Defining parameters
Level: | \( N \) | \(=\) | \( 704 = 2^{6} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 704.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(704))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 492 | 100 | 392 |
Cusp forms | 468 | 100 | 368 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(120\) | \(24\) | \(96\) | \(114\) | \(24\) | \(90\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(126\) | \(27\) | \(99\) | \(120\) | \(27\) | \(93\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(126\) | \(26\) | \(100\) | \(120\) | \(26\) | \(94\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(120\) | \(23\) | \(97\) | \(114\) | \(23\) | \(91\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(240\) | \(47\) | \(193\) | \(228\) | \(47\) | \(181\) | \(12\) | \(0\) | \(12\) | ||||
Minus space | \(-\) | \(252\) | \(53\) | \(199\) | \(240\) | \(53\) | \(187\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(704))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(704))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(704)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 2}\)