.c.b.449.4 4
360.229 even 6 2880.3.c.b.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.d.a.44.1 4 9.5 odd 6
45.3.d.a.44.2 yes 4 45.4 even 6
45.3.d.a.44.3 yes 4 45.14 odd 6
45.3.d.a.44.4 yes 4 9.4 even 3
225.3.c.d.26.1 4 45.13 odd 12
225.3.c.d.26.2 4 45.32 even 12
225.3.c.d.26.3 4 45.23 even 12
225.3.c.d.26.4 4 45.22 odd 12
405.3.h.j.134.1 8 1.1 even 1 trivial
405.3.h.j.134.2 8 15.14 odd 2 inner
405.3.h.j.134.3 8 5.4 even 2 inner
405.3.h.j.134.4 8 3.2 odd 2 inner
405.3.h.j.269.1 8 45.29 odd 6 inner
405.3.h.j.269.2 8 9.7 even 3 inner
405.3.h.j.269.3 8 9.2 odd 6 inner
405.3.h.j.269.4 8 45.34 even 6 inner
720.3.c.a.449.1 4 180.59 even 6
720.3.c.a.449.2 4 36.31 odd 6
720.3.c.a.449.3 4 36.23 even 6
720.3.c.a.449.4 4 180.139 odd 6
2880.3.c.b.449.1 4 360.229 even 6
2880.3.c.b.449.2 4 72.5 odd 6
2880.3.c.b.449.3 4 72.13 even 6
2880.3.c.b.449.4 4 360.149 odd 6
2880.3.c.g.449.1 4 360.139 odd 6
2880.3.c.g.449.2 4 72.59 even 6
2880.3.c.g.449.3 4 72.67 odd 6
2880.3.c.g.449.4 4 360.59 even 6
3600.3.l.s.1601.1 4 180.67 even 12
3600.3.l.s.1601.2 4 180.167 odd 12
3600.3.l.s.1601.3 4 180.103 even 12
3600.3.l.s.1601.4 4 180.23 odd 12