Properties

Label 704.6.a.v
Level $704$
Weight $6$
Character orbit 704.a
Self dual yes
Analytic conductor $112.910$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,6,Mod(1,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-5,0,-93] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.910209148\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 145x^{2} + 57x + 4950 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + (\beta_{3} + 2 \beta_1 - 24) q^{5} + ( - \beta_{3} + 3 \beta_{2} + \cdots + 22) q^{7} + ( - \beta_{3} + 7 \beta_{2} + \cdots + 148) q^{9} - 121 q^{11} + (\beta_{3} + 9 \beta_{2} - 16 \beta_1 - 56) q^{13}+ \cdots + (121 \beta_{3} - 847 \beta_{2} + \cdots - 17908) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{3} - 93 q^{5} + 94 q^{7} + 591 q^{9} - 484 q^{11} - 230 q^{13} - 3227 q^{15} + 1856 q^{17} - 40 q^{19} - 6114 q^{21} - 1515 q^{23} + 15147 q^{25} + 11605 q^{27} - 11390 q^{29} - 1339 q^{31} + 605 q^{33}+ \cdots - 71511 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 145x^{2} + 57x + 4950 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 7\nu^{2} + 103\nu - 465 ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 7\nu^{2} - 63\nu + 460 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 13\nu^{2} - 83\nu - 990 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta _1 + 1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} - \beta_{2} + 3\beta _1 + 581 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{3} + 48\beta_{2} + 105\beta _1 + 225 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.44000
9.97639
−9.03563
−7.38075
0 −19.4643 0 −82.2901 0 200.457 0 135.858 0
1.2 0 −18.7555 0 105.263 0 75.9035 0 108.770 0
1.3 0 4.76524 0 −18.8067 0 −185.753 0 −220.292 0
1.4 0 28.4546 0 −97.1664 0 3.39216 0 566.664 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.6.a.v 4
4.b odd 2 1 704.6.a.w 4
8.b even 2 1 176.6.a.k 4
8.d odd 2 1 88.6.a.d 4
24.f even 2 1 792.6.a.k 4
88.g even 2 1 968.6.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.a.d 4 8.d odd 2 1
176.6.a.k 4 8.b even 2 1
704.6.a.v 4 1.a even 1 1 trivial
704.6.a.w 4 4.b odd 2 1
792.6.a.k 4 24.f even 2 1
968.6.a.e 4 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 5T_{3}^{3} - 769T_{3}^{2} - 6945T_{3} + 49500 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(704))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5 T^{3} + \cdots + 49500 \) Copy content Toggle raw display
$5$ \( T^{4} + 93 T^{3} + \cdots - 15828962 \) Copy content Toggle raw display
$7$ \( T^{4} - 94 T^{3} + \cdots - 9587264 \) Copy content Toggle raw display
$11$ \( (T + 121)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 2034425600 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 1245421621040 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 1456068701440 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 36632956434784 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 130248064000 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10060442170840 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 25\!\cdots\!50 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 56\!\cdots\!40 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 67\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 98\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 37\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 20\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 13\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 36\!\cdots\!60 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 46\!\cdots\!20 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 83\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 89\!\cdots\!80 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 34\!\cdots\!30 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 61\!\cdots\!30 \) Copy content Toggle raw display
show more
show less