Properties

Label 702.2.e.d.469.3
Level $702$
Weight $2$
Character 702.469
Analytic conductor $5.605$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(235,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 469.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 702.469
Dual form 702.2.e.d.235.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.64400 - 2.84748i) q^{5} +(1.40545 + 2.43430i) q^{7} +1.00000 q^{8} -3.28799 q^{10} +(2.58836 + 4.48318i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(1.40545 - 2.43430i) q^{14} +(-0.500000 - 0.866025i) q^{16} +0.699628 q^{17} +7.17673 q^{19} +(1.64400 + 2.84748i) q^{20} +(2.58836 - 4.48318i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(-2.90545 - 5.03238i) q^{25} +1.00000 q^{26} -2.81089 q^{28} +(-1.11126 - 1.92477i) q^{29} +(-1.38874 + 2.40536i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.349814 - 0.605896i) q^{34} +9.24219 q^{35} -0.712008 q^{37} +(-3.58836 - 6.21523i) q^{38} +(1.64400 - 2.84748i) q^{40} +(-0.411636 + 0.712974i) q^{41} +(-5.74907 - 9.95768i) q^{43} -5.17673 q^{44} +6.00000 q^{46} +(0.761450 + 1.31887i) q^{47} +(-0.450558 + 0.780389i) q^{49} +(-2.90545 + 5.03238i) q^{50} +(-0.500000 - 0.866025i) q^{52} +11.0210 q^{53} +17.0210 q^{55} +(1.40545 + 2.43430i) q^{56} +(-1.11126 + 1.92477i) q^{58} +(7.39926 - 12.8159i) q^{59} +(-4.69963 - 8.13999i) q^{61} +2.77747 q^{62} +1.00000 q^{64} +(1.64400 + 2.84748i) q^{65} +(-0.222528 + 0.385430i) q^{67} +(-0.349814 + 0.605896i) q^{68} +(-4.62110 - 8.00397i) q^{70} +1.18911 q^{71} -0.222528 q^{73} +(0.356004 + 0.616617i) q^{74} +(-3.58836 + 6.21523i) q^{76} +(-7.27561 + 12.6017i) q^{77} +(7.87636 + 13.6422i) q^{79} -3.28799 q^{80} +0.823272 q^{82} +(-3.98762 - 6.90676i) q^{83} +(1.15019 - 1.99218i) q^{85} +(-5.74907 + 9.95768i) q^{86} +(2.58836 + 4.48318i) q^{88} -7.39926 q^{89} -2.81089 q^{91} +(-3.00000 - 5.19615i) q^{92} +(0.761450 - 1.31887i) q^{94} +(11.7985 - 20.4356i) q^{95} +(-2.47710 - 4.29046i) q^{97} +0.901116 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} - 2 q^{5} + 2 q^{7} + 6 q^{8} + 4 q^{10} + 4 q^{11} - 3 q^{13} + 2 q^{14} - 3 q^{16} - 8 q^{17} + 20 q^{19} - 2 q^{20} + 4 q^{22} - 18 q^{23} - 11 q^{25} + 6 q^{26} - 4 q^{28} - 6 q^{29}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.64400 2.84748i 0.735217 1.27343i −0.219411 0.975633i \(-0.570413\pi\)
0.954628 0.297801i \(-0.0962533\pi\)
\(6\) 0 0
\(7\) 1.40545 + 2.43430i 0.531209 + 0.920080i 0.999337 + 0.0364197i \(0.0115953\pi\)
−0.468128 + 0.883661i \(0.655071\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.28799 −1.03975
\(11\) 2.58836 + 4.48318i 0.780421 + 1.35173i 0.931697 + 0.363237i \(0.118329\pi\)
−0.151276 + 0.988492i \(0.548338\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 1.40545 2.43430i 0.375621 0.650595i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.699628 0.169685 0.0848424 0.996394i \(-0.472961\pi\)
0.0848424 + 0.996394i \(0.472961\pi\)
\(18\) 0 0
\(19\) 7.17673 1.64645 0.823227 0.567712i \(-0.192171\pi\)
0.823227 + 0.567712i \(0.192171\pi\)
\(20\) 1.64400 + 2.84748i 0.367609 + 0.636717i
\(21\) 0 0
\(22\) 2.58836 4.48318i 0.551841 0.955817i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) −2.90545 5.03238i −0.581089 1.00648i
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −2.81089 −0.531209
\(29\) −1.11126 1.92477i −0.206357 0.357420i 0.744208 0.667948i \(-0.232827\pi\)
−0.950564 + 0.310528i \(0.899494\pi\)
\(30\) 0 0
\(31\) −1.38874 + 2.40536i −0.249424 + 0.432016i −0.963366 0.268189i \(-0.913575\pi\)
0.713942 + 0.700205i \(0.246908\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −0.349814 0.605896i −0.0599926 0.103910i
\(35\) 9.24219 1.56222
\(36\) 0 0
\(37\) −0.712008 −0.117053 −0.0585267 0.998286i \(-0.518640\pi\)
−0.0585267 + 0.998286i \(0.518640\pi\)
\(38\) −3.58836 6.21523i −0.582110 1.00824i
\(39\) 0 0
\(40\) 1.64400 2.84748i 0.259939 0.450227i
\(41\) −0.411636 + 0.712974i −0.0642867 + 0.111348i −0.896377 0.443292i \(-0.853811\pi\)
0.832091 + 0.554640i \(0.187144\pi\)
\(42\) 0 0
\(43\) −5.74907 9.95768i −0.876725 1.51853i −0.854914 0.518770i \(-0.826390\pi\)
−0.0218113 0.999762i \(-0.506943\pi\)
\(44\) −5.17673 −0.780421
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 0.761450 + 1.31887i 0.111069 + 0.192377i 0.916202 0.400718i \(-0.131239\pi\)
−0.805133 + 0.593095i \(0.797906\pi\)
\(48\) 0 0
\(49\) −0.450558 + 0.780389i −0.0643654 + 0.111484i
\(50\) −2.90545 + 5.03238i −0.410892 + 0.711686i
\(51\) 0 0
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) 11.0210 1.51386 0.756928 0.653498i \(-0.226699\pi\)
0.756928 + 0.653498i \(0.226699\pi\)
\(54\) 0 0
\(55\) 17.0210 2.29512
\(56\) 1.40545 + 2.43430i 0.187811 + 0.325298i
\(57\) 0 0
\(58\) −1.11126 + 1.92477i −0.145916 + 0.252734i
\(59\) 7.39926 12.8159i 0.963301 1.66849i 0.249189 0.968455i \(-0.419836\pi\)
0.714112 0.700032i \(-0.246831\pi\)
\(60\) 0 0
\(61\) −4.69963 8.13999i −0.601726 1.04222i −0.992560 0.121758i \(-0.961147\pi\)
0.390834 0.920461i \(-0.372187\pi\)
\(62\) 2.77747 0.352739
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.64400 + 2.84748i 0.203913 + 0.353187i
\(66\) 0 0
\(67\) −0.222528 + 0.385430i −0.0271862 + 0.0470878i −0.879298 0.476271i \(-0.841988\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(68\) −0.349814 + 0.605896i −0.0424212 + 0.0734757i
\(69\) 0 0
\(70\) −4.62110 8.00397i −0.552327 0.956658i
\(71\) 1.18911 0.141121 0.0705606 0.997507i \(-0.477521\pi\)
0.0705606 + 0.997507i \(0.477521\pi\)
\(72\) 0 0
\(73\) −0.222528 −0.0260450 −0.0130225 0.999915i \(-0.504145\pi\)
−0.0130225 + 0.999915i \(0.504145\pi\)
\(74\) 0.356004 + 0.616617i 0.0413846 + 0.0716803i
\(75\) 0 0
\(76\) −3.58836 + 6.21523i −0.411614 + 0.712936i
\(77\) −7.27561 + 12.6017i −0.829133 + 1.43610i
\(78\) 0 0
\(79\) 7.87636 + 13.6422i 0.886159 + 1.53487i 0.844379 + 0.535746i \(0.179970\pi\)
0.0417802 + 0.999127i \(0.486697\pi\)
\(80\) −3.28799 −0.367609
\(81\) 0 0
\(82\) 0.823272 0.0909152
\(83\) −3.98762 6.90676i −0.437698 0.758116i 0.559813 0.828619i \(-0.310873\pi\)
−0.997512 + 0.0705032i \(0.977539\pi\)
\(84\) 0 0
\(85\) 1.15019 1.99218i 0.124755 0.216082i
\(86\) −5.74907 + 9.95768i −0.619938 + 1.07376i
\(87\) 0 0
\(88\) 2.58836 + 4.48318i 0.275921 + 0.477908i
\(89\) −7.39926 −0.784320 −0.392160 0.919897i \(-0.628272\pi\)
−0.392160 + 0.919897i \(0.628272\pi\)
\(90\) 0 0
\(91\) −2.81089 −0.294662
\(92\) −3.00000 5.19615i −0.312772 0.541736i
\(93\) 0 0
\(94\) 0.761450 1.31887i 0.0785376 0.136031i
\(95\) 11.7985 20.4356i 1.21050 2.09665i
\(96\) 0 0
\(97\) −2.47710 4.29046i −0.251511 0.435630i 0.712431 0.701742i \(-0.247594\pi\)
−0.963942 + 0.266112i \(0.914261\pi\)
\(98\) 0.901116 0.0910264
\(99\) 0 0
\(100\) 5.81089 0.581089
\(101\) −1.47710 2.55841i −0.146977 0.254572i 0.783132 0.621856i \(-0.213621\pi\)
−0.930109 + 0.367284i \(0.880288\pi\)
\(102\) 0 0
\(103\) −4.69963 + 8.13999i −0.463068 + 0.802058i −0.999112 0.0421326i \(-0.986585\pi\)
0.536044 + 0.844190i \(0.319918\pi\)
\(104\) −0.500000 + 0.866025i −0.0490290 + 0.0849208i
\(105\) 0 0
\(106\) −5.51052 9.54450i −0.535229 0.927044i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.67487 −0.639336 −0.319668 0.947530i \(-0.603571\pi\)
−0.319668 + 0.947530i \(0.603571\pi\)
\(110\) −8.51052 14.7407i −0.811446 1.40547i
\(111\) 0 0
\(112\) 1.40545 2.43430i 0.132802 0.230020i
\(113\) −1.50000 + 2.59808i −0.141108 + 0.244406i −0.927914 0.372794i \(-0.878400\pi\)
0.786806 + 0.617200i \(0.211733\pi\)
\(114\) 0 0
\(115\) 9.86398 + 17.0849i 0.919821 + 1.59318i
\(116\) 2.22253 0.206357
\(117\) 0 0
\(118\) −14.7985 −1.36231
\(119\) 0.983290 + 1.70311i 0.0901380 + 0.156124i
\(120\) 0 0
\(121\) −7.89926 + 13.6819i −0.718114 + 1.24381i
\(122\) −4.69963 + 8.13999i −0.425484 + 0.736960i
\(123\) 0 0
\(124\) −1.38874 2.40536i −0.124712 0.216008i
\(125\) −2.66621 −0.238473
\(126\) 0 0
\(127\) −3.42402 −0.303832 −0.151916 0.988393i \(-0.548544\pi\)
−0.151916 + 0.988393i \(0.548544\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.64400 2.84748i 0.144188 0.249741i
\(131\) 4.12729 7.14867i 0.360603 0.624582i −0.627458 0.778651i \(-0.715904\pi\)
0.988060 + 0.154069i \(0.0492377\pi\)
\(132\) 0 0
\(133\) 10.0865 + 17.4703i 0.874611 + 1.51487i
\(134\) 0.445057 0.0384470
\(135\) 0 0
\(136\) 0.699628 0.0599926
\(137\) −2.30037 3.98436i −0.196534 0.340407i 0.750868 0.660452i \(-0.229635\pi\)
−0.947402 + 0.320045i \(0.896302\pi\)
\(138\) 0 0
\(139\) −5.29418 + 9.16979i −0.449047 + 0.777772i −0.998324 0.0578683i \(-0.981570\pi\)
0.549278 + 0.835640i \(0.314903\pi\)
\(140\) −4.62110 + 8.00397i −0.390554 + 0.676459i
\(141\) 0 0
\(142\) −0.594554 1.02980i −0.0498939 0.0864187i
\(143\) −5.17673 −0.432900
\(144\) 0 0
\(145\) −7.30766 −0.606868
\(146\) 0.111264 + 0.192715i 0.00920829 + 0.0159492i
\(147\) 0 0
\(148\) 0.356004 0.616617i 0.0292633 0.0506856i
\(149\) −8.48762 + 14.7010i −0.695333 + 1.20435i 0.274735 + 0.961520i \(0.411410\pi\)
−0.970068 + 0.242832i \(0.921924\pi\)
\(150\) 0 0
\(151\) −11.1087 19.2409i −0.904015 1.56580i −0.822235 0.569149i \(-0.807273\pi\)
−0.0817798 0.996650i \(-0.526060\pi\)
\(152\) 7.17673 0.582110
\(153\) 0 0
\(154\) 14.5512 1.17257
\(155\) 4.56615 + 7.90881i 0.366762 + 0.635251i
\(156\) 0 0
\(157\) 2.33379 4.04225i 0.186257 0.322606i −0.757742 0.652554i \(-0.773698\pi\)
0.943999 + 0.329947i \(0.107031\pi\)
\(158\) 7.87636 13.6422i 0.626609 1.08532i
\(159\) 0 0
\(160\) 1.64400 + 2.84748i 0.129969 + 0.225113i
\(161\) −16.8654 −1.32918
\(162\) 0 0
\(163\) −11.9752 −0.937973 −0.468987 0.883205i \(-0.655381\pi\)
−0.468987 + 0.883205i \(0.655381\pi\)
\(164\) −0.411636 0.712974i −0.0321434 0.0556740i
\(165\) 0 0
\(166\) −3.98762 + 6.90676i −0.309499 + 0.536069i
\(167\) −3.38874 + 5.86946i −0.262228 + 0.454193i −0.966834 0.255407i \(-0.917791\pi\)
0.704605 + 0.709599i \(0.251124\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −2.30037 −0.176430
\(171\) 0 0
\(172\) 11.4981 0.876725
\(173\) 9.57598 + 16.5861i 0.728049 + 1.26102i 0.957707 + 0.287746i \(0.0929058\pi\)
−0.229658 + 0.973271i \(0.573761\pi\)
\(174\) 0 0
\(175\) 8.16690 14.1455i 0.617359 1.06930i
\(176\) 2.58836 4.48318i 0.195105 0.337932i
\(177\) 0 0
\(178\) 3.69963 + 6.40794i 0.277299 + 0.480296i
\(179\) 0.210149 0.0157072 0.00785362 0.999969i \(-0.497500\pi\)
0.00785362 + 0.999969i \(0.497500\pi\)
\(180\) 0 0
\(181\) 6.44506 0.479057 0.239529 0.970889i \(-0.423007\pi\)
0.239529 + 0.970889i \(0.423007\pi\)
\(182\) 1.40545 + 2.43430i 0.104179 + 0.180443i
\(183\) 0 0
\(184\) −3.00000 + 5.19615i −0.221163 + 0.383065i
\(185\) −1.17054 + 2.02743i −0.0860597 + 0.149060i
\(186\) 0 0
\(187\) 1.81089 + 3.13656i 0.132426 + 0.229368i
\(188\) −1.52290 −0.111069
\(189\) 0 0
\(190\) −23.5970 −1.71191
\(191\) −11.6749 20.2215i −0.844764 1.46317i −0.885826 0.464017i \(-0.846408\pi\)
0.0410623 0.999157i \(-0.486926\pi\)
\(192\) 0 0
\(193\) −12.4647 + 21.5895i −0.897230 + 1.55405i −0.0662102 + 0.997806i \(0.521091\pi\)
−0.831020 + 0.556243i \(0.812243\pi\)
\(194\) −2.47710 + 4.29046i −0.177845 + 0.308037i
\(195\) 0 0
\(196\) −0.450558 0.780389i −0.0321827 0.0557421i
\(197\) 10.2349 0.729207 0.364604 0.931163i \(-0.381205\pi\)
0.364604 + 0.931163i \(0.381205\pi\)
\(198\) 0 0
\(199\) 26.9047 1.90722 0.953611 0.301041i \(-0.0973342\pi\)
0.953611 + 0.301041i \(0.0973342\pi\)
\(200\) −2.90545 5.03238i −0.205446 0.355843i
\(201\) 0 0
\(202\) −1.47710 + 2.55841i −0.103928 + 0.180009i
\(203\) 3.12364 5.41031i 0.219237 0.379729i
\(204\) 0 0
\(205\) 1.35346 + 2.34425i 0.0945295 + 0.163730i
\(206\) 9.39926 0.654877
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) 18.5760 + 32.1745i 1.28493 + 2.22556i
\(210\) 0 0
\(211\) −2.35600 + 4.08072i −0.162194 + 0.280928i −0.935655 0.352915i \(-0.885190\pi\)
0.773461 + 0.633844i \(0.218524\pi\)
\(212\) −5.51052 + 9.54450i −0.378464 + 0.655519i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) −37.8058 −2.57833
\(216\) 0 0
\(217\) −7.80717 −0.529985
\(218\) 3.33743 + 5.78061i 0.226040 + 0.391512i
\(219\) 0 0
\(220\) −8.51052 + 14.7407i −0.573779 + 0.993815i
\(221\) −0.349814 + 0.605896i −0.0235310 + 0.0407570i
\(222\) 0 0
\(223\) −3.81453 6.60697i −0.255440 0.442435i 0.709575 0.704630i \(-0.248887\pi\)
−0.965015 + 0.262195i \(0.915554\pi\)
\(224\) −2.81089 −0.187811
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) 11.0210 + 19.0890i 0.731492 + 1.26698i 0.956245 + 0.292566i \(0.0945091\pi\)
−0.224753 + 0.974416i \(0.572158\pi\)
\(228\) 0 0
\(229\) 2.24474 3.88800i 0.148337 0.256926i −0.782276 0.622932i \(-0.785941\pi\)
0.930613 + 0.366005i \(0.119275\pi\)
\(230\) 9.86398 17.0849i 0.650411 1.12655i
\(231\) 0 0
\(232\) −1.11126 1.92477i −0.0729581 0.126367i
\(233\) −5.54256 −0.363105 −0.181553 0.983381i \(-0.558112\pi\)
−0.181553 + 0.983381i \(0.558112\pi\)
\(234\) 0 0
\(235\) 5.00728 0.326639
\(236\) 7.39926 + 12.8159i 0.481651 + 0.834243i
\(237\) 0 0
\(238\) 0.983290 1.70311i 0.0637372 0.110396i
\(239\) 3.71565 6.43569i 0.240345 0.416290i −0.720467 0.693489i \(-0.756073\pi\)
0.960813 + 0.277198i \(0.0894060\pi\)
\(240\) 0 0
\(241\) −4.69963 8.13999i −0.302730 0.524343i 0.674024 0.738710i \(-0.264565\pi\)
−0.976753 + 0.214367i \(0.931231\pi\)
\(242\) 15.7985 1.01557
\(243\) 0 0
\(244\) 9.39926 0.601726
\(245\) 1.48143 + 2.56591i 0.0946451 + 0.163930i
\(246\) 0 0
\(247\) −3.58836 + 6.21523i −0.228322 + 0.395466i
\(248\) −1.38874 + 2.40536i −0.0881848 + 0.152741i
\(249\) 0 0
\(250\) 1.33310 + 2.30900i 0.0843129 + 0.146034i
\(251\) −15.9963 −1.00968 −0.504838 0.863214i \(-0.668448\pi\)
−0.504838 + 0.863214i \(0.668448\pi\)
\(252\) 0 0
\(253\) −31.0604 −1.95275
\(254\) 1.71201 + 2.96528i 0.107421 + 0.186059i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.0432524 + 0.0749153i −0.00269801 + 0.00467309i −0.867371 0.497662i \(-0.834192\pi\)
0.864673 + 0.502335i \(0.167525\pi\)
\(258\) 0 0
\(259\) −1.00069 1.73324i −0.0621798 0.107699i
\(260\) −3.28799 −0.203913
\(261\) 0 0
\(262\) −8.25457 −0.509969
\(263\) 0.489480 + 0.847803i 0.0301826 + 0.0522778i 0.880722 0.473633i \(-0.157058\pi\)
−0.850540 + 0.525911i \(0.823724\pi\)
\(264\) 0 0
\(265\) 18.1185 31.3822i 1.11301 1.92780i
\(266\) 10.0865 17.4703i 0.618443 1.07118i
\(267\) 0 0
\(268\) −0.222528 0.385430i −0.0135931 0.0235439i
\(269\) 25.5723 1.55917 0.779584 0.626297i \(-0.215430\pi\)
0.779584 + 0.626297i \(0.215430\pi\)
\(270\) 0 0
\(271\) 16.9766 1.03126 0.515628 0.856813i \(-0.327559\pi\)
0.515628 + 0.856813i \(0.327559\pi\)
\(272\) −0.349814 0.605896i −0.0212106 0.0367378i
\(273\) 0 0
\(274\) −2.30037 + 3.98436i −0.138971 + 0.240704i
\(275\) 15.0407 26.0513i 0.906989 1.57095i
\(276\) 0 0
\(277\) −1.69963 2.94384i −0.102121 0.176878i 0.810437 0.585825i \(-0.199229\pi\)
−0.912558 + 0.408947i \(0.865896\pi\)
\(278\) 10.5884 0.635048
\(279\) 0 0
\(280\) 9.24219 0.552327
\(281\) −14.3411 24.8395i −0.855517 1.48180i −0.876165 0.482012i \(-0.839906\pi\)
0.0206478 0.999787i \(-0.493427\pi\)
\(282\) 0 0
\(283\) 5.59888 9.69755i 0.332819 0.576460i −0.650244 0.759725i \(-0.725333\pi\)
0.983063 + 0.183266i \(0.0586668\pi\)
\(284\) −0.594554 + 1.02980i −0.0352803 + 0.0611072i
\(285\) 0 0
\(286\) 2.58836 + 4.48318i 0.153053 + 0.265096i
\(287\) −2.31413 −0.136599
\(288\) 0 0
\(289\) −16.5105 −0.971207
\(290\) 3.65383 + 6.32862i 0.214560 + 0.371629i
\(291\) 0 0
\(292\) 0.111264 0.192715i 0.00651124 0.0112778i
\(293\) 3.47091 6.01179i 0.202773 0.351213i −0.746648 0.665219i \(-0.768338\pi\)
0.949421 + 0.314007i \(0.101671\pi\)
\(294\) 0 0
\(295\) −24.3287 42.1385i −1.41647 2.45340i
\(296\) −0.712008 −0.0413846
\(297\) 0 0
\(298\) 16.9752 0.983349
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) 16.1600 27.9900i 0.931448 1.61332i
\(302\) −11.1087 + 19.2409i −0.639235 + 1.10719i
\(303\) 0 0
\(304\) −3.58836 6.21523i −0.205807 0.356468i
\(305\) −30.9047 −1.76960
\(306\) 0 0
\(307\) −15.0210 −0.857296 −0.428648 0.903472i \(-0.641010\pi\)
−0.428648 + 0.903472i \(0.641010\pi\)
\(308\) −7.27561 12.6017i −0.414566 0.718050i
\(309\) 0 0
\(310\) 4.56615 7.90881i 0.259340 0.449190i
\(311\) −3.98762 + 6.90676i −0.226117 + 0.391646i −0.956654 0.291227i \(-0.905937\pi\)
0.730537 + 0.682873i \(0.239270\pi\)
\(312\) 0 0
\(313\) −6.99745 12.1199i −0.395519 0.685060i 0.597648 0.801759i \(-0.296102\pi\)
−0.993167 + 0.116699i \(0.962769\pi\)
\(314\) −4.66758 −0.263407
\(315\) 0 0
\(316\) −15.7527 −0.886159
\(317\) −4.71015 8.15822i −0.264548 0.458211i 0.702897 0.711292i \(-0.251890\pi\)
−0.967445 + 0.253081i \(0.918556\pi\)
\(318\) 0 0
\(319\) 5.75271 9.96399i 0.322090 0.557876i
\(320\) 1.64400 2.84748i 0.0919022 0.159179i
\(321\) 0 0
\(322\) 8.43268 + 14.6058i 0.469935 + 0.813951i
\(323\) 5.02104 0.279378
\(324\) 0 0
\(325\) 5.81089 0.322330
\(326\) 5.98762 + 10.3709i 0.331624 + 0.574389i
\(327\) 0 0
\(328\) −0.411636 + 0.712974i −0.0227288 + 0.0393674i
\(329\) −2.14035 + 3.70720i −0.118002 + 0.204385i
\(330\) 0 0
\(331\) 5.77747 + 10.0069i 0.317559 + 0.550028i 0.979978 0.199106i \(-0.0638037\pi\)
−0.662419 + 0.749133i \(0.730470\pi\)
\(332\) 7.97524 0.437698
\(333\) 0 0
\(334\) 6.77747 0.370847
\(335\) 0.731671 + 1.26729i 0.0399755 + 0.0692396i
\(336\) 0 0
\(337\) −0.405446 + 0.702253i −0.0220861 + 0.0382542i −0.876857 0.480751i \(-0.840364\pi\)
0.854771 + 0.519005i \(0.173697\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 1.15019 + 1.99218i 0.0623776 + 0.108041i
\(341\) −14.3782 −0.778624
\(342\) 0 0
\(343\) 17.1433 0.925652
\(344\) −5.74907 9.95768i −0.309969 0.536882i
\(345\) 0 0
\(346\) 9.57598 16.5861i 0.514808 0.891674i
\(347\) 7.15452 12.3920i 0.384075 0.665237i −0.607566 0.794269i \(-0.707854\pi\)
0.991640 + 0.129033i \(0.0411872\pi\)
\(348\) 0 0
\(349\) 7.75526 + 13.4325i 0.415130 + 0.719025i 0.995442 0.0953684i \(-0.0304029\pi\)
−0.580312 + 0.814394i \(0.697070\pi\)
\(350\) −16.3338 −0.873078
\(351\) 0 0
\(352\) −5.17673 −0.275921
\(353\) −17.3869 30.1150i −0.925410 1.60286i −0.790900 0.611945i \(-0.790387\pi\)
−0.134510 0.990912i \(-0.542946\pi\)
\(354\) 0 0
\(355\) 1.95489 3.38597i 0.103755 0.179708i
\(356\) 3.69963 6.40794i 0.196080 0.339620i
\(357\) 0 0
\(358\) −0.105074 0.181994i −0.00555335 0.00961868i
\(359\) 24.2829 1.28160 0.640801 0.767707i \(-0.278602\pi\)
0.640801 + 0.767707i \(0.278602\pi\)
\(360\) 0 0
\(361\) 32.5054 1.71081
\(362\) −3.22253 5.58158i −0.169372 0.293361i
\(363\) 0 0
\(364\) 1.40545 2.43430i 0.0736654 0.127592i
\(365\) −0.365836 + 0.633646i −0.0191487 + 0.0331665i
\(366\) 0 0
\(367\) 7.95420 + 13.7771i 0.415206 + 0.719158i 0.995450 0.0952849i \(-0.0303762\pi\)
−0.580244 + 0.814443i \(0.697043\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 2.34108 0.121707
\(371\) 15.4895 + 26.8286i 0.804174 + 1.39287i
\(372\) 0 0
\(373\) −5.73305 + 9.92993i −0.296846 + 0.514152i −0.975413 0.220386i \(-0.929268\pi\)
0.678567 + 0.734539i \(0.262601\pi\)
\(374\) 1.81089 3.13656i 0.0936390 0.162188i
\(375\) 0 0
\(376\) 0.761450 + 1.31887i 0.0392688 + 0.0680155i
\(377\) 2.22253 0.114466
\(378\) 0 0
\(379\) 3.71063 0.190602 0.0953011 0.995448i \(-0.469619\pi\)
0.0953011 + 0.995448i \(0.469619\pi\)
\(380\) 11.7985 + 20.4356i 0.605251 + 1.04833i
\(381\) 0 0
\(382\) −11.6749 + 20.2215i −0.597338 + 1.03462i
\(383\) 1.78366 3.08939i 0.0911408 0.157861i −0.816851 0.576849i \(-0.804282\pi\)
0.907991 + 0.418989i \(0.137615\pi\)
\(384\) 0 0
\(385\) 23.9222 + 41.4344i 1.21919 + 2.11169i
\(386\) 24.9294 1.26888
\(387\) 0 0
\(388\) 4.95420 0.251511
\(389\) −2.71201 4.69734i −0.137504 0.238164i 0.789047 0.614333i \(-0.210575\pi\)
−0.926551 + 0.376168i \(0.877241\pi\)
\(390\) 0 0
\(391\) −2.09888 + 3.63537i −0.106145 + 0.183849i
\(392\) −0.450558 + 0.780389i −0.0227566 + 0.0394156i
\(393\) 0 0
\(394\) −5.11745 8.86369i −0.257814 0.446546i
\(395\) 51.7948 2.60608
\(396\) 0 0
\(397\) −28.1272 −1.41166 −0.705832 0.708379i \(-0.749427\pi\)
−0.705832 + 0.708379i \(0.749427\pi\)
\(398\) −13.4523 23.3001i −0.674305 1.16793i
\(399\) 0 0
\(400\) −2.90545 + 5.03238i −0.145272 + 0.251619i
\(401\) −7.43130 + 12.8714i −0.371101 + 0.642766i −0.989735 0.142913i \(-0.954353\pi\)
0.618634 + 0.785679i \(0.287686\pi\)
\(402\) 0 0
\(403\) −1.38874 2.40536i −0.0691779 0.119820i
\(404\) 2.95420 0.146977
\(405\) 0 0
\(406\) −6.24729 −0.310048
\(407\) −1.84294 3.19206i −0.0913509 0.158224i
\(408\) 0 0
\(409\) 8.98762 15.5670i 0.444409 0.769739i −0.553602 0.832782i \(-0.686747\pi\)
0.998011 + 0.0630423i \(0.0200803\pi\)
\(410\) 1.35346 2.34425i 0.0668424 0.115774i
\(411\) 0 0
\(412\) −4.69963 8.13999i −0.231534 0.401029i
\(413\) 41.5970 2.04686
\(414\) 0 0
\(415\) −26.2225 −1.28721
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) 18.5760 32.1745i 0.908581 1.57371i
\(419\) −13.7305 + 23.7819i −0.670779 + 1.16182i 0.306905 + 0.951740i \(0.400707\pi\)
−0.977684 + 0.210083i \(0.932627\pi\)
\(420\) 0 0
\(421\) −1.47091 2.54769i −0.0716878 0.124167i 0.827953 0.560797i \(-0.189505\pi\)
−0.899641 + 0.436630i \(0.856172\pi\)
\(422\) 4.71201 0.229377
\(423\) 0 0
\(424\) 11.0210 0.535229
\(425\) −2.03273 3.52079i −0.0986020 0.170784i
\(426\) 0 0
\(427\) 13.2101 22.8806i 0.639284 1.10727i
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) 0 0
\(430\) 18.9029 + 32.7408i 0.911579 + 1.57890i
\(431\) −3.37959 −0.162789 −0.0813946 0.996682i \(-0.525937\pi\)
−0.0813946 + 0.996682i \(0.525937\pi\)
\(432\) 0 0
\(433\) 8.36584 0.402036 0.201018 0.979588i \(-0.435575\pi\)
0.201018 + 0.979588i \(0.435575\pi\)
\(434\) 3.90359 + 6.76121i 0.187378 + 0.324549i
\(435\) 0 0
\(436\) 3.33743 5.78061i 0.159834 0.276841i
\(437\) −21.5302 + 37.2914i −1.02993 + 1.78389i
\(438\) 0 0
\(439\) 14.2880 + 24.7475i 0.681929 + 1.18114i 0.974391 + 0.224858i \(0.0721919\pi\)
−0.292463 + 0.956277i \(0.594475\pi\)
\(440\) 17.0210 0.811446
\(441\) 0 0
\(442\) 0.699628 0.0332779
\(443\) −9.26942 16.0551i −0.440404 0.762801i 0.557316 0.830301i \(-0.311831\pi\)
−0.997719 + 0.0674993i \(0.978498\pi\)
\(444\) 0 0
\(445\) −12.1643 + 21.0693i −0.576645 + 0.998779i
\(446\) −3.81453 + 6.60697i −0.180623 + 0.312849i
\(447\) 0 0
\(448\) 1.40545 + 2.43430i 0.0664011 + 0.115010i
\(449\) 14.8626 0.701409 0.350705 0.936486i \(-0.385942\pi\)
0.350705 + 0.936486i \(0.385942\pi\)
\(450\) 0 0
\(451\) −4.26186 −0.200683
\(452\) −1.50000 2.59808i −0.0705541 0.122203i
\(453\) 0 0
\(454\) 11.0210 19.0890i 0.517243 0.895891i
\(455\) −4.62110 + 8.00397i −0.216640 + 0.375232i
\(456\) 0 0
\(457\) −11.1520 19.3158i −0.521667 0.903554i −0.999682 0.0252024i \(-0.991977\pi\)
0.478015 0.878352i \(-0.341356\pi\)
\(458\) −4.48948 −0.209780
\(459\) 0 0
\(460\) −19.7280 −0.919821
\(461\) 4.87017 + 8.43538i 0.226826 + 0.392875i 0.956866 0.290530i \(-0.0938317\pi\)
−0.730040 + 0.683405i \(0.760498\pi\)
\(462\) 0 0
\(463\) 1.81275 3.13978i 0.0842457 0.145918i −0.820824 0.571181i \(-0.806485\pi\)
0.905070 + 0.425264i \(0.139819\pi\)
\(464\) −1.11126 + 1.92477i −0.0515891 + 0.0893550i
\(465\) 0 0
\(466\) 2.77128 + 4.80000i 0.128377 + 0.222356i
\(467\) 0.0458003 0.00211939 0.00105969 0.999999i \(-0.499663\pi\)
0.00105969 + 0.999999i \(0.499663\pi\)
\(468\) 0 0
\(469\) −1.25101 −0.0577661
\(470\) −2.50364 4.33643i −0.115484 0.200025i
\(471\) 0 0
\(472\) 7.39926 12.8159i 0.340578 0.589899i
\(473\) 29.7614 51.5482i 1.36843 2.37019i
\(474\) 0 0
\(475\) −20.8516 36.1160i −0.956737 1.65712i
\(476\) −1.96658 −0.0901380
\(477\) 0 0
\(478\) −7.43130 −0.339900
\(479\) 8.84176 + 15.3144i 0.403991 + 0.699732i 0.994203 0.107515i \(-0.0342895\pi\)
−0.590213 + 0.807248i \(0.700956\pi\)
\(480\) 0 0
\(481\) 0.356004 0.616617i 0.0162324 0.0281153i
\(482\) −4.69963 + 8.13999i −0.214062 + 0.370767i
\(483\) 0 0
\(484\) −7.89926 13.6819i −0.359057 0.621905i
\(485\) −16.2894 −0.739662
\(486\) 0 0
\(487\) −23.2436 −1.05327 −0.526633 0.850093i \(-0.676546\pi\)
−0.526633 + 0.850093i \(0.676546\pi\)
\(488\) −4.69963 8.13999i −0.212742 0.368480i
\(489\) 0 0
\(490\) 1.48143 2.56591i 0.0669242 0.115916i
\(491\) −9.27197 + 16.0595i −0.418438 + 0.724756i −0.995783 0.0917446i \(-0.970756\pi\)
0.577344 + 0.816501i \(0.304089\pi\)
\(492\) 0 0
\(493\) −0.777472 1.34662i −0.0350156 0.0606487i
\(494\) 7.17673 0.322896
\(495\) 0 0
\(496\) 2.77747 0.124712
\(497\) 1.67123 + 2.89465i 0.0749648 + 0.129843i
\(498\) 0 0
\(499\) 15.7738 27.3209i 0.706130 1.22305i −0.260152 0.965568i \(-0.583773\pi\)
0.966282 0.257486i \(-0.0828940\pi\)
\(500\) 1.33310 2.30900i 0.0596182 0.103262i
\(501\) 0 0
\(502\) 7.99814 + 13.8532i 0.356974 + 0.618298i
\(503\) −21.2188 −0.946100 −0.473050 0.881036i \(-0.656847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(504\) 0 0
\(505\) −9.71339 −0.432240
\(506\) 15.5302 + 26.8991i 0.690401 + 1.19581i
\(507\) 0 0
\(508\) 1.71201 2.96528i 0.0759581 0.131563i
\(509\) 1.71015 2.96206i 0.0758010 0.131291i −0.825633 0.564207i \(-0.809182\pi\)
0.901434 + 0.432916i \(0.142515\pi\)
\(510\) 0 0
\(511\) −0.312752 0.541702i −0.0138353 0.0239635i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.0865047 0.00381556
\(515\) 15.4523 + 26.7642i 0.680911 + 1.17937i
\(516\) 0 0
\(517\) −3.94182 + 6.82743i −0.173361 + 0.300270i
\(518\) −1.00069 + 1.73324i −0.0439677 + 0.0761544i
\(519\) 0 0
\(520\) 1.64400 + 2.84748i 0.0720940 + 0.124870i
\(521\) −25.5498 −1.11936 −0.559680 0.828709i \(-0.689076\pi\)
−0.559680 + 0.828709i \(0.689076\pi\)
\(522\) 0 0
\(523\) −16.0458 −0.701634 −0.350817 0.936444i \(-0.614096\pi\)
−0.350817 + 0.936444i \(0.614096\pi\)
\(524\) 4.12729 + 7.14867i 0.180301 + 0.312291i
\(525\) 0 0
\(526\) 0.489480 0.847803i 0.0213423 0.0369660i
\(527\) −0.971599 + 1.68286i −0.0423235 + 0.0733065i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) −36.2371 −1.57404
\(531\) 0 0
\(532\) −20.1730 −0.874611
\(533\) −0.411636 0.712974i −0.0178299 0.0308824i
\(534\) 0 0
\(535\) −19.7280 + 34.1698i −0.852914 + 1.47729i
\(536\) −0.222528 + 0.385430i −0.00961176 + 0.0166481i
\(537\) 0 0
\(538\) −12.7861 22.1462i −0.551249 0.954792i
\(539\) −4.66483 −0.200928
\(540\) 0 0
\(541\) −0.899738 −0.0386828 −0.0193414 0.999813i \(-0.506157\pi\)
−0.0193414 + 0.999813i \(0.506157\pi\)
\(542\) −8.48831 14.7022i −0.364604 0.631513i
\(543\) 0 0
\(544\) −0.349814 + 0.605896i −0.0149982 + 0.0259776i
\(545\) −10.9735 + 19.0066i −0.470051 + 0.814153i
\(546\) 0 0
\(547\) 16.7095 + 28.9416i 0.714445 + 1.23745i 0.963173 + 0.268882i \(0.0866540\pi\)
−0.248728 + 0.968573i \(0.580013\pi\)
\(548\) 4.60074 0.196534
\(549\) 0 0
\(550\) −30.0814 −1.28268
\(551\) −7.97524 13.8135i −0.339757 0.588476i
\(552\) 0 0
\(553\) −22.1396 + 38.3469i −0.941471 + 1.63068i
\(554\) −1.69963 + 2.94384i −0.0722103 + 0.125072i
\(555\) 0 0
\(556\) −5.29418 9.16979i −0.224523 0.388886i
\(557\) 0.123644 0.00523896 0.00261948 0.999997i \(-0.499166\pi\)
0.00261948 + 0.999997i \(0.499166\pi\)
\(558\) 0 0
\(559\) 11.4981 0.486320
\(560\) −4.62110 8.00397i −0.195277 0.338230i
\(561\) 0 0
\(562\) −14.3411 + 24.8395i −0.604942 + 1.04779i
\(563\) 1.29418 2.24159i 0.0545433 0.0944717i −0.837465 0.546492i \(-0.815963\pi\)
0.892008 + 0.452020i \(0.149296\pi\)
\(564\) 0 0
\(565\) 4.93199 + 8.54245i 0.207490 + 0.359384i
\(566\) −11.1978 −0.470677
\(567\) 0 0
\(568\) 1.18911 0.0498939
\(569\) −3.73422 6.46786i −0.156547 0.271147i 0.777074 0.629409i \(-0.216703\pi\)
−0.933621 + 0.358262i \(0.883369\pi\)
\(570\) 0 0
\(571\) 16.3251 28.2758i 0.683182 1.18331i −0.290822 0.956777i \(-0.593929\pi\)
0.974004 0.226529i \(-0.0727379\pi\)
\(572\) 2.58836 4.48318i 0.108225 0.187451i
\(573\) 0 0
\(574\) 1.15706 + 2.00409i 0.0482949 + 0.0836493i
\(575\) 34.8654 1.45399
\(576\) 0 0
\(577\) −18.9542 −0.789074 −0.394537 0.918880i \(-0.629095\pi\)
−0.394537 + 0.918880i \(0.629095\pi\)
\(578\) 8.25526 + 14.2985i 0.343374 + 0.594740i
\(579\) 0 0
\(580\) 3.65383 6.32862i 0.151717 0.262781i
\(581\) 11.2088 19.4142i 0.465018 0.805435i
\(582\) 0 0
\(583\) 28.5265 + 49.4093i 1.18145 + 2.04632i
\(584\) −0.222528 −0.00920829
\(585\) 0 0
\(586\) −6.94182 −0.286764
\(587\) −15.5760 26.9784i −0.642890 1.11352i −0.984785 0.173779i \(-0.944402\pi\)
0.341895 0.939738i \(-0.388931\pi\)
\(588\) 0 0
\(589\) −9.96658 + 17.2626i −0.410666 + 0.711294i
\(590\) −24.3287 + 42.1385i −1.00160 + 1.73482i
\(591\) 0 0
\(592\) 0.356004 + 0.616617i 0.0146317 + 0.0253428i
\(593\) −39.0631 −1.60413 −0.802065 0.597237i \(-0.796265\pi\)
−0.802065 + 0.597237i \(0.796265\pi\)
\(594\) 0 0
\(595\) 6.46610 0.265084
\(596\) −8.48762 14.7010i −0.347666 0.602176i
\(597\) 0 0
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) 9.86398 17.0849i 0.403031 0.698070i −0.591059 0.806628i \(-0.701290\pi\)
0.994090 + 0.108558i \(0.0346233\pi\)
\(600\) 0 0
\(601\) 0.703270 + 1.21810i 0.0286870 + 0.0496873i 0.880012 0.474951i \(-0.157534\pi\)
−0.851325 + 0.524638i \(0.824201\pi\)
\(602\) −32.3200 −1.31727
\(603\) 0 0
\(604\) 22.2174 0.904015
\(605\) 25.9727 + 44.9860i 1.05594 + 1.82894i
\(606\) 0 0
\(607\) 5.12364 8.87441i 0.207962 0.360201i −0.743110 0.669169i \(-0.766650\pi\)
0.951073 + 0.308968i \(0.0999835\pi\)
\(608\) −3.58836 + 6.21523i −0.145527 + 0.252061i
\(609\) 0 0
\(610\) 15.4523 + 26.7642i 0.625647 + 1.08365i
\(611\) −1.52290 −0.0616099
\(612\) 0 0
\(613\) −43.3287 −1.75003 −0.875015 0.484096i \(-0.839148\pi\)
−0.875015 + 0.484096i \(0.839148\pi\)
\(614\) 7.51052 + 13.0086i 0.303100 + 0.524984i
\(615\) 0 0
\(616\) −7.27561 + 12.6017i −0.293143 + 0.507738i
\(617\) 1.44506 2.50291i 0.0581758 0.100763i −0.835471 0.549535i \(-0.814805\pi\)
0.893647 + 0.448771i \(0.148138\pi\)
\(618\) 0 0
\(619\) −0.346172 0.599588i −0.0139138 0.0240995i 0.858985 0.512001i \(-0.171096\pi\)
−0.872898 + 0.487902i \(0.837762\pi\)
\(620\) −9.13231 −0.366762
\(621\) 0 0
\(622\) 7.97524 0.319778
\(623\) −10.3993 18.0120i −0.416637 0.721637i
\(624\) 0 0
\(625\) 10.1440 17.5699i 0.405760 0.702797i
\(626\) −6.99745 + 12.1199i −0.279674 + 0.484410i
\(627\) 0 0
\(628\) 2.33379 + 4.04225i 0.0931285 + 0.161303i
\(629\) −0.498141 −0.0198622
\(630\) 0 0
\(631\) 30.4771 1.21327 0.606637 0.794979i \(-0.292518\pi\)
0.606637 + 0.794979i \(0.292518\pi\)
\(632\) 7.87636 + 13.6422i 0.313305 + 0.542660i
\(633\) 0 0
\(634\) −4.71015 + 8.15822i −0.187064 + 0.324004i
\(635\) −5.62907 + 9.74983i −0.223383 + 0.386910i
\(636\) 0 0
\(637\) −0.450558 0.780389i −0.0178517 0.0309201i
\(638\) −11.5054 −0.455504
\(639\) 0 0
\(640\) −3.28799 −0.129969
\(641\) −19.0970 33.0770i −0.754287 1.30646i −0.945728 0.324959i \(-0.894649\pi\)
0.191441 0.981504i \(-0.438684\pi\)
\(642\) 0 0
\(643\) −6.30903 + 10.9276i −0.248804 + 0.430941i −0.963194 0.268806i \(-0.913371\pi\)
0.714390 + 0.699747i \(0.246704\pi\)
\(644\) 8.43268 14.6058i 0.332294 0.575550i
\(645\) 0 0
\(646\) −2.51052 4.34835i −0.0987751 0.171084i
\(647\) −35.9257 −1.41239 −0.706193 0.708019i \(-0.749589\pi\)
−0.706193 + 0.708019i \(0.749589\pi\)
\(648\) 0 0
\(649\) 76.6079 3.00712
\(650\) −2.90545 5.03238i −0.113961 0.197386i
\(651\) 0 0
\(652\) 5.98762 10.3709i 0.234493 0.406154i
\(653\) −10.7193 + 18.5664i −0.419478 + 0.726558i −0.995887 0.0906038i \(-0.971120\pi\)
0.576409 + 0.817162i \(0.304454\pi\)
\(654\) 0 0
\(655\) −13.5705 23.5048i −0.530243 0.918407i
\(656\) 0.823272 0.0321434
\(657\) 0 0
\(658\) 4.28071 0.166879
\(659\) 16.3764 + 28.3647i 0.637932 + 1.10493i 0.985886 + 0.167419i \(0.0535434\pi\)
−0.347954 + 0.937512i \(0.613123\pi\)
\(660\) 0 0
\(661\) −0.268329 + 0.464759i −0.0104368 + 0.0180770i −0.871197 0.490934i \(-0.836656\pi\)
0.860760 + 0.509011i \(0.169989\pi\)
\(662\) 5.77747 10.0069i 0.224548 0.388928i
\(663\) 0 0
\(664\) −3.98762 6.90676i −0.154750 0.268034i
\(665\) 66.3287 2.57212
\(666\) 0 0
\(667\) 13.3352 0.516340
\(668\) −3.38874 5.86946i −0.131114 0.227096i
\(669\) 0 0
\(670\) 0.731671 1.26729i 0.0282669 0.0489598i
\(671\) 24.3287 42.1385i 0.939199 1.62674i
\(672\) 0 0
\(673\) −16.9530 29.3635i −0.653491 1.13188i −0.982270 0.187473i \(-0.939970\pi\)
0.328779 0.944407i \(-0.393363\pi\)
\(674\) 0.810892 0.0312344
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −13.3993 23.2082i −0.514975 0.891963i −0.999849 0.0173791i \(-0.994468\pi\)
0.484874 0.874584i \(-0.338866\pi\)
\(678\) 0 0
\(679\) 6.96286 12.0600i 0.267210 0.462821i
\(680\) 1.15019 1.99218i 0.0441076 0.0763966i
\(681\) 0 0
\(682\) 7.18911 + 12.4519i 0.275285 + 0.476808i
\(683\) −0.978959 −0.0374588 −0.0187294 0.999825i \(-0.505962\pi\)
−0.0187294 + 0.999825i \(0.505962\pi\)
\(684\) 0 0
\(685\) −15.1272 −0.577981
\(686\) −8.57165 14.8465i −0.327267 0.566844i
\(687\) 0 0
\(688\) −5.74907 + 9.95768i −0.219181 + 0.379633i
\(689\) −5.51052 + 9.54450i −0.209934 + 0.363617i
\(690\) 0 0
\(691\) 25.2632 + 43.7572i 0.961059 + 1.66460i 0.719851 + 0.694129i \(0.244210\pi\)
0.241208 + 0.970473i \(0.422456\pi\)
\(692\) −19.1520 −0.728049
\(693\) 0 0
\(694\) −14.3090 −0.543163
\(695\) 17.4072 + 30.1502i 0.660294 + 1.14366i
\(696\) 0 0
\(697\) −0.287992 + 0.498817i −0.0109085 + 0.0188940i
\(698\) 7.75526 13.4325i 0.293541 0.508428i
\(699\) 0 0
\(700\) 8.16690 + 14.1455i 0.308680 + 0.534649i
\(701\) 9.37450 0.354070 0.177035 0.984205i \(-0.443349\pi\)
0.177035 + 0.984205i \(0.443349\pi\)
\(702\) 0 0
\(703\) −5.10989 −0.192723
\(704\) 2.58836 + 4.48318i 0.0975526 + 0.168966i
\(705\) 0 0
\(706\) −17.3869 + 30.1150i −0.654364 + 1.13339i
\(707\) 4.15197 7.19142i 0.156151 0.270461i
\(708\) 0 0
\(709\) 7.28613 + 12.6200i 0.273636 + 0.473952i 0.969790 0.243940i \(-0.0784402\pi\)
−0.696154 + 0.717893i \(0.745107\pi\)
\(710\) −3.90978 −0.146731
\(711\) 0 0
\(712\) −7.39926 −0.277299
\(713\) −8.33242 14.4322i −0.312051 0.540489i
\(714\) 0 0
\(715\) −8.51052 + 14.7407i −0.318275 + 0.551269i
\(716\) −0.105074 + 0.181994i −0.00392681 + 0.00680144i
\(717\) 0 0
\(718\) −12.1414 21.0296i −0.453115 0.784818i
\(719\) 33.3104 1.24227 0.621134 0.783704i \(-0.286672\pi\)
0.621134 + 0.783704i \(0.286672\pi\)
\(720\) 0 0
\(721\) −26.4203 −0.983943
\(722\) −16.2527 28.1505i −0.604863 1.04765i
\(723\) 0 0
\(724\) −3.22253 + 5.58158i −0.119764 + 0.207438i
\(725\) −6.45744 + 11.1846i −0.239823 + 0.415386i
\(726\) 0 0
\(727\) 16.6428 + 28.8262i 0.617248 + 1.06911i 0.989986 + 0.141168i \(0.0450859\pi\)
−0.372737 + 0.927937i \(0.621581\pi\)
\(728\) −2.81089 −0.104179
\(729\) 0 0
\(730\) 0.731671 0.0270804
\(731\) −4.02221 6.96667i −0.148767 0.257672i
\(732\) 0 0
\(733\) −23.4585 + 40.6314i −0.866461 + 1.50075i −0.000871020 1.00000i \(0.500277\pi\)
−0.865590 + 0.500754i \(0.833056\pi\)
\(734\) 7.95420 13.7771i 0.293595 0.508521i
\(735\) 0 0
\(736\) −3.00000 5.19615i −0.110581 0.191533i
\(737\) −2.30394 −0.0848666
\(738\) 0 0
\(739\) −43.6116 −1.60428 −0.802139 0.597137i \(-0.796305\pi\)
−0.802139 + 0.597137i \(0.796305\pi\)
\(740\) −1.17054 2.02743i −0.0430298 0.0745299i
\(741\) 0 0
\(742\) 15.4895 26.8286i 0.568637 0.984908i
\(743\) −20.0371 + 34.7052i −0.735089 + 1.27321i 0.219596 + 0.975591i \(0.429526\pi\)
−0.954684 + 0.297620i \(0.903807\pi\)
\(744\) 0 0
\(745\) 27.9072 + 48.3367i 1.02244 + 1.77092i
\(746\) 11.4661 0.419804
\(747\) 0 0
\(748\) −3.62178 −0.132426
\(749\) −16.8654 29.2116i −0.616247 1.06737i
\(750\) 0 0
\(751\) −22.6538 + 39.2376i −0.826650 + 1.43180i 0.0740019 + 0.997258i \(0.476423\pi\)
−0.900652 + 0.434542i \(0.856910\pi\)
\(752\) 0.761450 1.31887i 0.0277672 0.0480942i
\(753\) 0 0
\(754\) −1.11126 1.92477i −0.0404699 0.0700958i
\(755\) −73.0507 −2.65859
\(756\) 0 0
\(757\) 38.3287 1.39308 0.696540 0.717518i \(-0.254722\pi\)
0.696540 + 0.717518i \(0.254722\pi\)
\(758\) −1.85532 3.21350i −0.0673881 0.116720i
\(759\) 0 0
\(760\) 11.7985 20.4356i 0.427977 0.741278i
\(761\) −5.34108 + 9.25102i −0.193614 + 0.335349i −0.946445 0.322864i \(-0.895354\pi\)
0.752831 + 0.658213i \(0.228688\pi\)
\(762\) 0 0
\(763\) −9.38117 16.2487i −0.339621 0.588241i
\(764\) 23.3497 0.844764
\(765\) 0 0
\(766\) −3.56732 −0.128893
\(767\) 7.39926 + 12.8159i 0.267172 + 0.462755i
\(768\) 0 0
\(769\) 24.2843 42.0616i 0.875713 1.51678i 0.0197124 0.999806i \(-0.493725\pi\)
0.856001 0.516974i \(-0.172942\pi\)
\(770\) 23.9222 41.4344i 0.862095 1.49319i
\(771\) 0 0
\(772\) −12.4647 21.5895i −0.448615 0.777024i
\(773\) −1.45881 −0.0524699 −0.0262349 0.999656i \(-0.508352\pi\)
−0.0262349 + 0.999656i \(0.508352\pi\)
\(774\) 0 0
\(775\) 16.1396 0.579751
\(776\) −2.47710 4.29046i −0.0889227 0.154019i
\(777\) 0 0
\(778\) −2.71201 + 4.69734i −0.0972302 + 0.168408i
\(779\) −2.95420 + 5.11682i −0.105845 + 0.183329i
\(780\) 0 0
\(781\) 3.07784 + 5.33098i 0.110134 + 0.190758i
\(782\) 4.19777 0.150112
\(783\) 0 0
\(784\) 0.901116 0.0321827
\(785\) −7.67349 13.2909i −0.273879 0.474372i
\(786\) 0 0
\(787\) 7.05308 12.2163i 0.251415 0.435464i −0.712500 0.701672i \(-0.752437\pi\)
0.963916 + 0.266208i \(0.0857707\pi\)
\(788\) −5.11745 + 8.86369i −0.182302 + 0.315756i
\(789\) 0 0
\(790\) −25.8974 44.8556i −0.921388 1.59589i
\(791\) −8.43268 −0.299831
\(792\) 0 0
\(793\) 9.39926 0.333777
\(794\) 14.0636 + 24.3589i 0.499099 + 0.864464i
\(795\) 0 0
\(796\) −13.4523 + 23.3001i −0.476806 + 0.825851i
\(797\) 14.5970 25.2828i 0.517053 0.895562i −0.482751 0.875758i \(-0.660362\pi\)
0.999804 0.0198045i \(-0.00630439\pi\)
\(798\) 0 0
\(799\) 0.532732 + 0.922719i 0.0188467 + 0.0326434i
\(800\) 5.81089 0.205446
\(801\) 0 0
\(802\) 14.8626 0.524817
\(803\) −0.575984 0.997634i −0.0203260 0.0352057i
\(804\) 0 0
\(805\) −27.7266 + 48.0238i −0.977233 + 1.69262i
\(806\) −1.38874 + 2.40536i −0.0489161 + 0.0847252i
\(807\) 0 0
\(808\) −1.47710 2.55841i −0.0519642 0.0900046i
\(809\) 24.4523 0.859699 0.429849 0.902901i \(-0.358567\pi\)
0.429849 + 0.902901i \(0.358567\pi\)
\(810\) 0 0
\(811\) −21.5970 −0.758374 −0.379187 0.925320i \(-0.623796\pi\)
−0.379187 + 0.925320i \(0.623796\pi\)
\(812\) 3.12364 + 5.41031i 0.109618 + 0.189865i
\(813\) 0 0
\(814\) −1.84294 + 3.19206i −0.0645949 + 0.111882i
\(815\) −19.6872 + 34.0993i −0.689614 + 1.19445i
\(816\) 0 0
\(817\) −41.2595 71.4636i −1.44349 2.50019i
\(818\) −17.9752 −0.628490
\(819\) 0 0
\(820\) −2.70691 −0.0945295
\(821\) −2.16071 3.74245i −0.0754092 0.130613i 0.825855 0.563883i \(-0.190693\pi\)
−0.901264 + 0.433270i \(0.857360\pi\)
\(822\) 0 0
\(823\) 13.8764 24.0346i 0.483699 0.837792i −0.516125 0.856513i \(-0.672626\pi\)
0.999825 + 0.0187212i \(0.00595948\pi\)
\(824\) −4.69963 + 8.13999i −0.163719 + 0.283570i
\(825\) 0 0
\(826\) −20.7985 36.0241i −0.723673 1.25344i
\(827\) −8.55122 −0.297355 −0.148678 0.988886i \(-0.547502\pi\)
−0.148678 + 0.988886i \(0.547502\pi\)
\(828\) 0 0
\(829\) 38.2371 1.32803 0.664015 0.747720i \(-0.268851\pi\)
0.664015 + 0.747720i \(0.268851\pi\)
\(830\) 13.1113 + 22.7094i 0.455099 + 0.788254i
\(831\) 0 0
\(832\) −0.500000 + 0.866025i −0.0173344 + 0.0300240i
\(833\) −0.315223 + 0.545982i −0.0109218 + 0.0189172i
\(834\) 0 0
\(835\) 11.1421 + 19.2987i 0.385590 + 0.667861i
\(836\) −37.1520 −1.28493
\(837\) 0 0
\(838\) 27.4610 0.948625
\(839\) −22.5407 39.0416i −0.778192 1.34787i −0.932983 0.359920i \(-0.882804\pi\)
0.154792 0.987947i \(-0.450529\pi\)
\(840\) 0 0
\(841\) 12.0302 20.8369i 0.414834 0.718513i
\(842\) −1.47091 + 2.54769i −0.0506909 + 0.0877992i
\(843\) 0 0
\(844\) −2.35600 4.08072i −0.0810970 0.140464i
\(845\) −3.28799 −0.113110
\(846\) 0 0
\(847\) −44.4079 −1.52587
\(848\) −5.51052 9.54450i −0.189232 0.327760i
\(849\) 0 0
\(850\) −2.03273 + 3.52079i −0.0697221 + 0.120762i
\(851\) 2.13602 3.69970i 0.0732219 0.126824i
\(852\) 0 0
\(853\) −12.9840 22.4889i −0.444563 0.770006i 0.553459 0.832877i \(-0.313308\pi\)
−0.998022 + 0.0628710i \(0.979974\pi\)
\(854\) −26.4203 −0.904084
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 9.05494 + 15.6836i 0.309311 + 0.535742i 0.978212 0.207609i \(-0.0665683\pi\)
−0.668901 + 0.743352i \(0.733235\pi\)
\(858\) 0 0
\(859\) 16.1080 27.8999i 0.549599 0.951933i −0.448703 0.893681i \(-0.648114\pi\)
0.998302 0.0582522i \(-0.0185527\pi\)
\(860\) 18.9029 32.7408i 0.644583 1.11645i
\(861\) 0 0
\(862\) 1.68980 + 2.92681i 0.0575547 + 0.0996877i
\(863\) 5.01594 0.170745 0.0853724 0.996349i \(-0.472792\pi\)
0.0853724 + 0.996349i \(0.472792\pi\)
\(864\) 0 0
\(865\) 62.9715 2.14110
\(866\) −4.18292 7.24503i −0.142141 0.246196i
\(867\) 0 0
\(868\) 3.90359 6.76121i 0.132496 0.229490i
\(869\) −40.7738 + 70.6222i −1.38315 + 2.39569i
\(870\) 0 0
\(871\) −0.222528 0.385430i −0.00754008 0.0130598i
\(872\) −6.67487 −0.226040
\(873\) 0 0
\(874\) 43.0604 1.45654
\(875\) −3.74721 6.49036i −0.126679 0.219414i
\(876\) 0 0
\(877\) −9.75526 + 16.8966i −0.329412 + 0.570558i −0.982395 0.186814i \(-0.940184\pi\)
0.652984 + 0.757372i \(0.273517\pi\)
\(878\) 14.2880 24.7475i 0.482196 0.835189i
\(879\) 0 0
\(880\) −8.51052 14.7407i −0.286890 0.496907i
\(881\) 30.4895 1.02722 0.513608 0.858025i \(-0.328308\pi\)
0.513608 + 0.858025i \(0.328308\pi\)
\(882\) 0 0
\(883\) −0.217432 −0.00731718 −0.00365859 0.999993i \(-0.501165\pi\)
−0.00365859 + 0.999993i \(0.501165\pi\)
\(884\) −0.349814 0.605896i −0.0117655 0.0203785i
\(885\) 0 0
\(886\) −9.26942 + 16.0551i −0.311412 + 0.539382i
\(887\) −2.22253 + 3.84953i −0.0746252 + 0.129255i −0.900923 0.433979i \(-0.857109\pi\)
0.826298 + 0.563233i \(0.190443\pi\)
\(888\) 0 0
\(889\) −4.81227 8.33510i −0.161398 0.279550i
\(890\) 24.3287 0.815500
\(891\) 0 0
\(892\) 7.62907 0.255440
\(893\) 5.46472 + 9.46517i 0.182870 + 0.316740i
\(894\) 0 0
\(895\) 0.345483 0.598395i 0.0115482 0.0200021i
\(896\) 1.40545 2.43430i 0.0469527 0.0813244i
\(897\) 0 0
\(898\) −7.43130 12.8714i −0.247986 0.429524i
\(899\) 6.17301 0.205881
\(900\) 0 0
\(901\) 7.71063 0.256878
\(902\) 2.13093 + 3.69087i 0.0709521 + 0.122893i
\(903\) 0 0
\(904\) −1.50000 + 2.59808i −0.0498893 + 0.0864107i
\(905\) 10.5956 18.3522i 0.352211 0.610048i
\(906\) 0 0
\(907\) 9.25704 + 16.0337i 0.307375 + 0.532389i 0.977787 0.209600i \(-0.0672161\pi\)
−0.670412 + 0.741989i \(0.733883\pi\)
\(908\) −22.0421 −0.731492
\(909\) 0 0
\(910\) 9.24219 0.306376
\(911\) −2.14468 3.71470i −0.0710566 0.123074i 0.828308 0.560273i \(-0.189304\pi\)
−0.899365 + 0.437199i \(0.855970\pi\)
\(912\) 0 0
\(913\) 20.6428 35.7544i 0.683178 1.18330i
\(914\) −11.1520 + 19.3158i −0.368874 + 0.638909i
\(915\) 0 0
\(916\) 2.24474 + 3.88800i 0.0741683 + 0.128463i
\(917\) 23.2027 0.766221
\(918\) 0 0
\(919\) 53.5302 1.76580 0.882899 0.469563i \(-0.155589\pi\)
0.882899 + 0.469563i \(0.155589\pi\)
\(920\) 9.86398 + 17.0849i 0.325206 + 0.563273i
\(921\) 0 0
\(922\) 4.87017 8.43538i 0.160390 0.277804i
\(923\) −0.594554 + 1.02980i −0.0195700 + 0.0338962i
\(924\) 0 0
\(925\) 2.06870 + 3.58309i 0.0680185 + 0.117811i
\(926\) −3.62550 −0.119141
\(927\) 0 0
\(928\) 2.22253 0.0729581
\(929\) −22.8974 39.6595i −0.751239 1.30118i −0.947222 0.320577i \(-0.896123\pi\)
0.195983 0.980607i \(-0.437210\pi\)
\(930\) 0 0
\(931\) −3.23353 + 5.60064i −0.105975 + 0.183554i
\(932\) 2.77128 4.80000i 0.0907764 0.157229i
\(933\) 0 0
\(934\) −0.0229002 0.0396643i −0.000749316 0.00129785i
\(935\) 11.9084 0.389446
\(936\) 0 0
\(937\) −32.0604 −1.04737 −0.523683 0.851913i \(-0.675442\pi\)
−0.523683 + 0.851913i \(0.675442\pi\)
\(938\) 0.625503 + 1.08340i 0.0204234 + 0.0353744i
\(939\) 0 0
\(940\) −2.50364 + 4.33643i −0.0816598 + 0.141439i
\(941\) −7.18430 + 12.4436i −0.234201 + 0.405649i −0.959040 0.283270i \(-0.908581\pi\)
0.724839 + 0.688918i \(0.241914\pi\)
\(942\) 0 0
\(943\) −2.46982 4.27785i −0.0804283 0.139306i
\(944\) −14.7985 −0.481651
\(945\) 0 0
\(946\) −59.5227 −1.93525
\(947\) −1.07922 1.86927i −0.0350700 0.0607430i 0.847958 0.530064i \(-0.177832\pi\)
−0.883028 + 0.469321i \(0.844499\pi\)
\(948\) 0 0
\(949\) 0.111264 0.192715i 0.00361179 0.00625580i
\(950\) −20.8516 + 36.1160i −0.676515 + 1.17176i
\(951\) 0 0
\(952\) 0.983290 + 1.70311i 0.0318686 + 0.0551980i
\(953\) 53.0480 1.71839 0.859196 0.511646i \(-0.170964\pi\)
0.859196 + 0.511646i \(0.170964\pi\)
\(954\) 0 0
\(955\) −76.7738 −2.48434
\(956\) 3.71565 + 6.43569i 0.120173 + 0.208145i
\(957\) 0 0
\(958\) 8.84176 15.3144i 0.285664 0.494785i
\(959\) 6.46610 11.1996i 0.208801 0.361654i
\(960\) 0 0
\(961\) 11.6428 + 20.1660i 0.375575 + 0.650515i
\(962\) −0.712008 −0.0229561
\(963\) 0 0
\(964\) 9.39926 0.302730
\(965\) 40.9839 + 70.9862i 1.31932 + 2.28513i
\(966\) 0 0
\(967\) −13.5279 + 23.4310i −0.435029 + 0.753492i −0.997298 0.0734625i \(-0.976595\pi\)
0.562269 + 0.826954i \(0.309928\pi\)
\(968\) −7.89926 + 13.6819i −0.253892 + 0.439753i
\(969\) 0 0
\(970\) 8.14468 + 14.1070i 0.261510 + 0.452949i
\(971\) −30.3979 −0.975514 −0.487757 0.872979i \(-0.662185\pi\)
−0.487757 + 0.872979i \(0.662185\pi\)
\(972\) 0 0
\(973\) −29.7628 −0.954150
\(974\) 11.6218 + 20.1295i 0.372386 + 0.644991i
\(975\) 0 0
\(976\) −4.69963 + 8.13999i −0.150431 + 0.260555i
\(977\) −8.55632 + 14.8200i −0.273741 + 0.474133i −0.969817 0.243835i \(-0.921594\pi\)
0.696076 + 0.717968i \(0.254928\pi\)
\(978\) 0 0
\(979\) −19.1520 33.1722i −0.612100 1.06019i
\(980\) −2.96286 −0.0946451
\(981\) 0 0
\(982\) 18.5439 0.591761
\(983\) 20.6861 + 35.8293i 0.659783 + 1.14278i 0.980672 + 0.195661i \(0.0626853\pi\)
−0.320888 + 0.947117i \(0.603981\pi\)
\(984\) 0 0
\(985\) 16.8261 29.1437i 0.536126 0.928597i
\(986\) −0.777472 + 1.34662i −0.0247597 + 0.0428851i
\(987\) 0 0
\(988\) −3.58836 6.21523i −0.114161 0.197733i
\(989\) 68.9888 2.19372
\(990\) 0 0
\(991\) −38.8552 −1.23427 −0.617137 0.786855i \(-0.711708\pi\)
−0.617137 + 0.786855i \(0.711708\pi\)
\(992\) −1.38874 2.40536i −0.0440924 0.0763703i
\(993\) 0 0
\(994\) 1.67123 2.89465i 0.0530081 0.0918127i
\(995\) 44.2312 76.6107i 1.40222 2.42872i
\(996\) 0 0
\(997\) 2.73167 + 4.73139i 0.0865129 + 0.149845i 0.906035 0.423203i \(-0.139094\pi\)
−0.819522 + 0.573048i \(0.805761\pi\)
\(998\) −31.5475 −0.998619
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.e.d.469.3 6
3.2 odd 2 234.2.e.d.157.3 yes 6
9.2 odd 6 234.2.e.d.79.3 6
9.4 even 3 2106.2.a.r.1.1 3
9.5 odd 6 2106.2.a.q.1.3 3
9.7 even 3 inner 702.2.e.d.235.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.e.d.79.3 6 9.2 odd 6
234.2.e.d.157.3 yes 6 3.2 odd 2
702.2.e.d.235.3 6 9.7 even 3 inner
702.2.e.d.469.3 6 1.1 even 1 trivial
2106.2.a.q.1.3 3 9.5 odd 6
2106.2.a.r.1.1 3 9.4 even 3