Properties

Label 2106.2.a.r.1.1
Level $2106$
Weight $2$
Character 2106.1
Self dual yes
Analytic conductor $16.816$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2106,2,Mod(1,2106)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2106, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2106.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,2,0,-2,3,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 234)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.69963\) of defining polynomial
Character \(\chi\) \(=\) 2106.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.28799 q^{5} -2.81089 q^{7} +1.00000 q^{8} -3.28799 q^{10} -5.17673 q^{11} +1.00000 q^{13} -2.81089 q^{14} +1.00000 q^{16} +0.699628 q^{17} +7.17673 q^{19} -3.28799 q^{20} -5.17673 q^{22} +6.00000 q^{23} +5.81089 q^{25} +1.00000 q^{26} -2.81089 q^{28} +2.22253 q^{29} +2.77747 q^{31} +1.00000 q^{32} +0.699628 q^{34} +9.24219 q^{35} -0.712008 q^{37} +7.17673 q^{38} -3.28799 q^{40} +0.823272 q^{41} +11.4981 q^{43} -5.17673 q^{44} +6.00000 q^{46} -1.52290 q^{47} +0.901116 q^{49} +5.81089 q^{50} +1.00000 q^{52} +11.0210 q^{53} +17.0210 q^{55} -2.81089 q^{56} +2.22253 q^{58} -14.7985 q^{59} +9.39926 q^{61} +2.77747 q^{62} +1.00000 q^{64} -3.28799 q^{65} +0.445057 q^{67} +0.699628 q^{68} +9.24219 q^{70} +1.18911 q^{71} -0.222528 q^{73} -0.712008 q^{74} +7.17673 q^{76} +14.5512 q^{77} -15.7527 q^{79} -3.28799 q^{80} +0.823272 q^{82} +7.97524 q^{83} -2.30037 q^{85} +11.4981 q^{86} -5.17673 q^{88} -7.39926 q^{89} -2.81089 q^{91} +6.00000 q^{92} -1.52290 q^{94} -23.5970 q^{95} +4.95420 q^{97} +0.901116 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 2 q^{5} - 2 q^{7} + 3 q^{8} + 2 q^{10} - 4 q^{11} + 3 q^{13} - 2 q^{14} + 3 q^{16} - 4 q^{17} + 10 q^{19} + 2 q^{20} - 4 q^{22} + 18 q^{23} + 11 q^{25} + 3 q^{26} - 2 q^{28} + 6 q^{29}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.28799 −1.47043 −0.735217 0.677831i \(-0.762920\pi\)
−0.735217 + 0.677831i \(0.762920\pi\)
\(6\) 0 0
\(7\) −2.81089 −1.06242 −0.531209 0.847241i \(-0.678262\pi\)
−0.531209 + 0.847241i \(0.678262\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.28799 −1.03975
\(11\) −5.17673 −1.56084 −0.780421 0.625254i \(-0.784995\pi\)
−0.780421 + 0.625254i \(0.784995\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −2.81089 −0.751243
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.699628 0.169685 0.0848424 0.996394i \(-0.472961\pi\)
0.0848424 + 0.996394i \(0.472961\pi\)
\(18\) 0 0
\(19\) 7.17673 1.64645 0.823227 0.567712i \(-0.192171\pi\)
0.823227 + 0.567712i \(0.192171\pi\)
\(20\) −3.28799 −0.735217
\(21\) 0 0
\(22\) −5.17673 −1.10368
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 5.81089 1.16218
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) −2.81089 −0.531209
\(29\) 2.22253 0.412713 0.206357 0.978477i \(-0.433839\pi\)
0.206357 + 0.978477i \(0.433839\pi\)
\(30\) 0 0
\(31\) 2.77747 0.498849 0.249424 0.968394i \(-0.419759\pi\)
0.249424 + 0.968394i \(0.419759\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0.699628 0.119985
\(35\) 9.24219 1.56222
\(36\) 0 0
\(37\) −0.712008 −0.117053 −0.0585267 0.998286i \(-0.518640\pi\)
−0.0585267 + 0.998286i \(0.518640\pi\)
\(38\) 7.17673 1.16422
\(39\) 0 0
\(40\) −3.28799 −0.519877
\(41\) 0.823272 0.128573 0.0642867 0.997931i \(-0.479523\pi\)
0.0642867 + 0.997931i \(0.479523\pi\)
\(42\) 0 0
\(43\) 11.4981 1.75345 0.876725 0.480992i \(-0.159723\pi\)
0.876725 + 0.480992i \(0.159723\pi\)
\(44\) −5.17673 −0.780421
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −1.52290 −0.222138 −0.111069 0.993813i \(-0.535427\pi\)
−0.111069 + 0.993813i \(0.535427\pi\)
\(48\) 0 0
\(49\) 0.901116 0.128731
\(50\) 5.81089 0.821784
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) 11.0210 1.51386 0.756928 0.653498i \(-0.226699\pi\)
0.756928 + 0.653498i \(0.226699\pi\)
\(54\) 0 0
\(55\) 17.0210 2.29512
\(56\) −2.81089 −0.375621
\(57\) 0 0
\(58\) 2.22253 0.291832
\(59\) −14.7985 −1.92660 −0.963301 0.268423i \(-0.913497\pi\)
−0.963301 + 0.268423i \(0.913497\pi\)
\(60\) 0 0
\(61\) 9.39926 1.20345 0.601726 0.798703i \(-0.294480\pi\)
0.601726 + 0.798703i \(0.294480\pi\)
\(62\) 2.77747 0.352739
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.28799 −0.407825
\(66\) 0 0
\(67\) 0.445057 0.0543723 0.0271862 0.999630i \(-0.491345\pi\)
0.0271862 + 0.999630i \(0.491345\pi\)
\(68\) 0.699628 0.0848424
\(69\) 0 0
\(70\) 9.24219 1.10465
\(71\) 1.18911 0.141121 0.0705606 0.997507i \(-0.477521\pi\)
0.0705606 + 0.997507i \(0.477521\pi\)
\(72\) 0 0
\(73\) −0.222528 −0.0260450 −0.0130225 0.999915i \(-0.504145\pi\)
−0.0130225 + 0.999915i \(0.504145\pi\)
\(74\) −0.712008 −0.0827692
\(75\) 0 0
\(76\) 7.17673 0.823227
\(77\) 14.5512 1.65827
\(78\) 0 0
\(79\) −15.7527 −1.77232 −0.886159 0.463381i \(-0.846636\pi\)
−0.886159 + 0.463381i \(0.846636\pi\)
\(80\) −3.28799 −0.367609
\(81\) 0 0
\(82\) 0.823272 0.0909152
\(83\) 7.97524 0.875396 0.437698 0.899122i \(-0.355794\pi\)
0.437698 + 0.899122i \(0.355794\pi\)
\(84\) 0 0
\(85\) −2.30037 −0.249510
\(86\) 11.4981 1.23988
\(87\) 0 0
\(88\) −5.17673 −0.551841
\(89\) −7.39926 −0.784320 −0.392160 0.919897i \(-0.628272\pi\)
−0.392160 + 0.919897i \(0.628272\pi\)
\(90\) 0 0
\(91\) −2.81089 −0.294662
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −1.52290 −0.157075
\(95\) −23.5970 −2.42100
\(96\) 0 0
\(97\) 4.95420 0.503023 0.251511 0.967854i \(-0.419072\pi\)
0.251511 + 0.967854i \(0.419072\pi\)
\(98\) 0.901116 0.0910264
\(99\) 0 0
\(100\) 5.81089 0.581089
\(101\) 2.95420 0.293954 0.146977 0.989140i \(-0.453046\pi\)
0.146977 + 0.989140i \(0.453046\pi\)
\(102\) 0 0
\(103\) 9.39926 0.926136 0.463068 0.886323i \(-0.346749\pi\)
0.463068 + 0.886323i \(0.346749\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 11.0210 1.07046
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −6.67487 −0.639336 −0.319668 0.947530i \(-0.603571\pi\)
−0.319668 + 0.947530i \(0.603571\pi\)
\(110\) 17.0210 1.62289
\(111\) 0 0
\(112\) −2.81089 −0.265604
\(113\) 3.00000 0.282216 0.141108 0.989994i \(-0.454933\pi\)
0.141108 + 0.989994i \(0.454933\pi\)
\(114\) 0 0
\(115\) −19.7280 −1.83964
\(116\) 2.22253 0.206357
\(117\) 0 0
\(118\) −14.7985 −1.36231
\(119\) −1.96658 −0.180276
\(120\) 0 0
\(121\) 15.7985 1.43623
\(122\) 9.39926 0.850969
\(123\) 0 0
\(124\) 2.77747 0.249424
\(125\) −2.66621 −0.238473
\(126\) 0 0
\(127\) −3.42402 −0.303832 −0.151916 0.988393i \(-0.548544\pi\)
−0.151916 + 0.988393i \(0.548544\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −3.28799 −0.288376
\(131\) −8.25457 −0.721205 −0.360603 0.932720i \(-0.617429\pi\)
−0.360603 + 0.932720i \(0.617429\pi\)
\(132\) 0 0
\(133\) −20.1730 −1.74922
\(134\) 0.445057 0.0384470
\(135\) 0 0
\(136\) 0.699628 0.0599926
\(137\) 4.60074 0.393068 0.196534 0.980497i \(-0.437031\pi\)
0.196534 + 0.980497i \(0.437031\pi\)
\(138\) 0 0
\(139\) 10.5884 0.898093 0.449047 0.893508i \(-0.351764\pi\)
0.449047 + 0.893508i \(0.351764\pi\)
\(140\) 9.24219 0.781108
\(141\) 0 0
\(142\) 1.18911 0.0997877
\(143\) −5.17673 −0.432900
\(144\) 0 0
\(145\) −7.30766 −0.606868
\(146\) −0.222528 −0.0184166
\(147\) 0 0
\(148\) −0.712008 −0.0585267
\(149\) 16.9752 1.39067 0.695333 0.718688i \(-0.255257\pi\)
0.695333 + 0.718688i \(0.255257\pi\)
\(150\) 0 0
\(151\) 22.2174 1.80803 0.904015 0.427502i \(-0.140606\pi\)
0.904015 + 0.427502i \(0.140606\pi\)
\(152\) 7.17673 0.582110
\(153\) 0 0
\(154\) 14.5512 1.17257
\(155\) −9.13231 −0.733524
\(156\) 0 0
\(157\) −4.66758 −0.372514 −0.186257 0.982501i \(-0.559636\pi\)
−0.186257 + 0.982501i \(0.559636\pi\)
\(158\) −15.7527 −1.25322
\(159\) 0 0
\(160\) −3.28799 −0.259939
\(161\) −16.8654 −1.32918
\(162\) 0 0
\(163\) −11.9752 −0.937973 −0.468987 0.883205i \(-0.655381\pi\)
−0.468987 + 0.883205i \(0.655381\pi\)
\(164\) 0.823272 0.0642867
\(165\) 0 0
\(166\) 7.97524 0.618999
\(167\) 6.77747 0.524457 0.262228 0.965006i \(-0.415543\pi\)
0.262228 + 0.965006i \(0.415543\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −2.30037 −0.176430
\(171\) 0 0
\(172\) 11.4981 0.876725
\(173\) −19.1520 −1.45610 −0.728049 0.685526i \(-0.759573\pi\)
−0.728049 + 0.685526i \(0.759573\pi\)
\(174\) 0 0
\(175\) −16.3338 −1.23472
\(176\) −5.17673 −0.390211
\(177\) 0 0
\(178\) −7.39926 −0.554598
\(179\) 0.210149 0.0157072 0.00785362 0.999969i \(-0.497500\pi\)
0.00785362 + 0.999969i \(0.497500\pi\)
\(180\) 0 0
\(181\) 6.44506 0.479057 0.239529 0.970889i \(-0.423007\pi\)
0.239529 + 0.970889i \(0.423007\pi\)
\(182\) −2.81089 −0.208357
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 2.34108 0.172119
\(186\) 0 0
\(187\) −3.62178 −0.264851
\(188\) −1.52290 −0.111069
\(189\) 0 0
\(190\) −23.5970 −1.71191
\(191\) 23.3497 1.68953 0.844764 0.535139i \(-0.179741\pi\)
0.844764 + 0.535139i \(0.179741\pi\)
\(192\) 0 0
\(193\) 24.9294 1.79446 0.897230 0.441563i \(-0.145576\pi\)
0.897230 + 0.441563i \(0.145576\pi\)
\(194\) 4.95420 0.355691
\(195\) 0 0
\(196\) 0.901116 0.0643654
\(197\) 10.2349 0.729207 0.364604 0.931163i \(-0.381205\pi\)
0.364604 + 0.931163i \(0.381205\pi\)
\(198\) 0 0
\(199\) 26.9047 1.90722 0.953611 0.301041i \(-0.0973342\pi\)
0.953611 + 0.301041i \(0.0973342\pi\)
\(200\) 5.81089 0.410892
\(201\) 0 0
\(202\) 2.95420 0.207857
\(203\) −6.24729 −0.438474
\(204\) 0 0
\(205\) −2.70691 −0.189059
\(206\) 9.39926 0.654877
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) −37.1520 −2.56986
\(210\) 0 0
\(211\) 4.71201 0.324388 0.162194 0.986759i \(-0.448143\pi\)
0.162194 + 0.986759i \(0.448143\pi\)
\(212\) 11.0210 0.756928
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −37.8058 −2.57833
\(216\) 0 0
\(217\) −7.80717 −0.529985
\(218\) −6.67487 −0.452079
\(219\) 0 0
\(220\) 17.0210 1.14756
\(221\) 0.699628 0.0470621
\(222\) 0 0
\(223\) 7.62907 0.510880 0.255440 0.966825i \(-0.417780\pi\)
0.255440 + 0.966825i \(0.417780\pi\)
\(224\) −2.81089 −0.187811
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) −22.0421 −1.46298 −0.731492 0.681850i \(-0.761176\pi\)
−0.731492 + 0.681850i \(0.761176\pi\)
\(228\) 0 0
\(229\) −4.48948 −0.296673 −0.148337 0.988937i \(-0.547392\pi\)
−0.148337 + 0.988937i \(0.547392\pi\)
\(230\) −19.7280 −1.30082
\(231\) 0 0
\(232\) 2.22253 0.145916
\(233\) −5.54256 −0.363105 −0.181553 0.983381i \(-0.558112\pi\)
−0.181553 + 0.983381i \(0.558112\pi\)
\(234\) 0 0
\(235\) 5.00728 0.326639
\(236\) −14.7985 −0.963301
\(237\) 0 0
\(238\) −1.96658 −0.127474
\(239\) −7.43130 −0.480691 −0.240345 0.970687i \(-0.577261\pi\)
−0.240345 + 0.970687i \(0.577261\pi\)
\(240\) 0 0
\(241\) 9.39926 0.605459 0.302730 0.953076i \(-0.402102\pi\)
0.302730 + 0.953076i \(0.402102\pi\)
\(242\) 15.7985 1.01557
\(243\) 0 0
\(244\) 9.39926 0.601726
\(245\) −2.96286 −0.189290
\(246\) 0 0
\(247\) 7.17673 0.456644
\(248\) 2.77747 0.176370
\(249\) 0 0
\(250\) −2.66621 −0.168626
\(251\) −15.9963 −1.00968 −0.504838 0.863214i \(-0.668448\pi\)
−0.504838 + 0.863214i \(0.668448\pi\)
\(252\) 0 0
\(253\) −31.0604 −1.95275
\(254\) −3.42402 −0.214842
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.0865047 0.00539602 0.00269801 0.999996i \(-0.499141\pi\)
0.00269801 + 0.999996i \(0.499141\pi\)
\(258\) 0 0
\(259\) 2.00138 0.124360
\(260\) −3.28799 −0.203913
\(261\) 0 0
\(262\) −8.25457 −0.509969
\(263\) −0.978959 −0.0603652 −0.0301826 0.999544i \(-0.509609\pi\)
−0.0301826 + 0.999544i \(0.509609\pi\)
\(264\) 0 0
\(265\) −36.2371 −2.22603
\(266\) −20.1730 −1.23689
\(267\) 0 0
\(268\) 0.445057 0.0271862
\(269\) 25.5723 1.55917 0.779584 0.626297i \(-0.215430\pi\)
0.779584 + 0.626297i \(0.215430\pi\)
\(270\) 0 0
\(271\) 16.9766 1.03126 0.515628 0.856813i \(-0.327559\pi\)
0.515628 + 0.856813i \(0.327559\pi\)
\(272\) 0.699628 0.0424212
\(273\) 0 0
\(274\) 4.60074 0.277941
\(275\) −30.0814 −1.81398
\(276\) 0 0
\(277\) 3.39926 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(278\) 10.5884 0.635048
\(279\) 0 0
\(280\) 9.24219 0.552327
\(281\) 28.6822 1.71103 0.855517 0.517775i \(-0.173240\pi\)
0.855517 + 0.517775i \(0.173240\pi\)
\(282\) 0 0
\(283\) −11.1978 −0.665638 −0.332819 0.942991i \(-0.608000\pi\)
−0.332819 + 0.942991i \(0.608000\pi\)
\(284\) 1.18911 0.0705606
\(285\) 0 0
\(286\) −5.17673 −0.306106
\(287\) −2.31413 −0.136599
\(288\) 0 0
\(289\) −16.5105 −0.971207
\(290\) −7.30766 −0.429120
\(291\) 0 0
\(292\) −0.222528 −0.0130225
\(293\) −6.94182 −0.405545 −0.202773 0.979226i \(-0.564995\pi\)
−0.202773 + 0.979226i \(0.564995\pi\)
\(294\) 0 0
\(295\) 48.6574 2.83294
\(296\) −0.712008 −0.0413846
\(297\) 0 0
\(298\) 16.9752 0.983349
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) −32.3200 −1.86290
\(302\) 22.2174 1.27847
\(303\) 0 0
\(304\) 7.17673 0.411614
\(305\) −30.9047 −1.76960
\(306\) 0 0
\(307\) −15.0210 −0.857296 −0.428648 0.903472i \(-0.641010\pi\)
−0.428648 + 0.903472i \(0.641010\pi\)
\(308\) 14.5512 0.829133
\(309\) 0 0
\(310\) −9.13231 −0.518680
\(311\) 7.97524 0.452234 0.226117 0.974100i \(-0.427397\pi\)
0.226117 + 0.974100i \(0.427397\pi\)
\(312\) 0 0
\(313\) 13.9949 0.791039 0.395519 0.918458i \(-0.370565\pi\)
0.395519 + 0.918458i \(0.370565\pi\)
\(314\) −4.66758 −0.263407
\(315\) 0 0
\(316\) −15.7527 −0.886159
\(317\) 9.42030 0.529097 0.264548 0.964372i \(-0.414777\pi\)
0.264548 + 0.964372i \(0.414777\pi\)
\(318\) 0 0
\(319\) −11.5054 −0.644180
\(320\) −3.28799 −0.183804
\(321\) 0 0
\(322\) −16.8654 −0.939869
\(323\) 5.02104 0.279378
\(324\) 0 0
\(325\) 5.81089 0.322330
\(326\) −11.9752 −0.663247
\(327\) 0 0
\(328\) 0.823272 0.0454576
\(329\) 4.28071 0.236003
\(330\) 0 0
\(331\) −11.5549 −0.635117 −0.317559 0.948239i \(-0.602863\pi\)
−0.317559 + 0.948239i \(0.602863\pi\)
\(332\) 7.97524 0.437698
\(333\) 0 0
\(334\) 6.77747 0.370847
\(335\) −1.46334 −0.0799510
\(336\) 0 0
\(337\) 0.810892 0.0441721 0.0220861 0.999756i \(-0.492969\pi\)
0.0220861 + 0.999756i \(0.492969\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) −2.30037 −0.124755
\(341\) −14.3782 −0.778624
\(342\) 0 0
\(343\) 17.1433 0.925652
\(344\) 11.4981 0.619938
\(345\) 0 0
\(346\) −19.1520 −1.02962
\(347\) −14.3090 −0.768149 −0.384075 0.923302i \(-0.625479\pi\)
−0.384075 + 0.923302i \(0.625479\pi\)
\(348\) 0 0
\(349\) −15.5105 −0.830259 −0.415130 0.909762i \(-0.636264\pi\)
−0.415130 + 0.909762i \(0.636264\pi\)
\(350\) −16.3338 −0.873078
\(351\) 0 0
\(352\) −5.17673 −0.275921
\(353\) 34.7738 1.85082 0.925410 0.378967i \(-0.123721\pi\)
0.925410 + 0.378967i \(0.123721\pi\)
\(354\) 0 0
\(355\) −3.90978 −0.207509
\(356\) −7.39926 −0.392160
\(357\) 0 0
\(358\) 0.210149 0.0111067
\(359\) 24.2829 1.28160 0.640801 0.767707i \(-0.278602\pi\)
0.640801 + 0.767707i \(0.278602\pi\)
\(360\) 0 0
\(361\) 32.5054 1.71081
\(362\) 6.44506 0.338745
\(363\) 0 0
\(364\) −2.81089 −0.147331
\(365\) 0.731671 0.0382974
\(366\) 0 0
\(367\) −15.9084 −0.830412 −0.415206 0.909727i \(-0.636290\pi\)
−0.415206 + 0.909727i \(0.636290\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 2.34108 0.121707
\(371\) −30.9790 −1.60835
\(372\) 0 0
\(373\) 11.4661 0.593692 0.296846 0.954925i \(-0.404065\pi\)
0.296846 + 0.954925i \(0.404065\pi\)
\(374\) −3.62178 −0.187278
\(375\) 0 0
\(376\) −1.52290 −0.0785376
\(377\) 2.22253 0.114466
\(378\) 0 0
\(379\) 3.71063 0.190602 0.0953011 0.995448i \(-0.469619\pi\)
0.0953011 + 0.995448i \(0.469619\pi\)
\(380\) −23.5970 −1.21050
\(381\) 0 0
\(382\) 23.3497 1.19468
\(383\) −3.56732 −0.182282 −0.0911408 0.995838i \(-0.529051\pi\)
−0.0911408 + 0.995838i \(0.529051\pi\)
\(384\) 0 0
\(385\) −47.8443 −2.43837
\(386\) 24.9294 1.26888
\(387\) 0 0
\(388\) 4.95420 0.251511
\(389\) 5.42402 0.275009 0.137504 0.990501i \(-0.456092\pi\)
0.137504 + 0.990501i \(0.456092\pi\)
\(390\) 0 0
\(391\) 4.19777 0.212290
\(392\) 0.901116 0.0455132
\(393\) 0 0
\(394\) 10.2349 0.515627
\(395\) 51.7948 2.60608
\(396\) 0 0
\(397\) −28.1272 −1.41166 −0.705832 0.708379i \(-0.749427\pi\)
−0.705832 + 0.708379i \(0.749427\pi\)
\(398\) 26.9047 1.34861
\(399\) 0 0
\(400\) 5.81089 0.290545
\(401\) 14.8626 0.742203 0.371101 0.928592i \(-0.378980\pi\)
0.371101 + 0.928592i \(0.378980\pi\)
\(402\) 0 0
\(403\) 2.77747 0.138356
\(404\) 2.95420 0.146977
\(405\) 0 0
\(406\) −6.24729 −0.310048
\(407\) 3.68587 0.182702
\(408\) 0 0
\(409\) −17.9752 −0.888818 −0.444409 0.895824i \(-0.646586\pi\)
−0.444409 + 0.895824i \(0.646586\pi\)
\(410\) −2.70691 −0.133685
\(411\) 0 0
\(412\) 9.39926 0.463068
\(413\) 41.5970 2.04686
\(414\) 0 0
\(415\) −26.2225 −1.28721
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) −37.1520 −1.81716
\(419\) 27.4610 1.34156 0.670779 0.741657i \(-0.265960\pi\)
0.670779 + 0.741657i \(0.265960\pi\)
\(420\) 0 0
\(421\) 2.94182 0.143376 0.0716878 0.997427i \(-0.477161\pi\)
0.0716878 + 0.997427i \(0.477161\pi\)
\(422\) 4.71201 0.229377
\(423\) 0 0
\(424\) 11.0210 0.535229
\(425\) 4.06546 0.197204
\(426\) 0 0
\(427\) −26.4203 −1.27857
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −37.8058 −1.82316
\(431\) −3.37959 −0.162789 −0.0813946 0.996682i \(-0.525937\pi\)
−0.0813946 + 0.996682i \(0.525937\pi\)
\(432\) 0 0
\(433\) 8.36584 0.402036 0.201018 0.979588i \(-0.435575\pi\)
0.201018 + 0.979588i \(0.435575\pi\)
\(434\) −7.80717 −0.374756
\(435\) 0 0
\(436\) −6.67487 −0.319668
\(437\) 43.0604 2.05986
\(438\) 0 0
\(439\) −28.5760 −1.36386 −0.681929 0.731419i \(-0.738859\pi\)
−0.681929 + 0.731419i \(0.738859\pi\)
\(440\) 17.0210 0.811446
\(441\) 0 0
\(442\) 0.699628 0.0332779
\(443\) 18.5388 0.880807 0.440404 0.897800i \(-0.354835\pi\)
0.440404 + 0.897800i \(0.354835\pi\)
\(444\) 0 0
\(445\) 24.3287 1.15329
\(446\) 7.62907 0.361247
\(447\) 0 0
\(448\) −2.81089 −0.132802
\(449\) 14.8626 0.701409 0.350705 0.936486i \(-0.385942\pi\)
0.350705 + 0.936486i \(0.385942\pi\)
\(450\) 0 0
\(451\) −4.26186 −0.200683
\(452\) 3.00000 0.141108
\(453\) 0 0
\(454\) −22.0421 −1.03449
\(455\) 9.24219 0.433281
\(456\) 0 0
\(457\) 22.3039 1.04333 0.521667 0.853149i \(-0.325310\pi\)
0.521667 + 0.853149i \(0.325310\pi\)
\(458\) −4.48948 −0.209780
\(459\) 0 0
\(460\) −19.7280 −0.919821
\(461\) −9.74033 −0.453653 −0.226826 0.973935i \(-0.572835\pi\)
−0.226826 + 0.973935i \(0.572835\pi\)
\(462\) 0 0
\(463\) −3.62550 −0.168491 −0.0842457 0.996445i \(-0.526848\pi\)
−0.0842457 + 0.996445i \(0.526848\pi\)
\(464\) 2.22253 0.103178
\(465\) 0 0
\(466\) −5.54256 −0.256754
\(467\) 0.0458003 0.00211939 0.00105969 0.999999i \(-0.499663\pi\)
0.00105969 + 0.999999i \(0.499663\pi\)
\(468\) 0 0
\(469\) −1.25101 −0.0577661
\(470\) 5.00728 0.230969
\(471\) 0 0
\(472\) −14.7985 −0.681157
\(473\) −59.5227 −2.73686
\(474\) 0 0
\(475\) 41.7032 1.91347
\(476\) −1.96658 −0.0901380
\(477\) 0 0
\(478\) −7.43130 −0.339900
\(479\) −17.6835 −0.807981 −0.403991 0.914763i \(-0.632377\pi\)
−0.403991 + 0.914763i \(0.632377\pi\)
\(480\) 0 0
\(481\) −0.712008 −0.0324648
\(482\) 9.39926 0.428124
\(483\) 0 0
\(484\) 15.7985 0.718114
\(485\) −16.2894 −0.739662
\(486\) 0 0
\(487\) −23.2436 −1.05327 −0.526633 0.850093i \(-0.676546\pi\)
−0.526633 + 0.850093i \(0.676546\pi\)
\(488\) 9.39926 0.425484
\(489\) 0 0
\(490\) −2.96286 −0.133848
\(491\) 18.5439 0.836876 0.418438 0.908245i \(-0.362578\pi\)
0.418438 + 0.908245i \(0.362578\pi\)
\(492\) 0 0
\(493\) 1.55494 0.0700311
\(494\) 7.17673 0.322896
\(495\) 0 0
\(496\) 2.77747 0.124712
\(497\) −3.34245 −0.149930
\(498\) 0 0
\(499\) −31.5475 −1.41226 −0.706130 0.708082i \(-0.749561\pi\)
−0.706130 + 0.708082i \(0.749561\pi\)
\(500\) −2.66621 −0.119236
\(501\) 0 0
\(502\) −15.9963 −0.713949
\(503\) −21.2188 −0.946100 −0.473050 0.881036i \(-0.656847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(504\) 0 0
\(505\) −9.71339 −0.432240
\(506\) −31.0604 −1.38080
\(507\) 0 0
\(508\) −3.42402 −0.151916
\(509\) −3.42030 −0.151602 −0.0758010 0.997123i \(-0.524151\pi\)
−0.0758010 + 0.997123i \(0.524151\pi\)
\(510\) 0 0
\(511\) 0.625503 0.0276706
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.0865047 0.00381556
\(515\) −30.9047 −1.36182
\(516\) 0 0
\(517\) 7.88364 0.346722
\(518\) 2.00138 0.0879355
\(519\) 0 0
\(520\) −3.28799 −0.144188
\(521\) −25.5498 −1.11936 −0.559680 0.828709i \(-0.689076\pi\)
−0.559680 + 0.828709i \(0.689076\pi\)
\(522\) 0 0
\(523\) −16.0458 −0.701634 −0.350817 0.936444i \(-0.614096\pi\)
−0.350817 + 0.936444i \(0.614096\pi\)
\(524\) −8.25457 −0.360603
\(525\) 0 0
\(526\) −0.978959 −0.0426846
\(527\) 1.94320 0.0846470
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −36.2371 −1.57404
\(531\) 0 0
\(532\) −20.1730 −0.874611
\(533\) 0.823272 0.0356599
\(534\) 0 0
\(535\) 39.4559 1.70583
\(536\) 0.445057 0.0192235
\(537\) 0 0
\(538\) 25.5723 1.10250
\(539\) −4.66483 −0.200928
\(540\) 0 0
\(541\) −0.899738 −0.0386828 −0.0193414 0.999813i \(-0.506157\pi\)
−0.0193414 + 0.999813i \(0.506157\pi\)
\(542\) 16.9766 0.729208
\(543\) 0 0
\(544\) 0.699628 0.0299963
\(545\) 21.9469 0.940103
\(546\) 0 0
\(547\) −33.4189 −1.42889 −0.714445 0.699692i \(-0.753321\pi\)
−0.714445 + 0.699692i \(0.753321\pi\)
\(548\) 4.60074 0.196534
\(549\) 0 0
\(550\) −30.0814 −1.28268
\(551\) 15.9505 0.679513
\(552\) 0 0
\(553\) 44.2792 1.88294
\(554\) 3.39926 0.144421
\(555\) 0 0
\(556\) 10.5884 0.449047
\(557\) 0.123644 0.00523896 0.00261948 0.999997i \(-0.499166\pi\)
0.00261948 + 0.999997i \(0.499166\pi\)
\(558\) 0 0
\(559\) 11.4981 0.486320
\(560\) 9.24219 0.390554
\(561\) 0 0
\(562\) 28.6822 1.20988
\(563\) −2.58836 −0.109087 −0.0545433 0.998511i \(-0.517370\pi\)
−0.0545433 + 0.998511i \(0.517370\pi\)
\(564\) 0 0
\(565\) −9.86398 −0.414981
\(566\) −11.1978 −0.470677
\(567\) 0 0
\(568\) 1.18911 0.0498939
\(569\) 7.46844 0.313093 0.156547 0.987671i \(-0.449964\pi\)
0.156547 + 0.987671i \(0.449964\pi\)
\(570\) 0 0
\(571\) −32.6501 −1.36636 −0.683182 0.730248i \(-0.739405\pi\)
−0.683182 + 0.730248i \(0.739405\pi\)
\(572\) −5.17673 −0.216450
\(573\) 0 0
\(574\) −2.31413 −0.0965899
\(575\) 34.8654 1.45399
\(576\) 0 0
\(577\) −18.9542 −0.789074 −0.394537 0.918880i \(-0.629095\pi\)
−0.394537 + 0.918880i \(0.629095\pi\)
\(578\) −16.5105 −0.686747
\(579\) 0 0
\(580\) −7.30766 −0.303434
\(581\) −22.4175 −0.930036
\(582\) 0 0
\(583\) −57.0529 −2.36289
\(584\) −0.222528 −0.00920829
\(585\) 0 0
\(586\) −6.94182 −0.286764
\(587\) 31.1520 1.28578 0.642890 0.765959i \(-0.277735\pi\)
0.642890 + 0.765959i \(0.277735\pi\)
\(588\) 0 0
\(589\) 19.9332 0.821331
\(590\) 48.6574 2.00319
\(591\) 0 0
\(592\) −0.712008 −0.0292633
\(593\) −39.0631 −1.60413 −0.802065 0.597237i \(-0.796265\pi\)
−0.802065 + 0.597237i \(0.796265\pi\)
\(594\) 0 0
\(595\) 6.46610 0.265084
\(596\) 16.9752 0.695333
\(597\) 0 0
\(598\) 6.00000 0.245358
\(599\) −19.7280 −0.806062 −0.403031 0.915186i \(-0.632043\pi\)
−0.403031 + 0.915186i \(0.632043\pi\)
\(600\) 0 0
\(601\) −1.40654 −0.0573740 −0.0286870 0.999588i \(-0.509133\pi\)
−0.0286870 + 0.999588i \(0.509133\pi\)
\(602\) −32.3200 −1.31727
\(603\) 0 0
\(604\) 22.2174 0.904015
\(605\) −51.9454 −2.11188
\(606\) 0 0
\(607\) −10.2473 −0.415925 −0.207962 0.978137i \(-0.566683\pi\)
−0.207962 + 0.978137i \(0.566683\pi\)
\(608\) 7.17673 0.291055
\(609\) 0 0
\(610\) −30.9047 −1.25129
\(611\) −1.52290 −0.0616099
\(612\) 0 0
\(613\) −43.3287 −1.75003 −0.875015 0.484096i \(-0.839148\pi\)
−0.875015 + 0.484096i \(0.839148\pi\)
\(614\) −15.0210 −0.606200
\(615\) 0 0
\(616\) 14.5512 0.586286
\(617\) −2.89011 −0.116352 −0.0581758 0.998306i \(-0.518528\pi\)
−0.0581758 + 0.998306i \(0.518528\pi\)
\(618\) 0 0
\(619\) 0.692344 0.0278277 0.0139138 0.999903i \(-0.495571\pi\)
0.0139138 + 0.999903i \(0.495571\pi\)
\(620\) −9.13231 −0.366762
\(621\) 0 0
\(622\) 7.97524 0.319778
\(623\) 20.7985 0.833275
\(624\) 0 0
\(625\) −20.2880 −0.811520
\(626\) 13.9949 0.559349
\(627\) 0 0
\(628\) −4.66758 −0.186257
\(629\) −0.498141 −0.0198622
\(630\) 0 0
\(631\) 30.4771 1.21327 0.606637 0.794979i \(-0.292518\pi\)
0.606637 + 0.794979i \(0.292518\pi\)
\(632\) −15.7527 −0.626609
\(633\) 0 0
\(634\) 9.42030 0.374128
\(635\) 11.2581 0.446766
\(636\) 0 0
\(637\) 0.901116 0.0357035
\(638\) −11.5054 −0.455504
\(639\) 0 0
\(640\) −3.28799 −0.129969
\(641\) 38.1941 1.50857 0.754287 0.656545i \(-0.227983\pi\)
0.754287 + 0.656545i \(0.227983\pi\)
\(642\) 0 0
\(643\) 12.6181 0.497608 0.248804 0.968554i \(-0.419963\pi\)
0.248804 + 0.968554i \(0.419963\pi\)
\(644\) −16.8654 −0.664588
\(645\) 0 0
\(646\) 5.02104 0.197550
\(647\) −35.9257 −1.41239 −0.706193 0.708019i \(-0.749589\pi\)
−0.706193 + 0.708019i \(0.749589\pi\)
\(648\) 0 0
\(649\) 76.6079 3.00712
\(650\) 5.81089 0.227922
\(651\) 0 0
\(652\) −11.9752 −0.468987
\(653\) 21.4386 0.838957 0.419478 0.907765i \(-0.362213\pi\)
0.419478 + 0.907765i \(0.362213\pi\)
\(654\) 0 0
\(655\) 27.1410 1.06049
\(656\) 0.823272 0.0321434
\(657\) 0 0
\(658\) 4.28071 0.166879
\(659\) −32.7527 −1.27586 −0.637932 0.770092i \(-0.720210\pi\)
−0.637932 + 0.770092i \(0.720210\pi\)
\(660\) 0 0
\(661\) 0.536657 0.0208735 0.0104368 0.999946i \(-0.496678\pi\)
0.0104368 + 0.999946i \(0.496678\pi\)
\(662\) −11.5549 −0.449096
\(663\) 0 0
\(664\) 7.97524 0.309499
\(665\) 66.3287 2.57212
\(666\) 0 0
\(667\) 13.3352 0.516340
\(668\) 6.77747 0.262228
\(669\) 0 0
\(670\) −1.46334 −0.0565339
\(671\) −48.6574 −1.87840
\(672\) 0 0
\(673\) 33.9061 1.30698 0.653491 0.756934i \(-0.273304\pi\)
0.653491 + 0.756934i \(0.273304\pi\)
\(674\) 0.810892 0.0312344
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 26.7985 1.02995 0.514975 0.857205i \(-0.327801\pi\)
0.514975 + 0.857205i \(0.327801\pi\)
\(678\) 0 0
\(679\) −13.9257 −0.534420
\(680\) −2.30037 −0.0882152
\(681\) 0 0
\(682\) −14.3782 −0.550570
\(683\) −0.978959 −0.0374588 −0.0187294 0.999825i \(-0.505962\pi\)
−0.0187294 + 0.999825i \(0.505962\pi\)
\(684\) 0 0
\(685\) −15.1272 −0.577981
\(686\) 17.1433 0.654535
\(687\) 0 0
\(688\) 11.4981 0.438363
\(689\) 11.0210 0.419868
\(690\) 0 0
\(691\) −50.5265 −1.92212 −0.961059 0.276344i \(-0.910877\pi\)
−0.961059 + 0.276344i \(0.910877\pi\)
\(692\) −19.1520 −0.728049
\(693\) 0 0
\(694\) −14.3090 −0.543163
\(695\) −34.8145 −1.32059
\(696\) 0 0
\(697\) 0.575984 0.0218170
\(698\) −15.5105 −0.587082
\(699\) 0 0
\(700\) −16.3338 −0.617359
\(701\) 9.37450 0.354070 0.177035 0.984205i \(-0.443349\pi\)
0.177035 + 0.984205i \(0.443349\pi\)
\(702\) 0 0
\(703\) −5.10989 −0.192723
\(704\) −5.17673 −0.195105
\(705\) 0 0
\(706\) 34.7738 1.30873
\(707\) −8.30394 −0.312302
\(708\) 0 0
\(709\) −14.5723 −0.547273 −0.273636 0.961833i \(-0.588227\pi\)
−0.273636 + 0.961833i \(0.588227\pi\)
\(710\) −3.90978 −0.146731
\(711\) 0 0
\(712\) −7.39926 −0.277299
\(713\) 16.6648 0.624103
\(714\) 0 0
\(715\) 17.0210 0.636551
\(716\) 0.210149 0.00785362
\(717\) 0 0
\(718\) 24.2829 0.906230
\(719\) 33.3104 1.24227 0.621134 0.783704i \(-0.286672\pi\)
0.621134 + 0.783704i \(0.286672\pi\)
\(720\) 0 0
\(721\) −26.4203 −0.983943
\(722\) 32.5054 1.20973
\(723\) 0 0
\(724\) 6.44506 0.239529
\(725\) 12.9149 0.479646
\(726\) 0 0
\(727\) −33.2857 −1.23450 −0.617248 0.786768i \(-0.711753\pi\)
−0.617248 + 0.786768i \(0.711753\pi\)
\(728\) −2.81089 −0.104179
\(729\) 0 0
\(730\) 0.731671 0.0270804
\(731\) 8.04442 0.297534
\(732\) 0 0
\(733\) 46.9171 1.73292 0.866461 0.499245i \(-0.166389\pi\)
0.866461 + 0.499245i \(0.166389\pi\)
\(734\) −15.9084 −0.587190
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) −2.30394 −0.0848666
\(738\) 0 0
\(739\) −43.6116 −1.60428 −0.802139 0.597137i \(-0.796305\pi\)
−0.802139 + 0.597137i \(0.796305\pi\)
\(740\) 2.34108 0.0860597
\(741\) 0 0
\(742\) −30.9790 −1.13727
\(743\) 40.0741 1.47018 0.735089 0.677971i \(-0.237141\pi\)
0.735089 + 0.677971i \(0.237141\pi\)
\(744\) 0 0
\(745\) −55.8145 −2.04488
\(746\) 11.4661 0.419804
\(747\) 0 0
\(748\) −3.62178 −0.132426
\(749\) 33.7307 1.23249
\(750\) 0 0
\(751\) 45.3077 1.65330 0.826650 0.562717i \(-0.190244\pi\)
0.826650 + 0.562717i \(0.190244\pi\)
\(752\) −1.52290 −0.0555345
\(753\) 0 0
\(754\) 2.22253 0.0809397
\(755\) −73.0507 −2.65859
\(756\) 0 0
\(757\) 38.3287 1.39308 0.696540 0.717518i \(-0.254722\pi\)
0.696540 + 0.717518i \(0.254722\pi\)
\(758\) 3.71063 0.134776
\(759\) 0 0
\(760\) −23.5970 −0.855954
\(761\) 10.6822 0.387228 0.193614 0.981078i \(-0.437979\pi\)
0.193614 + 0.981078i \(0.437979\pi\)
\(762\) 0 0
\(763\) 18.7623 0.679242
\(764\) 23.3497 0.844764
\(765\) 0 0
\(766\) −3.56732 −0.128893
\(767\) −14.7985 −0.534343
\(768\) 0 0
\(769\) −48.5685 −1.75143 −0.875713 0.482831i \(-0.839608\pi\)
−0.875713 + 0.482831i \(0.839608\pi\)
\(770\) −47.8443 −1.72419
\(771\) 0 0
\(772\) 24.9294 0.897230
\(773\) −1.45881 −0.0524699 −0.0262349 0.999656i \(-0.508352\pi\)
−0.0262349 + 0.999656i \(0.508352\pi\)
\(774\) 0 0
\(775\) 16.1396 0.579751
\(776\) 4.95420 0.177845
\(777\) 0 0
\(778\) 5.42402 0.194460
\(779\) 5.90840 0.211690
\(780\) 0 0
\(781\) −6.15569 −0.220268
\(782\) 4.19777 0.150112
\(783\) 0 0
\(784\) 0.901116 0.0321827
\(785\) 15.3470 0.547757
\(786\) 0 0
\(787\) −14.1062 −0.502831 −0.251415 0.967879i \(-0.580896\pi\)
−0.251415 + 0.967879i \(0.580896\pi\)
\(788\) 10.2349 0.364604
\(789\) 0 0
\(790\) 51.7948 1.84278
\(791\) −8.43268 −0.299831
\(792\) 0 0
\(793\) 9.39926 0.333777
\(794\) −28.1272 −0.998197
\(795\) 0 0
\(796\) 26.9047 0.953611
\(797\) −29.1941 −1.03411 −0.517053 0.855953i \(-0.672971\pi\)
−0.517053 + 0.855953i \(0.672971\pi\)
\(798\) 0 0
\(799\) −1.06546 −0.0376934
\(800\) 5.81089 0.205446
\(801\) 0 0
\(802\) 14.8626 0.524817
\(803\) 1.15197 0.0406521
\(804\) 0 0
\(805\) 55.4532 1.95447
\(806\) 2.77747 0.0978323
\(807\) 0 0
\(808\) 2.95420 0.103928
\(809\) 24.4523 0.859699 0.429849 0.902901i \(-0.358567\pi\)
0.429849 + 0.902901i \(0.358567\pi\)
\(810\) 0 0
\(811\) −21.5970 −0.758374 −0.379187 0.925320i \(-0.623796\pi\)
−0.379187 + 0.925320i \(0.623796\pi\)
\(812\) −6.24729 −0.219237
\(813\) 0 0
\(814\) 3.68587 0.129190
\(815\) 39.3745 1.37923
\(816\) 0 0
\(817\) 82.5190 2.88698
\(818\) −17.9752 −0.628490
\(819\) 0 0
\(820\) −2.70691 −0.0945295
\(821\) 4.32141 0.150818 0.0754092 0.997153i \(-0.475974\pi\)
0.0754092 + 0.997153i \(0.475974\pi\)
\(822\) 0 0
\(823\) −27.7527 −0.967399 −0.483699 0.875234i \(-0.660707\pi\)
−0.483699 + 0.875234i \(0.660707\pi\)
\(824\) 9.39926 0.327439
\(825\) 0 0
\(826\) 41.5970 1.44735
\(827\) −8.55122 −0.297355 −0.148678 0.988886i \(-0.547502\pi\)
−0.148678 + 0.988886i \(0.547502\pi\)
\(828\) 0 0
\(829\) 38.2371 1.32803 0.664015 0.747720i \(-0.268851\pi\)
0.664015 + 0.747720i \(0.268851\pi\)
\(830\) −26.2225 −0.910197
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) 0.630446 0.0218437
\(834\) 0 0
\(835\) −22.2843 −0.771179
\(836\) −37.1520 −1.28493
\(837\) 0 0
\(838\) 27.4610 0.948625
\(839\) 45.0814 1.55638 0.778192 0.628027i \(-0.216137\pi\)
0.778192 + 0.628027i \(0.216137\pi\)
\(840\) 0 0
\(841\) −24.0604 −0.829668
\(842\) 2.94182 0.101382
\(843\) 0 0
\(844\) 4.71201 0.162194
\(845\) −3.28799 −0.113110
\(846\) 0 0
\(847\) −44.4079 −1.52587
\(848\) 11.0210 0.378464
\(849\) 0 0
\(850\) 4.06546 0.139444
\(851\) −4.27205 −0.146444
\(852\) 0 0
\(853\) 25.9680 0.889126 0.444563 0.895748i \(-0.353359\pi\)
0.444563 + 0.895748i \(0.353359\pi\)
\(854\) −26.4203 −0.904084
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −18.1099 −0.618622 −0.309311 0.950961i \(-0.600098\pi\)
−0.309311 + 0.950961i \(0.600098\pi\)
\(858\) 0 0
\(859\) −32.2161 −1.09920 −0.549599 0.835429i \(-0.685219\pi\)
−0.549599 + 0.835429i \(0.685219\pi\)
\(860\) −37.8058 −1.28917
\(861\) 0 0
\(862\) −3.37959 −0.115109
\(863\) 5.01594 0.170745 0.0853724 0.996349i \(-0.472792\pi\)
0.0853724 + 0.996349i \(0.472792\pi\)
\(864\) 0 0
\(865\) 62.9715 2.14110
\(866\) 8.36584 0.284283
\(867\) 0 0
\(868\) −7.80717 −0.264993
\(869\) 81.5475 2.76631
\(870\) 0 0
\(871\) 0.445057 0.0150802
\(872\) −6.67487 −0.226040
\(873\) 0 0
\(874\) 43.0604 1.45654
\(875\) 7.49442 0.253358
\(876\) 0 0
\(877\) 19.5105 0.658823 0.329412 0.944186i \(-0.393150\pi\)
0.329412 + 0.944186i \(0.393150\pi\)
\(878\) −28.5760 −0.964393
\(879\) 0 0
\(880\) 17.0210 0.573779
\(881\) 30.4895 1.02722 0.513608 0.858025i \(-0.328308\pi\)
0.513608 + 0.858025i \(0.328308\pi\)
\(882\) 0 0
\(883\) −0.217432 −0.00731718 −0.00365859 0.999993i \(-0.501165\pi\)
−0.00365859 + 0.999993i \(0.501165\pi\)
\(884\) 0.699628 0.0235310
\(885\) 0 0
\(886\) 18.5388 0.622825
\(887\) 4.44506 0.149250 0.0746252 0.997212i \(-0.476224\pi\)
0.0746252 + 0.997212i \(0.476224\pi\)
\(888\) 0 0
\(889\) 9.62454 0.322797
\(890\) 24.3287 0.815500
\(891\) 0 0
\(892\) 7.62907 0.255440
\(893\) −10.9294 −0.365740
\(894\) 0 0
\(895\) −0.690967 −0.0230965
\(896\) −2.81089 −0.0939053
\(897\) 0 0
\(898\) 14.8626 0.495971
\(899\) 6.17301 0.205881
\(900\) 0 0
\(901\) 7.71063 0.256878
\(902\) −4.26186 −0.141904
\(903\) 0 0
\(904\) 3.00000 0.0997785
\(905\) −21.1913 −0.704422
\(906\) 0 0
\(907\) −18.5141 −0.614750 −0.307375 0.951588i \(-0.599451\pi\)
−0.307375 + 0.951588i \(0.599451\pi\)
\(908\) −22.0421 −0.731492
\(909\) 0 0
\(910\) 9.24219 0.306376
\(911\) 4.28937 0.142113 0.0710566 0.997472i \(-0.477363\pi\)
0.0710566 + 0.997472i \(0.477363\pi\)
\(912\) 0 0
\(913\) −41.2857 −1.36636
\(914\) 22.3039 0.737749
\(915\) 0 0
\(916\) −4.48948 −0.148337
\(917\) 23.2027 0.766221
\(918\) 0 0
\(919\) 53.5302 1.76580 0.882899 0.469563i \(-0.155589\pi\)
0.882899 + 0.469563i \(0.155589\pi\)
\(920\) −19.7280 −0.650411
\(921\) 0 0
\(922\) −9.74033 −0.320781
\(923\) 1.18911 0.0391400
\(924\) 0 0
\(925\) −4.13740 −0.136037
\(926\) −3.62550 −0.119141
\(927\) 0 0
\(928\) 2.22253 0.0729581
\(929\) 45.7948 1.50248 0.751239 0.660030i \(-0.229456\pi\)
0.751239 + 0.660030i \(0.229456\pi\)
\(930\) 0 0
\(931\) 6.46706 0.211949
\(932\) −5.54256 −0.181553
\(933\) 0 0
\(934\) 0.0458003 0.00149863
\(935\) 11.9084 0.389446
\(936\) 0 0
\(937\) −32.0604 −1.04737 −0.523683 0.851913i \(-0.675442\pi\)
−0.523683 + 0.851913i \(0.675442\pi\)
\(938\) −1.25101 −0.0408468
\(939\) 0 0
\(940\) 5.00728 0.163320
\(941\) 14.3686 0.468403 0.234201 0.972188i \(-0.424753\pi\)
0.234201 + 0.972188i \(0.424753\pi\)
\(942\) 0 0
\(943\) 4.93963 0.160857
\(944\) −14.7985 −0.481651
\(945\) 0 0
\(946\) −59.5227 −1.93525
\(947\) 2.15844 0.0701399 0.0350700 0.999385i \(-0.488835\pi\)
0.0350700 + 0.999385i \(0.488835\pi\)
\(948\) 0 0
\(949\) −0.222528 −0.00722357
\(950\) 41.7032 1.35303
\(951\) 0 0
\(952\) −1.96658 −0.0637372
\(953\) 53.0480 1.71839 0.859196 0.511646i \(-0.170964\pi\)
0.859196 + 0.511646i \(0.170964\pi\)
\(954\) 0 0
\(955\) −76.7738 −2.48434
\(956\) −7.43130 −0.240345
\(957\) 0 0
\(958\) −17.6835 −0.571329
\(959\) −12.9322 −0.417602
\(960\) 0 0
\(961\) −23.2857 −0.751150
\(962\) −0.712008 −0.0229561
\(963\) 0 0
\(964\) 9.39926 0.302730
\(965\) −81.9678 −2.63864
\(966\) 0 0
\(967\) 27.0558 0.870057 0.435029 0.900417i \(-0.356738\pi\)
0.435029 + 0.900417i \(0.356738\pi\)
\(968\) 15.7985 0.507783
\(969\) 0 0
\(970\) −16.2894 −0.523020
\(971\) −30.3979 −0.975514 −0.487757 0.872979i \(-0.662185\pi\)
−0.487757 + 0.872979i \(0.662185\pi\)
\(972\) 0 0
\(973\) −29.7628 −0.954150
\(974\) −23.2436 −0.744772
\(975\) 0 0
\(976\) 9.39926 0.300863
\(977\) 17.1126 0.547482 0.273741 0.961803i \(-0.411739\pi\)
0.273741 + 0.961803i \(0.411739\pi\)
\(978\) 0 0
\(979\) 38.3039 1.22420
\(980\) −2.96286 −0.0946451
\(981\) 0 0
\(982\) 18.5439 0.591761
\(983\) −41.3722 −1.31957 −0.659783 0.751456i \(-0.729352\pi\)
−0.659783 + 0.751456i \(0.729352\pi\)
\(984\) 0 0
\(985\) −33.6523 −1.07225
\(986\) 1.55494 0.0495195
\(987\) 0 0
\(988\) 7.17673 0.228322
\(989\) 68.9888 2.19372
\(990\) 0 0
\(991\) −38.8552 −1.23427 −0.617137 0.786855i \(-0.711708\pi\)
−0.617137 + 0.786855i \(0.711708\pi\)
\(992\) 2.77747 0.0881848
\(993\) 0 0
\(994\) −3.34245 −0.106016
\(995\) −88.4624 −2.80445
\(996\) 0 0
\(997\) −5.46334 −0.173026 −0.0865129 0.996251i \(-0.527572\pi\)
−0.0865129 + 0.996251i \(0.527572\pi\)
\(998\) −31.5475 −0.998619
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.a.r.1.1 3
3.2 odd 2 2106.2.a.q.1.3 3
9.2 odd 6 234.2.e.d.157.3 yes 6
9.4 even 3 702.2.e.d.235.3 6
9.5 odd 6 234.2.e.d.79.3 6
9.7 even 3 702.2.e.d.469.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.e.d.79.3 6 9.5 odd 6
234.2.e.d.157.3 yes 6 9.2 odd 6
702.2.e.d.235.3 6 9.4 even 3
702.2.e.d.469.3 6 9.7 even 3
2106.2.a.q.1.3 3 3.2 odd 2
2106.2.a.r.1.1 3 1.1 even 1 trivial