Properties

Label 242.2.c.a.9.1
Level $242$
Weight $2$
Character 242.9
Analytic conductor $1.932$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [242,2,Mod(3,242)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("242.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(242, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 242.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93237972891\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 242.9
Dual form 242.2.c.a.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-0.309017 + 0.224514i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(1.00000 + 3.07768i) q^{5} +(0.118034 + 0.363271i) q^{6} +(1.61803 + 1.17557i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(-0.881966 + 2.71441i) q^{9} +3.23607 q^{10} +0.381966 q^{12} +(0.381966 - 1.17557i) q^{13} +(1.61803 - 1.17557i) q^{14} +(-1.00000 - 0.726543i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-0.190983 - 0.587785i) q^{17} +(2.30902 + 1.67760i) q^{18} +(4.73607 - 3.44095i) q^{19} +(1.00000 - 3.07768i) q^{20} -0.763932 q^{21} +1.23607 q^{23} +(0.118034 - 0.363271i) q^{24} +(-4.42705 + 3.21644i) q^{25} +(-1.00000 - 0.726543i) q^{26} +(-0.690983 - 2.12663i) q^{27} +(-0.618034 - 1.90211i) q^{28} +(-3.61803 - 2.62866i) q^{29} +(-1.00000 + 0.726543i) q^{30} +(0.618034 - 1.90211i) q^{31} +1.00000 q^{32} -0.618034 q^{34} +(-2.00000 + 6.15537i) q^{35} +(2.30902 - 1.67760i) q^{36} +(3.00000 + 2.17963i) q^{37} +(-1.80902 - 5.56758i) q^{38} +(0.145898 + 0.449028i) q^{39} +(-2.61803 - 1.90211i) q^{40} +(-4.54508 + 3.30220i) q^{41} +(-0.236068 + 0.726543i) q^{42} -8.56231 q^{43} -9.23607 q^{45} +(0.381966 - 1.17557i) q^{46} +(5.23607 - 3.80423i) q^{47} +(-0.309017 - 0.224514i) q^{48} +(-0.927051 - 2.85317i) q^{49} +(1.69098 + 5.20431i) q^{50} +(0.190983 + 0.138757i) q^{51} +(-1.00000 + 0.726543i) q^{52} +(-0.472136 + 1.45309i) q^{53} -2.23607 q^{54} -2.00000 q^{56} +(-0.690983 + 2.12663i) q^{57} +(-3.61803 + 2.62866i) q^{58} +(6.97214 + 5.06555i) q^{59} +(0.381966 + 1.17557i) q^{60} +(-0.763932 - 2.35114i) q^{61} +(-1.61803 - 1.17557i) q^{62} +(-4.61803 + 3.35520i) q^{63} +(0.309017 - 0.951057i) q^{64} +4.00000 q^{65} +11.0902 q^{67} +(-0.190983 + 0.587785i) q^{68} +(-0.381966 + 0.277515i) q^{69} +(5.23607 + 3.80423i) q^{70} +(-1.61803 - 4.97980i) q^{71} +(-0.881966 - 2.71441i) q^{72} +(-8.39919 - 6.10237i) q^{73} +(3.00000 - 2.17963i) q^{74} +(0.645898 - 1.98787i) q^{75} -5.85410 q^{76} +0.472136 q^{78} +(4.14590 - 12.7598i) q^{79} +(-2.61803 + 1.90211i) q^{80} +(-6.23607 - 4.53077i) q^{81} +(1.73607 + 5.34307i) q^{82} +(2.88197 + 8.86978i) q^{83} +(0.618034 + 0.449028i) q^{84} +(1.61803 - 1.17557i) q^{85} +(-2.64590 + 8.14324i) q^{86} +1.70820 q^{87} -8.09017 q^{89} +(-2.85410 + 8.78402i) q^{90} +(2.00000 - 1.45309i) q^{91} +(-1.00000 - 0.726543i) q^{92} +(0.236068 + 0.726543i) q^{93} +(-2.00000 - 6.15537i) q^{94} +(15.3262 + 11.1352i) q^{95} +(-0.309017 + 0.224514i) q^{96} +(2.20820 - 6.79615i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} + 4 q^{5} - 4 q^{6} + 2 q^{7} - q^{8} - 8 q^{9} + 4 q^{10} + 6 q^{12} + 6 q^{13} + 2 q^{14} - 4 q^{15} - q^{16} - 3 q^{17} + 7 q^{18} + 10 q^{19} + 4 q^{20} - 12 q^{21}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/242\mathbb{Z}\right)^\times\).

\(n\) \(123\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) −0.309017 + 0.224514i −0.178411 + 0.129623i −0.673407 0.739272i \(-0.735170\pi\)
0.494996 + 0.868895i \(0.335170\pi\)
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 1.00000 + 3.07768i 0.447214 + 1.37638i 0.880038 + 0.474904i \(0.157517\pi\)
−0.432824 + 0.901478i \(0.642483\pi\)
\(6\) 0.118034 + 0.363271i 0.0481872 + 0.148305i
\(7\) 1.61803 + 1.17557i 0.611559 + 0.444324i 0.849963 0.526842i \(-0.176624\pi\)
−0.238404 + 0.971166i \(0.576624\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) −0.881966 + 2.71441i −0.293989 + 0.904804i
\(10\) 3.23607 1.02333
\(11\) 0 0
\(12\) 0.381966 0.110264
\(13\) 0.381966 1.17557i 0.105938 0.326045i −0.884011 0.467466i \(-0.845167\pi\)
0.989950 + 0.141421i \(0.0451671\pi\)
\(14\) 1.61803 1.17557i 0.432438 0.314184i
\(15\) −1.00000 0.726543i −0.258199 0.187592i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −0.190983 0.587785i −0.0463202 0.142559i 0.925222 0.379427i \(-0.123879\pi\)
−0.971542 + 0.236868i \(0.923879\pi\)
\(18\) 2.30902 + 1.67760i 0.544241 + 0.395414i
\(19\) 4.73607 3.44095i 1.08653 0.789409i 0.107719 0.994181i \(-0.465645\pi\)
0.978810 + 0.204772i \(0.0656454\pi\)
\(20\) 1.00000 3.07768i 0.223607 0.688191i
\(21\) −0.763932 −0.166704
\(22\) 0 0
\(23\) 1.23607 0.257738 0.128869 0.991662i \(-0.458865\pi\)
0.128869 + 0.991662i \(0.458865\pi\)
\(24\) 0.118034 0.363271i 0.0240936 0.0741524i
\(25\) −4.42705 + 3.21644i −0.885410 + 0.643288i
\(26\) −1.00000 0.726543i −0.196116 0.142487i
\(27\) −0.690983 2.12663i −0.132980 0.409270i
\(28\) −0.618034 1.90211i −0.116797 0.359466i
\(29\) −3.61803 2.62866i −0.671852 0.488129i 0.198793 0.980042i \(-0.436298\pi\)
−0.870645 + 0.491912i \(0.836298\pi\)
\(30\) −1.00000 + 0.726543i −0.182574 + 0.132648i
\(31\) 0.618034 1.90211i 0.111002 0.341630i −0.880090 0.474807i \(-0.842518\pi\)
0.991092 + 0.133177i \(0.0425179\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.618034 −0.105992
\(35\) −2.00000 + 6.15537i −0.338062 + 1.04045i
\(36\) 2.30902 1.67760i 0.384836 0.279600i
\(37\) 3.00000 + 2.17963i 0.493197 + 0.358329i 0.806412 0.591354i \(-0.201406\pi\)
−0.313215 + 0.949682i \(0.601406\pi\)
\(38\) −1.80902 5.56758i −0.293461 0.903181i
\(39\) 0.145898 + 0.449028i 0.0233624 + 0.0719020i
\(40\) −2.61803 1.90211i −0.413948 0.300750i
\(41\) −4.54508 + 3.30220i −0.709823 + 0.515717i −0.883117 0.469154i \(-0.844559\pi\)
0.173294 + 0.984870i \(0.444559\pi\)
\(42\) −0.236068 + 0.726543i −0.0364261 + 0.112108i
\(43\) −8.56231 −1.30574 −0.652870 0.757470i \(-0.726435\pi\)
−0.652870 + 0.757470i \(0.726435\pi\)
\(44\) 0 0
\(45\) −9.23607 −1.37683
\(46\) 0.381966 1.17557i 0.0563178 0.173328i
\(47\) 5.23607 3.80423i 0.763759 0.554903i −0.136302 0.990667i \(-0.543522\pi\)
0.900061 + 0.435764i \(0.143522\pi\)
\(48\) −0.309017 0.224514i −0.0446028 0.0324058i
\(49\) −0.927051 2.85317i −0.132436 0.407596i
\(50\) 1.69098 + 5.20431i 0.239141 + 0.736001i
\(51\) 0.190983 + 0.138757i 0.0267430 + 0.0194299i
\(52\) −1.00000 + 0.726543i −0.138675 + 0.100753i
\(53\) −0.472136 + 1.45309i −0.0648529 + 0.199597i −0.978232 0.207513i \(-0.933463\pi\)
0.913379 + 0.407109i \(0.133463\pi\)
\(54\) −2.23607 −0.304290
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) −0.690983 + 2.12663i −0.0915229 + 0.281679i
\(58\) −3.61803 + 2.62866i −0.475071 + 0.345159i
\(59\) 6.97214 + 5.06555i 0.907695 + 0.659479i 0.940431 0.339985i \(-0.110422\pi\)
−0.0327360 + 0.999464i \(0.510422\pi\)
\(60\) 0.381966 + 1.17557i 0.0493116 + 0.151765i
\(61\) −0.763932 2.35114i −0.0978115 0.301033i 0.890165 0.455639i \(-0.150589\pi\)
−0.987976 + 0.154606i \(0.950589\pi\)
\(62\) −1.61803 1.17557i −0.205491 0.149298i
\(63\) −4.61803 + 3.35520i −0.581818 + 0.422715i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 11.0902 1.35488 0.677440 0.735578i \(-0.263089\pi\)
0.677440 + 0.735578i \(0.263089\pi\)
\(68\) −0.190983 + 0.587785i −0.0231601 + 0.0712794i
\(69\) −0.381966 + 0.277515i −0.0459833 + 0.0334088i
\(70\) 5.23607 + 3.80423i 0.625830 + 0.454692i
\(71\) −1.61803 4.97980i −0.192025 0.590993i −0.999998 0.00177378i \(-0.999435\pi\)
0.807973 0.589219i \(-0.200565\pi\)
\(72\) −0.881966 2.71441i −0.103941 0.319897i
\(73\) −8.39919 6.10237i −0.983050 0.714228i −0.0246622 0.999696i \(-0.507851\pi\)
−0.958388 + 0.285468i \(0.907851\pi\)
\(74\) 3.00000 2.17963i 0.348743 0.253377i
\(75\) 0.645898 1.98787i 0.0745819 0.229539i
\(76\) −5.85410 −0.671512
\(77\) 0 0
\(78\) 0.472136 0.0534589
\(79\) 4.14590 12.7598i 0.466450 1.43559i −0.390700 0.920518i \(-0.627767\pi\)
0.857150 0.515067i \(-0.172233\pi\)
\(80\) −2.61803 + 1.90211i −0.292705 + 0.212663i
\(81\) −6.23607 4.53077i −0.692896 0.503419i
\(82\) 1.73607 + 5.34307i 0.191717 + 0.590043i
\(83\) 2.88197 + 8.86978i 0.316337 + 0.973585i 0.975201 + 0.221323i \(0.0710373\pi\)
−0.658864 + 0.752262i \(0.728963\pi\)
\(84\) 0.618034 + 0.449028i 0.0674330 + 0.0489930i
\(85\) 1.61803 1.17557i 0.175500 0.127509i
\(86\) −2.64590 + 8.14324i −0.285315 + 0.878108i
\(87\) 1.70820 0.183139
\(88\) 0 0
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) −2.85410 + 8.78402i −0.300849 + 0.925917i
\(91\) 2.00000 1.45309i 0.209657 0.152325i
\(92\) −1.00000 0.726543i −0.104257 0.0757473i
\(93\) 0.236068 + 0.726543i 0.0244791 + 0.0753390i
\(94\) −2.00000 6.15537i −0.206284 0.634878i
\(95\) 15.3262 + 11.1352i 1.57244 + 1.14244i
\(96\) −0.309017 + 0.224514i −0.0315389 + 0.0229144i
\(97\) 2.20820 6.79615i 0.224209 0.690045i −0.774162 0.632988i \(-0.781828\pi\)
0.998371 0.0570570i \(-0.0181717\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 5.47214 0.547214
\(101\) −1.29180 + 3.97574i −0.128539 + 0.395601i −0.994529 0.104459i \(-0.966689\pi\)
0.865991 + 0.500060i \(0.166689\pi\)
\(102\) 0.190983 0.138757i 0.0189101 0.0137390i
\(103\) −12.7082 9.23305i −1.25218 0.909760i −0.253830 0.967249i \(-0.581691\pi\)
−0.998346 + 0.0574892i \(0.981691\pi\)
\(104\) 0.381966 + 1.17557i 0.0374548 + 0.115274i
\(105\) −0.763932 2.35114i −0.0745521 0.229448i
\(106\) 1.23607 + 0.898056i 0.120058 + 0.0872269i
\(107\) 0.927051 0.673542i 0.0896214 0.0651138i −0.542072 0.840332i \(-0.682360\pi\)
0.631694 + 0.775218i \(0.282360\pi\)
\(108\) −0.690983 + 2.12663i −0.0664899 + 0.204635i
\(109\) 18.9443 1.81453 0.907266 0.420557i \(-0.138165\pi\)
0.907266 + 0.420557i \(0.138165\pi\)
\(110\) 0 0
\(111\) −1.41641 −0.134439
\(112\) −0.618034 + 1.90211i −0.0583987 + 0.179733i
\(113\) 1.50000 1.08981i 0.141108 0.102521i −0.514992 0.857195i \(-0.672205\pi\)
0.656100 + 0.754674i \(0.272205\pi\)
\(114\) 1.80902 + 1.31433i 0.169430 + 0.123098i
\(115\) 1.23607 + 3.80423i 0.115264 + 0.354746i
\(116\) 1.38197 + 4.25325i 0.128312 + 0.394905i
\(117\) 2.85410 + 2.07363i 0.263862 + 0.191707i
\(118\) 6.97214 5.06555i 0.641837 0.466322i
\(119\) 0.381966 1.17557i 0.0350148 0.107764i
\(120\) 1.23607 0.112837
\(121\) 0 0
\(122\) −2.47214 −0.223817
\(123\) 0.663119 2.04087i 0.0597914 0.184019i
\(124\) −1.61803 + 1.17557i −0.145304 + 0.105569i
\(125\) −1.23607 0.898056i −0.110557 0.0803246i
\(126\) 1.76393 + 5.42882i 0.157144 + 0.483638i
\(127\) −3.38197 10.4086i −0.300101 0.923616i −0.981460 0.191667i \(-0.938611\pi\)
0.681359 0.731949i \(-0.261389\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 2.64590 1.92236i 0.232958 0.169254i
\(130\) 1.23607 3.80423i 0.108410 0.333653i
\(131\) 6.79837 0.593977 0.296988 0.954881i \(-0.404018\pi\)
0.296988 + 0.954881i \(0.404018\pi\)
\(132\) 0 0
\(133\) 11.7082 1.01523
\(134\) 3.42705 10.5474i 0.296052 0.911155i
\(135\) 5.85410 4.25325i 0.503841 0.366062i
\(136\) 0.500000 + 0.363271i 0.0428746 + 0.0311503i
\(137\) 4.97214 + 15.3027i 0.424798 + 1.30739i 0.903187 + 0.429247i \(0.141221\pi\)
−0.478389 + 0.878148i \(0.658779\pi\)
\(138\) 0.145898 + 0.449028i 0.0124197 + 0.0382238i
\(139\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(140\) 5.23607 3.80423i 0.442529 0.321516i
\(141\) −0.763932 + 2.35114i −0.0643347 + 0.198002i
\(142\) −5.23607 −0.439401
\(143\) 0 0
\(144\) −2.85410 −0.237842
\(145\) 4.47214 13.7638i 0.371391 1.14302i
\(146\) −8.39919 + 6.10237i −0.695122 + 0.505035i
\(147\) 0.927051 + 0.673542i 0.0764619 + 0.0555528i
\(148\) −1.14590 3.52671i −0.0941922 0.289894i
\(149\) −1.90983 5.87785i −0.156459 0.481532i 0.841846 0.539717i \(-0.181469\pi\)
−0.998306 + 0.0581846i \(0.981469\pi\)
\(150\) −1.69098 1.22857i −0.138068 0.100312i
\(151\) 6.47214 4.70228i 0.526695 0.382666i −0.292425 0.956288i \(-0.594462\pi\)
0.819120 + 0.573622i \(0.194462\pi\)
\(152\) −1.80902 + 5.56758i −0.146731 + 0.451591i
\(153\) 1.76393 0.142605
\(154\) 0 0
\(155\) 6.47214 0.519854
\(156\) 0.145898 0.449028i 0.0116812 0.0359510i
\(157\) −7.85410 + 5.70634i −0.626826 + 0.455415i −0.855299 0.518135i \(-0.826627\pi\)
0.228473 + 0.973550i \(0.426627\pi\)
\(158\) −10.8541 7.88597i −0.863506 0.627374i
\(159\) −0.180340 0.555029i −0.0143019 0.0440167i
\(160\) 1.00000 + 3.07768i 0.0790569 + 0.243312i
\(161\) 2.00000 + 1.45309i 0.157622 + 0.114519i
\(162\) −6.23607 + 4.53077i −0.489952 + 0.355971i
\(163\) 0.281153 0.865300i 0.0220216 0.0677755i −0.939442 0.342709i \(-0.888656\pi\)
0.961463 + 0.274933i \(0.0886557\pi\)
\(164\) 5.61803 0.438695
\(165\) 0 0
\(166\) 9.32624 0.723856
\(167\) −4.56231 + 14.0413i −0.353042 + 1.08655i 0.604094 + 0.796913i \(0.293535\pi\)
−0.957136 + 0.289638i \(0.906465\pi\)
\(168\) 0.618034 0.449028i 0.0476824 0.0346433i
\(169\) 9.28115 + 6.74315i 0.713935 + 0.518704i
\(170\) −0.618034 1.90211i −0.0474010 0.145885i
\(171\) 5.16312 + 15.8904i 0.394834 + 1.21517i
\(172\) 6.92705 + 5.03280i 0.528183 + 0.383747i
\(173\) −17.7082 + 12.8658i −1.34633 + 0.978166i −0.347144 + 0.937812i \(0.612849\pi\)
−0.999185 + 0.0403542i \(0.987151\pi\)
\(174\) 0.527864 1.62460i 0.0400173 0.123160i
\(175\) −10.9443 −0.827309
\(176\) 0 0
\(177\) −3.29180 −0.247427
\(178\) −2.50000 + 7.69421i −0.187383 + 0.576705i
\(179\) 6.97214 5.06555i 0.521122 0.378617i −0.295904 0.955218i \(-0.595621\pi\)
0.817026 + 0.576600i \(0.195621\pi\)
\(180\) 7.47214 + 5.42882i 0.556940 + 0.404641i
\(181\) −1.29180 3.97574i −0.0960184 0.295514i 0.891499 0.453022i \(-0.149654\pi\)
−0.987518 + 0.157508i \(0.949654\pi\)
\(182\) −0.763932 2.35114i −0.0566264 0.174278i
\(183\) 0.763932 + 0.555029i 0.0564715 + 0.0410289i
\(184\) −1.00000 + 0.726543i −0.0737210 + 0.0535614i
\(185\) −3.70820 + 11.4127i −0.272633 + 0.839077i
\(186\) 0.763932 0.0560142
\(187\) 0 0
\(188\) −6.47214 −0.472029
\(189\) 1.38197 4.25325i 0.100523 0.309379i
\(190\) 15.3262 11.1352i 1.11188 0.807830i
\(191\) −3.85410 2.80017i −0.278873 0.202613i 0.439553 0.898217i \(-0.355137\pi\)
−0.718426 + 0.695604i \(0.755137\pi\)
\(192\) 0.118034 + 0.363271i 0.00851837 + 0.0262168i
\(193\) 5.38197 + 16.5640i 0.387402 + 1.19230i 0.934722 + 0.355379i \(0.115648\pi\)
−0.547320 + 0.836923i \(0.684352\pi\)
\(194\) −5.78115 4.20025i −0.415063 0.301561i
\(195\) −1.23607 + 0.898056i −0.0885167 + 0.0643111i
\(196\) −0.927051 + 2.85317i −0.0662179 + 0.203798i
\(197\) −20.9443 −1.49222 −0.746109 0.665824i \(-0.768080\pi\)
−0.746109 + 0.665824i \(0.768080\pi\)
\(198\) 0 0
\(199\) −18.9443 −1.34292 −0.671462 0.741039i \(-0.734333\pi\)
−0.671462 + 0.741039i \(0.734333\pi\)
\(200\) 1.69098 5.20431i 0.119571 0.368000i
\(201\) −3.42705 + 2.48990i −0.241726 + 0.175624i
\(202\) 3.38197 + 2.45714i 0.237954 + 0.172884i
\(203\) −2.76393 8.50651i −0.193990 0.597040i
\(204\) −0.0729490 0.224514i −0.00510745 0.0157191i
\(205\) −14.7082 10.6861i −1.02727 0.746352i
\(206\) −12.7082 + 9.23305i −0.885423 + 0.643297i
\(207\) −1.09017 + 3.35520i −0.0757720 + 0.233202i
\(208\) 1.23607 0.0857059
\(209\) 0 0
\(210\) −2.47214 −0.170594
\(211\) −1.88197 + 5.79210i −0.129560 + 0.398744i −0.994704 0.102779i \(-0.967227\pi\)
0.865144 + 0.501523i \(0.167227\pi\)
\(212\) 1.23607 0.898056i 0.0848935 0.0616787i
\(213\) 1.61803 + 1.17557i 0.110866 + 0.0805488i
\(214\) −0.354102 1.08981i −0.0242059 0.0744981i
\(215\) −8.56231 26.3521i −0.583944 1.79720i
\(216\) 1.80902 + 1.31433i 0.123088 + 0.0894287i
\(217\) 3.23607 2.35114i 0.219679 0.159606i
\(218\) 5.85410 18.0171i 0.396490 1.22027i
\(219\) 3.96556 0.267968
\(220\) 0 0
\(221\) −0.763932 −0.0513876
\(222\) −0.437694 + 1.34708i −0.0293761 + 0.0904104i
\(223\) −20.7984 + 15.1109i −1.39276 + 1.01190i −0.397206 + 0.917729i \(0.630020\pi\)
−0.995556 + 0.0941715i \(0.969980\pi\)
\(224\) 1.61803 + 1.17557i 0.108109 + 0.0785461i
\(225\) −4.82624 14.8536i −0.321749 0.990242i
\(226\) −0.572949 1.76336i −0.0381120 0.117297i
\(227\) −11.7361 8.52675i −0.778950 0.565940i 0.125714 0.992067i \(-0.459878\pi\)
−0.904664 + 0.426126i \(0.859878\pi\)
\(228\) 1.80902 1.31433i 0.119805 0.0870435i
\(229\) 0.527864 1.62460i 0.0348822 0.107356i −0.932099 0.362203i \(-0.882025\pi\)
0.966982 + 0.254846i \(0.0820248\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 4.47214 0.293610
\(233\) −2.97214 + 9.14729i −0.194711 + 0.599259i 0.805269 + 0.592910i \(0.202021\pi\)
−0.999980 + 0.00634916i \(0.997979\pi\)
\(234\) 2.85410 2.07363i 0.186578 0.135557i
\(235\) 16.9443 + 12.3107i 1.10532 + 0.803064i
\(236\) −2.66312 8.19624i −0.173354 0.533530i
\(237\) 1.58359 + 4.87380i 0.102865 + 0.316587i
\(238\) −1.00000 0.726543i −0.0648204 0.0470948i
\(239\) 17.5623 12.7598i 1.13601 0.825360i 0.149453 0.988769i \(-0.452249\pi\)
0.986558 + 0.163408i \(0.0522488\pi\)
\(240\) 0.381966 1.17557i 0.0246558 0.0758827i
\(241\) −11.0902 −0.714381 −0.357190 0.934032i \(-0.616265\pi\)
−0.357190 + 0.934032i \(0.616265\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) −0.763932 + 2.35114i −0.0489057 + 0.150516i
\(245\) 7.85410 5.70634i 0.501780 0.364565i
\(246\) −1.73607 1.26133i −0.110688 0.0804193i
\(247\) −2.23607 6.88191i −0.142278 0.437885i
\(248\) 0.618034 + 1.90211i 0.0392452 + 0.120784i
\(249\) −2.88197 2.09387i −0.182637 0.132694i
\(250\) −1.23607 + 0.898056i −0.0781758 + 0.0567980i
\(251\) 6.47214 19.9192i 0.408518 1.25729i −0.509404 0.860527i \(-0.670134\pi\)
0.917922 0.396761i \(-0.129866\pi\)
\(252\) 5.70820 0.359583
\(253\) 0 0
\(254\) −10.9443 −0.686705
\(255\) −0.236068 + 0.726543i −0.0147832 + 0.0454979i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 4.54508 + 3.30220i 0.283515 + 0.205985i 0.720449 0.693508i \(-0.243936\pi\)
−0.436934 + 0.899493i \(0.643936\pi\)
\(258\) −1.01064 3.11044i −0.0629199 0.193648i
\(259\) 2.29180 + 7.05342i 0.142405 + 0.438278i
\(260\) −3.23607 2.35114i −0.200692 0.145812i
\(261\) 10.3262 7.50245i 0.639178 0.464390i
\(262\) 2.10081 6.46564i 0.129789 0.399448i
\(263\) −23.2361 −1.43280 −0.716399 0.697691i \(-0.754211\pi\)
−0.716399 + 0.697691i \(0.754211\pi\)
\(264\) 0 0
\(265\) −4.94427 −0.303724
\(266\) 3.61803 11.1352i 0.221836 0.682741i
\(267\) 2.50000 1.81636i 0.152998 0.111159i
\(268\) −8.97214 6.51864i −0.548060 0.398189i
\(269\) 1.90983 + 5.87785i 0.116444 + 0.358379i 0.992246 0.124293i \(-0.0396663\pi\)
−0.875801 + 0.482672i \(0.839666\pi\)
\(270\) −2.23607 6.88191i −0.136083 0.418820i
\(271\) −1.61803 1.17557i −0.0982886 0.0714108i 0.537555 0.843228i \(-0.319348\pi\)
−0.635844 + 0.771818i \(0.719348\pi\)
\(272\) 0.500000 0.363271i 0.0303170 0.0220266i
\(273\) −0.291796 + 0.898056i −0.0176603 + 0.0543528i
\(274\) 16.0902 0.972043
\(275\) 0 0
\(276\) 0.472136 0.0284192
\(277\) −7.32624 + 22.5478i −0.440191 + 1.35477i 0.447482 + 0.894293i \(0.352321\pi\)
−0.887672 + 0.460475i \(0.847679\pi\)
\(278\) 0 0
\(279\) 4.61803 + 3.35520i 0.276474 + 0.200870i
\(280\) −2.00000 6.15537i −0.119523 0.367854i
\(281\) −4.97214 15.3027i −0.296613 0.912880i −0.982675 0.185337i \(-0.940662\pi\)
0.686062 0.727543i \(-0.259338\pi\)
\(282\) 2.00000 + 1.45309i 0.119098 + 0.0865300i
\(283\) −19.4164 + 14.1068i −1.15419 + 0.838565i −0.989032 0.147703i \(-0.952812\pi\)
−0.165154 + 0.986268i \(0.552812\pi\)
\(284\) −1.61803 + 4.97980i −0.0960127 + 0.295497i
\(285\) −7.23607 −0.428628
\(286\) 0 0
\(287\) −11.2361 −0.663244
\(288\) −0.881966 + 2.71441i −0.0519703 + 0.159948i
\(289\) 13.4443 9.76784i 0.790840 0.574579i
\(290\) −11.7082 8.50651i −0.687529 0.499519i
\(291\) 0.843459 + 2.59590i 0.0494444 + 0.152174i
\(292\) 3.20820 + 9.87384i 0.187746 + 0.577823i
\(293\) 22.9443 + 16.6700i 1.34042 + 0.973871i 0.999428 + 0.0338043i \(0.0107623\pi\)
0.340990 + 0.940067i \(0.389238\pi\)
\(294\) 0.927051 0.673542i 0.0540667 0.0392818i
\(295\) −8.61803 + 26.5236i −0.501761 + 1.54426i
\(296\) −3.70820 −0.215535
\(297\) 0 0
\(298\) −6.18034 −0.358017
\(299\) 0.472136 1.45309i 0.0273043 0.0840341i
\(300\) −1.69098 + 1.22857i −0.0976289 + 0.0709316i
\(301\) −13.8541 10.0656i −0.798537 0.580171i
\(302\) −2.47214 7.60845i −0.142255 0.437817i
\(303\) −0.493422 1.51860i −0.0283464 0.0872411i
\(304\) 4.73607 + 3.44095i 0.271632 + 0.197352i
\(305\) 6.47214 4.70228i 0.370593 0.269252i
\(306\) 0.545085 1.67760i 0.0311604 0.0959020i
\(307\) 27.7984 1.58654 0.793268 0.608872i \(-0.208378\pi\)
0.793268 + 0.608872i \(0.208378\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 2.00000 6.15537i 0.113592 0.349601i
\(311\) −21.0902 + 15.3229i −1.19591 + 0.868882i −0.993877 0.110496i \(-0.964756\pi\)
−0.202037 + 0.979378i \(0.564756\pi\)
\(312\) −0.381966 0.277515i −0.0216246 0.0157112i
\(313\) 1.33688 + 4.11450i 0.0755650 + 0.232565i 0.981703 0.190416i \(-0.0609837\pi\)
−0.906139 + 0.422981i \(0.860984\pi\)
\(314\) 3.00000 + 9.23305i 0.169300 + 0.521051i
\(315\) −14.9443 10.8576i −0.842014 0.611759i
\(316\) −10.8541 + 7.88597i −0.610591 + 0.443620i
\(317\) −1.14590 + 3.52671i −0.0643600 + 0.198080i −0.978066 0.208297i \(-0.933208\pi\)
0.913706 + 0.406377i \(0.133208\pi\)
\(318\) −0.583592 −0.0327262
\(319\) 0 0
\(320\) 3.23607 0.180902
\(321\) −0.135255 + 0.416272i −0.00754919 + 0.0232340i
\(322\) 2.00000 1.45309i 0.111456 0.0809773i
\(323\) −2.92705 2.12663i −0.162865 0.118329i
\(324\) 2.38197 + 7.33094i 0.132331 + 0.407274i
\(325\) 2.09017 + 6.43288i 0.115942 + 0.356832i
\(326\) −0.736068 0.534785i −0.0407670 0.0296190i
\(327\) −5.85410 + 4.25325i −0.323733 + 0.235205i
\(328\) 1.73607 5.34307i 0.0958583 0.295022i
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) 6.27051 0.344658 0.172329 0.985039i \(-0.444871\pi\)
0.172329 + 0.985039i \(0.444871\pi\)
\(332\) 2.88197 8.86978i 0.158168 0.486792i
\(333\) −8.56231 + 6.22088i −0.469211 + 0.340902i
\(334\) 11.9443 + 8.67802i 0.653561 + 0.474840i
\(335\) 11.0902 + 34.1320i 0.605921 + 1.86483i
\(336\) −0.236068 0.726543i −0.0128786 0.0396361i
\(337\) 21.6803 + 15.7517i 1.18100 + 0.858049i 0.992284 0.123982i \(-0.0395665\pi\)
0.188719 + 0.982031i \(0.439567\pi\)
\(338\) 9.28115 6.74315i 0.504828 0.366779i
\(339\) −0.218847 + 0.673542i −0.0118861 + 0.0365818i
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 16.7082 0.903476
\(343\) 6.18034 19.0211i 0.333707 1.02704i
\(344\) 6.92705 5.03280i 0.373482 0.271350i
\(345\) −1.23607 0.898056i −0.0665477 0.0483497i
\(346\) 6.76393 + 20.8172i 0.363631 + 1.11914i
\(347\) 5.13525 + 15.8047i 0.275675 + 0.848440i 0.989040 + 0.147648i \(0.0471701\pi\)
−0.713365 + 0.700793i \(0.752830\pi\)
\(348\) −1.38197 1.00406i −0.0740812 0.0538231i
\(349\) 15.8541 11.5187i 0.848651 0.616581i −0.0761230 0.997098i \(-0.524254\pi\)
0.924774 + 0.380518i \(0.124254\pi\)
\(350\) −3.38197 + 10.4086i −0.180774 + 0.556364i
\(351\) −2.76393 −0.147528
\(352\) 0 0
\(353\) 32.6180 1.73608 0.868041 0.496492i \(-0.165379\pi\)
0.868041 + 0.496492i \(0.165379\pi\)
\(354\) −1.01722 + 3.13068i −0.0540647 + 0.166394i
\(355\) 13.7082 9.95959i 0.727556 0.528600i
\(356\) 6.54508 + 4.75528i 0.346889 + 0.252029i
\(357\) 0.145898 + 0.449028i 0.00772174 + 0.0237651i
\(358\) −2.66312 8.19624i −0.140750 0.433185i
\(359\) −4.14590 3.01217i −0.218812 0.158976i 0.472980 0.881073i \(-0.343178\pi\)
−0.691792 + 0.722097i \(0.743178\pi\)
\(360\) 7.47214 5.42882i 0.393816 0.286124i
\(361\) 4.71885 14.5231i 0.248360 0.764375i
\(362\) −4.18034 −0.219714
\(363\) 0 0
\(364\) −2.47214 −0.129575
\(365\) 10.3820 31.9524i 0.543417 1.67247i
\(366\) 0.763932 0.555029i 0.0399314 0.0290118i
\(367\) −15.9443 11.5842i −0.832284 0.604690i 0.0879204 0.996128i \(-0.471978\pi\)
−0.920205 + 0.391438i \(0.871978\pi\)
\(368\) 0.381966 + 1.17557i 0.0199114 + 0.0612808i
\(369\) −4.95492 15.2497i −0.257943 0.793866i
\(370\) 9.70820 + 7.05342i 0.504705 + 0.366690i
\(371\) −2.47214 + 1.79611i −0.128347 + 0.0932495i
\(372\) 0.236068 0.726543i 0.0122396 0.0376695i
\(373\) −4.29180 −0.222221 −0.111110 0.993808i \(-0.535441\pi\)
−0.111110 + 0.993808i \(0.535441\pi\)
\(374\) 0 0
\(375\) 0.583592 0.0301366
\(376\) −2.00000 + 6.15537i −0.103142 + 0.317439i
\(377\) −4.47214 + 3.24920i −0.230327 + 0.167342i
\(378\) −3.61803 2.62866i −0.186092 0.135203i
\(379\) 4.40983 + 13.5721i 0.226518 + 0.697150i 0.998134 + 0.0610616i \(0.0194486\pi\)
−0.771616 + 0.636088i \(0.780551\pi\)
\(380\) −5.85410 18.0171i −0.300309 0.924256i
\(381\) 3.38197 + 2.45714i 0.173263 + 0.125883i
\(382\) −3.85410 + 2.80017i −0.197193 + 0.143269i
\(383\) −8.76393 + 26.9726i −0.447816 + 1.37824i 0.431550 + 0.902089i \(0.357967\pi\)
−0.879366 + 0.476147i \(0.842033\pi\)
\(384\) 0.381966 0.0194921
\(385\) 0 0
\(386\) 17.4164 0.886472
\(387\) 7.55166 23.2416i 0.383873 1.18144i
\(388\) −5.78115 + 4.20025i −0.293494 + 0.213236i
\(389\) 8.61803 + 6.26137i 0.436952 + 0.317464i 0.784423 0.620227i \(-0.212959\pi\)
−0.347471 + 0.937691i \(0.612959\pi\)
\(390\) 0.472136 + 1.45309i 0.0239075 + 0.0735798i
\(391\) −0.236068 0.726543i −0.0119385 0.0367428i
\(392\) 2.42705 + 1.76336i 0.122585 + 0.0890629i
\(393\) −2.10081 + 1.52633i −0.105972 + 0.0769932i
\(394\) −6.47214 + 19.9192i −0.326061 + 1.00351i
\(395\) 43.4164 2.18452
\(396\) 0 0
\(397\) −17.1246 −0.859460 −0.429730 0.902958i \(-0.641391\pi\)
−0.429730 + 0.902958i \(0.641391\pi\)
\(398\) −5.85410 + 18.0171i −0.293440 + 0.903114i
\(399\) −3.61803 + 2.62866i −0.181128 + 0.131597i
\(400\) −4.42705 3.21644i −0.221353 0.160822i
\(401\) −5.50000 16.9273i −0.274657 0.845307i −0.989310 0.145828i \(-0.953415\pi\)
0.714653 0.699479i \(-0.246585\pi\)
\(402\) 1.30902 + 4.02874i 0.0652878 + 0.200935i
\(403\) −2.00000 1.45309i −0.0996271 0.0723833i
\(404\) 3.38197 2.45714i 0.168259 0.122247i
\(405\) 7.70820 23.7234i 0.383024 1.17883i
\(406\) −8.94427 −0.443897
\(407\) 0 0
\(408\) −0.236068 −0.0116871
\(409\) −4.14590 + 12.7598i −0.205001 + 0.630930i 0.794712 + 0.606987i \(0.207622\pi\)
−0.999713 + 0.0239428i \(0.992378\pi\)
\(410\) −14.7082 + 10.6861i −0.726386 + 0.527751i
\(411\) −4.97214 3.61247i −0.245257 0.178190i
\(412\) 4.85410 + 14.9394i 0.239144 + 0.736011i
\(413\) 5.32624 + 16.3925i 0.262087 + 0.806621i
\(414\) 2.85410 + 2.07363i 0.140271 + 0.101913i
\(415\) −24.4164 + 17.7396i −1.19855 + 0.870801i
\(416\) 0.381966 1.17557i 0.0187274 0.0576371i
\(417\) 0 0
\(418\) 0 0
\(419\) −10.8541 −0.530258 −0.265129 0.964213i \(-0.585414\pi\)
−0.265129 + 0.964213i \(0.585414\pi\)
\(420\) −0.763932 + 2.35114i −0.0372761 + 0.114724i
\(421\) 25.4164 18.4661i 1.23872 0.899983i 0.241207 0.970474i \(-0.422457\pi\)
0.997512 + 0.0704909i \(0.0224566\pi\)
\(422\) 4.92705 + 3.57971i 0.239845 + 0.174258i
\(423\) 5.70820 + 17.5680i 0.277542 + 0.854188i
\(424\) −0.472136 1.45309i −0.0229289 0.0705680i
\(425\) 2.73607 + 1.98787i 0.132719 + 0.0964258i
\(426\) 1.61803 1.17557i 0.0783940 0.0569566i
\(427\) 1.52786 4.70228i 0.0739385 0.227559i
\(428\) −1.14590 −0.0553891
\(429\) 0 0
\(430\) −27.7082 −1.33621
\(431\) −5.23607 + 16.1150i −0.252213 + 0.776230i 0.742154 + 0.670230i \(0.233804\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(432\) 1.80902 1.31433i 0.0870364 0.0632356i
\(433\) −22.4443 16.3067i −1.07860 0.783651i −0.101164 0.994870i \(-0.532257\pi\)
−0.977439 + 0.211219i \(0.932257\pi\)
\(434\) −1.23607 3.80423i −0.0593332 0.182609i
\(435\) 1.70820 + 5.25731i 0.0819021 + 0.252069i
\(436\) −15.3262 11.1352i −0.733994 0.533278i
\(437\) 5.85410 4.25325i 0.280040 0.203461i
\(438\) 1.22542 3.77147i 0.0585531 0.180208i
\(439\) −6.58359 −0.314218 −0.157109 0.987581i \(-0.550217\pi\)
−0.157109 + 0.987581i \(0.550217\pi\)
\(440\) 0 0
\(441\) 8.56231 0.407729
\(442\) −0.236068 + 0.726543i −0.0112286 + 0.0345581i
\(443\) 6.92705 5.03280i 0.329114 0.239115i −0.410941 0.911662i \(-0.634800\pi\)
0.740055 + 0.672547i \(0.234800\pi\)
\(444\) 1.14590 + 0.832544i 0.0543819 + 0.0395108i
\(445\) −8.09017 24.8990i −0.383511 1.18032i
\(446\) 7.94427 + 24.4500i 0.376172 + 1.15774i
\(447\) 1.90983 + 1.38757i 0.0903319 + 0.0656299i
\(448\) 1.61803 1.17557i 0.0764449 0.0555405i
\(449\) 2.86475 8.81678i 0.135196 0.416090i −0.860425 0.509578i \(-0.829802\pi\)
0.995620 + 0.0934881i \(0.0298017\pi\)
\(450\) −15.6180 −0.736241
\(451\) 0 0
\(452\) −1.85410 −0.0872096
\(453\) −0.944272 + 2.90617i −0.0443658 + 0.136544i
\(454\) −11.7361 + 8.52675i −0.550801 + 0.400180i
\(455\) 6.47214 + 4.70228i 0.303418 + 0.220446i
\(456\) −0.690983 2.12663i −0.0323582 0.0995884i
\(457\) −2.91641 8.97578i −0.136424 0.419869i 0.859385 0.511329i \(-0.170847\pi\)
−0.995809 + 0.0914598i \(0.970847\pi\)
\(458\) −1.38197 1.00406i −0.0645750 0.0469165i
\(459\) −1.11803 + 0.812299i −0.0521854 + 0.0379149i
\(460\) 1.23607 3.80423i 0.0576320 0.177373i
\(461\) 1.34752 0.0627605 0.0313802 0.999508i \(-0.490010\pi\)
0.0313802 + 0.999508i \(0.490010\pi\)
\(462\) 0 0
\(463\) −19.4164 −0.902357 −0.451178 0.892434i \(-0.648996\pi\)
−0.451178 + 0.892434i \(0.648996\pi\)
\(464\) 1.38197 4.25325i 0.0641562 0.197452i
\(465\) −2.00000 + 1.45309i −0.0927478 + 0.0673852i
\(466\) 7.78115 + 5.65334i 0.360455 + 0.261886i
\(467\) −10.2918 31.6749i −0.476248 1.46574i −0.844268 0.535921i \(-0.819964\pi\)
0.368020 0.929818i \(-0.380036\pi\)
\(468\) −1.09017 3.35520i −0.0503931 0.155094i
\(469\) 17.9443 + 13.0373i 0.828589 + 0.602006i
\(470\) 16.9443 12.3107i 0.781581 0.567852i
\(471\) 1.14590 3.52671i 0.0528002 0.162502i
\(472\) −8.61803 −0.396677
\(473\) 0 0
\(474\) 5.12461 0.235381
\(475\) −9.89919 + 30.4666i −0.454206 + 1.39790i
\(476\) −1.00000 + 0.726543i −0.0458349 + 0.0333010i
\(477\) −3.52786 2.56314i −0.161530 0.117358i
\(478\) −6.70820 20.6457i −0.306826 0.944314i
\(479\) −10.6525 32.7849i −0.486724 1.49798i −0.829468 0.558554i \(-0.811356\pi\)
0.342744 0.939429i \(-0.388644\pi\)
\(480\) −1.00000 0.726543i −0.0456435 0.0331620i
\(481\) 3.70820 2.69417i 0.169080 0.122843i
\(482\) −3.42705 + 10.5474i −0.156098 + 0.480420i
\(483\) −0.944272 −0.0429659
\(484\) 0 0
\(485\) 23.1246 1.05003
\(486\) 2.98278 9.18005i 0.135302 0.416416i
\(487\) 1.09017 0.792055i 0.0494003 0.0358914i −0.562811 0.826586i \(-0.690280\pi\)
0.612211 + 0.790694i \(0.290280\pi\)
\(488\) 2.00000 + 1.45309i 0.0905357 + 0.0657781i
\(489\) 0.107391 + 0.330515i 0.00485638 + 0.0149464i
\(490\) −3.00000 9.23305i −0.135526 0.417107i
\(491\) −18.4894 13.4333i −0.834413 0.606237i 0.0863914 0.996261i \(-0.472466\pi\)
−0.920804 + 0.390025i \(0.872466\pi\)
\(492\) −1.73607 + 1.26133i −0.0782680 + 0.0568650i
\(493\) −0.854102 + 2.62866i −0.0384668 + 0.118389i
\(494\) −7.23607 −0.325566
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 3.23607 9.95959i 0.145157 0.446749i
\(498\) −2.88197 + 2.09387i −0.129144 + 0.0938286i
\(499\) 24.9615 + 18.1356i 1.11743 + 0.811860i 0.983818 0.179173i \(-0.0573423\pi\)
0.133612 + 0.991034i \(0.457342\pi\)
\(500\) 0.472136 + 1.45309i 0.0211146 + 0.0649839i
\(501\) −1.74265 5.36331i −0.0778557 0.239615i
\(502\) −16.9443 12.3107i −0.756260 0.549455i
\(503\) 2.61803 1.90211i 0.116732 0.0848110i −0.527887 0.849314i \(-0.677016\pi\)
0.644620 + 0.764503i \(0.277016\pi\)
\(504\) 1.76393 5.42882i 0.0785718 0.241819i
\(505\) −13.5279 −0.601982
\(506\) 0 0
\(507\) −4.38197 −0.194610
\(508\) −3.38197 + 10.4086i −0.150050 + 0.461808i
\(509\) 6.70820 4.87380i 0.297336 0.216027i −0.429108 0.903253i \(-0.641172\pi\)
0.726443 + 0.687226i \(0.241172\pi\)
\(510\) 0.618034 + 0.449028i 0.0273670 + 0.0198833i
\(511\) −6.41641 19.7477i −0.283845 0.873586i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) −10.5902 7.69421i −0.467567 0.339708i
\(514\) 4.54508 3.30220i 0.200475 0.145654i
\(515\) 15.7082 48.3449i 0.692186 2.13033i
\(516\) −3.27051 −0.143976
\(517\) 0 0
\(518\) 7.41641 0.325858
\(519\) 2.58359 7.95148i 0.113407 0.349031i
\(520\) −3.23607 + 2.35114i −0.141911 + 0.103104i
\(521\) 16.2082 + 11.7759i 0.710094 + 0.515914i 0.883204 0.468989i \(-0.155382\pi\)
−0.173110 + 0.984903i \(0.555382\pi\)
\(522\) −3.94427 12.1392i −0.172636 0.531319i
\(523\) 2.84346 + 8.75127i 0.124336 + 0.382666i 0.993779 0.111366i \(-0.0355225\pi\)
−0.869444 + 0.494032i \(0.835523\pi\)
\(524\) −5.50000 3.99598i −0.240269 0.174565i
\(525\) 3.38197 2.45714i 0.147601 0.107238i
\(526\) −7.18034 + 22.0988i −0.313078 + 0.963554i
\(527\) −1.23607 −0.0538440
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) −1.52786 + 4.70228i −0.0663662 + 0.204254i
\(531\) −19.8992 + 14.4576i −0.863551 + 0.627407i
\(532\) −9.47214 6.88191i −0.410669 0.298369i
\(533\) 2.14590 + 6.60440i 0.0929492 + 0.286068i
\(534\) −0.954915 2.93893i −0.0413232 0.127180i
\(535\) 3.00000 + 2.17963i 0.129701 + 0.0942335i
\(536\) −8.97214 + 6.51864i −0.387537 + 0.281562i
\(537\) −1.01722 + 3.13068i −0.0438963 + 0.135099i
\(538\) 6.18034 0.266453
\(539\) 0 0
\(540\) −7.23607 −0.311391
\(541\) −0.965558 + 2.97168i −0.0415126 + 0.127763i −0.969665 0.244438i \(-0.921397\pi\)
0.928152 + 0.372200i \(0.121397\pi\)
\(542\) −1.61803 + 1.17557i −0.0695005 + 0.0504951i
\(543\) 1.29180 + 0.938545i 0.0554363 + 0.0402768i
\(544\) −0.190983 0.587785i −0.00818833 0.0252011i
\(545\) 18.9443 + 58.3045i 0.811483 + 2.49749i
\(546\) 0.763932 + 0.555029i 0.0326933 + 0.0237531i
\(547\) −6.73607 + 4.89404i −0.288013 + 0.209254i −0.722405 0.691470i \(-0.756963\pi\)
0.434392 + 0.900724i \(0.356963\pi\)
\(548\) 4.97214 15.3027i 0.212399 0.653697i
\(549\) 7.05573 0.301131
\(550\) 0 0
\(551\) −26.1803 −1.11532
\(552\) 0.145898 0.449028i 0.00620983 0.0191119i
\(553\) 21.7082 15.7719i 0.923127 0.670691i
\(554\) 19.1803 + 13.9353i 0.814895 + 0.592056i
\(555\) −1.41641 4.35926i −0.0601232 0.185040i
\(556\) 0 0
\(557\) −28.5066 20.7112i −1.20786 0.877563i −0.212828 0.977090i \(-0.568267\pi\)
−0.995035 + 0.0995263i \(0.968267\pi\)
\(558\) 4.61803 3.35520i 0.195497 0.142037i
\(559\) −3.27051 + 10.0656i −0.138328 + 0.425729i
\(560\) −6.47214 −0.273498
\(561\) 0 0
\(562\) −16.0902 −0.678723
\(563\) 0.118034 0.363271i 0.00497454 0.0153101i −0.948538 0.316662i \(-0.897438\pi\)
0.953513 + 0.301352i \(0.0974379\pi\)
\(564\) 2.00000 1.45309i 0.0842152 0.0611859i
\(565\) 4.85410 + 3.52671i 0.204214 + 0.148370i
\(566\) 7.41641 + 22.8254i 0.311735 + 0.959421i
\(567\) −4.76393 14.6619i −0.200066 0.615741i
\(568\) 4.23607 + 3.07768i 0.177741 + 0.129137i
\(569\) −30.9164 + 22.4621i −1.29608 + 0.941660i −0.999909 0.0134744i \(-0.995711\pi\)
−0.296174 + 0.955134i \(0.595711\pi\)
\(570\) −2.23607 + 6.88191i −0.0936586 + 0.288251i
\(571\) −2.47214 −0.103456 −0.0517278 0.998661i \(-0.516473\pi\)
−0.0517278 + 0.998661i \(0.516473\pi\)
\(572\) 0 0
\(573\) 1.81966 0.0760174
\(574\) −3.47214 + 10.6861i −0.144924 + 0.446031i
\(575\) −5.47214 + 3.97574i −0.228204 + 0.165800i
\(576\) 2.30902 + 1.67760i 0.0962090 + 0.0699000i
\(577\) −2.10081 6.46564i −0.0874580 0.269168i 0.897757 0.440491i \(-0.145196\pi\)
−0.985215 + 0.171323i \(0.945196\pi\)
\(578\) −5.13525 15.8047i −0.213598 0.657388i
\(579\) −5.38197 3.91023i −0.223667 0.162503i
\(580\) −11.7082 + 8.50651i −0.486157 + 0.353214i
\(581\) −5.76393 + 17.7396i −0.239128 + 0.735961i
\(582\) 2.72949 0.113141
\(583\) 0 0
\(584\) 10.3820 0.429609
\(585\) −3.52786 + 10.8576i −0.145859 + 0.448909i
\(586\) 22.9443 16.6700i 0.947819 0.688631i
\(587\) −17.9164 13.0170i −0.739489 0.537270i 0.153062 0.988217i \(-0.451087\pi\)
−0.892551 + 0.450946i \(0.851087\pi\)
\(588\) −0.354102 1.08981i −0.0146029 0.0449432i
\(589\) −3.61803 11.1352i −0.149078 0.458816i
\(590\) 22.5623 + 16.3925i 0.928875 + 0.674868i
\(591\) 6.47214 4.70228i 0.266228 0.193426i
\(592\) −1.14590 + 3.52671i −0.0470961 + 0.144947i
\(593\) −28.6869 −1.17803 −0.589015 0.808122i \(-0.700484\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) −1.90983 + 5.87785i −0.0782297 + 0.240766i
\(597\) 5.85410 4.25325i 0.239592 0.174074i
\(598\) −1.23607 0.898056i −0.0505466 0.0367242i
\(599\) −4.14590 12.7598i −0.169397 0.521350i 0.829937 0.557858i \(-0.188377\pi\)
−0.999333 + 0.0365080i \(0.988377\pi\)
\(600\) 0.645898 + 1.98787i 0.0263687 + 0.0811544i
\(601\) 21.9615 + 15.9560i 0.895828 + 0.650857i 0.937391 0.348279i \(-0.113234\pi\)
−0.0415630 + 0.999136i \(0.513234\pi\)
\(602\) −13.8541 + 10.0656i −0.564651 + 0.410243i
\(603\) −9.78115 + 30.1033i −0.398319 + 1.22590i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) −1.59675 −0.0648634
\(607\) 7.14590 21.9928i 0.290043 0.892661i −0.694799 0.719204i \(-0.744506\pi\)
0.984842 0.173456i \(-0.0554935\pi\)
\(608\) 4.73607 3.44095i 0.192073 0.139549i
\(609\) 2.76393 + 2.00811i 0.112000 + 0.0813729i
\(610\) −2.47214 7.60845i −0.100094 0.308057i
\(611\) −2.47214 7.60845i −0.100012 0.307805i
\(612\) −1.42705 1.03681i −0.0576851 0.0419107i
\(613\) −28.8885 + 20.9888i −1.16680 + 0.847728i −0.990622 0.136631i \(-0.956373\pi\)
−0.176175 + 0.984359i \(0.556373\pi\)
\(614\) 8.59017 26.4378i 0.346671 1.06694i
\(615\) 6.94427 0.280020
\(616\) 0 0
\(617\) 23.4508 0.944096 0.472048 0.881573i \(-0.343515\pi\)
0.472048 + 0.881573i \(0.343515\pi\)
\(618\) 1.85410 5.70634i 0.0745829 0.229543i
\(619\) −4.20820 + 3.05744i −0.169142 + 0.122889i −0.669136 0.743140i \(-0.733336\pi\)
0.499994 + 0.866029i \(0.333336\pi\)
\(620\) −5.23607 3.80423i −0.210286 0.152781i
\(621\) −0.854102 2.62866i −0.0342739 0.105484i
\(622\) 8.05573 + 24.7930i 0.323005 + 0.994108i
\(623\) −13.0902 9.51057i −0.524447 0.381033i
\(624\) −0.381966 + 0.277515i −0.0152909 + 0.0111095i
\(625\) −6.92705 + 21.3193i −0.277082 + 0.852771i
\(626\) 4.32624 0.172911
\(627\) 0 0
\(628\) 9.70820 0.387400
\(629\) 0.708204 2.17963i 0.0282379 0.0869074i
\(630\) −14.9443 + 10.8576i −0.595394 + 0.432579i
\(631\) −19.1803 13.9353i −0.763557 0.554757i 0.136442 0.990648i \(-0.456433\pi\)
−0.899999 + 0.435891i \(0.856433\pi\)
\(632\) 4.14590 + 12.7598i 0.164915 + 0.507556i
\(633\) −0.718847 2.21238i −0.0285716 0.0879344i
\(634\) 3.00000 + 2.17963i 0.119145 + 0.0865641i
\(635\) 28.6525 20.8172i 1.13704 0.826107i
\(636\) −0.180340 + 0.555029i −0.00715094 + 0.0220083i
\(637\) −3.70820 −0.146924
\(638\) 0 0
\(639\) 14.9443 0.591186
\(640\) 1.00000 3.07768i 0.0395285 0.121656i
\(641\) −13.4894 + 9.80059i −0.532798 + 0.387100i −0.821403 0.570348i \(-0.806808\pi\)
0.288606 + 0.957448i \(0.406808\pi\)
\(642\) 0.354102 + 0.257270i 0.0139753 + 0.0101536i
\(643\) 12.3541 + 38.0220i 0.487198 + 1.49944i 0.828772 + 0.559587i \(0.189040\pi\)
−0.341573 + 0.939855i \(0.610960\pi\)
\(644\) −0.763932 2.35114i −0.0301031 0.0926479i
\(645\) 8.56231 + 6.22088i 0.337140 + 0.244947i
\(646\) −2.92705 + 2.12663i −0.115163 + 0.0836710i
\(647\) 8.97871 27.6336i 0.352990 1.08639i −0.604176 0.796851i \(-0.706498\pi\)
0.957166 0.289540i \(-0.0935023\pi\)
\(648\) 7.70820 0.302807
\(649\) 0 0
\(650\) 6.76393 0.265303
\(651\) −0.472136 + 1.45309i −0.0185045 + 0.0569509i
\(652\) −0.736068 + 0.534785i −0.0288266 + 0.0209438i
\(653\) 12.4164 + 9.02105i 0.485892 + 0.353021i 0.803602 0.595167i \(-0.202914\pi\)
−0.317711 + 0.948188i \(0.602914\pi\)
\(654\) 2.23607 + 6.88191i 0.0874372 + 0.269104i
\(655\) 6.79837 + 20.9232i 0.265634 + 0.817539i
\(656\) −4.54508 3.30220i −0.177456 0.128929i
\(657\) 23.9721 17.4168i 0.935242 0.679493i
\(658\) 4.00000 12.3107i 0.155936 0.479922i
\(659\) −16.9098 −0.658713 −0.329357 0.944206i \(-0.606832\pi\)
−0.329357 + 0.944206i \(0.606832\pi\)
\(660\) 0 0
\(661\) −3.52786 −0.137218 −0.0686090 0.997644i \(-0.521856\pi\)
−0.0686090 + 0.997644i \(0.521856\pi\)
\(662\) 1.93769 5.96361i 0.0753106 0.231782i
\(663\) 0.236068 0.171513i 0.00916812 0.00666103i
\(664\) −7.54508 5.48183i −0.292806 0.212736i
\(665\) 11.7082 + 36.0341i 0.454025 + 1.39734i
\(666\) 3.27051 + 10.0656i 0.126730 + 0.390034i
\(667\) −4.47214 3.24920i −0.173162 0.125809i
\(668\) 11.9443 8.67802i 0.462138 0.335763i
\(669\) 3.03444 9.33905i 0.117318 0.361069i
\(670\) 35.8885 1.38650
\(671\) 0 0
\(672\) −0.763932 −0.0294693
\(673\) 3.04508 9.37181i 0.117379 0.361257i −0.875056 0.484021i \(-0.839176\pi\)
0.992436 + 0.122764i \(0.0391759\pi\)
\(674\) 21.6803 15.7517i 0.835095 0.606732i
\(675\) 9.89919 + 7.19218i 0.381020 + 0.276827i
\(676\) −3.54508 10.9106i −0.136349 0.419640i
\(677\) −4.43769 13.6578i −0.170554 0.524913i 0.828848 0.559474i \(-0.188997\pi\)
−0.999403 + 0.0345610i \(0.988997\pi\)
\(678\) 0.572949 + 0.416272i 0.0220040 + 0.0159868i
\(679\) 11.5623 8.40051i 0.443721 0.322382i
\(680\) −0.618034 + 1.90211i −0.0237005 + 0.0729427i
\(681\) 5.54102 0.212332
\(682\) 0 0
\(683\) 18.4721 0.706817 0.353408 0.935469i \(-0.385023\pi\)
0.353408 + 0.935469i \(0.385023\pi\)
\(684\) 5.16312 15.8904i 0.197417 0.607586i
\(685\) −42.1246 + 30.6053i −1.60950 + 1.16937i
\(686\) −16.1803 11.7557i −0.617768 0.448835i
\(687\) 0.201626 + 0.620541i 0.00769252 + 0.0236751i
\(688\) −2.64590 8.14324i −0.100874 0.310458i
\(689\) 1.52786 + 1.11006i 0.0582070 + 0.0422898i
\(690\) −1.23607 + 0.898056i −0.0470563 + 0.0341884i
\(691\) −8.10081 + 24.9317i −0.308169 + 0.948448i 0.670306 + 0.742085i \(0.266163\pi\)
−0.978475 + 0.206363i \(0.933837\pi\)
\(692\) 21.8885 0.832078
\(693\) 0 0
\(694\) 16.6180 0.630812
\(695\) 0 0
\(696\) −1.38197 + 1.00406i −0.0523833 + 0.0380587i
\(697\) 2.80902 + 2.04087i 0.106399 + 0.0773035i
\(698\) −6.05573 18.6376i −0.229213 0.705444i
\(699\) −1.13525 3.49396i −0.0429393 0.132154i
\(700\) 8.85410 + 6.43288i 0.334654 + 0.243140i
\(701\) 12.0000 8.71851i 0.453234 0.329294i −0.337637 0.941276i \(-0.609628\pi\)
0.790871 + 0.611983i \(0.209628\pi\)
\(702\) −0.854102 + 2.62866i −0.0322360 + 0.0992122i
\(703\) 21.7082 0.818740
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 10.0795 31.0216i 0.379348 1.16751i
\(707\) −6.76393 + 4.91428i −0.254384 + 0.184821i
\(708\) 2.66312 + 1.93487i 0.100086 + 0.0727168i
\(709\) 7.56231 + 23.2744i 0.284008 + 0.874088i 0.986694 + 0.162588i \(0.0519840\pi\)
−0.702686 + 0.711500i \(0.748016\pi\)
\(710\) −5.23607 16.1150i −0.196506 0.604784i
\(711\) 30.9787 + 22.5074i 1.16179 + 0.844092i
\(712\) 6.54508 4.75528i 0.245287 0.178212i
\(713\) 0.763932 2.35114i 0.0286095 0.0880509i
\(714\) 0.472136 0.0176692
\(715\) 0 0
\(716\) −8.61803 −0.322071
\(717\) −2.56231 + 7.88597i −0.0956911 + 0.294507i
\(718\) −4.14590 + 3.01217i −0.154724 + 0.112413i
\(719\) −21.7082 15.7719i −0.809579 0.588194i 0.104129 0.994564i \(-0.466794\pi\)
−0.913709 + 0.406370i \(0.866794\pi\)
\(720\) −2.85410 8.78402i −0.106366 0.327361i
\(721\) −9.70820 29.8788i −0.361552 1.11274i
\(722\) −12.3541 8.97578i −0.459772 0.334044i
\(723\) 3.42705 2.48990i 0.127453 0.0926003i
\(724\) −1.29180 + 3.97574i −0.0480092 + 0.147757i
\(725\) 24.4721 0.908872
\(726\) 0 0
\(727\) 2.87539 0.106642 0.0533211 0.998577i \(-0.483019\pi\)
0.0533211 + 0.998577i \(0.483019\pi\)
\(728\) −0.763932 + 2.35114i −0.0283132 + 0.0871391i
\(729\) 15.7254 11.4252i 0.582423 0.423155i
\(730\) −27.1803 19.7477i −1.00599 0.730894i
\(731\) 1.63525 + 5.03280i 0.0604821 + 0.186145i
\(732\) −0.291796 0.898056i −0.0107851 0.0331931i
\(733\) 7.61803 + 5.53483i 0.281379 + 0.204433i 0.719518 0.694473i \(-0.244363\pi\)
−0.438140 + 0.898907i \(0.644363\pi\)
\(734\) −15.9443 + 11.5842i −0.588514 + 0.427580i
\(735\) −1.14590 + 3.52671i −0.0422671 + 0.130085i
\(736\) 1.23607 0.0455621
\(737\) 0 0
\(738\) −16.0344 −0.590236
\(739\) −11.6074 + 35.7239i −0.426985 + 1.31412i 0.474096 + 0.880473i \(0.342775\pi\)
−0.901081 + 0.433651i \(0.857225\pi\)
\(740\) 9.70820 7.05342i 0.356881 0.259289i
\(741\) 2.23607 + 1.62460i 0.0821440 + 0.0596811i
\(742\) 0.944272 + 2.90617i 0.0346653 + 0.106689i
\(743\) −2.70820 8.33499i −0.0993544 0.305781i 0.889010 0.457888i \(-0.151394\pi\)
−0.988364 + 0.152107i \(0.951394\pi\)
\(744\) −0.618034 0.449028i −0.0226582 0.0164622i
\(745\) 16.1803 11.7557i 0.592802 0.430696i
\(746\) −1.32624 + 4.08174i −0.0485570 + 0.149443i
\(747\) −26.6180 −0.973903
\(748\) 0 0
\(749\) 2.29180 0.0837404
\(750\) 0.180340 0.555029i 0.00658508 0.0202668i
\(751\) 27.3262 19.8537i 0.997149 0.724471i 0.0356737 0.999363i \(-0.488642\pi\)
0.961475 + 0.274893i \(0.0886423\pi\)
\(752\) 5.23607 + 3.80423i 0.190940 + 0.138726i
\(753\) 2.47214 + 7.60845i 0.0900896 + 0.277267i
\(754\) 1.70820 + 5.25731i 0.0622091 + 0.191460i
\(755\) 20.9443 + 15.2169i 0.762240 + 0.553800i
\(756\) −3.61803 + 2.62866i −0.131587 + 0.0956033i
\(757\) −0.819660 + 2.52265i −0.0297911 + 0.0916874i −0.964846 0.262814i \(-0.915349\pi\)
0.935055 + 0.354501i \(0.115349\pi\)
\(758\) 14.2705 0.518328
\(759\) 0 0
\(760\) −18.9443 −0.687181
\(761\) −1.31559 + 4.04898i −0.0476903 + 0.146776i −0.972066 0.234708i \(-0.924587\pi\)
0.924376 + 0.381483i \(0.124587\pi\)
\(762\) 3.38197 2.45714i 0.122516 0.0890129i
\(763\) 30.6525 + 22.2703i 1.10969 + 0.806240i
\(764\) 1.47214 + 4.53077i 0.0532600 + 0.163917i
\(765\) 1.76393 + 5.42882i 0.0637751 + 0.196280i
\(766\) 22.9443 + 16.6700i 0.829010 + 0.602311i
\(767\) 8.61803 6.26137i 0.311179 0.226085i
\(768\) 0.118034 0.363271i 0.00425918 0.0131084i
\(769\) 13.4164 0.483808 0.241904 0.970300i \(-0.422228\pi\)
0.241904 + 0.970300i \(0.422228\pi\)
\(770\) 0 0
\(771\) −2.14590 −0.0772826
\(772\) 5.38197 16.5640i 0.193701 0.596151i
\(773\) 3.14590 2.28563i 0.113150 0.0822084i −0.529771 0.848141i \(-0.677722\pi\)
0.642921 + 0.765932i \(0.277722\pi\)
\(774\) −19.7705 14.3641i −0.710636 0.516307i
\(775\) 3.38197 + 10.4086i 0.121484 + 0.373889i
\(776\) 2.20820 + 6.79615i 0.0792699 + 0.243968i
\(777\) −2.29180 1.66509i −0.0822177 0.0597347i
\(778\) 8.61803 6.26137i 0.308971 0.224481i
\(779\) −10.1631 + 31.2789i −0.364132 + 1.12068i
\(780\) 1.52786 0.0547063
\(781\) 0 0
\(782\) −0.763932 −0.0273182
\(783\) −3.09017 + 9.51057i −0.110434 + 0.339880i
\(784\) 2.42705 1.76336i 0.0866804 0.0629770i
\(785\) −25.4164 18.4661i −0.907150 0.659083i
\(786\) 0.802439 + 2.46965i 0.0286221 + 0.0880896i
\(787\) 8.10081 + 24.9317i 0.288763 + 0.888721i 0.985246 + 0.171147i \(0.0547473\pi\)
−0.696483 + 0.717574i \(0.745253\pi\)
\(788\) 16.9443 + 12.3107i 0.603615 + 0.438552i
\(789\) 7.18034 5.21682i 0.255627 0.185724i
\(790\) 13.4164 41.2915i 0.477334 1.46908i
\(791\) 3.70820 0.131849
\(792\) 0 0
\(793\) −3.05573 −0.108512
\(794\) −5.29180 + 16.2865i −0.187799 + 0.577985i
\(795\) 1.52786 1.11006i 0.0541878 0.0393697i
\(796\) 15.3262 + 11.1352i 0.543224 + 0.394675i
\(797\) −7.65248 23.5519i −0.271065 0.834251i −0.990234 0.139416i \(-0.955477\pi\)
0.719169 0.694835i \(-0.244523\pi\)
\(798\) 1.38197 + 4.25325i 0.0489211 + 0.150564i
\(799\) −3.23607 2.35114i −0.114484 0.0831774i
\(800\) −4.42705 + 3.21644i −0.156520 + 0.113718i
\(801\) 7.13525 21.9601i 0.252112 0.775920i
\(802\) −17.7984 −0.628482
\(803\) 0 0
\(804\) 4.23607 0.149395
\(805\) −2.47214 + 7.60845i −0.0871313 + 0.268163i
\(806\) −2.00000 + 1.45309i −0.0704470 + 0.0511827i
\(807\) −1.90983 1.38757i −0.0672292 0.0488449i
\(808\) −1.29180 3.97574i −0.0454452 0.139866i
\(809\) 5.22542 + 16.0822i 0.183716 + 0.565420i 0.999924 0.0123384i \(-0.00392753\pi\)
−0.816208 + 0.577759i \(0.803928\pi\)
\(810\) −20.1803 14.6619i −0.709065 0.515166i
\(811\) −6.78115 + 4.92680i −0.238118 + 0.173003i −0.700445 0.713707i \(-0.747015\pi\)
0.462326 + 0.886710i \(0.347015\pi\)
\(812\) −2.76393 + 8.50651i −0.0969950 + 0.298520i
\(813\) 0.763932 0.0267923
\(814\) 0 0
\(815\) 2.94427 0.103133
\(816\) −0.0729490 + 0.224514i −0.00255373 + 0.00785956i
\(817\) −40.5517 + 29.4625i −1.41872 + 1.03076i
\(818\) 10.8541 + 7.88597i 0.379505 + 0.275726i
\(819\) 2.18034 + 6.71040i 0.0761872 + 0.234480i
\(820\) 5.61803 + 17.2905i 0.196190 + 0.603812i
\(821\) −24.7082 17.9516i −0.862322 0.626514i 0.0661935 0.997807i \(-0.478915\pi\)
−0.928516 + 0.371293i \(0.878915\pi\)
\(822\) −4.97214 + 3.61247i −0.173423 + 0.125999i
\(823\) 7.29180 22.4418i 0.254176 0.782273i −0.739815 0.672811i \(-0.765087\pi\)
0.993991 0.109463i \(-0.0349131\pi\)
\(824\) 15.7082 0.547221
\(825\) 0 0
\(826\) 17.2361 0.599720
\(827\) 12.1697 37.4545i 0.423182 1.30242i −0.481543 0.876423i \(-0.659923\pi\)
0.904725 0.425997i \(-0.140077\pi\)
\(828\) 2.85410 2.07363i 0.0991869 0.0720635i
\(829\) −25.1246 18.2541i −0.872614 0.633991i 0.0586732 0.998277i \(-0.481313\pi\)
−0.931287 + 0.364286i \(0.881313\pi\)
\(830\) 9.32624 + 28.7032i 0.323718 + 0.996303i
\(831\) −2.79837 8.61251i −0.0970745 0.298765i
\(832\) −1.00000 0.726543i −0.0346688 0.0251883i
\(833\) −1.50000 + 1.08981i −0.0519719 + 0.0377598i
\(834\) 0 0
\(835\) −47.7771 −1.65339
\(836\) 0 0
\(837\) −4.47214 −0.154580
\(838\) −3.35410 + 10.3229i −0.115866 + 0.356597i
\(839\) −9.79837 + 7.11894i −0.338277 + 0.245773i −0.743935 0.668252i \(-0.767043\pi\)
0.405657 + 0.914025i \(0.367043\pi\)
\(840\) 2.00000 + 1.45309i 0.0690066 + 0.0501362i
\(841\) −2.78115 8.55951i −0.0959018 0.295155i
\(842\) −9.70820 29.8788i −0.334567 1.02969i
\(843\) 4.97214 + 3.61247i 0.171249 + 0.124420i
\(844\) 4.92705 3.57971i 0.169596 0.123219i
\(845\) −11.4721 + 35.3076i −0.394653 + 1.21462i
\(846\) 18.4721 0.635085
\(847\) 0 0
\(848\) −1.52786 −0.0524671
\(849\) 2.83282 8.71851i 0.0972220 0.299219i
\(850\) 2.73607 1.98787i 0.0938464 0.0681834i
\(851\) 3.70820 + 2.69417i 0.127116 + 0.0923549i
\(852\) −0.618034 1.90211i −0.0211735 0.0651653i
\(853\) −9.41641 28.9807i −0.322412 0.992281i −0.972595 0.232504i \(-0.925308\pi\)
0.650184 0.759777i \(-0.274692\pi\)
\(854\) −4.00000 2.90617i −0.136877 0.0994471i
\(855\) −43.7426 + 31.7809i −1.49597 + 1.08688i
\(856\) −0.354102 + 1.08981i −0.0121030 + 0.0372491i
\(857\) −10.7426 −0.366962 −0.183481 0.983023i \(-0.558737\pi\)
−0.183481 + 0.983023i \(0.558737\pi\)
\(858\) 0 0
\(859\) 46.5066 1.58678 0.793392 0.608711i \(-0.208313\pi\)
0.793392 + 0.608711i \(0.208313\pi\)
\(860\) −8.56231 + 26.3521i −0.291972 + 0.898598i
\(861\) 3.47214 2.52265i 0.118330 0.0859718i
\(862\) 13.7082 + 9.95959i 0.466903 + 0.339225i
\(863\) −10.2705 31.6094i −0.349612 1.07600i −0.959068 0.283176i \(-0.908612\pi\)
0.609456 0.792820i \(-0.291388\pi\)
\(864\) −0.690983 2.12663i −0.0235077 0.0723493i
\(865\) −57.3050 41.6345i −1.94843 1.41561i
\(866\) −22.4443 + 16.3067i −0.762687 + 0.554125i
\(867\) −1.96149 + 6.03685i −0.0666158 + 0.205022i
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 5.52786 0.187412
\(871\) 4.23607 13.0373i 0.143534 0.441751i
\(872\) −15.3262 + 11.1352i −0.519012 + 0.377084i
\(873\) 16.5000 + 11.9880i 0.558440 + 0.405731i
\(874\) −2.23607 6.88191i −0.0756361 0.232784i
\(875\) −0.944272 2.90617i −0.0319222 0.0982465i
\(876\) −3.20820 2.33090i −0.108395 0.0787537i
\(877\) 22.7984 16.5640i 0.769846 0.559326i −0.132068 0.991241i \(-0.542162\pi\)
0.901915 + 0.431914i \(0.142162\pi\)
\(878\) −2.03444 + 6.26137i −0.0686591 + 0.211311i
\(879\) −10.8328 −0.365382
\(880\) 0 0
\(881\) −46.3394 −1.56121 −0.780607 0.625022i \(-0.785090\pi\)
−0.780607 + 0.625022i \(0.785090\pi\)
\(882\) 2.64590 8.14324i 0.0890920 0.274197i
\(883\) 2.78115 2.02063i 0.0935932 0.0679995i −0.540004 0.841662i \(-0.681577\pi\)
0.633598 + 0.773663i \(0.281577\pi\)
\(884\) 0.618034 + 0.449028i 0.0207867 + 0.0151024i
\(885\) −3.29180 10.1311i −0.110653 0.340553i
\(886\) −2.64590 8.14324i −0.0888907 0.273577i
\(887\) 30.5623 + 22.2048i 1.02618 + 0.745565i 0.967541 0.252714i \(-0.0813233\pi\)
0.0586409 + 0.998279i \(0.481323\pi\)
\(888\) 1.14590 0.832544i 0.0384538 0.0279383i
\(889\) 6.76393 20.8172i 0.226855 0.698188i
\(890\) −26.1803 −0.877567
\(891\) 0 0
\(892\) 25.7082 0.860774
\(893\) 11.7082 36.0341i 0.391800 1.20584i
\(894\) 1.90983 1.38757i 0.0638743 0.0464074i
\(895\) 22.5623 + 16.3925i 0.754175 + 0.547940i
\(896\) −0.618034 1.90211i −0.0206471 0.0635451i
\(897\) 0.180340 + 0.555029i 0.00602137 + 0.0185319i
\(898\) −7.50000 5.44907i −0.250278 0.181838i
\(899\) −7.23607 + 5.25731i −0.241336 + 0.175341i
\(900\) −4.82624 + 14.8536i −0.160875 + 0.495121i
\(901\) 0.944272 0.0314583
\(902\) 0 0
\(903\) 6.54102 0.217672
\(904\) −0.572949 + 1.76336i −0.0190560 + 0.0586483i
\(905\) 10.9443 7.95148i 0.363800 0.264316i
\(906\) 2.47214 + 1.79611i 0.0821312 + 0.0596718i
\(907\) 3.22542 + 9.92684i 0.107098 + 0.329615i 0.990217 0.139534i \(-0.0445605\pi\)
−0.883119 + 0.469149i \(0.844561\pi\)
\(908\) 4.48278 + 13.7966i 0.148766 + 0.457855i
\(909\) −9.65248 7.01293i −0.320152 0.232604i
\(910\) 6.47214 4.70228i 0.214549 0.155879i
\(911\) 5.61803 17.2905i 0.186134 0.572861i −0.813832 0.581100i \(-0.802623\pi\)
0.999966 + 0.00823898i \(0.00262258\pi\)
\(912\) −2.23607 −0.0740436
\(913\) 0 0
\(914\) −9.43769 −0.312171
\(915\) −0.944272 + 2.90617i −0.0312167 + 0.0960750i
\(916\) −1.38197 + 1.00406i −0.0456614 + 0.0331750i
\(917\) 11.0000 + 7.99197i 0.363252 + 0.263918i
\(918\) 0.427051 + 1.31433i 0.0140948 + 0.0433793i
\(919\) 13.4164 + 41.2915i 0.442566 + 1.36208i 0.885131 + 0.465343i \(0.154069\pi\)
−0.442564 + 0.896737i \(0.645931\pi\)
\(920\) −3.23607 2.35114i −0.106690 0.0775148i
\(921\) −8.59017 + 6.24112i −0.283056 + 0.205652i
\(922\) 0.416408 1.28157i 0.0137137 0.0422063i
\(923\) −6.47214 −0.213033
\(924\) 0 0
\(925\) −20.2918 −0.667190
\(926\) −6.00000 + 18.4661i −0.197172 + 0.606834i
\(927\) 36.2705 26.3521i 1.19128 0.865515i
\(928\) −3.61803 2.62866i −0.118768 0.0862898i
\(929\) −5.02380 15.4617i −0.164825 0.507281i 0.834198 0.551465i \(-0.185931\pi\)
−0.999023 + 0.0441845i \(0.985931\pi\)
\(930\) 0.763932 + 2.35114i 0.0250503 + 0.0770970i
\(931\) −14.2082 10.3229i −0.465655 0.338318i
\(932\) 7.78115 5.65334i 0.254880 0.185181i
\(933\) 3.07701 9.47008i 0.100737 0.310036i
\(934\) −33.3050 −1.08977
\(935\) 0 0
\(936\) −3.52786 −0.115312
\(937\) −11.6976 + 36.0014i −0.382143 + 1.17611i 0.556389 + 0.830922i \(0.312186\pi\)
−0.938532 + 0.345192i \(0.887814\pi\)
\(938\) 17.9443 13.0373i 0.585901 0.425682i
\(939\) −1.33688 0.971301i −0.0436275 0.0316972i
\(940\) −6.47214 19.9192i −0.211098 0.649692i
\(941\) 14.8885 + 45.8222i 0.485353 + 1.49376i 0.831469 + 0.555570i \(0.187500\pi\)
−0.346117 + 0.938191i \(0.612500\pi\)
\(942\) −3.00000 2.17963i −0.0977453 0.0710161i
\(943\) −5.61803 + 4.08174i −0.182948 + 0.132920i
\(944\) −2.66312 + 8.19624i −0.0866771 + 0.266765i
\(945\) 14.4721 0.470779
\(946\) 0 0
\(947\) −30.2148 −0.981848 −0.490924 0.871202i \(-0.663341\pi\)
−0.490924 + 0.871202i \(0.663341\pi\)
\(948\) 1.58359 4.87380i 0.0514327 0.158294i
\(949\) −10.3820 + 7.54294i −0.337013 + 0.244854i
\(950\) 25.9164 + 18.8294i 0.840839 + 0.610906i
\(951\) −0.437694 1.34708i −0.0141932 0.0436822i
\(952\) 0.381966 + 1.17557i 0.0123796 + 0.0381005i
\(953\) 9.16312 + 6.65740i 0.296823 + 0.215654i 0.726222 0.687461i \(-0.241275\pi\)
−0.429399 + 0.903115i \(0.641275\pi\)
\(954\) −3.52786 + 2.56314i −0.114219 + 0.0829848i
\(955\) 4.76393 14.6619i 0.154157 0.474447i
\(956\) −21.7082 −0.702093
\(957\) 0 0
\(958\) −34.4721 −1.11374
\(959\) −9.94427 + 30.6053i −0.321117 + 0.988297i
\(960\) −1.00000 + 0.726543i −0.0322749 + 0.0234491i
\(961\) 21.8435 + 15.8702i 0.704628 + 0.511942i
\(962\) −1.41641 4.35926i −0.0456668 0.140548i
\(963\) 1.01064 + 3.11044i 0.0325675 + 0.100233i
\(964\) 8.97214 + 6.51864i 0.288973 + 0.209951i
\(965\) −45.5967 + 33.1280i −1.46781 + 1.06643i
\(966\) −0.291796 + 0.898056i −0.00938838 + 0.0288945i
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 0 0
\(969\) 1.38197 0.0443951
\(970\) 7.14590 21.9928i 0.229441 0.706147i
\(971\) 8.18034 5.94336i 0.262520 0.190732i −0.448737 0.893664i \(-0.648126\pi\)
0.711257 + 0.702932i \(0.248126\pi\)
\(972\) −7.80902 5.67358i −0.250474 0.181980i
\(973\) 0 0
\(974\) −0.416408 1.28157i −0.0133426 0.0410642i
\(975\) −2.09017 1.51860i −0.0669390 0.0486340i
\(976\) 2.00000 1.45309i 0.0640184 0.0465121i
\(977\) −13.3820 + 41.1855i −0.428127 + 1.31764i 0.471841 + 0.881684i \(0.343590\pi\)
−0.899968 + 0.435956i \(0.856410\pi\)
\(978\) 0.347524 0.0111126
\(979\) 0 0
\(980\) −9.70820 −0.310117
\(981\) −16.7082 + 51.4226i −0.533452 + 1.64180i
\(982\) −18.4894 + 13.4333i −0.590019 + 0.428674i
\(983\) 4.85410 + 3.52671i 0.154822 + 0.112485i 0.662499 0.749063i \(-0.269496\pi\)
−0.507677 + 0.861547i \(0.669496\pi\)
\(984\) 0.663119 + 2.04087i 0.0211395 + 0.0650606i
\(985\) −20.9443 64.4598i −0.667340 2.05386i
\(986\) 2.23607 + 1.62460i 0.0712109 + 0.0517378i
\(987\) −4.00000 + 2.90617i −0.127321 + 0.0925044i
\(988\) −2.23607 + 6.88191i −0.0711388 + 0.218943i
\(989\) −10.5836 −0.336539
\(990\) 0 0
\(991\) 30.5410 0.970167 0.485084 0.874468i \(-0.338789\pi\)
0.485084 + 0.874468i \(0.338789\pi\)
\(992\) 0.618034 1.90211i 0.0196226 0.0603921i
\(993\) −1.93769 + 1.40782i −0.0614909 + 0.0446757i
\(994\) −8.47214 6.15537i −0.268720 0.195236i
\(995\) −18.9443 58.3045i −0.600574 1.84838i
\(996\) 1.10081 + 3.38795i 0.0348806 + 0.107351i
\(997\) −7.00000 5.08580i −0.221692 0.161069i 0.471396 0.881922i \(-0.343750\pi\)
−0.693088 + 0.720853i \(0.743750\pi\)
\(998\) 24.9615 18.1356i 0.790142 0.574072i
\(999\) 2.56231 7.88597i 0.0810678 0.249501i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 242.2.c.a.9.1 4
11.2 odd 10 242.2.c.c.3.1 4
11.3 even 5 22.2.c.a.15.1 yes 4
11.4 even 5 242.2.a.f.1.1 2
11.5 even 5 inner 242.2.c.a.27.1 4
11.6 odd 10 242.2.c.d.27.1 4
11.7 odd 10 242.2.a.d.1.1 2
11.8 odd 10 242.2.c.c.81.1 4
11.9 even 5 22.2.c.a.3.1 4
11.10 odd 2 242.2.c.d.9.1 4
33.14 odd 10 198.2.f.e.37.1 4
33.20 odd 10 198.2.f.e.91.1 4
33.26 odd 10 2178.2.a.p.1.1 2
33.29 even 10 2178.2.a.x.1.1 2
44.3 odd 10 176.2.m.c.81.1 4
44.7 even 10 1936.2.a.n.1.2 2
44.15 odd 10 1936.2.a.o.1.2 2
44.31 odd 10 176.2.m.c.113.1 4
55.3 odd 20 550.2.ba.c.499.1 8
55.4 even 10 6050.2.a.bs.1.2 2
55.9 even 10 550.2.h.h.201.1 4
55.14 even 10 550.2.h.h.301.1 4
55.29 odd 10 6050.2.a.ci.1.2 2
55.42 odd 20 550.2.ba.c.399.1 8
55.47 odd 20 550.2.ba.c.499.2 8
55.53 odd 20 550.2.ba.c.399.2 8
88.3 odd 10 704.2.m.a.257.1 4
88.29 odd 10 7744.2.a.bn.1.2 2
88.37 even 10 7744.2.a.bm.1.2 2
88.51 even 10 7744.2.a.cy.1.1 2
88.53 even 10 704.2.m.h.641.1 4
88.59 odd 10 7744.2.a.cz.1.1 2
88.69 even 10 704.2.m.h.257.1 4
88.75 odd 10 704.2.m.a.641.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.3.1 4 11.9 even 5
22.2.c.a.15.1 yes 4 11.3 even 5
176.2.m.c.81.1 4 44.3 odd 10
176.2.m.c.113.1 4 44.31 odd 10
198.2.f.e.37.1 4 33.14 odd 10
198.2.f.e.91.1 4 33.20 odd 10
242.2.a.d.1.1 2 11.7 odd 10
242.2.a.f.1.1 2 11.4 even 5
242.2.c.a.9.1 4 1.1 even 1 trivial
242.2.c.a.27.1 4 11.5 even 5 inner
242.2.c.c.3.1 4 11.2 odd 10
242.2.c.c.81.1 4 11.8 odd 10
242.2.c.d.9.1 4 11.10 odd 2
242.2.c.d.27.1 4 11.6 odd 10
550.2.h.h.201.1 4 55.9 even 10
550.2.h.h.301.1 4 55.14 even 10
550.2.ba.c.399.1 8 55.42 odd 20
550.2.ba.c.399.2 8 55.53 odd 20
550.2.ba.c.499.1 8 55.3 odd 20
550.2.ba.c.499.2 8 55.47 odd 20
704.2.m.a.257.1 4 88.3 odd 10
704.2.m.a.641.1 4 88.75 odd 10
704.2.m.h.257.1 4 88.69 even 10
704.2.m.h.641.1 4 88.53 even 10
1936.2.a.n.1.2 2 44.7 even 10
1936.2.a.o.1.2 2 44.15 odd 10
2178.2.a.p.1.1 2 33.26 odd 10
2178.2.a.x.1.1 2 33.29 even 10
6050.2.a.bs.1.2 2 55.4 even 10
6050.2.a.ci.1.2 2 55.29 odd 10
7744.2.a.bm.1.2 2 88.37 even 10
7744.2.a.bn.1.2 2 88.29 odd 10
7744.2.a.cy.1.1 2 88.51 even 10
7744.2.a.cz.1.1 2 88.59 odd 10