Properties

Label 704.2.m.a.641.1
Level $704$
Weight $2$
Character 704.641
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(257,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 704.641
Dual form 704.2.m.a.257.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.118034 + 0.363271i) q^{3} +(2.61803 + 1.90211i) q^{5} +(0.618034 - 1.90211i) q^{7} +(2.30902 - 1.67760i) q^{9} +(0.309017 + 3.30220i) q^{11} +(1.00000 - 0.726543i) q^{13} +(-0.381966 + 1.17557i) q^{15} +(0.500000 + 0.363271i) q^{17} +(-1.80902 - 5.56758i) q^{19} +0.763932 q^{21} -1.23607 q^{23} +(1.69098 + 5.20431i) q^{25} +(1.80902 + 1.31433i) q^{27} +(-1.38197 + 4.25325i) q^{29} +(1.61803 - 1.17557i) q^{31} +(-1.16312 + 0.502029i) q^{33} +(5.23607 - 3.80423i) q^{35} +(1.14590 - 3.52671i) q^{37} +(0.381966 + 0.277515i) q^{39} +(1.73607 + 5.34307i) q^{41} -8.56231 q^{43} +9.23607 q^{45} +(2.00000 + 6.15537i) q^{47} +(2.42705 + 1.76336i) q^{49} +(-0.0729490 + 0.224514i) q^{51} +(-1.23607 + 0.898056i) q^{53} +(-5.47214 + 9.23305i) q^{55} +(1.80902 - 1.31433i) q^{57} +(-2.66312 + 8.19624i) q^{59} +(-2.00000 - 1.45309i) q^{61} +(-1.76393 - 5.42882i) q^{63} +4.00000 q^{65} +11.0902 q^{67} +(-0.145898 - 0.449028i) q^{69} +(-4.23607 - 3.07768i) q^{71} +(3.20820 - 9.87384i) q^{73} +(-1.69098 + 1.22857i) q^{75} +(6.47214 + 1.45309i) q^{77} +(10.8541 - 7.88597i) q^{79} +(2.38197 - 7.33094i) q^{81} +(-7.54508 - 5.48183i) q^{83} +(0.618034 + 1.90211i) q^{85} -1.70820 q^{87} -8.09017 q^{89} +(-0.763932 - 2.35114i) q^{91} +(0.618034 + 0.449028i) q^{93} +(5.85410 - 18.0171i) q^{95} +(-5.78115 + 4.20025i) q^{97} +(6.25329 + 7.10642i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{5} - 2 q^{7} + 7 q^{9} - q^{11} + 4 q^{13} - 6 q^{15} + 2 q^{17} - 5 q^{19} + 12 q^{21} + 4 q^{23} + 9 q^{25} + 5 q^{27} - 10 q^{29} + 2 q^{31} + 11 q^{33} + 12 q^{35} + 18 q^{37}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.118034 + 0.363271i 0.0681470 + 0.209735i 0.979331 0.202265i \(-0.0648303\pi\)
−0.911184 + 0.412000i \(0.864830\pi\)
\(4\) 0 0
\(5\) 2.61803 + 1.90211i 1.17082 + 0.850651i 0.991107 0.133068i \(-0.0424829\pi\)
0.179714 + 0.983719i \(0.442483\pi\)
\(6\) 0 0
\(7\) 0.618034 1.90211i 0.233595 0.718931i −0.763710 0.645560i \(-0.776624\pi\)
0.997305 0.0733714i \(-0.0233759\pi\)
\(8\) 0 0
\(9\) 2.30902 1.67760i 0.769672 0.559200i
\(10\) 0 0
\(11\) 0.309017 + 3.30220i 0.0931721 + 0.995650i
\(12\) 0 0
\(13\) 1.00000 0.726543i 0.277350 0.201507i −0.440411 0.897796i \(-0.645167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(14\) 0 0
\(15\) −0.381966 + 1.17557i −0.0986232 + 0.303531i
\(16\) 0 0
\(17\) 0.500000 + 0.363271i 0.121268 + 0.0881062i 0.646766 0.762688i \(-0.276121\pi\)
−0.525498 + 0.850795i \(0.676121\pi\)
\(18\) 0 0
\(19\) −1.80902 5.56758i −0.415017 1.27729i −0.912236 0.409666i \(-0.865645\pi\)
0.497219 0.867625i \(-0.334355\pi\)
\(20\) 0 0
\(21\) 0.763932 0.166704
\(22\) 0 0
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 0 0
\(25\) 1.69098 + 5.20431i 0.338197 + 1.04086i
\(26\) 0 0
\(27\) 1.80902 + 1.31433i 0.348145 + 0.252942i
\(28\) 0 0
\(29\) −1.38197 + 4.25325i −0.256625 + 0.789809i 0.736881 + 0.676023i \(0.236298\pi\)
−0.993505 + 0.113787i \(0.963702\pi\)
\(30\) 0 0
\(31\) 1.61803 1.17557i 0.290607 0.211139i −0.432923 0.901431i \(-0.642518\pi\)
0.723531 + 0.690292i \(0.242518\pi\)
\(32\) 0 0
\(33\) −1.16312 + 0.502029i −0.202473 + 0.0873920i
\(34\) 0 0
\(35\) 5.23607 3.80423i 0.885057 0.643032i
\(36\) 0 0
\(37\) 1.14590 3.52671i 0.188384 0.579788i −0.811606 0.584206i \(-0.801406\pi\)
0.999990 + 0.00441771i \(0.00140621\pi\)
\(38\) 0 0
\(39\) 0.381966 + 0.277515i 0.0611635 + 0.0444379i
\(40\) 0 0
\(41\) 1.73607 + 5.34307i 0.271128 + 0.834447i 0.990218 + 0.139530i \(0.0445591\pi\)
−0.719090 + 0.694917i \(0.755441\pi\)
\(42\) 0 0
\(43\) −8.56231 −1.30574 −0.652870 0.757470i \(-0.726435\pi\)
−0.652870 + 0.757470i \(0.726435\pi\)
\(44\) 0 0
\(45\) 9.23607 1.37683
\(46\) 0 0
\(47\) 2.00000 + 6.15537i 0.291730 + 0.897853i 0.984300 + 0.176502i \(0.0564783\pi\)
−0.692570 + 0.721350i \(0.743522\pi\)
\(48\) 0 0
\(49\) 2.42705 + 1.76336i 0.346722 + 0.251908i
\(50\) 0 0
\(51\) −0.0729490 + 0.224514i −0.0102149 + 0.0314382i
\(52\) 0 0
\(53\) −1.23607 + 0.898056i −0.169787 + 0.123357i −0.669434 0.742872i \(-0.733463\pi\)
0.499647 + 0.866229i \(0.333463\pi\)
\(54\) 0 0
\(55\) −5.47214 + 9.23305i −0.737863 + 1.24498i
\(56\) 0 0
\(57\) 1.80902 1.31433i 0.239610 0.174087i
\(58\) 0 0
\(59\) −2.66312 + 8.19624i −0.346709 + 1.06706i 0.613954 + 0.789342i \(0.289578\pi\)
−0.960663 + 0.277718i \(0.910422\pi\)
\(60\) 0 0
\(61\) −2.00000 1.45309i −0.256074 0.186048i 0.452341 0.891845i \(-0.350589\pi\)
−0.708414 + 0.705797i \(0.750589\pi\)
\(62\) 0 0
\(63\) −1.76393 5.42882i −0.222235 0.683968i
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 11.0902 1.35488 0.677440 0.735578i \(-0.263089\pi\)
0.677440 + 0.735578i \(0.263089\pi\)
\(68\) 0 0
\(69\) −0.145898 0.449028i −0.0175641 0.0540566i
\(70\) 0 0
\(71\) −4.23607 3.07768i −0.502729 0.365254i 0.307330 0.951603i \(-0.400565\pi\)
−0.810058 + 0.586349i \(0.800565\pi\)
\(72\) 0 0
\(73\) 3.20820 9.87384i 0.375492 1.15565i −0.567654 0.823267i \(-0.692149\pi\)
0.943146 0.332378i \(-0.107851\pi\)
\(74\) 0 0
\(75\) −1.69098 + 1.22857i −0.195258 + 0.141863i
\(76\) 0 0
\(77\) 6.47214 + 1.45309i 0.737568 + 0.165594i
\(78\) 0 0
\(79\) 10.8541 7.88597i 1.22118 0.887241i 0.224984 0.974362i \(-0.427767\pi\)
0.996198 + 0.0871218i \(0.0277669\pi\)
\(80\) 0 0
\(81\) 2.38197 7.33094i 0.264663 0.814549i
\(82\) 0 0
\(83\) −7.54508 5.48183i −0.828181 0.601708i 0.0908634 0.995863i \(-0.471037\pi\)
−0.919044 + 0.394155i \(0.871037\pi\)
\(84\) 0 0
\(85\) 0.618034 + 1.90211i 0.0670352 + 0.206313i
\(86\) 0 0
\(87\) −1.70820 −0.183139
\(88\) 0 0
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) 0 0
\(91\) −0.763932 2.35114i −0.0800818 0.246467i
\(92\) 0 0
\(93\) 0.618034 + 0.449028i 0.0640871 + 0.0465620i
\(94\) 0 0
\(95\) 5.85410 18.0171i 0.600618 1.84851i
\(96\) 0 0
\(97\) −5.78115 + 4.20025i −0.586987 + 0.426471i −0.841236 0.540668i \(-0.818172\pi\)
0.254249 + 0.967139i \(0.418172\pi\)
\(98\) 0 0
\(99\) 6.25329 + 7.10642i 0.628479 + 0.714222i
\(100\) 0 0
\(101\) −3.38197 + 2.45714i −0.336518 + 0.244495i −0.743191 0.669079i \(-0.766689\pi\)
0.406673 + 0.913574i \(0.366689\pi\)
\(102\) 0 0
\(103\) −4.85410 + 14.9394i −0.478289 + 1.47202i 0.363181 + 0.931718i \(0.381691\pi\)
−0.841470 + 0.540303i \(0.818309\pi\)
\(104\) 0 0
\(105\) 2.00000 + 1.45309i 0.195180 + 0.141807i
\(106\) 0 0
\(107\) −0.354102 1.08981i −0.0342323 0.105356i 0.932480 0.361221i \(-0.117640\pi\)
−0.966713 + 0.255864i \(0.917640\pi\)
\(108\) 0 0
\(109\) −18.9443 −1.81453 −0.907266 0.420557i \(-0.861835\pi\)
−0.907266 + 0.420557i \(0.861835\pi\)
\(110\) 0 0
\(111\) 1.41641 0.134439
\(112\) 0 0
\(113\) −0.572949 1.76336i −0.0538985 0.165883i 0.920484 0.390781i \(-0.127795\pi\)
−0.974382 + 0.224898i \(0.927795\pi\)
\(114\) 0 0
\(115\) −3.23607 2.35114i −0.301765 0.219245i
\(116\) 0 0
\(117\) 1.09017 3.35520i 0.100786 0.310188i
\(118\) 0 0
\(119\) 1.00000 0.726543i 0.0916698 0.0666020i
\(120\) 0 0
\(121\) −10.8090 + 2.04087i −0.982638 + 0.185534i
\(122\) 0 0
\(123\) −1.73607 + 1.26133i −0.156536 + 0.113730i
\(124\) 0 0
\(125\) −0.472136 + 1.45309i −0.0422291 + 0.129968i
\(126\) 0 0
\(127\) −8.85410 6.43288i −0.785675 0.570826i 0.121002 0.992652i \(-0.461389\pi\)
−0.906677 + 0.421826i \(0.861389\pi\)
\(128\) 0 0
\(129\) −1.01064 3.11044i −0.0889822 0.273859i
\(130\) 0 0
\(131\) 6.79837 0.593977 0.296988 0.954881i \(-0.404018\pi\)
0.296988 + 0.954881i \(0.404018\pi\)
\(132\) 0 0
\(133\) −11.7082 −1.01523
\(134\) 0 0
\(135\) 2.23607 + 6.88191i 0.192450 + 0.592300i
\(136\) 0 0
\(137\) −13.0172 9.45756i −1.11214 0.808014i −0.129138 0.991627i \(-0.541221\pi\)
−0.982999 + 0.183612i \(0.941221\pi\)
\(138\) 0 0
\(139\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(140\) 0 0
\(141\) −2.00000 + 1.45309i −0.168430 + 0.122372i
\(142\) 0 0
\(143\) 2.70820 + 3.07768i 0.226471 + 0.257369i
\(144\) 0 0
\(145\) −11.7082 + 8.50651i −0.972313 + 0.706427i
\(146\) 0 0
\(147\) −0.354102 + 1.08981i −0.0292058 + 0.0898863i
\(148\) 0 0
\(149\) −5.00000 3.63271i −0.409616 0.297603i 0.363830 0.931465i \(-0.381469\pi\)
−0.773446 + 0.633862i \(0.781469\pi\)
\(150\) 0 0
\(151\) 2.47214 + 7.60845i 0.201180 + 0.619167i 0.999849 + 0.0173966i \(0.00553779\pi\)
−0.798669 + 0.601770i \(0.794462\pi\)
\(152\) 0 0
\(153\) 1.76393 0.142605
\(154\) 0 0
\(155\) 6.47214 0.519854
\(156\) 0 0
\(157\) −3.00000 9.23305i −0.239426 0.736878i −0.996503 0.0835524i \(-0.973373\pi\)
0.757077 0.653325i \(-0.226627\pi\)
\(158\) 0 0
\(159\) −0.472136 0.343027i −0.0374428 0.0272038i
\(160\) 0 0
\(161\) −0.763932 + 2.35114i −0.0602063 + 0.185296i
\(162\) 0 0
\(163\) −0.736068 + 0.534785i −0.0576533 + 0.0418876i −0.616239 0.787559i \(-0.711344\pi\)
0.558585 + 0.829447i \(0.311344\pi\)
\(164\) 0 0
\(165\) −4.00000 0.898056i −0.311400 0.0699136i
\(166\) 0 0
\(167\) −11.9443 + 8.67802i −0.924276 + 0.671525i −0.944585 0.328268i \(-0.893535\pi\)
0.0203090 + 0.999794i \(0.493535\pi\)
\(168\) 0 0
\(169\) −3.54508 + 10.9106i −0.272699 + 0.839281i
\(170\) 0 0
\(171\) −13.5172 9.82084i −1.03369 0.751018i
\(172\) 0 0
\(173\) −6.76393 20.8172i −0.514252 1.58271i −0.784638 0.619954i \(-0.787151\pi\)
0.270386 0.962752i \(-0.412849\pi\)
\(174\) 0 0
\(175\) 10.9443 0.827309
\(176\) 0 0
\(177\) −3.29180 −0.247427
\(178\) 0 0
\(179\) −2.66312 8.19624i −0.199051 0.612616i −0.999905 0.0137566i \(-0.995621\pi\)
0.800855 0.598859i \(-0.204379\pi\)
\(180\) 0 0
\(181\) −3.38197 2.45714i −0.251380 0.182638i 0.454958 0.890513i \(-0.349654\pi\)
−0.706338 + 0.707875i \(0.749654\pi\)
\(182\) 0 0
\(183\) 0.291796 0.898056i 0.0215702 0.0663862i
\(184\) 0 0
\(185\) 9.70820 7.05342i 0.713761 0.518578i
\(186\) 0 0
\(187\) −1.04508 + 1.76336i −0.0764242 + 0.128949i
\(188\) 0 0
\(189\) 3.61803 2.62866i 0.263173 0.191207i
\(190\) 0 0
\(191\) −1.47214 + 4.53077i −0.106520 + 0.327835i −0.990084 0.140475i \(-0.955137\pi\)
0.883564 + 0.468310i \(0.155137\pi\)
\(192\) 0 0
\(193\) −14.0902 10.2371i −1.01423 0.736883i −0.0491400 0.998792i \(-0.515648\pi\)
−0.965093 + 0.261909i \(0.915648\pi\)
\(194\) 0 0
\(195\) 0.472136 + 1.45309i 0.0338104 + 0.104058i
\(196\) 0 0
\(197\) 20.9443 1.49222 0.746109 0.665824i \(-0.231920\pi\)
0.746109 + 0.665824i \(0.231920\pi\)
\(198\) 0 0
\(199\) 18.9443 1.34292 0.671462 0.741039i \(-0.265667\pi\)
0.671462 + 0.741039i \(0.265667\pi\)
\(200\) 0 0
\(201\) 1.30902 + 4.02874i 0.0923309 + 0.284165i
\(202\) 0 0
\(203\) 7.23607 + 5.25731i 0.507872 + 0.368991i
\(204\) 0 0
\(205\) −5.61803 + 17.2905i −0.392381 + 1.20762i
\(206\) 0 0
\(207\) −2.85410 + 2.07363i −0.198374 + 0.144127i
\(208\) 0 0
\(209\) 17.8262 7.69421i 1.23307 0.532220i
\(210\) 0 0
\(211\) 4.92705 3.57971i 0.339192 0.246438i −0.405129 0.914260i \(-0.632773\pi\)
0.744321 + 0.667822i \(0.232773\pi\)
\(212\) 0 0
\(213\) 0.618034 1.90211i 0.0423470 0.130331i
\(214\) 0 0
\(215\) −22.4164 16.2865i −1.52879 1.11073i
\(216\) 0 0
\(217\) −1.23607 3.80423i −0.0839098 0.258248i
\(218\) 0 0
\(219\) 3.96556 0.267968
\(220\) 0 0
\(221\) 0.763932 0.0513876
\(222\) 0 0
\(223\) −7.94427 24.4500i −0.531988 1.63729i −0.750069 0.661359i \(-0.769980\pi\)
0.218081 0.975931i \(-0.430020\pi\)
\(224\) 0 0
\(225\) 12.6353 + 9.18005i 0.842350 + 0.612003i
\(226\) 0 0
\(227\) 4.48278 13.7966i 0.297532 0.915711i −0.684827 0.728706i \(-0.740122\pi\)
0.982359 0.187005i \(-0.0598780\pi\)
\(228\) 0 0
\(229\) 1.38197 1.00406i 0.0913229 0.0663500i −0.541187 0.840902i \(-0.682025\pi\)
0.632510 + 0.774552i \(0.282025\pi\)
\(230\) 0 0
\(231\) 0.236068 + 2.52265i 0.0155321 + 0.165978i
\(232\) 0 0
\(233\) 7.78115 5.65334i 0.509760 0.370363i −0.302972 0.952999i \(-0.597979\pi\)
0.812733 + 0.582637i \(0.197979\pi\)
\(234\) 0 0
\(235\) −6.47214 + 19.9192i −0.422196 + 1.29938i
\(236\) 0 0
\(237\) 4.14590 + 3.01217i 0.269305 + 0.195662i
\(238\) 0 0
\(239\) 6.70820 + 20.6457i 0.433918 + 1.33546i 0.894192 + 0.447684i \(0.147751\pi\)
−0.460274 + 0.887777i \(0.652249\pi\)
\(240\) 0 0
\(241\) −11.0902 −0.714381 −0.357190 0.934032i \(-0.616265\pi\)
−0.357190 + 0.934032i \(0.616265\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) 0 0
\(245\) 3.00000 + 9.23305i 0.191663 + 0.589878i
\(246\) 0 0
\(247\) −5.85410 4.25325i −0.372488 0.270628i
\(248\) 0 0
\(249\) 1.10081 3.38795i 0.0697612 0.214703i
\(250\) 0 0
\(251\) −16.9443 + 12.3107i −1.06951 + 0.777047i −0.975825 0.218555i \(-0.929866\pi\)
−0.0936883 + 0.995602i \(0.529866\pi\)
\(252\) 0 0
\(253\) −0.381966 4.08174i −0.0240140 0.256617i
\(254\) 0 0
\(255\) −0.618034 + 0.449028i −0.0387028 + 0.0281192i
\(256\) 0 0
\(257\) −1.73607 + 5.34307i −0.108293 + 0.333291i −0.990489 0.137590i \(-0.956064\pi\)
0.882196 + 0.470882i \(0.156064\pi\)
\(258\) 0 0
\(259\) −6.00000 4.35926i −0.372822 0.270871i
\(260\) 0 0
\(261\) 3.94427 + 12.1392i 0.244144 + 0.751399i
\(262\) 0 0
\(263\) 23.2361 1.43280 0.716399 0.697691i \(-0.245789\pi\)
0.716399 + 0.697691i \(0.245789\pi\)
\(264\) 0 0
\(265\) −4.94427 −0.303724
\(266\) 0 0
\(267\) −0.954915 2.93893i −0.0584399 0.179859i
\(268\) 0 0
\(269\) 5.00000 + 3.63271i 0.304855 + 0.221490i 0.729686 0.683783i \(-0.239666\pi\)
−0.424830 + 0.905273i \(0.639666\pi\)
\(270\) 0 0
\(271\) −0.618034 + 1.90211i −0.0375429 + 0.115545i −0.968072 0.250674i \(-0.919348\pi\)
0.930529 + 0.366219i \(0.119348\pi\)
\(272\) 0 0
\(273\) 0.763932 0.555029i 0.0462353 0.0335919i
\(274\) 0 0
\(275\) −16.6631 + 7.19218i −1.00482 + 0.433705i
\(276\) 0 0
\(277\) −19.1803 + 13.9353i −1.15243 + 0.837293i −0.988803 0.149228i \(-0.952321\pi\)
−0.163632 + 0.986521i \(0.552321\pi\)
\(278\) 0 0
\(279\) 1.76393 5.42882i 0.105604 0.325015i
\(280\) 0 0
\(281\) 13.0172 + 9.45756i 0.776542 + 0.564191i 0.903939 0.427661i \(-0.140662\pi\)
−0.127397 + 0.991852i \(0.540662\pi\)
\(282\) 0 0
\(283\) 7.41641 + 22.8254i 0.440860 + 1.35683i 0.886961 + 0.461844i \(0.152812\pi\)
−0.446101 + 0.894982i \(0.647188\pi\)
\(284\) 0 0
\(285\) 7.23607 0.428628
\(286\) 0 0
\(287\) 11.2361 0.663244
\(288\) 0 0
\(289\) −5.13525 15.8047i −0.302074 0.929688i
\(290\) 0 0
\(291\) −2.20820 1.60435i −0.129447 0.0940489i
\(292\) 0 0
\(293\) 8.76393 26.9726i 0.511994 1.57576i −0.276691 0.960959i \(-0.589238\pi\)
0.788685 0.614798i \(-0.210762\pi\)
\(294\) 0 0
\(295\) −22.5623 + 16.3925i −1.31363 + 0.954407i
\(296\) 0 0
\(297\) −3.78115 + 6.37988i −0.219405 + 0.370198i
\(298\) 0 0
\(299\) −1.23607 + 0.898056i −0.0714837 + 0.0519359i
\(300\) 0 0
\(301\) −5.29180 + 16.2865i −0.305014 + 0.938737i
\(302\) 0 0
\(303\) −1.29180 0.938545i −0.0742117 0.0539180i
\(304\) 0 0
\(305\) −2.47214 7.60845i −0.141554 0.435659i
\(306\) 0 0
\(307\) 27.7984 1.58654 0.793268 0.608872i \(-0.208378\pi\)
0.793268 + 0.608872i \(0.208378\pi\)
\(308\) 0 0
\(309\) −6.00000 −0.341328
\(310\) 0 0
\(311\) −8.05573 24.7930i −0.456798 1.40588i −0.869011 0.494793i \(-0.835244\pi\)
0.412212 0.911088i \(-0.364756\pi\)
\(312\) 0 0
\(313\) −3.50000 2.54290i −0.197832 0.143733i 0.484459 0.874814i \(-0.339016\pi\)
−0.682291 + 0.731081i \(0.739016\pi\)
\(314\) 0 0
\(315\) 5.70820 17.5680i 0.321621 0.989847i
\(316\) 0 0
\(317\) −3.00000 + 2.17963i −0.168497 + 0.122420i −0.668838 0.743408i \(-0.733208\pi\)
0.500341 + 0.865828i \(0.333208\pi\)
\(318\) 0 0
\(319\) −14.4721 3.24920i −0.810284 0.181920i
\(320\) 0 0
\(321\) 0.354102 0.257270i 0.0197640 0.0143594i
\(322\) 0 0
\(323\) 1.11803 3.44095i 0.0622091 0.191460i
\(324\) 0 0
\(325\) 5.47214 + 3.97574i 0.303539 + 0.220534i
\(326\) 0 0
\(327\) −2.23607 6.88191i −0.123655 0.380570i
\(328\) 0 0
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) 6.27051 0.344658 0.172329 0.985039i \(-0.444871\pi\)
0.172329 + 0.985039i \(0.444871\pi\)
\(332\) 0 0
\(333\) −3.27051 10.0656i −0.179223 0.551591i
\(334\) 0 0
\(335\) 29.0344 + 21.0948i 1.58632 + 1.15253i
\(336\) 0 0
\(337\) −8.28115 + 25.4868i −0.451103 + 1.38835i 0.424547 + 0.905406i \(0.360433\pi\)
−0.875650 + 0.482947i \(0.839567\pi\)
\(338\) 0 0
\(339\) 0.572949 0.416272i 0.0311183 0.0226088i
\(340\) 0 0
\(341\) 4.38197 + 4.97980i 0.237297 + 0.269671i
\(342\) 0 0
\(343\) 16.1803 11.7557i 0.873656 0.634748i
\(344\) 0 0
\(345\) 0.472136 1.45309i 0.0254189 0.0782315i
\(346\) 0 0
\(347\) −13.4443 9.76784i −0.721726 0.524365i 0.165209 0.986259i \(-0.447170\pi\)
−0.886935 + 0.461894i \(0.847170\pi\)
\(348\) 0 0
\(349\) 6.05573 + 18.6376i 0.324156 + 0.997649i 0.971820 + 0.235723i \(0.0757458\pi\)
−0.647665 + 0.761926i \(0.724254\pi\)
\(350\) 0 0
\(351\) 2.76393 0.147528
\(352\) 0 0
\(353\) 32.6180 1.73608 0.868041 0.496492i \(-0.165379\pi\)
0.868041 + 0.496492i \(0.165379\pi\)
\(354\) 0 0
\(355\) −5.23607 16.1150i −0.277902 0.855293i
\(356\) 0 0
\(357\) 0.381966 + 0.277515i 0.0202158 + 0.0146876i
\(358\) 0 0
\(359\) −1.58359 + 4.87380i −0.0835788 + 0.257229i −0.984109 0.177564i \(-0.943178\pi\)
0.900531 + 0.434793i \(0.143178\pi\)
\(360\) 0 0
\(361\) −12.3541 + 8.97578i −0.650216 + 0.472409i
\(362\) 0 0
\(363\) −2.01722 3.68571i −0.105877 0.193450i
\(364\) 0 0
\(365\) 27.1803 19.7477i 1.42268 1.03364i
\(366\) 0 0
\(367\) −6.09017 + 18.7436i −0.317904 + 0.978409i 0.656638 + 0.754206i \(0.271978\pi\)
−0.974542 + 0.224203i \(0.928022\pi\)
\(368\) 0 0
\(369\) 12.9721 + 9.42481i 0.675302 + 0.490636i
\(370\) 0 0
\(371\) 0.944272 + 2.90617i 0.0490242 + 0.150881i
\(372\) 0 0
\(373\) 4.29180 0.222221 0.111110 0.993808i \(-0.464559\pi\)
0.111110 + 0.993808i \(0.464559\pi\)
\(374\) 0 0
\(375\) −0.583592 −0.0301366
\(376\) 0 0
\(377\) 1.70820 + 5.25731i 0.0879770 + 0.270765i
\(378\) 0 0
\(379\) −11.5451 8.38800i −0.593031 0.430862i 0.250367 0.968151i \(-0.419449\pi\)
−0.843398 + 0.537289i \(0.819449\pi\)
\(380\) 0 0
\(381\) 1.29180 3.97574i 0.0661807 0.203683i
\(382\) 0 0
\(383\) −22.9443 + 16.6700i −1.17240 + 0.851797i −0.991294 0.131667i \(-0.957967\pi\)
−0.181104 + 0.983464i \(0.557967\pi\)
\(384\) 0 0
\(385\) 14.1803 + 16.1150i 0.722697 + 0.821294i
\(386\) 0 0
\(387\) −19.7705 + 14.3641i −1.00499 + 0.730169i
\(388\) 0 0
\(389\) 3.29180 10.1311i 0.166901 0.513667i −0.832271 0.554370i \(-0.812959\pi\)
0.999171 + 0.0407020i \(0.0129594\pi\)
\(390\) 0 0
\(391\) −0.618034 0.449028i −0.0312553 0.0227083i
\(392\) 0 0
\(393\) 0.802439 + 2.46965i 0.0404777 + 0.124578i
\(394\) 0 0
\(395\) 43.4164 2.18452
\(396\) 0 0
\(397\) 17.1246 0.859460 0.429730 0.902958i \(-0.358609\pi\)
0.429730 + 0.902958i \(0.358609\pi\)
\(398\) 0 0
\(399\) −1.38197 4.25325i −0.0691848 0.212929i
\(400\) 0 0
\(401\) 14.3992 + 10.4616i 0.719061 + 0.522428i 0.886084 0.463525i \(-0.153415\pi\)
−0.167023 + 0.985953i \(0.553415\pi\)
\(402\) 0 0
\(403\) 0.763932 2.35114i 0.0380542 0.117119i
\(404\) 0 0
\(405\) 20.1803 14.6619i 1.00277 0.728554i
\(406\) 0 0
\(407\) 12.0000 + 2.69417i 0.594818 + 0.133545i
\(408\) 0 0
\(409\) 10.8541 7.88597i 0.536701 0.389936i −0.286157 0.958183i \(-0.592378\pi\)
0.822858 + 0.568247i \(0.192378\pi\)
\(410\) 0 0
\(411\) 1.89919 5.84510i 0.0936800 0.288317i
\(412\) 0 0
\(413\) 13.9443 + 10.1311i 0.686153 + 0.498519i
\(414\) 0 0
\(415\) −9.32624 28.7032i −0.457807 1.40899i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.8541 −0.530258 −0.265129 0.964213i \(-0.585414\pi\)
−0.265129 + 0.964213i \(0.585414\pi\)
\(420\) 0 0
\(421\) 9.70820 + 29.8788i 0.473149 + 1.45620i 0.848438 + 0.529295i \(0.177543\pi\)
−0.375289 + 0.926908i \(0.622457\pi\)
\(422\) 0 0
\(423\) 14.9443 + 10.8576i 0.726615 + 0.527917i
\(424\) 0 0
\(425\) −1.04508 + 3.21644i −0.0506941 + 0.156020i
\(426\) 0 0
\(427\) −4.00000 + 2.90617i −0.193574 + 0.140639i
\(428\) 0 0
\(429\) −0.798374 + 1.34708i −0.0385459 + 0.0650378i
\(430\) 0 0
\(431\) −13.7082 + 9.95959i −0.660301 + 0.479737i −0.866765 0.498718i \(-0.833804\pi\)
0.206464 + 0.978454i \(0.433804\pi\)
\(432\) 0 0
\(433\) 8.57295 26.3848i 0.411990 1.26797i −0.502926 0.864329i \(-0.667743\pi\)
0.914916 0.403644i \(-0.132257\pi\)
\(434\) 0 0
\(435\) −4.47214 3.24920i −0.214423 0.155787i
\(436\) 0 0
\(437\) 2.23607 + 6.88191i 0.106966 + 0.329206i
\(438\) 0 0
\(439\) 6.58359 0.314218 0.157109 0.987581i \(-0.449783\pi\)
0.157109 + 0.987581i \(0.449783\pi\)
\(440\) 0 0
\(441\) 8.56231 0.407729
\(442\) 0 0
\(443\) −2.64590 8.14324i −0.125710 0.386897i 0.868319 0.496005i \(-0.165200\pi\)
−0.994030 + 0.109109i \(0.965200\pi\)
\(444\) 0 0
\(445\) −21.1803 15.3884i −1.00404 0.729481i
\(446\) 0 0
\(447\) 0.729490 2.24514i 0.0345037 0.106191i
\(448\) 0 0
\(449\) −7.50000 + 5.44907i −0.353947 + 0.257157i −0.750523 0.660844i \(-0.770198\pi\)
0.396576 + 0.918002i \(0.370198\pi\)
\(450\) 0 0
\(451\) −17.1074 + 7.38394i −0.805556 + 0.347696i
\(452\) 0 0
\(453\) −2.47214 + 1.79611i −0.116151 + 0.0843887i
\(454\) 0 0
\(455\) 2.47214 7.60845i 0.115896 0.356690i
\(456\) 0 0
\(457\) 7.63525 + 5.54734i 0.357162 + 0.259493i 0.751867 0.659314i \(-0.229153\pi\)
−0.394705 + 0.918808i \(0.629153\pi\)
\(458\) 0 0
\(459\) 0.427051 + 1.31433i 0.0199330 + 0.0613476i
\(460\) 0 0
\(461\) −1.34752 −0.0627605 −0.0313802 0.999508i \(-0.509990\pi\)
−0.0313802 + 0.999508i \(0.509990\pi\)
\(462\) 0 0
\(463\) 19.4164 0.902357 0.451178 0.892434i \(-0.351004\pi\)
0.451178 + 0.892434i \(0.351004\pi\)
\(464\) 0 0
\(465\) 0.763932 + 2.35114i 0.0354265 + 0.109032i
\(466\) 0 0
\(467\) 26.9443 + 19.5762i 1.24683 + 0.905877i 0.998034 0.0626787i \(-0.0199643\pi\)
0.248798 + 0.968555i \(0.419964\pi\)
\(468\) 0 0
\(469\) 6.85410 21.0948i 0.316493 0.974065i
\(470\) 0 0
\(471\) 3.00000 2.17963i 0.138233 0.100432i
\(472\) 0 0
\(473\) −2.64590 28.2744i −0.121659 1.30006i
\(474\) 0 0
\(475\) 25.9164 18.8294i 1.18913 0.863951i
\(476\) 0 0
\(477\) −1.34752 + 4.14725i −0.0616989 + 0.189890i
\(478\) 0 0
\(479\) −27.8885 20.2622i −1.27426 0.925804i −0.274896 0.961474i \(-0.588644\pi\)
−0.999364 + 0.0356697i \(0.988644\pi\)
\(480\) 0 0
\(481\) −1.41641 4.35926i −0.0645826 0.198765i
\(482\) 0 0
\(483\) −0.944272 −0.0429659
\(484\) 0 0
\(485\) −23.1246 −1.05003
\(486\) 0 0
\(487\) 0.416408 + 1.28157i 0.0188692 + 0.0580736i 0.960048 0.279836i \(-0.0902801\pi\)
−0.941179 + 0.337910i \(0.890280\pi\)
\(488\) 0 0
\(489\) −0.281153 0.204270i −0.0127142 0.00923739i
\(490\) 0 0
\(491\) 7.06231 21.7355i 0.318717 0.980911i −0.655480 0.755213i \(-0.727534\pi\)
0.974197 0.225699i \(-0.0724664\pi\)
\(492\) 0 0
\(493\) −2.23607 + 1.62460i −0.100707 + 0.0731682i
\(494\) 0 0
\(495\) 2.85410 + 30.4993i 0.128282 + 1.37084i
\(496\) 0 0
\(497\) −8.47214 + 6.15537i −0.380027 + 0.276106i
\(498\) 0 0
\(499\) −9.53444 + 29.3440i −0.426820 + 1.31362i 0.474420 + 0.880298i \(0.342658\pi\)
−0.901241 + 0.433319i \(0.857342\pi\)
\(500\) 0 0
\(501\) −4.56231 3.31471i −0.203829 0.148090i
\(502\) 0 0
\(503\) 1.00000 + 3.07768i 0.0445878 + 0.137227i 0.970872 0.239598i \(-0.0770157\pi\)
−0.926284 + 0.376825i \(0.877016\pi\)
\(504\) 0 0
\(505\) −13.5279 −0.601982
\(506\) 0 0
\(507\) −4.38197 −0.194610
\(508\) 0 0
\(509\) 2.56231 + 7.88597i 0.113572 + 0.349539i 0.991647 0.128985i \(-0.0411719\pi\)
−0.878074 + 0.478524i \(0.841172\pi\)
\(510\) 0 0
\(511\) −16.7984 12.2047i −0.743116 0.539906i
\(512\) 0 0
\(513\) 4.04508 12.4495i 0.178595 0.549658i
\(514\) 0 0
\(515\) −41.1246 + 29.8788i −1.81217 + 1.31662i
\(516\) 0 0
\(517\) −19.7082 + 8.50651i −0.866766 + 0.374116i
\(518\) 0 0
\(519\) 6.76393 4.91428i 0.296904 0.215713i
\(520\) 0 0
\(521\) −6.19098 + 19.0539i −0.271232 + 0.834766i 0.718960 + 0.695052i \(0.244618\pi\)
−0.990192 + 0.139714i \(0.955382\pi\)
\(522\) 0 0
\(523\) −7.44427 5.40858i −0.325515 0.236501i 0.413010 0.910726i \(-0.364477\pi\)
−0.738525 + 0.674226i \(0.764477\pi\)
\(524\) 0 0
\(525\) 1.29180 + 3.97574i 0.0563786 + 0.173515i
\(526\) 0 0
\(527\) 1.23607 0.0538440
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) 0 0
\(531\) 7.60081 + 23.3929i 0.329847 + 1.01517i
\(532\) 0 0
\(533\) 5.61803 + 4.08174i 0.243344 + 0.176800i
\(534\) 0 0
\(535\) 1.14590 3.52671i 0.0495415 0.152473i
\(536\) 0 0
\(537\) 2.66312 1.93487i 0.114922 0.0834958i
\(538\) 0 0
\(539\) −5.07295 + 8.55951i −0.218507 + 0.368684i
\(540\) 0 0
\(541\) −2.52786 + 1.83660i −0.108681 + 0.0789616i −0.640798 0.767709i \(-0.721397\pi\)
0.532117 + 0.846671i \(0.321397\pi\)
\(542\) 0 0
\(543\) 0.493422 1.51860i 0.0211748 0.0651693i
\(544\) 0 0
\(545\) −49.5967 36.0341i −2.12449 1.54353i
\(546\) 0 0
\(547\) 2.57295 + 7.91872i 0.110011 + 0.338580i 0.990874 0.134792i \(-0.0430366\pi\)
−0.880863 + 0.473372i \(0.843037\pi\)
\(548\) 0 0
\(549\) −7.05573 −0.301131
\(550\) 0 0
\(551\) 26.1803 1.11532
\(552\) 0 0
\(553\) −8.29180 25.5195i −0.352603 1.08520i
\(554\) 0 0
\(555\) 3.70820 + 2.69417i 0.157404 + 0.114361i
\(556\) 0 0
\(557\) −10.8885 + 33.5115i −0.461362 + 1.41993i 0.402138 + 0.915579i \(0.368267\pi\)
−0.863500 + 0.504348i \(0.831733\pi\)
\(558\) 0 0
\(559\) −8.56231 + 6.22088i −0.362147 + 0.263115i
\(560\) 0 0
\(561\) −0.763932 0.171513i −0.0322532 0.00724130i
\(562\) 0 0
\(563\) −0.309017 + 0.224514i −0.0130235 + 0.00946214i −0.594278 0.804260i \(-0.702562\pi\)
0.581254 + 0.813722i \(0.302562\pi\)
\(564\) 0 0
\(565\) 1.85410 5.70634i 0.0780027 0.240067i
\(566\) 0 0
\(567\) −12.4721 9.06154i −0.523780 0.380549i
\(568\) 0 0
\(569\) 11.8090 + 36.3444i 0.495060 + 1.52364i 0.816864 + 0.576831i \(0.195711\pi\)
−0.321804 + 0.946806i \(0.604289\pi\)
\(570\) 0 0
\(571\) −2.47214 −0.103456 −0.0517278 0.998661i \(-0.516473\pi\)
−0.0517278 + 0.998661i \(0.516473\pi\)
\(572\) 0 0
\(573\) −1.81966 −0.0760174
\(574\) 0 0
\(575\) −2.09017 6.43288i −0.0871661 0.268270i
\(576\) 0 0
\(577\) 5.50000 + 3.99598i 0.228968 + 0.166355i 0.696354 0.717698i \(-0.254804\pi\)
−0.467386 + 0.884053i \(0.654804\pi\)
\(578\) 0 0
\(579\) 2.05573 6.32688i 0.0854331 0.262936i
\(580\) 0 0
\(581\) −15.0902 + 10.9637i −0.626046 + 0.454849i
\(582\) 0 0
\(583\) −3.34752 3.80423i −0.138640 0.157555i
\(584\) 0 0
\(585\) 9.23607 6.71040i 0.381864 0.277441i
\(586\) 0 0
\(587\) 6.84346 21.0620i 0.282460 0.869322i −0.704689 0.709517i \(-0.748913\pi\)
0.987149 0.159805i \(-0.0510866\pi\)
\(588\) 0 0
\(589\) −9.47214 6.88191i −0.390293 0.283564i
\(590\) 0 0
\(591\) 2.47214 + 7.60845i 0.101690 + 0.312970i
\(592\) 0 0
\(593\) −28.6869 −1.17803 −0.589015 0.808122i \(-0.700484\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 0 0
\(597\) 2.23607 + 6.88191i 0.0915162 + 0.281658i
\(598\) 0 0
\(599\) −10.8541 7.88597i −0.443487 0.322212i 0.343532 0.939141i \(-0.388377\pi\)
−0.787019 + 0.616929i \(0.788377\pi\)
\(600\) 0 0
\(601\) −8.38854 + 25.8173i −0.342176 + 1.05311i 0.620903 + 0.783888i \(0.286766\pi\)
−0.963078 + 0.269221i \(0.913234\pi\)
\(602\) 0 0
\(603\) 25.6074 18.6049i 1.04281 0.757648i
\(604\) 0 0
\(605\) −32.1803 15.2169i −1.30832 0.618655i
\(606\) 0 0
\(607\) 18.7082 13.5923i 0.759343 0.551695i −0.139366 0.990241i \(-0.544506\pi\)
0.898709 + 0.438546i \(0.144506\pi\)
\(608\) 0 0
\(609\) −1.05573 + 3.24920i −0.0427803 + 0.131664i
\(610\) 0 0
\(611\) 6.47214 + 4.70228i 0.261835 + 0.190234i
\(612\) 0 0
\(613\) −11.0344 33.9605i −0.445677 1.37165i −0.881740 0.471736i \(-0.843627\pi\)
0.436063 0.899916i \(-0.356373\pi\)
\(614\) 0 0
\(615\) −6.94427 −0.280020
\(616\) 0 0
\(617\) 23.4508 0.944096 0.472048 0.881573i \(-0.343515\pi\)
0.472048 + 0.881573i \(0.343515\pi\)
\(618\) 0 0
\(619\) 1.60739 + 4.94704i 0.0646065 + 0.198838i 0.978149 0.207905i \(-0.0666644\pi\)
−0.913543 + 0.406743i \(0.866664\pi\)
\(620\) 0 0
\(621\) −2.23607 1.62460i −0.0897303 0.0651929i
\(622\) 0 0
\(623\) −5.00000 + 15.3884i −0.200321 + 0.616524i
\(624\) 0 0
\(625\) 18.1353 13.1760i 0.725410 0.527041i
\(626\) 0 0
\(627\) 4.89919 + 5.56758i 0.195655 + 0.222348i
\(628\) 0 0
\(629\) 1.85410 1.34708i 0.0739279 0.0537118i
\(630\) 0 0
\(631\) −7.32624 + 22.5478i −0.291653 + 0.897615i 0.692672 + 0.721252i \(0.256433\pi\)
−0.984325 + 0.176363i \(0.943567\pi\)
\(632\) 0 0
\(633\) 1.88197 + 1.36733i 0.0748014 + 0.0543464i
\(634\) 0 0
\(635\) −10.9443 33.6830i −0.434310 1.33667i
\(636\) 0 0
\(637\) 3.70820 0.146924
\(638\) 0 0
\(639\) −14.9443 −0.591186
\(640\) 0 0
\(641\) 5.15248 + 15.8577i 0.203511 + 0.626341i 0.999771 + 0.0213875i \(0.00680836\pi\)
−0.796261 + 0.604954i \(0.793192\pi\)
\(642\) 0 0
\(643\) −32.3435 23.4989i −1.27550 0.926706i −0.276094 0.961131i \(-0.589040\pi\)
−0.999407 + 0.0344245i \(0.989040\pi\)
\(644\) 0 0
\(645\) 3.27051 10.0656i 0.128776 0.396332i
\(646\) 0 0
\(647\) 23.5066 17.0785i 0.924139 0.671426i −0.0204118 0.999792i \(-0.506498\pi\)
0.944551 + 0.328365i \(0.106498\pi\)
\(648\) 0 0
\(649\) −27.8885 6.26137i −1.09472 0.245780i
\(650\) 0 0
\(651\) 1.23607 0.898056i 0.0484453 0.0351976i
\(652\) 0 0
\(653\) 4.74265 14.5964i 0.185594 0.571200i −0.814364 0.580354i \(-0.802914\pi\)
0.999958 + 0.00915459i \(0.00291404\pi\)
\(654\) 0 0
\(655\) 17.7984 + 12.9313i 0.695440 + 0.505267i
\(656\) 0 0
\(657\) −9.15654 28.1809i −0.357231 1.09944i
\(658\) 0 0
\(659\) −16.9098 −0.658713 −0.329357 0.944206i \(-0.606832\pi\)
−0.329357 + 0.944206i \(0.606832\pi\)
\(660\) 0 0
\(661\) 3.52786 0.137218 0.0686090 0.997644i \(-0.478144\pi\)
0.0686090 + 0.997644i \(0.478144\pi\)
\(662\) 0 0
\(663\) 0.0901699 + 0.277515i 0.00350191 + 0.0107778i
\(664\) 0 0
\(665\) −30.6525 22.2703i −1.18865 0.863606i
\(666\) 0 0
\(667\) 1.70820 5.25731i 0.0661419 0.203564i
\(668\) 0 0
\(669\) 7.94427 5.77185i 0.307143 0.223153i
\(670\) 0 0
\(671\) 4.18034 7.05342i 0.161380 0.272294i
\(672\) 0 0
\(673\) −7.97214 + 5.79210i −0.307303 + 0.223269i −0.730738 0.682657i \(-0.760824\pi\)
0.423435 + 0.905926i \(0.360824\pi\)
\(674\) 0 0
\(675\) −3.78115 + 11.6372i −0.145537 + 0.447916i
\(676\) 0 0
\(677\) −11.6180 8.44100i −0.446517 0.324414i 0.341702 0.939808i \(-0.388997\pi\)
−0.788219 + 0.615395i \(0.788997\pi\)
\(678\) 0 0
\(679\) 4.41641 + 13.5923i 0.169486 + 0.521625i
\(680\) 0 0
\(681\) 5.54102 0.212332
\(682\) 0 0
\(683\) 18.4721 0.706817 0.353408 0.935469i \(-0.385023\pi\)
0.353408 + 0.935469i \(0.385023\pi\)
\(684\) 0 0
\(685\) −16.0902 49.5205i −0.614774 1.89208i
\(686\) 0 0
\(687\) 0.527864 + 0.383516i 0.0201393 + 0.0146320i
\(688\) 0 0
\(689\) −0.583592 + 1.79611i −0.0222331 + 0.0684264i
\(690\) 0 0
\(691\) 21.2082 15.4087i 0.806798 0.586173i −0.106102 0.994355i \(-0.533837\pi\)
0.912901 + 0.408182i \(0.133837\pi\)
\(692\) 0 0
\(693\) 17.3820 7.50245i 0.660286 0.284995i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.07295 + 3.30220i −0.0406408 + 0.125080i
\(698\) 0 0
\(699\) 2.97214 + 2.15938i 0.112417 + 0.0816754i
\(700\) 0 0
\(701\) 4.58359 + 14.1068i 0.173120 + 0.532808i 0.999543 0.0302419i \(-0.00962778\pi\)
−0.826423 + 0.563050i \(0.809628\pi\)
\(702\) 0 0
\(703\) −21.7082 −0.818740
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 2.58359 + 7.95148i 0.0971660 + 0.299046i
\(708\) 0 0
\(709\) 19.7984 + 14.3844i 0.743544 + 0.540216i 0.893819 0.448428i \(-0.148016\pi\)
−0.150275 + 0.988644i \(0.548016\pi\)
\(710\) 0 0
\(711\) 11.8328 36.4177i 0.443765 1.36577i
\(712\) 0 0
\(713\) −2.00000 + 1.45309i −0.0749006 + 0.0544185i
\(714\) 0 0
\(715\) 1.23607 + 13.2088i 0.0462263 + 0.493981i
\(716\) 0 0
\(717\) −6.70820 + 4.87380i −0.250522 + 0.182015i
\(718\) 0 0
\(719\) −8.29180 + 25.5195i −0.309232 + 0.951718i 0.668832 + 0.743413i \(0.266794\pi\)
−0.978064 + 0.208304i \(0.933206\pi\)
\(720\) 0 0
\(721\) 25.4164 + 18.4661i 0.946556 + 0.687714i
\(722\) 0 0
\(723\) −1.30902 4.02874i −0.0486829 0.149830i
\(724\) 0 0
\(725\) −24.4721 −0.908872
\(726\) 0 0
\(727\) −2.87539 −0.106642 −0.0533211 0.998577i \(-0.516981\pi\)
−0.0533211 + 0.998577i \(0.516981\pi\)
\(728\) 0 0
\(729\) −6.00658 18.4863i −0.222466 0.684679i
\(730\) 0 0
\(731\) −4.28115 3.11044i −0.158344 0.115044i
\(732\) 0 0
\(733\) 2.90983 8.95554i 0.107477 0.330780i −0.882827 0.469699i \(-0.844363\pi\)
0.990304 + 0.138918i \(0.0443626\pi\)
\(734\) 0 0
\(735\) −3.00000 + 2.17963i −0.110657 + 0.0803968i
\(736\) 0 0
\(737\) 3.42705 + 36.6219i 0.126237 + 1.34899i
\(738\) 0 0
\(739\) 30.3885 22.0786i 1.11786 0.812173i 0.133977 0.990984i \(-0.457225\pi\)
0.983883 + 0.178811i \(0.0572251\pi\)
\(740\) 0 0
\(741\) 0.854102 2.62866i 0.0313762 0.0965661i
\(742\) 0 0
\(743\) −7.09017 5.15131i −0.260113 0.188983i 0.450084 0.892986i \(-0.351394\pi\)
−0.710197 + 0.704003i \(0.751394\pi\)
\(744\) 0 0
\(745\) −6.18034 19.0211i −0.226430 0.696880i
\(746\) 0 0
\(747\) −26.6180 −0.973903
\(748\) 0 0
\(749\) −2.29180 −0.0837404
\(750\) 0 0
\(751\) 10.4377 + 32.1239i 0.380877 + 1.17222i 0.939427 + 0.342748i \(0.111358\pi\)
−0.558551 + 0.829470i \(0.688642\pi\)
\(752\) 0 0
\(753\) −6.47214 4.70228i −0.235858 0.171361i
\(754\) 0 0
\(755\) −8.00000 + 24.6215i −0.291150 + 0.896067i
\(756\) 0 0
\(757\) −2.14590 + 1.55909i −0.0779940 + 0.0566660i −0.626099 0.779744i \(-0.715349\pi\)
0.548105 + 0.836410i \(0.315349\pi\)
\(758\) 0 0
\(759\) 1.43769 0.620541i 0.0521850 0.0225242i
\(760\) 0 0
\(761\) 3.44427 2.50241i 0.124855 0.0907123i −0.523605 0.851961i \(-0.675413\pi\)
0.648460 + 0.761249i \(0.275413\pi\)
\(762\) 0 0
\(763\) −11.7082 + 36.0341i −0.423865 + 1.30452i
\(764\) 0 0
\(765\) 4.61803 + 3.35520i 0.166965 + 0.121307i
\(766\) 0 0
\(767\) 3.29180 + 10.1311i 0.118860 + 0.365813i
\(768\) 0 0
\(769\) 13.4164 0.483808 0.241904 0.970300i \(-0.422228\pi\)
0.241904 + 0.970300i \(0.422228\pi\)
\(770\) 0 0
\(771\) −2.14590 −0.0772826
\(772\) 0 0
\(773\) 1.20163 + 3.69822i 0.0432195 + 0.133016i 0.970338 0.241753i \(-0.0777222\pi\)
−0.927118 + 0.374768i \(0.877722\pi\)
\(774\) 0 0
\(775\) 8.85410 + 6.43288i 0.318049 + 0.231076i
\(776\) 0 0
\(777\) 0.875388 2.69417i 0.0314044 0.0966527i
\(778\) 0 0
\(779\) 26.6074 19.3314i 0.953309 0.692619i
\(780\) 0 0
\(781\) 8.85410 14.9394i 0.316825 0.534573i
\(782\) 0 0
\(783\) −8.09017 + 5.87785i −0.289119 + 0.210057i
\(784\) 0 0
\(785\) 9.70820 29.8788i 0.346501 1.06642i
\(786\) 0 0
\(787\) −21.2082 15.4087i −0.755991 0.549259i 0.141687 0.989911i \(-0.454747\pi\)
−0.897678 + 0.440652i \(0.854747\pi\)
\(788\) 0 0
\(789\) 2.74265 + 8.44100i 0.0976408 + 0.300507i
\(790\) 0 0
\(791\) −3.70820 −0.131849
\(792\) 0 0
\(793\) −3.05573 −0.108512
\(794\) 0 0
\(795\) −0.583592 1.79611i −0.0206979 0.0637015i
\(796\) 0 0
\(797\) −20.0344 14.5559i −0.709656 0.515596i 0.173406 0.984850i \(-0.444523\pi\)
−0.883063 + 0.469255i \(0.844523\pi\)
\(798\) 0 0
\(799\) −1.23607 + 3.80423i −0.0437289 + 0.134584i
\(800\) 0 0
\(801\) −18.6803 + 13.5721i −0.660037 + 0.479545i
\(802\) 0 0
\(803\) 33.5967 + 7.54294i 1.18560 + 0.266185i
\(804\) 0 0
\(805\) −6.47214 + 4.70228i −0.228113 + 0.165734i
\(806\) 0 0
\(807\) −0.729490 + 2.24514i −0.0256793 + 0.0790327i
\(808\) 0 0
\(809\) −13.6803 9.93935i −0.480975 0.349449i 0.320728 0.947171i \(-0.396072\pi\)
−0.801703 + 0.597722i \(0.796072\pi\)
\(810\) 0 0
\(811\) 2.59017 + 7.97172i 0.0909532 + 0.279925i 0.986178 0.165690i \(-0.0529851\pi\)
−0.895225 + 0.445615i \(0.852985\pi\)
\(812\) 0 0
\(813\) −0.763932 −0.0267923
\(814\) 0 0
\(815\) −2.94427 −0.103133
\(816\) 0 0
\(817\) 15.4894 + 47.6713i 0.541904 + 1.66781i
\(818\) 0 0
\(819\) −5.70820 4.14725i −0.199461 0.144917i
\(820\) 0 0
\(821\) −9.43769 + 29.0462i −0.329378 + 1.01372i 0.640048 + 0.768335i \(0.278915\pi\)
−0.969426 + 0.245386i \(0.921085\pi\)
\(822\) 0 0
\(823\) 19.0902 13.8698i 0.665441 0.483472i −0.203055 0.979167i \(-0.565087\pi\)
0.868496 + 0.495696i \(0.165087\pi\)
\(824\) 0 0
\(825\) −4.57953 5.20431i −0.159439 0.181191i
\(826\) 0 0
\(827\) −31.8607 + 23.1481i −1.10790 + 0.804940i −0.982332 0.187145i \(-0.940077\pi\)
−0.125572 + 0.992085i \(0.540077\pi\)
\(828\) 0 0
\(829\) −9.59675 + 29.5358i −0.333309 + 1.02582i 0.634240 + 0.773136i \(0.281313\pi\)
−0.967549 + 0.252683i \(0.918687\pi\)
\(830\) 0 0
\(831\) −7.32624 5.32282i −0.254144 0.184647i
\(832\) 0 0
\(833\) 0.572949 + 1.76336i 0.0198515 + 0.0610967i
\(834\) 0 0
\(835\) −47.7771 −1.65339
\(836\) 0 0
\(837\) 4.47214 0.154580
\(838\) 0 0
\(839\) −3.74265 11.5187i −0.129210 0.397669i 0.865434 0.501023i \(-0.167043\pi\)
−0.994645 + 0.103354i \(0.967043\pi\)
\(840\) 0 0
\(841\) 7.28115 + 5.29007i 0.251074 + 0.182416i
\(842\) 0 0
\(843\) −1.89919 + 5.84510i −0.0654115 + 0.201316i
\(844\) 0 0
\(845\) −30.0344 + 21.8213i −1.03322 + 0.750676i
\(846\) 0 0
\(847\) −2.79837 + 21.8213i −0.0961533 + 0.749789i
\(848\) 0 0
\(849\) −7.41641 + 5.38834i −0.254530 + 0.184927i
\(850\) 0 0
\(851\) −1.41641 + 4.35926i −0.0485538 + 0.149433i
\(852\) 0 0
\(853\) −24.6525 17.9111i −0.844085 0.613263i 0.0794240 0.996841i \(-0.474692\pi\)
−0.923509 + 0.383577i \(0.874692\pi\)
\(854\) 0 0
\(855\) −16.7082 51.4226i −0.571409 1.75861i
\(856\) 0 0
\(857\) −10.7426 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(858\) 0 0
\(859\) 46.5066 1.58678 0.793392 0.608711i \(-0.208313\pi\)
0.793392 + 0.608711i \(0.208313\pi\)
\(860\) 0 0
\(861\) 1.32624 + 4.08174i 0.0451981 + 0.139105i
\(862\) 0 0
\(863\) −26.8885 19.5357i −0.915297 0.665002i 0.0270522 0.999634i \(-0.491388\pi\)
−0.942349 + 0.334632i \(0.891388\pi\)
\(864\) 0 0
\(865\) 21.8885 67.3660i 0.744233 2.29051i
\(866\) 0 0
\(867\) 5.13525 3.73098i 0.174402 0.126711i
\(868\) 0 0
\(869\) 29.3951 + 33.4055i 0.997161 + 1.13320i
\(870\) 0 0
\(871\) 11.0902 8.05748i 0.375776 0.273017i
\(872\) 0 0
\(873\) −6.30244 + 19.3969i −0.213305 + 0.656486i
\(874\) 0 0
\(875\) 2.47214 + 1.79611i 0.0835734 + 0.0607197i
\(876\) 0 0
\(877\) 8.70820 + 26.8011i 0.294055 + 0.905009i 0.983537 + 0.180706i \(0.0578382\pi\)
−0.689482 + 0.724303i \(0.742162\pi\)
\(878\) 0 0
\(879\) 10.8328 0.365382
\(880\) 0 0
\(881\) −46.3394 −1.56121 −0.780607 0.625022i \(-0.785090\pi\)
−0.780607 + 0.625022i \(0.785090\pi\)
\(882\) 0 0
\(883\) −1.06231 3.26944i −0.0357494 0.110025i 0.931589 0.363512i \(-0.118423\pi\)
−0.967339 + 0.253487i \(0.918423\pi\)
\(884\) 0 0
\(885\) −8.61803 6.26137i −0.289692 0.210474i
\(886\) 0 0
\(887\) 11.6738 35.9281i 0.391967 1.20635i −0.539332 0.842093i \(-0.681323\pi\)
0.931299 0.364256i \(-0.118677\pi\)
\(888\) 0 0
\(889\) −17.7082 + 12.8658i −0.593914 + 0.431504i
\(890\) 0 0
\(891\) 24.9443 + 5.60034i 0.835665 + 0.187618i
\(892\) 0 0
\(893\) 30.6525 22.2703i 1.02575 0.745248i
\(894\) 0 0
\(895\) 8.61803 26.5236i 0.288069 0.886586i
\(896\) 0 0
\(897\) −0.472136 0.343027i −0.0157642 0.0114533i
\(898\) 0 0
\(899\) 2.76393 + 8.50651i 0.0921823 + 0.283708i
\(900\) 0 0
\(901\) −0.944272 −0.0314583
\(902\) 0 0
\(903\) −6.54102 −0.217672
\(904\) 0 0
\(905\) −4.18034 12.8658i −0.138959 0.427672i
\(906\) 0 0
\(907\) −8.44427 6.13512i −0.280387 0.203713i 0.438699 0.898634i \(-0.355439\pi\)
−0.719086 + 0.694921i \(0.755439\pi\)
\(908\) 0 0
\(909\) −3.68692 + 11.3472i −0.122287 + 0.376362i
\(910\) 0 0
\(911\) 14.7082 10.6861i 0.487305 0.354047i −0.316842 0.948478i \(-0.602623\pi\)
0.804147 + 0.594431i \(0.202623\pi\)
\(912\) 0 0
\(913\) 15.7705 26.6093i 0.521928 0.880641i
\(914\) 0 0
\(915\) 2.47214 1.79611i 0.0817263 0.0593776i
\(916\) 0 0
\(917\) 4.20163 12.9313i 0.138750 0.427028i
\(918\) 0 0
\(919\) 35.1246 + 25.5195i 1.15865 + 0.841811i 0.989607 0.143797i \(-0.0459311\pi\)
0.169047 + 0.985608i \(0.445931\pi\)
\(920\) 0 0
\(921\) 3.28115 + 10.0984i 0.108118 + 0.332752i
\(922\) 0 0
\(923\) −6.47214 −0.213033
\(924\) 0 0
\(925\) 20.2918 0.667190
\(926\) 0 0
\(927\) 13.8541 + 42.6385i 0.455028 + 1.40043i
\(928\) 0 0
\(929\) 13.1525 + 9.55583i 0.431519 + 0.313517i 0.782256 0.622957i \(-0.214069\pi\)
−0.350737 + 0.936474i \(0.614069\pi\)
\(930\) 0 0
\(931\) 5.42705 16.7027i 0.177864 0.547410i
\(932\) 0 0
\(933\) 8.05573 5.85283i 0.263733 0.191613i
\(934\) 0 0
\(935\) −6.09017 + 2.62866i −0.199170 + 0.0859662i
\(936\) 0 0
\(937\) 30.6246 22.2501i 1.00046 0.726879i 0.0382752 0.999267i \(-0.487814\pi\)
0.962187 + 0.272389i \(0.0878137\pi\)
\(938\) 0 0
\(939\) 0.510643 1.57160i 0.0166642 0.0512872i
\(940\) 0 0
\(941\) 38.9787 + 28.3197i 1.27067 + 0.923196i 0.999229 0.0392595i \(-0.0124999\pi\)
0.271441 + 0.962455i \(0.412500\pi\)
\(942\) 0 0
\(943\) −2.14590 6.60440i −0.0698801 0.215069i
\(944\) 0 0
\(945\) 14.4721 0.470779
\(946\) 0 0
\(947\) −30.2148 −0.981848 −0.490924 0.871202i \(-0.663341\pi\)
−0.490924 + 0.871202i \(0.663341\pi\)
\(948\) 0 0
\(949\) −3.96556 12.2047i −0.128727 0.396182i
\(950\) 0 0
\(951\) −1.14590 0.832544i −0.0371583 0.0269971i
\(952\) 0 0
\(953\) −3.50000 + 10.7719i −0.113376 + 0.348936i −0.991605 0.129305i \(-0.958725\pi\)
0.878229 + 0.478241i \(0.158725\pi\)
\(954\) 0 0
\(955\) −12.4721 + 9.06154i −0.403589 + 0.293224i
\(956\) 0 0
\(957\) −0.527864 5.64083i −0.0170634 0.182342i
\(958\) 0 0
\(959\) −26.0344 + 18.9151i −0.840696 + 0.610801i
\(960\) 0 0
\(961\) −8.34346 + 25.6785i −0.269144 + 0.828340i
\(962\) 0 0
\(963\) −2.64590 1.92236i −0.0852629 0.0619471i
\(964\) 0 0
\(965\) −17.4164 53.6022i −0.560654 1.72552i
\(966\) 0 0
\(967\) −38.0000 −1.22200 −0.610999 0.791632i \(-0.709232\pi\)
−0.610999 + 0.791632i \(0.709232\pi\)
\(968\) 0 0
\(969\) 1.38197 0.0443951
\(970\) 0 0
\(971\) −3.12461 9.61657i −0.100274 0.308610i 0.888319 0.459228i \(-0.151874\pi\)
−0.988592 + 0.150617i \(0.951874\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −0.798374 + 2.45714i −0.0255684 + 0.0786915i
\(976\) 0 0
\(977\) 35.0344 25.4540i 1.12085 0.814346i 0.136513 0.990638i \(-0.456410\pi\)
0.984338 + 0.176292i \(0.0564104\pi\)
\(978\) 0 0
\(979\) −2.50000 26.7153i −0.0799003 0.853826i
\(980\) 0 0
\(981\) −43.7426 + 31.7809i −1.39660 + 1.01469i
\(982\) 0 0
\(983\) 1.85410 5.70634i 0.0591367 0.182004i −0.917124 0.398601i \(-0.869496\pi\)
0.976261 + 0.216597i \(0.0694958\pi\)
\(984\) 0 0
\(985\) 54.8328 + 39.8384i 1.74712 + 1.26936i
\(986\) 0 0
\(987\) 1.52786 + 4.70228i 0.0486324 + 0.149675i
\(988\) 0 0
\(989\) 10.5836 0.336539
\(990\) 0 0
\(991\) −30.5410 −0.970167 −0.485084 0.874468i \(-0.661211\pi\)
−0.485084 + 0.874468i \(0.661211\pi\)
\(992\) 0 0
\(993\) 0.740133 + 2.27790i 0.0234874 + 0.0722868i
\(994\) 0 0
\(995\) 49.5967 + 36.0341i 1.57232 + 1.14236i
\(996\) 0 0
\(997\) −2.67376 + 8.22899i −0.0846789 + 0.260615i −0.984427 0.175795i \(-0.943750\pi\)
0.899748 + 0.436410i \(0.143750\pi\)
\(998\) 0 0
\(999\) 6.70820 4.87380i 0.212238 0.154200i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.a.641.1 4
4.3 odd 2 704.2.m.h.641.1 4
8.3 odd 2 22.2.c.a.3.1 4
8.5 even 2 176.2.m.c.113.1 4
11.2 odd 10 7744.2.a.cy.1.1 2
11.4 even 5 inner 704.2.m.a.257.1 4
11.9 even 5 7744.2.a.cz.1.1 2
24.11 even 2 198.2.f.e.91.1 4
40.3 even 4 550.2.ba.c.399.2 8
40.19 odd 2 550.2.h.h.201.1 4
40.27 even 4 550.2.ba.c.399.1 8
44.15 odd 10 704.2.m.h.257.1 4
44.31 odd 10 7744.2.a.bm.1.2 2
44.35 even 10 7744.2.a.bn.1.2 2
88.3 odd 10 242.2.c.a.27.1 4
88.13 odd 10 1936.2.a.n.1.2 2
88.19 even 10 242.2.c.d.27.1 4
88.27 odd 10 242.2.c.a.9.1 4
88.35 even 10 242.2.a.d.1.1 2
88.37 even 10 176.2.m.c.81.1 4
88.43 even 2 242.2.c.c.3.1 4
88.51 even 10 242.2.c.c.81.1 4
88.53 even 10 1936.2.a.o.1.2 2
88.59 odd 10 22.2.c.a.15.1 yes 4
88.75 odd 10 242.2.a.f.1.1 2
88.83 even 10 242.2.c.d.9.1 4
264.35 odd 10 2178.2.a.x.1.1 2
264.59 even 10 198.2.f.e.37.1 4
264.251 even 10 2178.2.a.p.1.1 2
440.59 odd 10 550.2.h.h.301.1 4
440.147 even 20 550.2.ba.c.499.2 8
440.299 even 10 6050.2.a.ci.1.2 2
440.323 even 20 550.2.ba.c.499.1 8
440.339 odd 10 6050.2.a.bs.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.3.1 4 8.3 odd 2
22.2.c.a.15.1 yes 4 88.59 odd 10
176.2.m.c.81.1 4 88.37 even 10
176.2.m.c.113.1 4 8.5 even 2
198.2.f.e.37.1 4 264.59 even 10
198.2.f.e.91.1 4 24.11 even 2
242.2.a.d.1.1 2 88.35 even 10
242.2.a.f.1.1 2 88.75 odd 10
242.2.c.a.9.1 4 88.27 odd 10
242.2.c.a.27.1 4 88.3 odd 10
242.2.c.c.3.1 4 88.43 even 2
242.2.c.c.81.1 4 88.51 even 10
242.2.c.d.9.1 4 88.83 even 10
242.2.c.d.27.1 4 88.19 even 10
550.2.h.h.201.1 4 40.19 odd 2
550.2.h.h.301.1 4 440.59 odd 10
550.2.ba.c.399.1 8 40.27 even 4
550.2.ba.c.399.2 8 40.3 even 4
550.2.ba.c.499.1 8 440.323 even 20
550.2.ba.c.499.2 8 440.147 even 20
704.2.m.a.257.1 4 11.4 even 5 inner
704.2.m.a.641.1 4 1.1 even 1 trivial
704.2.m.h.257.1 4 44.15 odd 10
704.2.m.h.641.1 4 4.3 odd 2
1936.2.a.n.1.2 2 88.13 odd 10
1936.2.a.o.1.2 2 88.53 even 10
2178.2.a.p.1.1 2 264.251 even 10
2178.2.a.x.1.1 2 264.35 odd 10
6050.2.a.bs.1.2 2 440.339 odd 10
6050.2.a.ci.1.2 2 440.299 even 10
7744.2.a.bm.1.2 2 44.31 odd 10
7744.2.a.bn.1.2 2 44.35 even 10
7744.2.a.cy.1.1 2 11.2 odd 10
7744.2.a.cz.1.1 2 11.9 even 5