Properties

Label 234.2.e.d.157.3
Level $234$
Weight $2$
Character 234.157
Analytic conductor $1.868$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(79,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 157.3
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 234.157
Dual form 234.2.e.d.79.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.64400 - 0.545231i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.64400 + 2.84748i) q^{5} +(1.29418 + 1.15113i) q^{6} +(1.40545 + 2.43430i) q^{7} -1.00000 q^{8} +(2.40545 - 1.79272i) q^{9} -3.28799 q^{10} +(-2.58836 - 4.48318i) q^{11} +(-0.349814 + 1.69636i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-1.40545 + 2.43430i) q^{14} +(-1.15019 + 5.57761i) q^{15} +(-0.500000 - 0.866025i) q^{16} -0.699628 q^{17} +(2.75526 + 1.18682i) q^{18} +7.17673 q^{19} +(-1.64400 - 2.84748i) q^{20} +(3.63781 + 3.23569i) q^{21} +(2.58836 - 4.48318i) q^{22} +(3.00000 - 5.19615i) q^{23} +(-1.64400 + 0.545231i) q^{24} +(-2.90545 - 5.03238i) q^{25} -1.00000 q^{26} +(2.97710 - 4.25874i) q^{27} -2.81089 q^{28} +(1.11126 + 1.92477i) q^{29} +(-5.40545 + 1.79272i) q^{30} +(-1.38874 + 2.40536i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-6.69963 - 5.95907i) q^{33} +(-0.349814 - 0.605896i) q^{34} -9.24219 q^{35} +(0.349814 + 2.97954i) q^{36} -0.712008 q^{37} +(3.58836 + 6.21523i) q^{38} +(-0.349814 + 1.69636i) q^{39} +(1.64400 - 2.84748i) q^{40} +(0.411636 - 0.712974i) q^{41} +(-0.983290 + 4.76828i) q^{42} +(-5.74907 - 9.95768i) q^{43} +5.17673 q^{44} +(1.15019 + 9.79669i) q^{45} +6.00000 q^{46} +(-0.761450 - 1.31887i) q^{47} +(-1.29418 - 1.15113i) q^{48} +(-0.450558 + 0.780389i) q^{49} +(2.90545 - 5.03238i) q^{50} +(-1.15019 + 0.381459i) q^{51} +(-0.500000 - 0.866025i) q^{52} -11.0210 q^{53} +(5.17673 + 0.448873i) q^{54} +17.0210 q^{55} +(-1.40545 - 2.43430i) q^{56} +(11.7985 - 3.91298i) q^{57} +(-1.11126 + 1.92477i) q^{58} +(-7.39926 + 12.8159i) q^{59} +(-4.25526 - 3.78490i) q^{60} +(-4.69963 - 8.13999i) q^{61} -2.77747 q^{62} +(7.74474 + 3.33602i) q^{63} +1.00000 q^{64} +(-1.64400 - 2.84748i) q^{65} +(1.81089 - 8.78158i) q^{66} +(-0.222528 + 0.385430i) q^{67} +(0.349814 - 0.605896i) q^{68} +(2.09888 - 10.1781i) q^{69} +(-4.62110 - 8.00397i) q^{70} -1.18911 q^{71} +(-2.40545 + 1.79272i) q^{72} -0.222528 q^{73} +(-0.356004 - 0.616617i) q^{74} +(-7.52035 - 6.68907i) q^{75} +(-3.58836 + 6.21523i) q^{76} +(7.27561 - 12.6017i) q^{77} +(-1.64400 + 0.545231i) q^{78} +(7.87636 + 13.6422i) q^{79} +3.28799 q^{80} +(2.57234 - 8.62456i) q^{81} +0.823272 q^{82} +(3.98762 + 6.90676i) q^{83} +(-4.62110 + 1.53259i) q^{84} +(1.15019 - 1.99218i) q^{85} +(5.74907 - 9.95768i) q^{86} +(2.87636 + 2.55841i) q^{87} +(2.58836 + 4.48318i) q^{88} +7.39926 q^{89} +(-7.90909 + 5.89443i) q^{90} -2.81089 q^{91} +(3.00000 + 5.19615i) q^{92} +(-0.971599 + 4.71159i) q^{93} +(0.761450 - 1.31887i) q^{94} +(-11.7985 + 20.4356i) q^{95} +(0.349814 - 1.69636i) q^{96} +(-2.47710 - 4.29046i) q^{97} -0.901116 q^{98} +(-14.2632 - 6.14384i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 2 q^{3} - 3 q^{4} + 2 q^{5} + 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9} + 4 q^{10} - 4 q^{11} + 4 q^{12} - 3 q^{13} - 2 q^{14} - 13 q^{15} - 3 q^{16} + 8 q^{17} + 4 q^{18} + 20 q^{19} + 2 q^{20}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.64400 0.545231i 0.949162 0.314789i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.64400 + 2.84748i −0.735217 + 1.27343i 0.219411 + 0.975633i \(0.429587\pi\)
−0.954628 + 0.297801i \(0.903747\pi\)
\(6\) 1.29418 + 1.15113i 0.528348 + 0.469946i
\(7\) 1.40545 + 2.43430i 0.531209 + 0.920080i 0.999337 + 0.0364197i \(0.0115953\pi\)
−0.468128 + 0.883661i \(0.655071\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.40545 1.79272i 0.801815 0.597572i
\(10\) −3.28799 −1.03975
\(11\) −2.58836 4.48318i −0.780421 1.35173i −0.931697 0.363237i \(-0.881671\pi\)
0.151276 0.988492i \(-0.451662\pi\)
\(12\) −0.349814 + 1.69636i −0.100983 + 0.489696i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −1.40545 + 2.43430i −0.375621 + 0.650595i
\(15\) −1.15019 + 5.57761i −0.296977 + 1.44013i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.699628 −0.169685 −0.0848424 0.996394i \(-0.527039\pi\)
−0.0848424 + 0.996394i \(0.527039\pi\)
\(18\) 2.75526 + 1.18682i 0.649421 + 0.279736i
\(19\) 7.17673 1.64645 0.823227 0.567712i \(-0.192171\pi\)
0.823227 + 0.567712i \(0.192171\pi\)
\(20\) −1.64400 2.84748i −0.367609 0.636717i
\(21\) 3.63781 + 3.23569i 0.793834 + 0.706086i
\(22\) 2.58836 4.48318i 0.551841 0.955817i
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) −1.64400 + 0.545231i −0.335579 + 0.111295i
\(25\) −2.90545 5.03238i −0.581089 1.00648i
\(26\) −1.00000 −0.196116
\(27\) 2.97710 4.25874i 0.572943 0.819595i
\(28\) −2.81089 −0.531209
\(29\) 1.11126 + 1.92477i 0.206357 + 0.357420i 0.950564 0.310528i \(-0.100506\pi\)
−0.744208 + 0.667948i \(0.767173\pi\)
\(30\) −5.40545 + 1.79272i −0.986895 + 0.327304i
\(31\) −1.38874 + 2.40536i −0.249424 + 0.432016i −0.963366 0.268189i \(-0.913575\pi\)
0.713942 + 0.700205i \(0.246908\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −6.69963 5.95907i −1.16626 1.03734i
\(34\) −0.349814 0.605896i −0.0599926 0.103910i
\(35\) −9.24219 −1.56222
\(36\) 0.349814 + 2.97954i 0.0583023 + 0.496589i
\(37\) −0.712008 −0.117053 −0.0585267 0.998286i \(-0.518640\pi\)
−0.0585267 + 0.998286i \(0.518640\pi\)
\(38\) 3.58836 + 6.21523i 0.582110 + 1.00824i
\(39\) −0.349814 + 1.69636i −0.0560151 + 0.271635i
\(40\) 1.64400 2.84748i 0.259939 0.450227i
\(41\) 0.411636 0.712974i 0.0642867 0.111348i −0.832091 0.554640i \(-0.812856\pi\)
0.896377 + 0.443292i \(0.146189\pi\)
\(42\) −0.983290 + 4.76828i −0.151725 + 0.735761i
\(43\) −5.74907 9.95768i −0.876725 1.51853i −0.854914 0.518770i \(-0.826390\pi\)
−0.0218113 0.999762i \(-0.506943\pi\)
\(44\) 5.17673 0.780421
\(45\) 1.15019 + 9.79669i 0.171460 + 1.46040i
\(46\) 6.00000 0.884652
\(47\) −0.761450 1.31887i −0.111069 0.192377i 0.805133 0.593095i \(-0.202094\pi\)
−0.916202 + 0.400718i \(0.868761\pi\)
\(48\) −1.29418 1.15113i −0.186799 0.166151i
\(49\) −0.450558 + 0.780389i −0.0643654 + 0.111484i
\(50\) 2.90545 5.03238i 0.410892 0.711686i
\(51\) −1.15019 + 0.381459i −0.161058 + 0.0534149i
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) −11.0210 −1.51386 −0.756928 0.653498i \(-0.773301\pi\)
−0.756928 + 0.653498i \(0.773301\pi\)
\(54\) 5.17673 + 0.448873i 0.704463 + 0.0610839i
\(55\) 17.0210 2.29512
\(56\) −1.40545 2.43430i −0.187811 0.325298i
\(57\) 11.7985 3.91298i 1.56275 0.518286i
\(58\) −1.11126 + 1.92477i −0.145916 + 0.252734i
\(59\) −7.39926 + 12.8159i −0.963301 + 1.66849i −0.249189 + 0.968455i \(0.580164\pi\)
−0.714112 + 0.700032i \(0.753169\pi\)
\(60\) −4.25526 3.78490i −0.549352 0.488628i
\(61\) −4.69963 8.13999i −0.601726 1.04222i −0.992560 0.121758i \(-0.961147\pi\)
0.390834 0.920461i \(-0.372187\pi\)
\(62\) −2.77747 −0.352739
\(63\) 7.74474 + 3.33602i 0.975745 + 0.420299i
\(64\) 1.00000 0.125000
\(65\) −1.64400 2.84748i −0.203913 0.353187i
\(66\) 1.81089 8.78158i 0.222905 1.08094i
\(67\) −0.222528 + 0.385430i −0.0271862 + 0.0470878i −0.879298 0.476271i \(-0.841988\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(68\) 0.349814 0.605896i 0.0424212 0.0734757i
\(69\) 2.09888 10.1781i 0.252676 1.22530i
\(70\) −4.62110 8.00397i −0.552327 0.956658i
\(71\) −1.18911 −0.141121 −0.0705606 0.997507i \(-0.522479\pi\)
−0.0705606 + 0.997507i \(0.522479\pi\)
\(72\) −2.40545 + 1.79272i −0.283485 + 0.211274i
\(73\) −0.222528 −0.0260450 −0.0130225 0.999915i \(-0.504145\pi\)
−0.0130225 + 0.999915i \(0.504145\pi\)
\(74\) −0.356004 0.616617i −0.0413846 0.0716803i
\(75\) −7.52035 6.68907i −0.868375 0.772388i
\(76\) −3.58836 + 6.21523i −0.411614 + 0.712936i
\(77\) 7.27561 12.6017i 0.829133 1.43610i
\(78\) −1.64400 + 0.545231i −0.186146 + 0.0617353i
\(79\) 7.87636 + 13.6422i 0.886159 + 1.53487i 0.844379 + 0.535746i \(0.179970\pi\)
0.0417802 + 0.999127i \(0.486697\pi\)
\(80\) 3.28799 0.367609
\(81\) 2.57234 8.62456i 0.285816 0.958285i
\(82\) 0.823272 0.0909152
\(83\) 3.98762 + 6.90676i 0.437698 + 0.758116i 0.997512 0.0705032i \(-0.0224605\pi\)
−0.559813 + 0.828619i \(0.689127\pi\)
\(84\) −4.62110 + 1.53259i −0.504203 + 0.167219i
\(85\) 1.15019 1.99218i 0.124755 0.216082i
\(86\) 5.74907 9.95768i 0.619938 1.07376i
\(87\) 2.87636 + 2.55841i 0.308378 + 0.274291i
\(88\) 2.58836 + 4.48318i 0.275921 + 0.477908i
\(89\) 7.39926 0.784320 0.392160 0.919897i \(-0.371728\pi\)
0.392160 + 0.919897i \(0.371728\pi\)
\(90\) −7.90909 + 5.89443i −0.833691 + 0.621328i
\(91\) −2.81089 −0.294662
\(92\) 3.00000 + 5.19615i 0.312772 + 0.541736i
\(93\) −0.971599 + 4.71159i −0.100750 + 0.488569i
\(94\) 0.761450 1.31887i 0.0785376 0.136031i
\(95\) −11.7985 + 20.4356i −1.21050 + 2.09665i
\(96\) 0.349814 1.69636i 0.0357027 0.173134i
\(97\) −2.47710 4.29046i −0.251511 0.435630i 0.712431 0.701742i \(-0.247594\pi\)
−0.963942 + 0.266112i \(0.914261\pi\)
\(98\) −0.901116 −0.0910264
\(99\) −14.2632 6.14384i −1.43351 0.617479i
\(100\) 5.81089 0.581089
\(101\) 1.47710 + 2.55841i 0.146977 + 0.254572i 0.930109 0.367284i \(-0.119712\pi\)
−0.783132 + 0.621856i \(0.786379\pi\)
\(102\) −0.905446 0.805361i −0.0896525 0.0797426i
\(103\) −4.69963 + 8.13999i −0.463068 + 0.802058i −0.999112 0.0421326i \(-0.986585\pi\)
0.536044 + 0.844190i \(0.319918\pi\)
\(104\) 0.500000 0.866025i 0.0490290 0.0849208i
\(105\) −15.1941 + 5.03913i −1.48279 + 0.491769i
\(106\) −5.51052 9.54450i −0.535229 0.927044i
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 2.19963 + 4.70761i 0.211659 + 0.452990i
\(109\) −6.67487 −0.639336 −0.319668 0.947530i \(-0.603571\pi\)
−0.319668 + 0.947530i \(0.603571\pi\)
\(110\) 8.51052 + 14.7407i 0.811446 + 1.40547i
\(111\) −1.17054 + 0.388209i −0.111103 + 0.0368471i
\(112\) 1.40545 2.43430i 0.132802 0.230020i
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 9.28799 + 8.26132i 0.869900 + 0.773744i
\(115\) 9.86398 + 17.0849i 0.919821 + 1.59318i
\(116\) −2.22253 −0.206357
\(117\) 0.349814 + 2.97954i 0.0323403 + 0.275458i
\(118\) −14.7985 −1.36231
\(119\) −0.983290 1.70311i −0.0901380 0.156124i
\(120\) 1.15019 5.57761i 0.104997 0.509164i
\(121\) −7.89926 + 13.6819i −0.718114 + 1.24381i
\(122\) 4.69963 8.13999i 0.425484 0.736960i
\(123\) 0.287992 1.39656i 0.0259674 0.125924i
\(124\) −1.38874 2.40536i −0.124712 0.216008i
\(125\) 2.66621 0.238473
\(126\) 0.983290 + 8.37515i 0.0875984 + 0.746118i
\(127\) −3.42402 −0.303832 −0.151916 0.988393i \(-0.548544\pi\)
−0.151916 + 0.988393i \(0.548544\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −14.8807 13.2358i −1.31017 1.16535i
\(130\) 1.64400 2.84748i 0.144188 0.249741i
\(131\) −4.12729 + 7.14867i −0.360603 + 0.624582i −0.988060 0.154069i \(-0.950762\pi\)
0.627458 + 0.778651i \(0.284096\pi\)
\(132\) 8.51052 2.82251i 0.740746 0.245668i
\(133\) 10.0865 + 17.4703i 0.874611 + 1.51487i
\(134\) −0.445057 −0.0384470
\(135\) 7.23236 + 15.4786i 0.622462 + 1.33219i
\(136\) 0.699628 0.0599926
\(137\) 2.30037 + 3.98436i 0.196534 + 0.340407i 0.947402 0.320045i \(-0.103698\pi\)
−0.750868 + 0.660452i \(0.770365\pi\)
\(138\) 9.86398 3.27139i 0.839677 0.278479i
\(139\) −5.29418 + 9.16979i −0.449047 + 0.777772i −0.998324 0.0578683i \(-0.981570\pi\)
0.549278 + 0.835640i \(0.314903\pi\)
\(140\) 4.62110 8.00397i 0.390554 0.676459i
\(141\) −1.97091 1.75305i −0.165981 0.147634i
\(142\) −0.594554 1.02980i −0.0498939 0.0864187i
\(143\) 5.17673 0.432900
\(144\) −2.75526 1.18682i −0.229605 0.0989016i
\(145\) −7.30766 −0.606868
\(146\) −0.111264 0.192715i −0.00920829 0.0159492i
\(147\) −0.315223 + 1.52861i −0.0259991 + 0.126078i
\(148\) 0.356004 0.616617i 0.0292633 0.0506856i
\(149\) 8.48762 14.7010i 0.695333 1.20435i −0.274735 0.961520i \(-0.588590\pi\)
0.970068 0.242832i \(-0.0780764\pi\)
\(150\) 2.03273 9.85735i 0.165972 0.804850i
\(151\) −11.1087 19.2409i −0.904015 1.56580i −0.822235 0.569149i \(-0.807273\pi\)
−0.0817798 0.996650i \(-0.526060\pi\)
\(152\) −7.17673 −0.582110
\(153\) −1.68292 + 1.25423i −0.136056 + 0.101399i
\(154\) 14.5512 1.17257
\(155\) −4.56615 7.90881i −0.366762 0.635251i
\(156\) −1.29418 1.15113i −0.103617 0.0921639i
\(157\) 2.33379 4.04225i 0.186257 0.322606i −0.757742 0.652554i \(-0.773698\pi\)
0.943999 + 0.329947i \(0.107031\pi\)
\(158\) −7.87636 + 13.6422i −0.626609 + 1.08532i
\(159\) −18.1185 + 6.00901i −1.43689 + 0.476546i
\(160\) 1.64400 + 2.84748i 0.129969 + 0.225113i
\(161\) 16.8654 1.32918
\(162\) 8.75526 2.08457i 0.687878 0.163779i
\(163\) −11.9752 −0.937973 −0.468987 0.883205i \(-0.655381\pi\)
−0.468987 + 0.883205i \(0.655381\pi\)
\(164\) 0.411636 + 0.712974i 0.0321434 + 0.0556740i
\(165\) 27.9825 9.28040i 2.17844 0.722478i
\(166\) −3.98762 + 6.90676i −0.309499 + 0.536069i
\(167\) 3.38874 5.86946i 0.262228 0.454193i −0.704605 0.709599i \(-0.748876\pi\)
0.966834 + 0.255407i \(0.0822093\pi\)
\(168\) −3.63781 3.23569i −0.280663 0.249639i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 2.30037 0.176430
\(171\) 17.2632 12.8658i 1.32015 0.983875i
\(172\) 11.4981 0.876725
\(173\) −9.57598 16.5861i −0.728049 1.26102i −0.957707 0.287746i \(-0.907094\pi\)
0.229658 0.973271i \(-0.426239\pi\)
\(174\) −0.777472 + 3.77020i −0.0589400 + 0.285818i
\(175\) 8.16690 14.1455i 0.617359 1.06930i
\(176\) −2.58836 + 4.48318i −0.195105 + 0.337932i
\(177\) −5.17673 + 25.1036i −0.389107 + 1.88690i
\(178\) 3.69963 + 6.40794i 0.277299 + 0.480296i
\(179\) −0.210149 −0.0157072 −0.00785362 0.999969i \(-0.502500\pi\)
−0.00785362 + 0.999969i \(0.502500\pi\)
\(180\) −9.05927 3.90225i −0.675238 0.290857i
\(181\) 6.44506 0.479057 0.239529 0.970889i \(-0.423007\pi\)
0.239529 + 0.970889i \(0.423007\pi\)
\(182\) −1.40545 2.43430i −0.104179 0.180443i
\(183\) −12.1643 10.8197i −0.899214 0.799818i
\(184\) −3.00000 + 5.19615i −0.221163 + 0.383065i
\(185\) 1.17054 2.02743i 0.0860597 0.149060i
\(186\) −4.56615 + 1.51436i −0.334807 + 0.111039i
\(187\) 1.81089 + 3.13656i 0.132426 + 0.229368i
\(188\) 1.52290 0.111069
\(189\) 14.5512 + 1.26174i 1.05845 + 0.0917777i
\(190\) −23.5970 −1.71191
\(191\) 11.6749 + 20.2215i 0.844764 + 1.46317i 0.885826 + 0.464017i \(0.153592\pi\)
−0.0410623 + 0.999157i \(0.513074\pi\)
\(192\) 1.64400 0.545231i 0.118645 0.0393487i
\(193\) −12.4647 + 21.5895i −0.897230 + 1.55405i −0.0662102 + 0.997806i \(0.521091\pi\)
−0.831020 + 0.556243i \(0.812243\pi\)
\(194\) 2.47710 4.29046i 0.177845 0.308037i
\(195\) −4.25526 3.78490i −0.304726 0.271042i
\(196\) −0.450558 0.780389i −0.0321827 0.0557421i
\(197\) −10.2349 −0.729207 −0.364604 0.931163i \(-0.618795\pi\)
−0.364604 + 0.931163i \(0.618795\pi\)
\(198\) −1.81089 15.4242i −0.128695 1.09615i
\(199\) 26.9047 1.90722 0.953611 0.301041i \(-0.0973342\pi\)
0.953611 + 0.301041i \(0.0973342\pi\)
\(200\) 2.90545 + 5.03238i 0.205446 + 0.355843i
\(201\) −0.155687 + 0.754975i −0.0109813 + 0.0532519i
\(202\) −1.47710 + 2.55841i −0.103928 + 0.180009i
\(203\) −3.12364 + 5.41031i −0.219237 + 0.379729i
\(204\) 0.244740 1.18682i 0.0171352 0.0830940i
\(205\) 1.35346 + 2.34425i 0.0945295 + 0.163730i
\(206\) −9.39926 −0.654877
\(207\) −2.09888 17.8772i −0.145883 1.24255i
\(208\) 1.00000 0.0693375
\(209\) −18.5760 32.1745i −1.28493 2.22556i
\(210\) −11.9611 10.6389i −0.825393 0.734156i
\(211\) −2.35600 + 4.08072i −0.162194 + 0.280928i −0.935655 0.352915i \(-0.885190\pi\)
0.773461 + 0.633844i \(0.218524\pi\)
\(212\) 5.51052 9.54450i 0.378464 0.655519i
\(213\) −1.95489 + 0.648338i −0.133947 + 0.0444234i
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) 37.8058 2.57833
\(216\) −2.97710 + 4.25874i −0.202566 + 0.289771i
\(217\) −7.80717 −0.529985
\(218\) −3.33743 5.78061i −0.226040 0.391512i
\(219\) −0.365836 + 0.121329i −0.0247209 + 0.00819868i
\(220\) −8.51052 + 14.7407i −0.573779 + 0.993815i
\(221\) 0.349814 0.605896i 0.0235310 0.0407570i
\(222\) −0.921468 0.819611i −0.0618449 0.0550087i
\(223\) −3.81453 6.60697i −0.255440 0.442435i 0.709575 0.704630i \(-0.248887\pi\)
−0.965015 + 0.262195i \(0.915554\pi\)
\(224\) 2.81089 0.187811
\(225\) −16.0105 6.89648i −1.06737 0.459765i
\(226\) 3.00000 0.199557
\(227\) −11.0210 19.0890i −0.731492 1.26698i −0.956245 0.292566i \(-0.905491\pi\)
0.224753 0.974416i \(-0.427842\pi\)
\(228\) −2.51052 + 12.1743i −0.166263 + 0.806263i
\(229\) 2.24474 3.88800i 0.148337 0.256926i −0.782276 0.622932i \(-0.785941\pi\)
0.930613 + 0.366005i \(0.119275\pi\)
\(230\) −9.86398 + 17.0849i −0.650411 + 1.12655i
\(231\) 5.09022 24.6841i 0.334912 1.62409i
\(232\) −1.11126 1.92477i −0.0729581 0.126367i
\(233\) 5.54256 0.363105 0.181553 0.983381i \(-0.441888\pi\)
0.181553 + 0.983381i \(0.441888\pi\)
\(234\) −2.40545 + 1.79272i −0.157249 + 0.117193i
\(235\) 5.00728 0.326639
\(236\) −7.39926 12.8159i −0.481651 0.834243i
\(237\) 20.3869 + 18.1334i 1.32427 + 1.17789i
\(238\) 0.983290 1.70311i 0.0637372 0.110396i
\(239\) −3.71565 + 6.43569i −0.240345 + 0.416290i −0.960813 0.277198i \(-0.910594\pi\)
0.720467 + 0.693489i \(0.243927\pi\)
\(240\) 5.40545 1.79272i 0.348920 0.115719i
\(241\) −4.69963 8.13999i −0.302730 0.524343i 0.674024 0.738710i \(-0.264565\pi\)
−0.976753 + 0.214367i \(0.931231\pi\)
\(242\) −15.7985 −1.01557
\(243\) −0.473458 15.5813i −0.0303723 0.999539i
\(244\) 9.39926 0.601726
\(245\) −1.48143 2.56591i −0.0946451 0.163930i
\(246\) 1.35346 0.448873i 0.0862932 0.0286191i
\(247\) −3.58836 + 6.21523i −0.228322 + 0.395466i
\(248\) 1.38874 2.40536i 0.0881848 0.152741i
\(249\) 10.3214 + 9.18051i 0.654093 + 0.581791i
\(250\) 1.33310 + 2.30900i 0.0843129 + 0.146034i
\(251\) 15.9963 1.00968 0.504838 0.863214i \(-0.331552\pi\)
0.504838 + 0.863214i \(0.331552\pi\)
\(252\) −6.76145 + 5.03913i −0.425931 + 0.317435i
\(253\) −31.0604 −1.95275
\(254\) −1.71201 2.96528i −0.107421 0.186059i
\(255\) 0.804702 3.90225i 0.0503924 0.244369i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.0432524 0.0749153i 0.00269801 0.00467309i −0.864673 0.502335i \(-0.832475\pi\)
0.867371 + 0.497662i \(0.165808\pi\)
\(258\) 4.02221 19.5050i 0.250412 1.21433i
\(259\) −1.00069 1.73324i −0.0621798 0.107699i
\(260\) 3.28799 0.203913
\(261\) 6.12364 + 2.63774i 0.379044 + 0.163272i
\(262\) −8.25457 −0.509969
\(263\) −0.489480 0.847803i −0.0301826 0.0522778i 0.850540 0.525911i \(-0.176276\pi\)
−0.880722 + 0.473633i \(0.842942\pi\)
\(264\) 6.69963 + 5.95907i 0.412334 + 0.366755i
\(265\) 18.1185 31.3822i 1.11301 1.92780i
\(266\) −10.0865 + 17.4703i −0.618443 + 1.07118i
\(267\) 12.1643 4.03430i 0.744446 0.246895i
\(268\) −0.222528 0.385430i −0.0135931 0.0235439i
\(269\) −25.5723 −1.55917 −0.779584 0.626297i \(-0.784570\pi\)
−0.779584 + 0.626297i \(0.784570\pi\)
\(270\) −9.78868 + 14.0027i −0.595720 + 0.852178i
\(271\) 16.9766 1.03126 0.515628 0.856813i \(-0.327559\pi\)
0.515628 + 0.856813i \(0.327559\pi\)
\(272\) 0.349814 + 0.605896i 0.0212106 + 0.0367378i
\(273\) −4.62110 + 1.53259i −0.279681 + 0.0927563i
\(274\) −2.30037 + 3.98436i −0.138971 + 0.240704i
\(275\) −15.0407 + 26.0513i −0.906989 + 1.57095i
\(276\) 7.76509 + 6.90676i 0.467404 + 0.415738i
\(277\) −1.69963 2.94384i −0.102121 0.176878i 0.810437 0.585825i \(-0.199229\pi\)
−0.912558 + 0.408947i \(0.865896\pi\)
\(278\) −10.5884 −0.635048
\(279\) 0.971599 + 8.27557i 0.0581681 + 0.495446i
\(280\) 9.24219 0.552327
\(281\) 14.3411 + 24.8395i 0.855517 + 1.48180i 0.876165 + 0.482012i \(0.160094\pi\)
−0.0206478 + 0.999787i \(0.506573\pi\)
\(282\) 0.532732 2.58338i 0.0317237 0.153838i
\(283\) 5.59888 9.69755i 0.332819 0.576460i −0.650244 0.759725i \(-0.725333\pi\)
0.983063 + 0.183266i \(0.0586668\pi\)
\(284\) 0.594554 1.02980i 0.0352803 0.0611072i
\(285\) −8.25457 + 40.0290i −0.488959 + 2.37111i
\(286\) 2.58836 + 4.48318i 0.153053 + 0.265096i
\(287\) 2.31413 0.136599
\(288\) −0.349814 2.97954i −0.0206130 0.175571i
\(289\) −16.5105 −0.971207
\(290\) −3.65383 6.32862i −0.214560 0.371629i
\(291\) −6.41164 5.70291i −0.375857 0.334311i
\(292\) 0.111264 0.192715i 0.00651124 0.0112778i
\(293\) −3.47091 + 6.01179i −0.202773 + 0.351213i −0.949421 0.314007i \(-0.898329\pi\)
0.746648 + 0.665219i \(0.231662\pi\)
\(294\) −1.48143 + 0.491316i −0.0863988 + 0.0286541i
\(295\) −24.3287 42.1385i −1.41647 2.45340i
\(296\) 0.712008 0.0413846
\(297\) −26.7985 2.32370i −1.55501 0.134835i
\(298\) 16.9752 0.983349
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 9.55308 3.16828i 0.551548 0.182921i
\(301\) 16.1600 27.9900i 0.931448 1.61332i
\(302\) 11.1087 19.2409i 0.639235 1.10719i
\(303\) 3.82327 + 3.40066i 0.219641 + 0.195363i
\(304\) −3.58836 6.21523i −0.205807 0.356468i
\(305\) 30.9047 1.76960
\(306\) −1.92766 0.830332i −0.110197 0.0474669i
\(307\) −15.0210 −0.857296 −0.428648 0.903472i \(-0.641010\pi\)
−0.428648 + 0.903472i \(0.641010\pi\)
\(308\) 7.27561 + 12.6017i 0.414566 + 0.718050i
\(309\) −3.28799 + 15.9445i −0.187047 + 0.907051i
\(310\) 4.56615 7.90881i 0.259340 0.449190i
\(311\) 3.98762 6.90676i 0.226117 0.391646i −0.730537 0.682873i \(-0.760730\pi\)
0.956654 + 0.291227i \(0.0940634\pi\)
\(312\) 0.349814 1.69636i 0.0198043 0.0960374i
\(313\) −6.99745 12.1199i −0.395519 0.685060i 0.597648 0.801759i \(-0.296102\pi\)
−0.993167 + 0.116699i \(0.962769\pi\)
\(314\) 4.66758 0.263407
\(315\) −22.2316 + 16.5686i −1.25261 + 0.933536i
\(316\) −15.7527 −0.886159
\(317\) 4.71015 + 8.15822i 0.264548 + 0.458211i 0.967445 0.253081i \(-0.0814438\pi\)
−0.702897 + 0.711292i \(0.748110\pi\)
\(318\) −14.2632 12.6866i −0.799842 0.711430i
\(319\) 5.75271 9.96399i 0.322090 0.557876i
\(320\) −1.64400 + 2.84748i −0.0919022 + 0.159179i
\(321\) 19.7280 6.54277i 1.10111 0.365182i
\(322\) 8.43268 + 14.6058i 0.469935 + 0.813951i
\(323\) −5.02104 −0.279378
\(324\) 6.18292 + 6.53999i 0.343495 + 0.363333i
\(325\) 5.81089 0.322330
\(326\) −5.98762 10.3709i −0.331624 0.574389i
\(327\) −10.9735 + 3.63935i −0.606834 + 0.201256i
\(328\) −0.411636 + 0.712974i −0.0227288 + 0.0393674i
\(329\) 2.14035 3.70720i 0.118002 0.204385i
\(330\) 22.0283 + 19.5934i 1.21262 + 1.07858i
\(331\) 5.77747 + 10.0069i 0.317559 + 0.550028i 0.979978 0.199106i \(-0.0638037\pi\)
−0.662419 + 0.749133i \(0.730470\pi\)
\(332\) −7.97524 −0.437698
\(333\) −1.71270 + 1.27643i −0.0938552 + 0.0699478i
\(334\) 6.77747 0.370847
\(335\) −0.731671 1.26729i −0.0399755 0.0692396i
\(336\) 0.983290 4.76828i 0.0536429 0.260131i
\(337\) −0.405446 + 0.702253i −0.0220861 + 0.0382542i −0.876857 0.480751i \(-0.840364\pi\)
0.854771 + 0.519005i \(0.173697\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 1.04944 5.08907i 0.0569979 0.276401i
\(340\) 1.15019 + 1.99218i 0.0623776 + 0.108041i
\(341\) 14.3782 0.778624
\(342\) 19.7738 + 8.51748i 1.06924 + 0.460573i
\(343\) 17.1433 0.925652
\(344\) 5.74907 + 9.95768i 0.309969 + 0.536882i
\(345\) 25.5316 + 22.7094i 1.37457 + 1.22263i
\(346\) 9.57598 16.5861i 0.514808 0.891674i
\(347\) −7.15452 + 12.3920i −0.384075 + 0.665237i −0.991640 0.129033i \(-0.958813\pi\)
0.607566 + 0.794269i \(0.292146\pi\)
\(348\) −3.65383 + 1.21179i −0.195866 + 0.0649588i
\(349\) 7.75526 + 13.4325i 0.415130 + 0.719025i 0.995442 0.0953684i \(-0.0304029\pi\)
−0.580312 + 0.814394i \(0.697070\pi\)
\(350\) 16.3338 0.873078
\(351\) 2.19963 + 4.70761i 0.117407 + 0.251274i
\(352\) −5.17673 −0.275921
\(353\) 17.3869 + 30.1150i 0.925410 + 1.60286i 0.790900 + 0.611945i \(0.209613\pi\)
0.134510 + 0.990912i \(0.457054\pi\)
\(354\) −24.3287 + 8.06861i −1.29306 + 0.428842i
\(355\) 1.95489 3.38597i 0.103755 0.179708i
\(356\) −3.69963 + 6.40794i −0.196080 + 0.339620i
\(357\) −2.54511 2.26378i −0.134702 0.119812i
\(358\) −0.105074 0.181994i −0.00555335 0.00961868i
\(359\) −24.2829 −1.28160 −0.640801 0.767707i \(-0.721398\pi\)
−0.640801 + 0.767707i \(0.721398\pi\)
\(360\) −1.15019 9.79669i −0.0606201 0.516331i
\(361\) 32.5054 1.71081
\(362\) 3.22253 + 5.58158i 0.169372 + 0.293361i
\(363\) −5.52654 + 26.7999i −0.290068 + 1.40663i
\(364\) 1.40545 2.43430i 0.0736654 0.127592i
\(365\) 0.365836 0.633646i 0.0191487 0.0331665i
\(366\) 3.28799 15.9445i 0.171866 0.833433i
\(367\) 7.95420 + 13.7771i 0.415206 + 0.719158i 0.995450 0.0952849i \(-0.0303762\pi\)
−0.580244 + 0.814443i \(0.697043\pi\)
\(368\) −6.00000 −0.312772
\(369\) −0.287992 2.45297i −0.0149923 0.127696i
\(370\) 2.34108 0.121707
\(371\) −15.4895 26.8286i −0.804174 1.39287i
\(372\) −3.59455 3.19722i −0.186369 0.165768i
\(373\) −5.73305 + 9.92993i −0.296846 + 0.514152i −0.975413 0.220386i \(-0.929268\pi\)
0.678567 + 0.734539i \(0.262601\pi\)
\(374\) −1.81089 + 3.13656i −0.0936390 + 0.162188i
\(375\) 4.38323 1.45370i 0.226349 0.0750687i
\(376\) 0.761450 + 1.31887i 0.0392688 + 0.0680155i
\(377\) −2.22253 −0.114466
\(378\) 6.18292 + 13.2326i 0.318015 + 0.680611i
\(379\) 3.71063 0.190602 0.0953011 0.995448i \(-0.469619\pi\)
0.0953011 + 0.995448i \(0.469619\pi\)
\(380\) −11.7985 20.4356i −0.605251 1.04833i
\(381\) −5.62907 + 1.86688i −0.288386 + 0.0956431i
\(382\) −11.6749 + 20.2215i −0.597338 + 1.03462i
\(383\) −1.78366 + 3.08939i −0.0911408 + 0.157861i −0.907991 0.418989i \(-0.862385\pi\)
0.816851 + 0.576849i \(0.195718\pi\)
\(384\) 1.29418 + 1.15113i 0.0660434 + 0.0587432i
\(385\) 23.9222 + 41.4344i 1.21919 + 2.11169i
\(386\) −24.9294 −1.26888
\(387\) −31.6804 13.6462i −1.61040 0.693676i
\(388\) 4.95420 0.251511
\(389\) 2.71201 + 4.69734i 0.137504 + 0.238164i 0.926551 0.376168i \(-0.122759\pi\)
−0.789047 + 0.614333i \(0.789425\pi\)
\(390\) 1.15019 5.57761i 0.0582419 0.282433i
\(391\) −2.09888 + 3.63537i −0.106145 + 0.183849i
\(392\) 0.450558 0.780389i 0.0227566 0.0394156i
\(393\) −2.88757 + 14.0027i −0.145658 + 0.706343i
\(394\) −5.11745 8.86369i −0.257814 0.446546i
\(395\) −51.7948 −2.60608
\(396\) 12.4523 9.28040i 0.625754 0.466358i
\(397\) −28.1272 −1.41166 −0.705832 0.708379i \(-0.749427\pi\)
−0.705832 + 0.708379i \(0.749427\pi\)
\(398\) 13.4523 + 23.3001i 0.674305 + 1.16793i
\(399\) 26.1075 + 23.2217i 1.30701 + 1.16254i
\(400\) −2.90545 + 5.03238i −0.145272 + 0.251619i
\(401\) 7.43130 12.8714i 0.371101 0.642766i −0.618634 0.785679i \(-0.712314\pi\)
0.989735 + 0.142913i \(0.0456469\pi\)
\(402\) −0.731671 + 0.242659i −0.0364925 + 0.0121027i
\(403\) −1.38874 2.40536i −0.0691779 0.119820i
\(404\) −2.95420 −0.146977
\(405\) 20.3294 + 21.5035i 1.01018 + 1.06852i
\(406\) −6.24729 −0.310048
\(407\) 1.84294 + 3.19206i 0.0913509 + 0.158224i
\(408\) 1.15019 0.381459i 0.0569427 0.0188850i
\(409\) 8.98762 15.5670i 0.444409 0.769739i −0.553602 0.832782i \(-0.686747\pi\)
0.998011 + 0.0630423i \(0.0200803\pi\)
\(410\) −1.35346 + 2.34425i −0.0668424 + 0.115774i
\(411\) 5.95420 + 5.29604i 0.293699 + 0.261234i
\(412\) −4.69963 8.13999i −0.231534 0.401029i
\(413\) −41.5970 −2.04686
\(414\) 14.4327 10.7563i 0.709327 0.528643i
\(415\) −26.2225 −1.28721
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) −3.70396 + 17.9617i −0.181384 + 0.879586i
\(418\) 18.5760 32.1745i 0.908581 1.57371i
\(419\) 13.7305 23.7819i 0.670779 1.16182i −0.306905 0.951740i \(-0.599293\pi\)
0.977684 0.210083i \(-0.0673734\pi\)
\(420\) 3.23305 15.6781i 0.157757 0.765011i
\(421\) −1.47091 2.54769i −0.0716878 0.124167i 0.827953 0.560797i \(-0.189505\pi\)
−0.899641 + 0.436630i \(0.856172\pi\)
\(422\) −4.71201 −0.229377
\(423\) −4.19599 1.80741i −0.204016 0.0878792i
\(424\) 11.0210 0.535229
\(425\) 2.03273 + 3.52079i 0.0986020 + 0.170784i
\(426\) −1.53892 1.36881i −0.0745610 0.0663192i
\(427\) 13.2101 22.8806i 0.639284 1.10727i
\(428\) −6.00000 + 10.3923i −0.290021 + 0.502331i
\(429\) 8.51052 2.82251i 0.410892 0.136272i
\(430\) 18.9029 + 32.7408i 0.911579 + 1.57890i
\(431\) 3.37959 0.162789 0.0813946 0.996682i \(-0.474063\pi\)
0.0813946 + 0.996682i \(0.474063\pi\)
\(432\) −5.17673 0.448873i −0.249065 0.0215964i
\(433\) 8.36584 0.402036 0.201018 0.979588i \(-0.435575\pi\)
0.201018 + 0.979588i \(0.435575\pi\)
\(434\) −3.90359 6.76121i −0.187378 0.324549i
\(435\) −12.0138 + 3.98436i −0.576016 + 0.191035i
\(436\) 3.33743 5.78061i 0.159834 0.276841i
\(437\) 21.5302 37.2914i 1.02993 1.78389i
\(438\) −0.287992 0.256158i −0.0137608 0.0122397i
\(439\) 14.2880 + 24.7475i 0.681929 + 1.18114i 0.974391 + 0.224858i \(0.0721919\pi\)
−0.292463 + 0.956277i \(0.594475\pi\)
\(440\) −17.0210 −0.811446
\(441\) 0.315223 + 2.68491i 0.0150106 + 0.127853i
\(442\) 0.699628 0.0332779
\(443\) 9.26942 + 16.0551i 0.440404 + 0.762801i 0.997719 0.0674993i \(-0.0215020\pi\)
−0.557316 + 0.830301i \(0.688169\pi\)
\(444\) 0.249070 1.20782i 0.0118204 0.0573206i
\(445\) −12.1643 + 21.0693i −0.576645 + 0.998779i
\(446\) 3.81453 6.60697i 0.180623 0.312849i
\(447\) 5.93818 28.7961i 0.280866 1.36201i
\(448\) 1.40545 + 2.43430i 0.0664011 + 0.115010i
\(449\) −14.8626 −0.701409 −0.350705 0.936486i \(-0.614058\pi\)
−0.350705 + 0.936486i \(0.614058\pi\)
\(450\) −2.03273 17.3138i −0.0958239 0.816178i
\(451\) −4.26186 −0.200683
\(452\) 1.50000 + 2.59808i 0.0705541 + 0.122203i
\(453\) −28.7534 25.5751i −1.35095 1.20162i
\(454\) 11.0210 19.0890i 0.517243 0.895891i
\(455\) 4.62110 8.00397i 0.216640 0.375232i
\(456\) −11.7985 + 3.91298i −0.552516 + 0.183242i
\(457\) −11.1520 19.3158i −0.521667 0.903554i −0.999682 0.0252024i \(-0.991977\pi\)
0.478015 0.878352i \(-0.341356\pi\)
\(458\) 4.48948 0.209780
\(459\) −2.08286 + 2.97954i −0.0972197 + 0.139073i
\(460\) −19.7280 −0.919821
\(461\) −4.87017 8.43538i −0.226826 0.392875i 0.730040 0.683405i \(-0.239502\pi\)
−0.956866 + 0.290530i \(0.906168\pi\)
\(462\) 23.9222 7.93378i 1.11296 0.369113i
\(463\) 1.81275 3.13978i 0.0842457 0.145918i −0.820824 0.571181i \(-0.806485\pi\)
0.905070 + 0.425264i \(0.139819\pi\)
\(464\) 1.11126 1.92477i 0.0515891 0.0893550i
\(465\) −11.8189 10.5124i −0.548087 0.487503i
\(466\) 2.77128 + 4.80000i 0.128377 + 0.222356i
\(467\) −0.0458003 −0.00211939 −0.00105969 0.999999i \(-0.500337\pi\)
−0.00105969 + 0.999999i \(0.500337\pi\)
\(468\) −2.75526 1.18682i −0.127362 0.0548608i
\(469\) −1.25101 −0.0577661
\(470\) 2.50364 + 4.33643i 0.115484 + 0.200025i
\(471\) 1.63279 7.91789i 0.0752348 0.364837i
\(472\) 7.39926 12.8159i 0.340578 0.589899i
\(473\) −29.7614 + 51.5482i −1.36843 + 2.37019i
\(474\) −5.51052 + 26.7222i −0.253107 + 1.22739i
\(475\) −20.8516 36.1160i −0.956737 1.65712i
\(476\) 1.96658 0.0901380
\(477\) −26.5105 + 19.7576i −1.21383 + 0.904638i
\(478\) −7.43130 −0.339900
\(479\) −8.84176 15.3144i −0.403991 0.699732i 0.590213 0.807248i \(-0.299044\pi\)
−0.994203 + 0.107515i \(0.965710\pi\)
\(480\) 4.25526 + 3.78490i 0.194225 + 0.172756i
\(481\) 0.356004 0.616617i 0.0162324 0.0281153i
\(482\) 4.69963 8.13999i 0.214062 0.370767i
\(483\) 27.7266 9.19551i 1.26160 0.418410i
\(484\) −7.89926 13.6819i −0.359057 0.621905i
\(485\) 16.2894 0.739662
\(486\) 13.2570 8.20066i 0.601352 0.371989i
\(487\) −23.2436 −1.05327 −0.526633 0.850093i \(-0.676546\pi\)
−0.526633 + 0.850093i \(0.676546\pi\)
\(488\) 4.69963 + 8.13999i 0.212742 + 0.368480i
\(489\) −19.6872 + 6.52927i −0.890288 + 0.295264i
\(490\) 1.48143 2.56591i 0.0669242 0.115916i
\(491\) 9.27197 16.0595i 0.418438 0.724756i −0.577344 0.816501i \(-0.695911\pi\)
0.995783 + 0.0917446i \(0.0292443\pi\)
\(492\) 1.06546 + 0.947691i 0.0480348 + 0.0427252i
\(493\) −0.777472 1.34662i −0.0350156 0.0606487i
\(494\) −7.17673 −0.322896
\(495\) 40.9432 30.5139i 1.84026 1.37150i
\(496\) 2.77747 0.124712
\(497\) −1.67123 2.89465i −0.0749648 0.129843i
\(498\) −2.78985 + 13.5289i −0.125016 + 0.606243i
\(499\) 15.7738 27.3209i 0.706130 1.22305i −0.260152 0.965568i \(-0.583773\pi\)
0.966282 0.257486i \(-0.0828940\pi\)
\(500\) −1.33310 + 2.30900i −0.0596182 + 0.103262i
\(501\) 2.37085 11.4970i 0.105922 0.513649i
\(502\) 7.99814 + 13.8532i 0.356974 + 0.618298i
\(503\) 21.2188 0.946100 0.473050 0.881036i \(-0.343153\pi\)
0.473050 + 0.881036i \(0.343153\pi\)
\(504\) −7.74474 3.33602i −0.344978 0.148598i
\(505\) −9.71339 −0.432240
\(506\) −15.5302 26.8991i −0.690401 1.19581i
\(507\) −1.29418 1.15113i −0.0574766 0.0511233i
\(508\) 1.71201 2.96528i 0.0759581 0.131563i
\(509\) −1.71015 + 2.96206i −0.0758010 + 0.131291i −0.901434 0.432916i \(-0.857485\pi\)
0.825633 + 0.564207i \(0.190818\pi\)
\(510\) 3.78180 1.25423i 0.167461 0.0555384i
\(511\) −0.312752 0.541702i −0.0138353 0.0239635i
\(512\) −1.00000 −0.0441942
\(513\) 21.3658 30.5638i 0.943325 1.34943i
\(514\) 0.0865047 0.00381556
\(515\) −15.4523 26.7642i −0.680911 1.17937i
\(516\) 18.9029 6.26914i 0.832154 0.275984i
\(517\) −3.94182 + 6.82743i −0.173361 + 0.300270i
\(518\) 1.00069 1.73324i 0.0439677 0.0761544i
\(519\) −24.7861 22.0463i −1.08799 0.967727i
\(520\) 1.64400 + 2.84748i 0.0720940 + 0.124870i
\(521\) 25.5498 1.11936 0.559680 0.828709i \(-0.310924\pi\)
0.559680 + 0.828709i \(0.310924\pi\)
\(522\) 0.777472 + 6.62210i 0.0340290 + 0.289842i
\(523\) −16.0458 −0.701634 −0.350817 0.936444i \(-0.614096\pi\)
−0.350817 + 0.936444i \(0.614096\pi\)
\(524\) −4.12729 7.14867i −0.180301 0.312291i
\(525\) 5.71379 27.7080i 0.249370 1.20927i
\(526\) 0.489480 0.847803i 0.0213423 0.0369660i
\(527\) 0.971599 1.68286i 0.0423235 0.0733065i
\(528\) −1.81089 + 8.78158i −0.0788090 + 0.382169i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 36.2371 1.57404
\(531\) 5.17673 + 44.0927i 0.224651 + 1.91346i
\(532\) −20.1730 −0.874611
\(533\) 0.411636 + 0.712974i 0.0178299 + 0.0308824i
\(534\) 9.57598 + 8.51748i 0.414393 + 0.368588i
\(535\) −19.7280 + 34.1698i −0.852914 + 1.47729i
\(536\) 0.222528 0.385430i 0.00961176 0.0166481i
\(537\) −0.345483 + 0.114580i −0.0149087 + 0.00494447i
\(538\) −12.7861 22.1462i −0.551249 0.954792i
\(539\) 4.66483 0.200928
\(540\) −17.0210 1.47589i −0.732469 0.0635123i
\(541\) −0.899738 −0.0386828 −0.0193414 0.999813i \(-0.506157\pi\)
−0.0193414 + 0.999813i \(0.506157\pi\)
\(542\) 8.48831 + 14.7022i 0.364604 + 0.631513i
\(543\) 10.5956 3.51405i 0.454703 0.150802i
\(544\) −0.349814 + 0.605896i −0.0149982 + 0.0259776i
\(545\) 10.9735 19.0066i 0.470051 0.814153i
\(546\) −3.63781 3.23569i −0.155684 0.138475i
\(547\) 16.7095 + 28.9416i 0.714445 + 1.23745i 0.963173 + 0.268882i \(0.0866540\pi\)
−0.248728 + 0.968573i \(0.580013\pi\)
\(548\) −4.60074 −0.196534
\(549\) −25.8974 11.1552i −1.10527 0.476093i
\(550\) −30.0814 −1.28268
\(551\) 7.97524 + 13.8135i 0.339757 + 0.588476i
\(552\) −2.09888 + 10.1781i −0.0893345 + 0.433211i
\(553\) −22.1396 + 38.3469i −0.941471 + 1.63068i
\(554\) 1.69963 2.94384i 0.0722103 0.125072i
\(555\) 0.818941 3.97130i 0.0347621 0.168572i
\(556\) −5.29418 9.16979i −0.224523 0.388886i
\(557\) −0.123644 −0.00523896 −0.00261948 0.999997i \(-0.500834\pi\)
−0.00261948 + 0.999997i \(0.500834\pi\)
\(558\) −6.68106 + 4.97922i −0.282832 + 0.210787i
\(559\) 11.4981 0.486320
\(560\) 4.62110 + 8.00397i 0.195277 + 0.338230i
\(561\) 4.68725 + 4.16913i 0.197896 + 0.176021i
\(562\) −14.3411 + 24.8395i −0.604942 + 1.04779i
\(563\) −1.29418 + 2.24159i −0.0545433 + 0.0944717i −0.892008 0.452020i \(-0.850704\pi\)
0.837465 + 0.546492i \(0.184037\pi\)
\(564\) 2.50364 0.830332i 0.105422 0.0349633i
\(565\) 4.93199 + 8.54245i 0.207490 + 0.359384i
\(566\) 11.1978 0.470677
\(567\) 24.6101 5.85949i 1.03353 0.246076i
\(568\) 1.18911 0.0498939
\(569\) 3.73422 + 6.46786i 0.156547 + 0.271147i 0.933621 0.358262i \(-0.116631\pi\)
−0.777074 + 0.629409i \(0.783297\pi\)
\(570\) −38.7934 + 12.8658i −1.62488 + 0.538890i
\(571\) 16.3251 28.2758i 0.683182 1.18331i −0.290822 0.956777i \(-0.593929\pi\)
0.974004 0.226529i \(-0.0727379\pi\)
\(572\) −2.58836 + 4.48318i −0.108225 + 0.187451i
\(573\) 30.2188 + 26.8785i 1.26241 + 1.12287i
\(574\) 1.15706 + 2.00409i 0.0482949 + 0.0836493i
\(575\) −34.8654 −1.45399
\(576\) 2.40545 1.79272i 0.100227 0.0746965i
\(577\) −18.9542 −0.789074 −0.394537 0.918880i \(-0.629095\pi\)
−0.394537 + 0.918880i \(0.629095\pi\)
\(578\) −8.25526 14.2985i −0.343374 0.594740i
\(579\) −8.72067 + 42.2893i −0.362419 + 1.75748i
\(580\) 3.65383 6.32862i 0.151717 0.262781i
\(581\) −11.2088 + 19.4142i −0.465018 + 0.805435i
\(582\) 1.73305 8.40410i 0.0718372 0.348361i
\(583\) 28.5265 + 49.4093i 1.18145 + 2.04632i
\(584\) 0.222528 0.00920829
\(585\) −9.05927 3.90225i −0.374555 0.161338i
\(586\) −6.94182 −0.286764
\(587\) 15.5760 + 26.9784i 0.642890 + 1.11352i 0.984785 + 0.173779i \(0.0555980\pi\)
−0.341895 + 0.939738i \(0.611069\pi\)
\(588\) −1.16621 1.03730i −0.0480936 0.0427775i
\(589\) −9.96658 + 17.2626i −0.410666 + 0.711294i
\(590\) 24.3287 42.1385i 1.00160 1.73482i
\(591\) −16.8261 + 5.58039i −0.692135 + 0.229547i
\(592\) 0.356004 + 0.616617i 0.0146317 + 0.0253428i
\(593\) 39.0631 1.60413 0.802065 0.597237i \(-0.203735\pi\)
0.802065 + 0.597237i \(0.203735\pi\)
\(594\) −11.3869 24.3700i −0.467209 0.999915i
\(595\) 6.46610 0.265084
\(596\) 8.48762 + 14.7010i 0.347666 + 0.602176i
\(597\) 44.2312 14.6693i 1.81026 0.600373i
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) −9.86398 + 17.0849i −0.403031 + 0.698070i −0.994090 0.108558i \(-0.965377\pi\)
0.591059 + 0.806628i \(0.298710\pi\)
\(600\) 7.52035 + 6.68907i 0.307017 + 0.273080i
\(601\) 0.703270 + 1.21810i 0.0286870 + 0.0496873i 0.880012 0.474951i \(-0.157534\pi\)
−0.851325 + 0.524638i \(0.824201\pi\)
\(602\) 32.3200 1.31727
\(603\) 0.155687 + 1.32606i 0.00634007 + 0.0540014i
\(604\) 22.2174 0.904015
\(605\) −25.9727 44.9860i −1.05594 1.82894i
\(606\) −1.03342 + 5.01138i −0.0419798 + 0.203573i
\(607\) 5.12364 8.87441i 0.207962 0.360201i −0.743110 0.669169i \(-0.766650\pi\)
0.951073 + 0.308968i \(0.0999835\pi\)
\(608\) 3.58836 6.21523i 0.145527 0.252061i
\(609\) −2.18539 + 10.5976i −0.0885564 + 0.429438i
\(610\) 15.4523 + 26.7642i 0.625647 + 1.08365i
\(611\) 1.52290 0.0616099
\(612\) −0.244740 2.08457i −0.00989302 0.0842636i
\(613\) −43.3287 −1.75003 −0.875015 0.484096i \(-0.839148\pi\)
−0.875015 + 0.484096i \(0.839148\pi\)
\(614\) −7.51052 13.0086i −0.303100 0.524984i
\(615\) 3.50324 + 3.11600i 0.141264 + 0.125649i
\(616\) −7.27561 + 12.6017i −0.293143 + 0.507738i
\(617\) −1.44506 + 2.50291i −0.0581758 + 0.100763i −0.893647 0.448771i \(-0.851862\pi\)
0.835471 + 0.549535i \(0.185195\pi\)
\(618\) −15.4523 + 5.12477i −0.621584 + 0.206148i
\(619\) −0.346172 0.599588i −0.0139138 0.0240995i 0.858985 0.512001i \(-0.171096\pi\)
−0.872898 + 0.487902i \(0.837762\pi\)
\(620\) 9.13231 0.366762
\(621\) −13.1978 28.2457i −0.529608 1.13346i
\(622\) 7.97524 0.319778
\(623\) 10.3993 + 18.0120i 0.416637 + 0.721637i
\(624\) 1.64400 0.545231i 0.0658125 0.0218267i
\(625\) 10.1440 17.5699i 0.405760 0.702797i
\(626\) 6.99745 12.1199i 0.279674 0.484410i
\(627\) −48.0814 42.7666i −1.92019 1.70793i
\(628\) 2.33379 + 4.04225i 0.0931285 + 0.161303i
\(629\) 0.498141 0.0198622
\(630\) −25.4646 10.9688i −1.01454 0.437008i
\(631\) 30.4771 1.21327 0.606637 0.794979i \(-0.292518\pi\)
0.606637 + 0.794979i \(0.292518\pi\)
\(632\) −7.87636 13.6422i −0.313305 0.542660i
\(633\) −1.64833 + 7.99325i −0.0655151 + 0.317703i
\(634\) −4.71015 + 8.15822i −0.187064 + 0.324004i
\(635\) 5.62907 9.74983i 0.223383 0.386910i
\(636\) 3.85532 18.6956i 0.152873 0.741330i
\(637\) −0.450558 0.780389i −0.0178517 0.0309201i
\(638\) 11.5054 0.455504
\(639\) −2.86033 + 2.13173i −0.113153 + 0.0843300i
\(640\) −3.28799 −0.129969
\(641\) 19.0970 + 33.0770i 0.754287 + 1.30646i 0.945728 + 0.324959i \(0.105351\pi\)
−0.191441 + 0.981504i \(0.561316\pi\)
\(642\) 15.5302 + 13.8135i 0.612927 + 0.545176i
\(643\) −6.30903 + 10.9276i −0.248804 + 0.430941i −0.963194 0.268806i \(-0.913371\pi\)
0.714390 + 0.699747i \(0.246704\pi\)
\(644\) −8.43268 + 14.6058i −0.332294 + 0.575550i
\(645\) 62.1526 20.6129i 2.44726 0.811632i
\(646\) −2.51052 4.34835i −0.0987751 0.171084i
\(647\) 35.9257 1.41239 0.706193 0.708019i \(-0.250411\pi\)
0.706193 + 0.708019i \(0.250411\pi\)
\(648\) −2.57234 + 8.62456i −0.101051 + 0.338805i
\(649\) 76.6079 3.00712
\(650\) 2.90545 + 5.03238i 0.113961 + 0.197386i
\(651\) −12.8350 + 4.25671i −0.503042 + 0.166834i
\(652\) 5.98762 10.3709i 0.234493 0.406154i
\(653\) 10.7193 18.5664i 0.419478 0.726558i −0.576409 0.817162i \(-0.695546\pi\)
0.995887 + 0.0906038i \(0.0288797\pi\)
\(654\) −8.63849 7.68362i −0.337792 0.300453i
\(655\) −13.5705 23.5048i −0.530243 0.918407i
\(656\) −0.823272 −0.0321434
\(657\) −0.535280 + 0.398930i −0.0208833 + 0.0155637i
\(658\) 4.28071 0.166879
\(659\) −16.3764 28.3647i −0.637932 1.10493i −0.985886 0.167419i \(-0.946457\pi\)
0.347954 0.937512i \(-0.386877\pi\)
\(660\) −5.95420 + 28.8738i −0.231767 + 1.12391i
\(661\) −0.268329 + 0.464759i −0.0104368 + 0.0180770i −0.871197 0.490934i \(-0.836656\pi\)
0.860760 + 0.509011i \(0.169989\pi\)
\(662\) −5.77747 + 10.0069i −0.224548 + 0.388928i
\(663\) 0.244740 1.18682i 0.00950491 0.0460923i
\(664\) −3.98762 6.90676i −0.154750 0.268034i
\(665\) −66.3287 −2.57212
\(666\) −1.96177 0.845025i −0.0760169 0.0327441i
\(667\) 13.3352 0.516340
\(668\) 3.38874 + 5.86946i 0.131114 + 0.227096i
\(669\) −9.87340 8.78203i −0.381728 0.339533i
\(670\) 0.731671 1.26729i 0.0282669 0.0489598i
\(671\) −24.3287 + 42.1385i −0.939199 + 1.62674i
\(672\) 4.62110 1.53259i 0.178263 0.0591208i
\(673\) −16.9530 29.3635i −0.653491 1.13188i −0.982270 0.187473i \(-0.939970\pi\)
0.328779 0.944407i \(-0.393363\pi\)
\(674\) −0.810892 −0.0312344
\(675\) −30.0814 2.60836i −1.15783 0.100396i
\(676\) 1.00000 0.0384615
\(677\) 13.3993 + 23.2082i 0.514975 + 0.891963i 0.999849 + 0.0173791i \(0.00553223\pi\)
−0.484874 + 0.874584i \(0.661134\pi\)
\(678\) 4.93199 1.63569i 0.189412 0.0628184i
\(679\) 6.96286 12.0600i 0.267210 0.462821i
\(680\) −1.15019 + 1.99218i −0.0441076 + 0.0763966i
\(681\) −28.5265 25.3732i −1.09314 0.972304i
\(682\) 7.18911 + 12.4519i 0.275285 + 0.476808i
\(683\) 0.978959 0.0374588 0.0187294 0.999825i \(-0.494038\pi\)
0.0187294 + 0.999825i \(0.494038\pi\)
\(684\) 2.51052 + 21.3833i 0.0959921 + 0.817611i
\(685\) −15.1272 −0.577981
\(686\) 8.57165 + 14.8465i 0.327267 + 0.566844i
\(687\) 1.57048 7.61576i 0.0599177 0.290560i
\(688\) −5.74907 + 9.95768i −0.219181 + 0.379633i
\(689\) 5.51052 9.54450i 0.209934 0.363617i
\(690\) −6.90112 + 33.4657i −0.262721 + 1.27402i
\(691\) 25.2632 + 43.7572i 0.961059 + 1.66460i 0.719851 + 0.694129i \(0.244210\pi\)
0.241208 + 0.970473i \(0.422456\pi\)
\(692\) 19.1520 0.728049
\(693\) −5.09022 43.3559i −0.193362 1.64695i
\(694\) −14.3090 −0.543163
\(695\) −17.4072 30.1502i −0.660294 1.14366i
\(696\) −2.87636 2.55841i −0.109028 0.0969764i
\(697\) −0.287992 + 0.498817i −0.0109085 + 0.0188940i
\(698\) −7.75526 + 13.4325i −0.293541 + 0.508428i
\(699\) 9.11195 3.02198i 0.344646 0.114302i
\(700\) 8.16690 + 14.1455i 0.308680 + 0.534649i
\(701\) −9.37450 −0.354070 −0.177035 0.984205i \(-0.556651\pi\)
−0.177035 + 0.984205i \(0.556651\pi\)
\(702\) −2.97710 + 4.25874i −0.112363 + 0.160736i
\(703\) −5.10989 −0.192723
\(704\) −2.58836 4.48318i −0.0975526 0.168966i
\(705\) 8.23195 2.73013i 0.310033 0.102823i
\(706\) −17.3869 + 30.1150i −0.654364 + 1.13339i
\(707\) −4.15197 + 7.19142i −0.156151 + 0.270461i
\(708\) −19.1520 17.0350i −0.719775 0.640213i
\(709\) 7.28613 + 12.6200i 0.273636 + 0.473952i 0.969790 0.243940i \(-0.0784402\pi\)
−0.696154 + 0.717893i \(0.745107\pi\)
\(710\) 3.90978 0.146731
\(711\) 43.4028 + 18.6956i 1.62773 + 0.701141i
\(712\) −7.39926 −0.277299
\(713\) 8.33242 + 14.4322i 0.312051 + 0.540489i
\(714\) 0.687937 3.33602i 0.0257454 0.124848i
\(715\) −8.51052 + 14.7407i −0.318275 + 0.551269i
\(716\) 0.105074 0.181994i 0.00392681 0.00680144i
\(717\) −2.59957 + 12.6061i −0.0970828 + 0.470785i
\(718\) −12.1414 21.0296i −0.453115 0.784818i
\(719\) −33.3104 −1.24227 −0.621134 0.783704i \(-0.713328\pi\)
−0.621134 + 0.783704i \(0.713328\pi\)
\(720\) 7.90909 5.89443i 0.294754 0.219673i
\(721\) −26.4203 −0.983943
\(722\) 16.2527 + 28.1505i 0.604863 + 1.04765i
\(723\) −12.1643 10.8197i −0.452397 0.402390i
\(724\) −3.22253 + 5.58158i −0.119764 + 0.207438i
\(725\) 6.45744 11.1846i 0.239823 0.415386i
\(726\) −25.9727 + 8.61384i −0.963937 + 0.319690i
\(727\) 16.6428 + 28.8262i 0.617248 + 1.06911i 0.989986 + 0.141168i \(0.0450859\pi\)
−0.372737 + 0.927937i \(0.621581\pi\)
\(728\) 2.81089 0.104179
\(729\) −9.27375 25.3574i −0.343472 0.939163i
\(730\) 0.731671 0.0270804
\(731\) 4.02221 + 6.96667i 0.148767 + 0.257672i
\(732\) 15.4523 5.12477i 0.571135 0.189417i
\(733\) −23.4585 + 40.6314i −0.866461 + 1.50075i −0.000871020 1.00000i \(0.500277\pi\)
−0.865590 + 0.500754i \(0.833056\pi\)
\(734\) −7.95420 + 13.7771i −0.293595 + 0.508521i
\(735\) −3.83448 3.41063i −0.141437 0.125803i
\(736\) −3.00000 5.19615i −0.110581 0.191533i
\(737\) 2.30394 0.0848666
\(738\) 1.98034 1.47589i 0.0728972 0.0543284i
\(739\) −43.6116 −1.60428 −0.802139 0.597137i \(-0.796305\pi\)
−0.802139 + 0.597137i \(0.796305\pi\)
\(740\) 1.17054 + 2.02743i 0.0430298 + 0.0745299i
\(741\) −2.51052 + 12.1743i −0.0922263 + 0.447234i
\(742\) 15.4895 26.8286i 0.568637 0.984908i
\(743\) 20.0371 34.7052i 0.735089 1.27321i −0.219596 0.975591i \(-0.570474\pi\)
0.954684 0.297620i \(-0.0961928\pi\)
\(744\) 0.971599 4.71159i 0.0356205 0.172735i
\(745\) 27.9072 + 48.3367i 1.02244 + 1.77092i
\(746\) −11.4661 −0.419804
\(747\) 21.9739 + 9.46517i 0.803982 + 0.346313i
\(748\) −3.62178 −0.132426
\(749\) 16.8654 + 29.2116i 0.616247 + 1.06737i
\(750\) 3.45056 + 3.06914i 0.125997 + 0.112069i
\(751\) −22.6538 + 39.2376i −0.826650 + 1.43180i 0.0740019 + 0.997258i \(0.476423\pi\)
−0.900652 + 0.434542i \(0.856910\pi\)
\(752\) −0.761450 + 1.31887i −0.0277672 + 0.0480942i
\(753\) 26.2978 8.72167i 0.958346 0.317835i
\(754\) −1.11126 1.92477i −0.0404699 0.0700958i
\(755\) 73.0507 2.65859
\(756\) −8.36831 + 11.9709i −0.304352 + 0.435376i
\(757\) 38.3287 1.39308 0.696540 0.717518i \(-0.254722\pi\)
0.696540 + 0.717518i \(0.254722\pi\)
\(758\) 1.85532 + 3.21350i 0.0673881 + 0.116720i
\(759\) −51.0631 + 16.9351i −1.85347 + 0.614704i
\(760\) 11.7985 20.4356i 0.427977 0.741278i
\(761\) 5.34108 9.25102i 0.193614 0.335349i −0.752831 0.658213i \(-0.771312\pi\)
0.946445 + 0.322864i \(0.104646\pi\)
\(762\) −4.43130 3.94148i −0.160529 0.142785i
\(763\) −9.38117 16.2487i −0.339621 0.588241i
\(764\) −23.3497 −0.844764
\(765\) −0.804702 6.85404i −0.0290941 0.247808i
\(766\) −3.56732 −0.128893
\(767\) −7.39926 12.8159i −0.267172 0.462755i
\(768\) −0.349814 + 1.69636i −0.0126228 + 0.0612120i
\(769\) 24.2843 42.0616i 0.875713 1.51678i 0.0197124 0.999806i \(-0.493725\pi\)
0.856001 0.516974i \(-0.172942\pi\)
\(770\) −23.9222 + 41.4344i −0.862095 + 1.49319i
\(771\) 0.0302606 0.146743i 0.00108981 0.00528482i
\(772\) −12.4647 21.5895i −0.448615 0.777024i
\(773\) 1.45881 0.0524699 0.0262349 0.999656i \(-0.491648\pi\)
0.0262349 + 0.999656i \(0.491648\pi\)
\(774\) −4.02221 34.2591i −0.144575 1.23142i
\(775\) 16.1396 0.579751
\(776\) 2.47710 + 4.29046i 0.0889227 + 0.154019i
\(777\) −2.59015 2.30384i −0.0929210 0.0826498i
\(778\) −2.71201 + 4.69734i −0.0972302 + 0.168408i
\(779\) 2.95420 5.11682i 0.105845 0.183329i
\(780\) 5.40545 1.79272i 0.193546 0.0641895i
\(781\) 3.07784 + 5.33098i 0.110134 + 0.190758i
\(782\) −4.19777 −0.150112
\(783\) 11.5054 + 0.997634i 0.411170 + 0.0356525i
\(784\) 0.901116 0.0321827
\(785\) 7.67349 + 13.2909i 0.273879 + 0.474372i
\(786\) −13.5705 + 4.50065i −0.484043 + 0.160533i
\(787\) 7.05308 12.2163i 0.251415 0.435464i −0.712500 0.701672i \(-0.752437\pi\)
0.963916 + 0.266208i \(0.0857707\pi\)
\(788\) 5.11745 8.86369i 0.182302 0.315756i
\(789\) −1.26695 1.12691i −0.0451047 0.0401189i
\(790\) −25.8974 44.8556i −0.921388 1.59589i
\(791\) 8.43268 0.299831
\(792\) 14.2632 + 6.14384i 0.506822 + 0.218312i
\(793\) 9.39926 0.333777
\(794\) −14.0636 24.3589i −0.499099 0.864464i
\(795\) 12.6762 61.4711i 0.449580 2.18015i
\(796\) −13.4523 + 23.3001i −0.476806 + 0.825851i
\(797\) −14.5970 + 25.2828i −0.517053 + 0.895562i 0.482751 + 0.875758i \(0.339638\pi\)
−0.999804 + 0.0198045i \(0.993696\pi\)
\(798\) −7.05680 + 34.2206i −0.249808 + 1.21140i
\(799\) 0.532732 + 0.922719i 0.0188467 + 0.0326434i
\(800\) −5.81089 −0.205446
\(801\) 17.7985 13.2648i 0.628880 0.468687i
\(802\) 14.8626 0.524817
\(803\) 0.575984 + 0.997634i 0.0203260 + 0.0352057i
\(804\) −0.575984 0.512317i −0.0203134 0.0180680i
\(805\) −27.7266 + 48.0238i −0.977233 + 1.69262i
\(806\) 1.38874 2.40536i 0.0489161 0.0847252i
\(807\) −42.0407 + 13.9428i −1.47990 + 0.490810i
\(808\) −1.47710 2.55841i −0.0519642 0.0900046i
\(809\) −24.4523 −0.859699 −0.429849 0.902901i \(-0.641433\pi\)
−0.429849 + 0.902901i \(0.641433\pi\)
\(810\) −8.45784 + 28.3575i −0.297178 + 0.996381i
\(811\) −21.5970 −0.758374 −0.379187 0.925320i \(-0.623796\pi\)
−0.379187 + 0.925320i \(0.623796\pi\)
\(812\) −3.12364 5.41031i −0.109618 0.189865i
\(813\) 27.9095 9.25618i 0.978829 0.324628i
\(814\) −1.84294 + 3.19206i −0.0645949 + 0.111882i
\(815\) 19.6872 34.0993i 0.689614 1.19445i
\(816\) 0.905446 + 0.805361i 0.0316970 + 0.0281933i
\(817\) −41.2595 71.4636i −1.44349 2.50019i
\(818\) 17.9752 0.628490
\(819\) −6.76145 + 5.03913i −0.236264 + 0.176081i
\(820\) −2.70691 −0.0945295
\(821\) 2.16071 + 3.74245i 0.0754092 + 0.130613i 0.901264 0.433270i \(-0.142640\pi\)
−0.825855 + 0.563883i \(0.809307\pi\)
\(822\) −1.60940 + 7.80451i −0.0561344 + 0.272213i
\(823\) 13.8764 24.0346i 0.483699 0.837792i −0.516125 0.856513i \(-0.672626\pi\)
0.999825 + 0.0187212i \(0.00595948\pi\)
\(824\) 4.69963 8.13999i 0.163719 0.283570i
\(825\) −10.5229 + 51.0288i −0.366360 + 1.77660i
\(826\) −20.7985 36.0241i −0.723673 1.25344i
\(827\) 8.55122 0.297355 0.148678 0.988886i \(-0.452498\pi\)
0.148678 + 0.988886i \(0.452498\pi\)
\(828\) 16.5316 + 7.12092i 0.574511 + 0.247469i
\(829\) 38.2371 1.32803 0.664015 0.747720i \(-0.268851\pi\)
0.664015 + 0.747720i \(0.268851\pi\)
\(830\) −13.1113 22.7094i −0.455099 0.788254i
\(831\) −4.39926 3.91298i −0.152609 0.135740i
\(832\) −0.500000 + 0.866025i −0.0173344 + 0.0300240i
\(833\) 0.315223 0.545982i 0.0109218 0.0189172i
\(834\) −17.4072 + 5.77311i −0.602763 + 0.199906i
\(835\) 11.1421 + 19.2987i 0.385590 + 0.667861i
\(836\) 37.1520 1.28493
\(837\) 6.10940 + 13.0753i 0.211172 + 0.451947i
\(838\) 27.4610 0.948625
\(839\) 22.5407 + 39.0416i 0.778192 + 1.34787i 0.932983 + 0.359920i \(0.117196\pi\)
−0.154792 + 0.987947i \(0.549471\pi\)
\(840\) 15.1941 5.03913i 0.524247 0.173867i
\(841\) 12.0302 20.8369i 0.414834 0.718513i
\(842\) 1.47091 2.54769i 0.0506909 0.0877992i
\(843\) 37.1199 + 33.0168i 1.27848 + 1.13716i
\(844\) −2.35600 4.08072i −0.0810970 0.140464i
\(845\) 3.28799 0.113110
\(846\) −0.532732 4.53753i −0.0183157 0.156004i
\(847\) −44.4079 −1.52587
\(848\) 5.51052 + 9.54450i 0.189232 + 0.327760i
\(849\) 3.91714 18.9954i 0.134436 0.651921i
\(850\) −2.03273 + 3.52079i −0.0697221 + 0.120762i
\(851\) −2.13602 + 3.69970i −0.0732219 + 0.126824i
\(852\) 0.415967 2.01715i 0.0142508 0.0691065i
\(853\) −12.9840 22.4889i −0.444563 0.770006i 0.553459 0.832877i \(-0.313308\pi\)
−0.998022 + 0.0628710i \(0.979974\pi\)
\(854\) 26.4203 0.904084
\(855\) 8.25457 + 70.3082i 0.282300 + 2.40449i
\(856\) −12.0000 −0.410152
\(857\) −9.05494 15.6836i −0.309311 0.535742i 0.668901 0.743352i \(-0.266765\pi\)
−0.978212 + 0.207609i \(0.933432\pi\)
\(858\) 6.69963 + 5.95907i 0.228722 + 0.203439i
\(859\) 16.1080 27.8999i 0.549599 0.951933i −0.448703 0.893681i \(-0.648114\pi\)
0.998302 0.0582522i \(-0.0185527\pi\)
\(860\) −18.9029 + 32.7408i −0.644583 + 1.11645i
\(861\) 3.80442 1.26174i 0.129654 0.0429998i
\(862\) 1.68980 + 2.92681i 0.0575547 + 0.0996877i
\(863\) −5.01594 −0.170745 −0.0853724 0.996349i \(-0.527208\pi\)
−0.0853724 + 0.996349i \(0.527208\pi\)
\(864\) −2.19963 4.70761i −0.0748329 0.160156i
\(865\) 62.9715 2.14110
\(866\) 4.18292 + 7.24503i 0.142141 + 0.246196i
\(867\) −27.1432 + 9.00205i −0.921832 + 0.305726i
\(868\) 3.90359 6.76121i 0.132496 0.229490i
\(869\) 40.7738 70.6222i 1.38315 2.39569i
\(870\) −9.45744 8.41204i −0.320637 0.285195i
\(871\) −0.222528 0.385430i −0.00754008 0.0130598i
\(872\) 6.67487 0.226040
\(873\) −13.6501 5.87974i −0.461986 0.198999i
\(874\) 43.0604 1.45654
\(875\) 3.74721 + 6.49036i 0.126679 + 0.219414i
\(876\) 0.0778435 0.377488i 0.00263009 0.0127541i
\(877\) −9.75526 + 16.8966i −0.329412 + 0.570558i −0.982395 0.186814i \(-0.940184\pi\)
0.652984 + 0.757372i \(0.273517\pi\)
\(878\) −14.2880 + 24.7475i −0.482196 + 0.835189i
\(879\) −2.42835 + 11.7758i −0.0819061 + 0.397188i
\(880\) −8.51052 14.7407i −0.286890 0.496907i
\(881\) −30.4895 −1.02722 −0.513608 0.858025i \(-0.671692\pi\)
−0.513608 + 0.858025i \(0.671692\pi\)
\(882\) −2.16758 + 1.61544i −0.0729864 + 0.0543948i
\(883\) −0.217432 −0.00731718 −0.00365859 0.999993i \(-0.501165\pi\)
−0.00365859 + 0.999993i \(0.501165\pi\)
\(884\) 0.349814 + 0.605896i 0.0117655 + 0.0203785i
\(885\) −62.9715 56.0108i −2.11676 1.88278i
\(886\) −9.26942 + 16.0551i −0.311412 + 0.539382i
\(887\) 2.22253 3.84953i 0.0746252 0.129255i −0.826298 0.563233i \(-0.809557\pi\)
0.900923 + 0.433979i \(0.142891\pi\)
\(888\) 1.17054 0.388209i 0.0392807 0.0130274i
\(889\) −4.81227 8.33510i −0.161398 0.279550i
\(890\) −24.3287 −0.815500
\(891\) −45.3236 + 10.7912i −1.51840 + 0.361520i
\(892\) 7.62907 0.255440
\(893\) −5.46472 9.46517i −0.182870 0.316740i
\(894\) 27.9072 9.25543i 0.933357 0.309548i
\(895\) 0.345483 0.598395i 0.0115482 0.0200021i
\(896\) −1.40545 + 2.43430i −0.0469527 + 0.0813244i
\(897\) 7.76509 + 6.90676i 0.259269 + 0.230610i
\(898\) −7.43130 12.8714i −0.247986 0.429524i
\(899\) −6.17301 −0.205881
\(900\) 13.9778 10.4173i 0.465926 0.347243i
\(901\) 7.71063 0.256878
\(902\) −2.13093 3.69087i −0.0709521 0.122893i
\(903\) 11.3060 54.8263i 0.376240 1.82451i
\(904\) −1.50000 + 2.59808i −0.0498893 + 0.0864107i
\(905\) −10.5956 + 18.3522i −0.352211 + 0.610048i
\(906\) 7.77197 37.6887i 0.258206 1.25212i
\(907\) 9.25704 + 16.0337i 0.307375 + 0.532389i 0.977787 0.209600i \(-0.0672161\pi\)
−0.670412 + 0.741989i \(0.733883\pi\)
\(908\) 22.0421 0.731492
\(909\) 8.13959 + 3.50610i 0.269973 + 0.116290i
\(910\) 9.24219 0.306376
\(911\) 2.14468 + 3.71470i 0.0710566 + 0.123074i 0.899365 0.437199i \(-0.144030\pi\)
−0.828308 + 0.560273i \(0.810696\pi\)
\(912\) −9.28799 8.26132i −0.307556 0.273560i
\(913\) 20.6428 35.7544i 0.683178 1.18330i
\(914\) 11.1520 19.3158i 0.368874 0.638909i
\(915\) 50.8072 16.8502i 1.67963 0.557050i
\(916\) 2.24474 + 3.88800i 0.0741683 + 0.128463i
\(917\) −23.2027 −0.766221
\(918\) −3.62178 0.314045i −0.119537 0.0103650i
\(919\) 53.5302 1.76580 0.882899 0.469563i \(-0.155589\pi\)
0.882899 + 0.469563i \(0.155589\pi\)
\(920\) −9.86398 17.0849i −0.325206 0.563273i
\(921\) −24.6945 + 8.18994i −0.813713 + 0.269868i
\(922\) 4.87017 8.43538i 0.160390 0.277804i
\(923\) 0.594554 1.02980i 0.0195700 0.0338962i
\(924\) 18.8319 + 16.7503i 0.619525 + 0.551045i
\(925\) 2.06870 + 3.58309i 0.0680185 + 0.117811i
\(926\) 3.62550 0.119141
\(927\) 3.28799 + 28.0054i 0.107992 + 0.919819i
\(928\) 2.22253 0.0729581
\(929\) 22.8974 + 39.6595i 0.751239 + 1.30118i 0.947222 + 0.320577i \(0.103877\pi\)
−0.195983 + 0.980607i \(0.562790\pi\)
\(930\) 3.19461 15.4917i 0.104755 0.507991i
\(931\) −3.23353 + 5.60064i −0.105975 + 0.183554i
\(932\) −2.77128 + 4.80000i −0.0907764 + 0.157229i
\(933\) 2.78985 13.5289i 0.0913356 0.442915i
\(934\) −0.0229002 0.0396643i −0.000749316 0.00129785i
\(935\) −11.9084 −0.389446
\(936\) −0.349814 2.97954i −0.0114340 0.0973892i
\(937\) −32.0604 −1.04737 −0.523683 0.851913i \(-0.675442\pi\)
−0.523683 + 0.851913i \(0.675442\pi\)
\(938\) −0.625503 1.08340i −0.0204234 0.0353744i
\(939\) −18.1120 16.1099i −0.591061 0.525727i
\(940\) −2.50364 + 4.33643i −0.0816598 + 0.141439i
\(941\) 7.18430 12.4436i 0.234201 0.405649i −0.724839 0.688918i \(-0.758086\pi\)
0.959040 + 0.283270i \(0.0914192\pi\)
\(942\) 7.67349 2.54491i 0.250016 0.0829177i
\(943\) −2.46982 4.27785i −0.0804283 0.139306i
\(944\) 14.7985 0.481651
\(945\) −27.5149 + 39.3601i −0.895061 + 1.28038i
\(946\) −59.5227 −1.93525
\(947\) 1.07922 + 1.86927i 0.0350700 + 0.0607430i 0.883028 0.469321i \(-0.155501\pi\)
−0.847958 + 0.530064i \(0.822168\pi\)
\(948\) −25.8974 + 8.58887i −0.841108 + 0.278953i
\(949\) 0.111264 0.192715i 0.00361179 0.00625580i
\(950\) 20.8516 36.1160i 0.676515 1.17176i
\(951\) 12.1916 + 10.8440i 0.395339 + 0.351639i
\(952\) 0.983290 + 1.70311i 0.0318686 + 0.0551980i
\(953\) −53.0480 −1.71839 −0.859196 0.511646i \(-0.829036\pi\)
−0.859196 + 0.511646i \(0.829036\pi\)
\(954\) −30.3658 13.0800i −0.983130 0.423480i
\(955\) −76.7738 −2.48434
\(956\) −3.71565 6.43569i −0.120173 0.208145i
\(957\) 4.02476 19.5173i 0.130102 0.630905i
\(958\) 8.84176 15.3144i 0.285664 0.494785i
\(959\) −6.46610 + 11.1996i −0.208801 + 0.361654i
\(960\) −1.15019 + 5.57761i −0.0371221 + 0.180017i
\(961\) 11.6428 + 20.1660i 0.375575 + 0.650515i
\(962\) 0.712008 0.0229561
\(963\) 28.8654 21.5126i 0.930173 0.693233i
\(964\) 9.39926 0.302730
\(965\) −40.9839 70.9862i −1.31932 2.28513i
\(966\) 21.8268 + 19.4142i 0.702267 + 0.624640i
\(967\) −13.5279 + 23.4310i −0.435029 + 0.753492i −0.997298 0.0734625i \(-0.976595\pi\)
0.562269 + 0.826954i \(0.309928\pi\)
\(968\) 7.89926 13.6819i 0.253892 0.439753i
\(969\) −8.25457 + 2.73763i −0.265175 + 0.0879453i
\(970\) 8.14468 + 14.1070i 0.261510 + 0.452949i
\(971\) 30.3979 0.975514 0.487757 0.872979i \(-0.337815\pi\)
0.487757 + 0.872979i \(0.337815\pi\)
\(972\) 13.7305 + 7.38061i 0.440406 + 0.236733i
\(973\) −29.7628 −0.954150
\(974\) −11.6218 20.1295i −0.372386 0.644991i
\(975\) 9.55308 3.16828i 0.305944 0.101466i
\(976\) −4.69963 + 8.13999i −0.150431 + 0.260555i
\(977\) 8.55632 14.8200i 0.273741 0.474133i −0.696076 0.717968i \(-0.745072\pi\)
0.969817 + 0.243835i \(0.0784056\pi\)
\(978\) −15.4981 13.7850i −0.495576 0.440796i
\(979\) −19.1520 33.1722i −0.612100 1.06019i
\(980\) 2.96286 0.0946451
\(981\) −16.0560 + 11.9661i −0.512630 + 0.382049i
\(982\) 18.5439 0.591761
\(983\) −20.6861 35.8293i −0.659783 1.14278i −0.980672 0.195661i \(-0.937315\pi\)
0.320888 0.947117i \(-0.396019\pi\)
\(984\) −0.287992 + 1.39656i −0.00918085 + 0.0445208i
\(985\) 16.8261 29.1437i 0.536126 0.928597i
\(986\) 0.777472 1.34662i 0.0247597 0.0428851i
\(987\) 1.49745 7.26161i 0.0476644 0.231140i
\(988\) −3.58836 6.21523i −0.114161 0.197733i
\(989\) −68.9888 −2.19372
\(990\) 46.8974 + 20.2009i 1.49050 + 0.642027i
\(991\) −38.8552 −1.23427 −0.617137 0.786855i \(-0.711708\pi\)
−0.617137 + 0.786855i \(0.711708\pi\)
\(992\) 1.38874 + 2.40536i 0.0440924 + 0.0763703i
\(993\) 14.9542 + 13.3012i 0.474557 + 0.422101i
\(994\) 1.67123 2.89465i 0.0530081 0.0918127i
\(995\) −44.2312 + 76.6107i −1.40222 + 2.42872i
\(996\) −13.1113 + 4.34835i −0.415446 + 0.137783i
\(997\) 2.73167 + 4.73139i 0.0865129 + 0.149845i 0.906035 0.423203i \(-0.139094\pi\)
−0.819522 + 0.573048i \(0.805761\pi\)
\(998\) 31.5475 0.998619
\(999\) −2.11972 + 3.03226i −0.0670649 + 0.0959364i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.e.d.157.3 yes 6
3.2 odd 2 702.2.e.d.469.3 6
9.2 odd 6 702.2.e.d.235.3 6
9.4 even 3 2106.2.a.q.1.3 3
9.5 odd 6 2106.2.a.r.1.1 3
9.7 even 3 inner 234.2.e.d.79.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.e.d.79.3 6 9.7 even 3 inner
234.2.e.d.157.3 yes 6 1.1 even 1 trivial
702.2.e.d.235.3 6 9.2 odd 6
702.2.e.d.469.3 6 3.2 odd 2
2106.2.a.q.1.3 3 9.4 even 3
2106.2.a.r.1.1 3 9.5 odd 6