Properties

Label 700.3.o.a.649.2
Level $700$
Weight $3$
Character 700.649
Analytic conductor $19.074$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,3,Mod(549,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0736185052\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 700.649
Dual form 700.3.o.a.549.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{3} +7.00000i q^{7} +(3.00000 - 5.19615i) q^{9} +(-7.50000 - 12.9904i) q^{11} -13.8564 q^{13} +(-14.7224 - 25.5000i) q^{17} +(-13.5000 - 7.79423i) q^{19} +(-10.5000 + 6.06218i) q^{21} +(7.79423 + 4.50000i) q^{23} +25.9808 q^{27} +6.00000 q^{29} +(-10.5000 + 6.06218i) q^{31} +(12.9904 - 22.5000i) q^{33} +(26.8468 + 15.5000i) q^{37} +(-12.0000 - 20.7846i) q^{39} -55.4256i q^{41} +10.0000i q^{43} +(21.6506 - 37.5000i) q^{47} -49.0000 q^{49} +(25.5000 - 44.1673i) q^{51} +(-49.3634 + 28.5000i) q^{53} -27.0000i q^{57} +(70.5000 - 40.7032i) q^{59} +(-70.5000 - 40.7032i) q^{61} +(36.3731 + 21.0000i) q^{63} +(42.4352 - 24.5000i) q^{67} +15.5885i q^{69} -126.000 q^{71} +(-12.9904 - 22.5000i) q^{73} +(90.9327 - 52.5000i) q^{77} +(-36.5000 + 63.2199i) q^{79} +(-4.50000 - 7.79423i) q^{81} +13.8564 q^{83} +(5.19615 + 9.00000i) q^{87} +(-49.5000 - 28.5788i) q^{89} -96.9948i q^{91} +(-18.1865 - 10.5000i) q^{93} +27.7128 q^{97} -90.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} - 30 q^{11} - 54 q^{19} - 42 q^{21} + 24 q^{29} - 42 q^{31} - 48 q^{39} - 196 q^{49} + 102 q^{51} + 282 q^{59} - 282 q^{61} - 504 q^{71} - 146 q^{79} - 18 q^{81} - 198 q^{89} - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 1.00000i
\(8\) 0 0
\(9\) 3.00000 5.19615i 0.333333 0.577350i
\(10\) 0 0
\(11\) −7.50000 12.9904i −0.681818 1.18094i −0.974425 0.224711i \(-0.927856\pi\)
0.292607 0.956233i \(-0.405477\pi\)
\(12\) 0 0
\(13\) −13.8564 −1.06588 −0.532939 0.846154i \(-0.678912\pi\)
−0.532939 + 0.846154i \(0.678912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14.7224 25.5000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(18\) 0 0
\(19\) −13.5000 7.79423i −0.710526 0.410223i 0.100730 0.994914i \(-0.467882\pi\)
−0.811256 + 0.584691i \(0.801216\pi\)
\(20\) 0 0
\(21\) −10.5000 + 6.06218i −0.500000 + 0.288675i
\(22\) 0 0
\(23\) 7.79423 + 4.50000i 0.338880 + 0.195652i 0.659776 0.751462i \(-0.270651\pi\)
−0.320897 + 0.947114i \(0.603984\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 25.9808 0.962250
\(28\) 0 0
\(29\) 6.00000 0.206897 0.103448 0.994635i \(-0.467012\pi\)
0.103448 + 0.994635i \(0.467012\pi\)
\(30\) 0 0
\(31\) −10.5000 + 6.06218i −0.338710 + 0.195554i −0.659701 0.751528i \(-0.729317\pi\)
0.320992 + 0.947082i \(0.395984\pi\)
\(32\) 0 0
\(33\) 12.9904 22.5000i 0.393648 0.681818i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 26.8468 + 15.5000i 0.725589 + 0.418919i 0.816806 0.576912i \(-0.195742\pi\)
−0.0912174 + 0.995831i \(0.529076\pi\)
\(38\) 0 0
\(39\) −12.0000 20.7846i −0.307692 0.532939i
\(40\) 0 0
\(41\) 55.4256i 1.35184i −0.736973 0.675922i \(-0.763745\pi\)
0.736973 0.675922i \(-0.236255\pi\)
\(42\) 0 0
\(43\) 10.0000i 0.232558i 0.993217 + 0.116279i \(0.0370967\pi\)
−0.993217 + 0.116279i \(0.962903\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 21.6506 37.5000i 0.460652 0.797872i −0.538342 0.842727i \(-0.680949\pi\)
0.998994 + 0.0448543i \(0.0142824\pi\)
\(48\) 0 0
\(49\) −49.0000 −1.00000
\(50\) 0 0
\(51\) 25.5000 44.1673i 0.500000 0.866025i
\(52\) 0 0
\(53\) −49.3634 + 28.5000i −0.931386 + 0.537736i −0.887250 0.461290i \(-0.847387\pi\)
−0.0441362 + 0.999026i \(0.514054\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 27.0000i 0.473684i
\(58\) 0 0
\(59\) 70.5000 40.7032i 1.19492 0.689885i 0.235498 0.971875i \(-0.424328\pi\)
0.959417 + 0.281990i \(0.0909946\pi\)
\(60\) 0 0
\(61\) −70.5000 40.7032i −1.15574 0.667265i −0.205459 0.978666i \(-0.565869\pi\)
−0.950279 + 0.311400i \(0.899202\pi\)
\(62\) 0 0
\(63\) 36.3731 + 21.0000i 0.577350 + 0.333333i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 42.4352 24.5000i 0.633362 0.365672i −0.148691 0.988884i \(-0.547506\pi\)
0.782053 + 0.623212i \(0.214173\pi\)
\(68\) 0 0
\(69\) 15.5885i 0.225920i
\(70\) 0 0
\(71\) −126.000 −1.77465 −0.887324 0.461147i \(-0.847438\pi\)
−0.887324 + 0.461147i \(0.847438\pi\)
\(72\) 0 0
\(73\) −12.9904 22.5000i −0.177950 0.308219i 0.763228 0.646129i \(-0.223613\pi\)
−0.941178 + 0.337910i \(0.890280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 90.9327 52.5000i 1.18094 0.681818i
\(78\) 0 0
\(79\) −36.5000 + 63.2199i −0.462025 + 0.800251i −0.999062 0.0433077i \(-0.986210\pi\)
0.537036 + 0.843559i \(0.319544\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 13.8564 0.166945 0.0834723 0.996510i \(-0.473399\pi\)
0.0834723 + 0.996510i \(0.473399\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.19615 + 9.00000i 0.0597259 + 0.103448i
\(88\) 0 0
\(89\) −49.5000 28.5788i −0.556180 0.321111i 0.195431 0.980717i \(-0.437389\pi\)
−0.751611 + 0.659607i \(0.770723\pi\)
\(90\) 0 0
\(91\) 96.9948i 1.06588i
\(92\) 0 0
\(93\) −18.1865 10.5000i −0.195554 0.112903i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 27.7128 0.285699 0.142850 0.989744i \(-0.454373\pi\)
0.142850 + 0.989744i \(0.454373\pi\)
\(98\) 0 0
\(99\) −90.0000 −0.909091
\(100\) 0 0
\(101\) 85.5000 49.3634i 0.846535 0.488747i −0.0129455 0.999916i \(-0.504121\pi\)
0.859480 + 0.511169i \(0.170787\pi\)
\(102\) 0 0
\(103\) −35.5070 + 61.5000i −0.344729 + 0.597087i −0.985304 0.170808i \(-0.945362\pi\)
0.640576 + 0.767895i \(0.278696\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 33.7750 + 19.5000i 0.315654 + 0.182243i 0.649454 0.760401i \(-0.274998\pi\)
−0.333800 + 0.942644i \(0.608331\pi\)
\(108\) 0 0
\(109\) 51.5000 + 89.2006i 0.472477 + 0.818354i 0.999504 0.0314943i \(-0.0100266\pi\)
−0.527027 + 0.849849i \(0.676693\pi\)
\(110\) 0 0
\(111\) 53.6936i 0.483726i
\(112\) 0 0
\(113\) 78.0000i 0.690265i −0.938554 0.345133i \(-0.887834\pi\)
0.938554 0.345133i \(-0.112166\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −41.5692 + 72.0000i −0.355292 + 0.615385i
\(118\) 0 0
\(119\) 178.500 103.057i 1.50000 0.866025i
\(120\) 0 0
\(121\) −52.0000 + 90.0666i −0.429752 + 0.744352i
\(122\) 0 0
\(123\) 83.1384 48.0000i 0.675922 0.390244i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 50.0000i 0.393701i −0.980434 0.196850i \(-0.936929\pi\)
0.980434 0.196850i \(-0.0630713\pi\)
\(128\) 0 0
\(129\) −15.0000 + 8.66025i −0.116279 + 0.0671338i
\(130\) 0 0
\(131\) 85.5000 + 49.3634i 0.652672 + 0.376820i 0.789479 0.613777i \(-0.210351\pi\)
−0.136807 + 0.990598i \(0.543684\pi\)
\(132\) 0 0
\(133\) 54.5596 94.5000i 0.410223 0.710526i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −54.5596 + 31.5000i −0.398245 + 0.229927i −0.685727 0.727859i \(-0.740515\pi\)
0.287481 + 0.957786i \(0.407182\pi\)
\(138\) 0 0
\(139\) 235.559i 1.69467i −0.531060 0.847334i \(-0.678206\pi\)
0.531060 0.847334i \(-0.321794\pi\)
\(140\) 0 0
\(141\) 75.0000 0.531915
\(142\) 0 0
\(143\) 103.923 + 180.000i 0.726735 + 1.25874i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −42.4352 73.5000i −0.288675 0.500000i
\(148\) 0 0
\(149\) −88.5000 + 153.286i −0.593960 + 1.02877i 0.399733 + 0.916632i \(0.369103\pi\)
−0.993693 + 0.112137i \(0.964231\pi\)
\(150\) 0 0
\(151\) −27.5000 47.6314i −0.182119 0.315440i 0.760483 0.649358i \(-0.224962\pi\)
−0.942602 + 0.333918i \(0.891629\pi\)
\(152\) 0 0
\(153\) −176.669 −1.15470
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −49.3634 85.5000i −0.314417 0.544586i 0.664897 0.746935i \(-0.268476\pi\)
−0.979313 + 0.202350i \(0.935142\pi\)
\(158\) 0 0
\(159\) −85.5000 49.3634i −0.537736 0.310462i
\(160\) 0 0
\(161\) −31.5000 + 54.5596i −0.195652 + 0.338880i
\(162\) 0 0
\(163\) −19.9186 11.5000i −0.122200 0.0705521i 0.437654 0.899143i \(-0.355809\pi\)
−0.559854 + 0.828591i \(0.689143\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −277.128 −1.65945 −0.829725 0.558172i \(-0.811503\pi\)
−0.829725 + 0.558172i \(0.811503\pi\)
\(168\) 0 0
\(169\) 23.0000 0.136095
\(170\) 0 0
\(171\) −81.0000 + 46.7654i −0.473684 + 0.273482i
\(172\) 0 0
\(173\) −70.1481 + 121.500i −0.405480 + 0.702312i −0.994377 0.105896i \(-0.966229\pi\)
0.588897 + 0.808208i \(0.299562\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 122.110 + 70.5000i 0.689885 + 0.398305i
\(178\) 0 0
\(179\) 31.5000 + 54.5596i 0.175978 + 0.304802i 0.940499 0.339796i \(-0.110358\pi\)
−0.764522 + 0.644598i \(0.777025\pi\)
\(180\) 0 0
\(181\) 124.708i 0.688993i 0.938788 + 0.344496i \(0.111950\pi\)
−0.938788 + 0.344496i \(0.888050\pi\)
\(182\) 0 0
\(183\) 141.000i 0.770492i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −220.836 + 382.500i −1.18094 + 2.04545i
\(188\) 0 0
\(189\) 181.865i 0.962250i
\(190\) 0 0
\(191\) 28.5000 49.3634i 0.149215 0.258447i −0.781723 0.623626i \(-0.785659\pi\)
0.930937 + 0.365179i \(0.118992\pi\)
\(192\) 0 0
\(193\) −180.999 + 104.500i −0.937820 + 0.541451i −0.889276 0.457370i \(-0.848791\pi\)
−0.0485439 + 0.998821i \(0.515458\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 150.000i 0.761421i 0.924694 + 0.380711i \(0.124321\pi\)
−0.924694 + 0.380711i \(0.875679\pi\)
\(198\) 0 0
\(199\) 178.500 103.057i 0.896985 0.517874i 0.0207642 0.999784i \(-0.493390\pi\)
0.876221 + 0.481910i \(0.160057\pi\)
\(200\) 0 0
\(201\) 73.5000 + 42.4352i 0.365672 + 0.211121i
\(202\) 0 0
\(203\) 42.0000i 0.206897i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 46.7654 27.0000i 0.225920 0.130435i
\(208\) 0 0
\(209\) 233.827i 1.11879i
\(210\) 0 0
\(211\) 346.000 1.63981 0.819905 0.572499i \(-0.194026\pi\)
0.819905 + 0.572499i \(0.194026\pi\)
\(212\) 0 0
\(213\) −109.119 189.000i −0.512297 0.887324i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −42.4352 73.5000i −0.195554 0.338710i
\(218\) 0 0
\(219\) 22.5000 38.9711i 0.102740 0.177950i
\(220\) 0 0
\(221\) 204.000 + 353.338i 0.923077 + 1.59882i
\(222\) 0 0
\(223\) 332.554 1.49127 0.745636 0.666353i \(-0.232146\pi\)
0.745636 + 0.666353i \(0.232146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −70.1481 121.500i −0.309022 0.535242i 0.669126 0.743149i \(-0.266668\pi\)
−0.978149 + 0.207906i \(0.933335\pi\)
\(228\) 0 0
\(229\) −145.500 84.0045i −0.635371 0.366832i 0.147458 0.989068i \(-0.452891\pi\)
−0.782829 + 0.622237i \(0.786224\pi\)
\(230\) 0 0
\(231\) 157.500 + 90.9327i 0.681818 + 0.393648i
\(232\) 0 0
\(233\) 236.425 + 136.500i 1.01470 + 0.585837i 0.912564 0.408934i \(-0.134099\pi\)
0.102135 + 0.994771i \(0.467433\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −126.440 −0.533501
\(238\) 0 0
\(239\) 222.000 0.928870 0.464435 0.885607i \(-0.346257\pi\)
0.464435 + 0.885607i \(0.346257\pi\)
\(240\) 0 0
\(241\) −190.500 + 109.985i −0.790456 + 0.456370i −0.840123 0.542396i \(-0.817517\pi\)
0.0496668 + 0.998766i \(0.484184\pi\)
\(242\) 0 0
\(243\) 124.708 216.000i 0.513200 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 187.061 + 108.000i 0.757334 + 0.437247i
\(248\) 0 0
\(249\) 12.0000 + 20.7846i 0.0481928 + 0.0834723i
\(250\) 0 0
\(251\) 96.9948i 0.386434i 0.981156 + 0.193217i \(0.0618921\pi\)
−0.981156 + 0.193217i \(0.938108\pi\)
\(252\) 0 0
\(253\) 135.000i 0.533597i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −96.1288 + 166.500i −0.374042 + 0.647860i −0.990183 0.139776i \(-0.955362\pi\)
0.616141 + 0.787636i \(0.288695\pi\)
\(258\) 0 0
\(259\) −108.500 + 187.928i −0.418919 + 0.725589i
\(260\) 0 0
\(261\) 18.0000 31.1769i 0.0689655 0.119452i
\(262\) 0 0
\(263\) −132.502 + 76.5000i −0.503809 + 0.290875i −0.730285 0.683142i \(-0.760613\pi\)
0.226476 + 0.974017i \(0.427280\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 99.0000i 0.370787i
\(268\) 0 0
\(269\) 394.500 227.765i 1.46654 0.846709i 0.467243 0.884129i \(-0.345247\pi\)
0.999300 + 0.0374200i \(0.0119139\pi\)
\(270\) 0 0
\(271\) 61.5000 + 35.5070i 0.226937 + 0.131022i 0.609158 0.793049i \(-0.291507\pi\)
−0.382221 + 0.924071i \(0.624841\pi\)
\(272\) 0 0
\(273\) 145.492 84.0000i 0.532939 0.307692i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −310.903 + 179.500i −1.12239 + 0.648014i −0.942011 0.335582i \(-0.891067\pi\)
−0.180383 + 0.983596i \(0.557734\pi\)
\(278\) 0 0
\(279\) 72.7461i 0.260739i
\(280\) 0 0
\(281\) −222.000 −0.790036 −0.395018 0.918673i \(-0.629262\pi\)
−0.395018 + 0.918673i \(0.629262\pi\)
\(282\) 0 0
\(283\) 0.866025 + 1.50000i 0.00306016 + 0.00530035i 0.867551 0.497347i \(-0.165693\pi\)
−0.864491 + 0.502648i \(0.832359\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 387.979 1.35184
\(288\) 0 0
\(289\) −289.000 + 500.563i −1.00000 + 1.73205i
\(290\) 0 0
\(291\) 24.0000 + 41.5692i 0.0824742 + 0.142850i
\(292\) 0 0
\(293\) −235.559 −0.803955 −0.401978 0.915649i \(-0.631677\pi\)
−0.401978 + 0.915649i \(0.631677\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −194.856 337.500i −0.656080 1.13636i
\(298\) 0 0
\(299\) −108.000 62.3538i −0.361204 0.208541i
\(300\) 0 0
\(301\) −70.0000 −0.232558
\(302\) 0 0
\(303\) 148.090 + 85.5000i 0.488747 + 0.282178i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 96.9948 0.315944 0.157972 0.987444i \(-0.449504\pi\)
0.157972 + 0.987444i \(0.449504\pi\)
\(308\) 0 0
\(309\) −123.000 −0.398058
\(310\) 0 0
\(311\) 421.500 243.353i 1.35531 0.782486i 0.366319 0.930489i \(-0.380618\pi\)
0.988987 + 0.148003i \(0.0472847\pi\)
\(312\) 0 0
\(313\) −111.717 + 193.500i −0.356924 + 0.618211i −0.987445 0.157961i \(-0.949508\pi\)
0.630521 + 0.776172i \(0.282841\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 387.113 + 223.500i 1.22118 + 0.705047i 0.965169 0.261627i \(-0.0842591\pi\)
0.256009 + 0.966674i \(0.417592\pi\)
\(318\) 0 0
\(319\) −45.0000 77.9423i −0.141066 0.244333i
\(320\) 0 0
\(321\) 67.5500i 0.210436i
\(322\) 0 0
\(323\) 459.000i 1.42105i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −89.2006 + 154.500i −0.272785 + 0.472477i
\(328\) 0 0
\(329\) 262.500 + 151.554i 0.797872 + 0.460652i
\(330\) 0 0
\(331\) −75.5000 + 130.770i −0.228097 + 0.395075i −0.957244 0.289282i \(-0.906584\pi\)
0.729147 + 0.684357i \(0.239917\pi\)
\(332\) 0 0
\(333\) 161.081 93.0000i 0.483726 0.279279i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 274.000i 0.813056i −0.913638 0.406528i \(-0.866739\pi\)
0.913638 0.406528i \(-0.133261\pi\)
\(338\) 0 0
\(339\) 117.000 67.5500i 0.345133 0.199262i
\(340\) 0 0
\(341\) 157.500 + 90.9327i 0.461877 + 0.266665i
\(342\) 0 0
\(343\) 343.000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −470.252 + 271.500i −1.35519 + 0.782421i −0.988971 0.148107i \(-0.952682\pi\)
−0.366221 + 0.930528i \(0.619349\pi\)
\(348\) 0 0
\(349\) 180.133i 0.516141i −0.966126 0.258071i \(-0.916913\pi\)
0.966126 0.258071i \(-0.0830867\pi\)
\(350\) 0 0
\(351\) −360.000 −1.02564
\(352\) 0 0
\(353\) −151.554 262.500i −0.429333 0.743626i 0.567481 0.823386i \(-0.307918\pi\)
−0.996814 + 0.0797602i \(0.974585\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 309.171 + 178.500i 0.866025 + 0.500000i
\(358\) 0 0
\(359\) 19.5000 33.7750i 0.0543175 0.0940808i −0.837588 0.546302i \(-0.816035\pi\)
0.891906 + 0.452221i \(0.149368\pi\)
\(360\) 0 0
\(361\) −59.0000 102.191i −0.163435 0.283078i
\(362\) 0 0
\(363\) −180.133 −0.496235
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −174.071 301.500i −0.474308 0.821526i 0.525259 0.850942i \(-0.323968\pi\)
−0.999567 + 0.0294165i \(0.990635\pi\)
\(368\) 0 0
\(369\) −288.000 166.277i −0.780488 0.450615i
\(370\) 0 0
\(371\) −199.500 345.544i −0.537736 0.931386i
\(372\) 0 0
\(373\) −331.688 191.500i −0.889243 0.513405i −0.0155484 0.999879i \(-0.504949\pi\)
−0.873695 + 0.486474i \(0.838283\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −83.1384 −0.220526
\(378\) 0 0
\(379\) 230.000 0.606860 0.303430 0.952854i \(-0.401868\pi\)
0.303430 + 0.952854i \(0.401868\pi\)
\(380\) 0 0
\(381\) 75.0000 43.3013i 0.196850 0.113652i
\(382\) 0 0
\(383\) −160.215 + 277.500i −0.418315 + 0.724543i −0.995770 0.0918794i \(-0.970713\pi\)
0.577455 + 0.816423i \(0.304046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 51.9615 + 30.0000i 0.134268 + 0.0775194i
\(388\) 0 0
\(389\) −100.500 174.071i −0.258355 0.447484i 0.707447 0.706767i \(-0.249847\pi\)
−0.965801 + 0.259283i \(0.916514\pi\)
\(390\) 0 0
\(391\) 265.004i 0.677759i
\(392\) 0 0
\(393\) 171.000i 0.435115i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −26.8468 + 46.5000i −0.0676241 + 0.117128i −0.897855 0.440291i \(-0.854875\pi\)
0.830231 + 0.557420i \(0.188209\pi\)
\(398\) 0 0
\(399\) 189.000 0.473684
\(400\) 0 0
\(401\) 88.5000 153.286i 0.220698 0.382261i −0.734322 0.678801i \(-0.762500\pi\)
0.955020 + 0.296541i \(0.0958331\pi\)
\(402\) 0 0
\(403\) 145.492 84.0000i 0.361023 0.208437i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 465.000i 1.14251i
\(408\) 0 0
\(409\) −289.500 + 167.143i −0.707824 + 0.408662i −0.810255 0.586078i \(-0.800671\pi\)
0.102431 + 0.994740i \(0.467338\pi\)
\(410\) 0 0
\(411\) −94.5000 54.5596i −0.229927 0.132748i
\(412\) 0 0
\(413\) 284.922 + 493.500i 0.689885 + 1.19492i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 353.338 204.000i 0.847334 0.489209i
\(418\) 0 0
\(419\) 595.825i 1.42202i −0.703183 0.711009i \(-0.748239\pi\)
0.703183 0.711009i \(-0.251761\pi\)
\(420\) 0 0
\(421\) −22.0000 −0.0522565 −0.0261283 0.999659i \(-0.508318\pi\)
−0.0261283 + 0.999659i \(0.508318\pi\)
\(422\) 0 0
\(423\) −129.904 225.000i −0.307101 0.531915i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 284.922 493.500i 0.667265 1.15574i
\(428\) 0 0
\(429\) −180.000 + 311.769i −0.419580 + 0.726735i
\(430\) 0 0
\(431\) −163.500 283.190i −0.379350 0.657054i 0.611618 0.791154i \(-0.290519\pi\)
−0.990968 + 0.134100i \(0.957186\pi\)
\(432\) 0 0
\(433\) −27.7128 −0.0640019 −0.0320009 0.999488i \(-0.510188\pi\)
−0.0320009 + 0.999488i \(0.510188\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −70.1481 121.500i −0.160522 0.278032i
\(438\) 0 0
\(439\) −517.500 298.779i −1.17882 0.680589i −0.223075 0.974801i \(-0.571610\pi\)
−0.955740 + 0.294212i \(0.904943\pi\)
\(440\) 0 0
\(441\) −147.000 + 254.611i −0.333333 + 0.577350i
\(442\) 0 0
\(443\) 631.333 + 364.500i 1.42513 + 0.822799i 0.996731 0.0807907i \(-0.0257445\pi\)
0.428399 + 0.903590i \(0.359078\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −306.573 −0.685846
\(448\) 0 0
\(449\) 270.000 0.601336 0.300668 0.953729i \(-0.402790\pi\)
0.300668 + 0.953729i \(0.402790\pi\)
\(450\) 0 0
\(451\) −720.000 + 415.692i −1.59645 + 0.921712i
\(452\) 0 0
\(453\) 47.6314 82.5000i 0.105147 0.182119i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 691.954 + 399.500i 1.51412 + 0.874179i 0.999863 + 0.0165451i \(0.00526672\pi\)
0.514260 + 0.857634i \(0.328067\pi\)
\(458\) 0 0
\(459\) −382.500 662.509i −0.833333 1.44338i
\(460\) 0 0
\(461\) 429.549i 0.931776i −0.884844 0.465888i \(-0.845735\pi\)
0.884844 0.465888i \(-0.154265\pi\)
\(462\) 0 0
\(463\) 814.000i 1.75810i −0.476730 0.879050i \(-0.658178\pi\)
0.476730 0.879050i \(-0.341822\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −200.052 + 346.500i −0.428377 + 0.741970i −0.996729 0.0808151i \(-0.974248\pi\)
0.568353 + 0.822785i \(0.307581\pi\)
\(468\) 0 0
\(469\) 171.500 + 297.047i 0.365672 + 0.633362i
\(470\) 0 0
\(471\) 85.5000 148.090i 0.181529 0.314417i
\(472\) 0 0
\(473\) 129.904 75.0000i 0.274638 0.158562i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 342.000i 0.716981i
\(478\) 0 0
\(479\) 466.500 269.334i 0.973904 0.562284i 0.0734798 0.997297i \(-0.476590\pi\)
0.900424 + 0.435013i \(0.143256\pi\)
\(480\) 0 0
\(481\) −372.000 214.774i −0.773389 0.446516i
\(482\) 0 0
\(483\) −109.119 −0.225920
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 742.184 428.500i 1.52399 0.879877i 0.524395 0.851475i \(-0.324292\pi\)
0.999597 0.0284015i \(-0.00904169\pi\)
\(488\) 0 0
\(489\) 39.8372i 0.0814666i
\(490\) 0 0
\(491\) 570.000 1.16090 0.580448 0.814297i \(-0.302877\pi\)
0.580448 + 0.814297i \(0.302877\pi\)
\(492\) 0 0
\(493\) −88.3346 153.000i −0.179178 0.310345i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 882.000i 1.77465i
\(498\) 0 0
\(499\) −212.500 + 368.061i −0.425852 + 0.737597i −0.996500 0.0835981i \(-0.973359\pi\)
0.570648 + 0.821195i \(0.306692\pi\)
\(500\) 0 0
\(501\) −240.000 415.692i −0.479042 0.829725i
\(502\) 0 0
\(503\) −193.990 −0.385665 −0.192833 0.981232i \(-0.561767\pi\)
−0.192833 + 0.981232i \(0.561767\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.9186 + 34.5000i 0.0392871 + 0.0680473i
\(508\) 0 0
\(509\) 334.500 + 193.124i 0.657171 + 0.379418i 0.791198 0.611560i \(-0.209458\pi\)
−0.134027 + 0.990978i \(0.542791\pi\)
\(510\) 0 0
\(511\) 157.500 90.9327i 0.308219 0.177950i
\(512\) 0 0
\(513\) −350.740 202.500i −0.683704 0.394737i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −649.519 −1.25632
\(518\) 0 0
\(519\) −243.000 −0.468208
\(520\) 0 0
\(521\) −214.500 + 123.842i −0.411708 + 0.237700i −0.691523 0.722354i \(-0.743060\pi\)
0.279815 + 0.960054i \(0.409727\pi\)
\(522\) 0 0
\(523\) −395.774 + 685.500i −0.756737 + 1.31071i 0.187769 + 0.982213i \(0.439874\pi\)
−0.944506 + 0.328494i \(0.893459\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 309.171 + 178.500i 0.586662 + 0.338710i
\(528\) 0 0
\(529\) −224.000 387.979i −0.423440 0.733420i
\(530\) 0 0
\(531\) 488.438i 0.919846i
\(532\) 0 0
\(533\) 768.000i 1.44090i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −54.5596 + 94.5000i −0.101601 + 0.175978i
\(538\) 0 0
\(539\) 367.500 + 636.529i 0.681818 + 1.18094i
\(540\) 0 0
\(541\) 360.500 624.404i 0.666359 1.15417i −0.312556 0.949899i \(-0.601185\pi\)
0.978915 0.204268i \(-0.0654813\pi\)
\(542\) 0 0
\(543\) −187.061 + 108.000i −0.344496 + 0.198895i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 118.000i 0.215722i 0.994166 + 0.107861i \(0.0344002\pi\)
−0.994166 + 0.107861i \(0.965600\pi\)
\(548\) 0 0
\(549\) −423.000 + 244.219i −0.770492 + 0.444844i
\(550\) 0 0
\(551\) −81.0000 46.7654i −0.147005 0.0848736i
\(552\) 0 0
\(553\) −442.539 255.500i −0.800251 0.462025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 548.194 316.500i 0.984190 0.568223i 0.0806578 0.996742i \(-0.474298\pi\)
0.903533 + 0.428519i \(0.140965\pi\)
\(558\) 0 0
\(559\) 138.564i 0.247878i
\(560\) 0 0
\(561\) −765.000 −1.36364
\(562\) 0 0
\(563\) −137.698 238.500i −0.244579 0.423623i 0.717434 0.696626i \(-0.245316\pi\)
−0.962013 + 0.273003i \(0.911983\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 54.5596 31.5000i 0.0962250 0.0555556i
\(568\) 0 0
\(569\) 223.500 387.113i 0.392794 0.680340i −0.600023 0.799983i \(-0.704842\pi\)
0.992817 + 0.119643i \(0.0381751\pi\)
\(570\) 0 0
\(571\) −263.500 456.395i −0.461471 0.799291i 0.537563 0.843223i \(-0.319345\pi\)
−0.999035 + 0.0439319i \(0.986012\pi\)
\(572\) 0 0
\(573\) 98.7269 0.172298
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −84.0045 145.500i −0.145588 0.252166i 0.784004 0.620756i \(-0.213174\pi\)
−0.929592 + 0.368589i \(0.879841\pi\)
\(578\) 0 0
\(579\) −313.500 180.999i −0.541451 0.312607i
\(580\) 0 0
\(581\) 96.9948i 0.166945i
\(582\) 0 0
\(583\) 740.452 + 427.500i 1.27007 + 0.733276i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 956.092 1.62878 0.814388 0.580320i \(-0.197073\pi\)
0.814388 + 0.580320i \(0.197073\pi\)
\(588\) 0 0
\(589\) 189.000 0.320883
\(590\) 0 0
\(591\) −225.000 + 129.904i −0.380711 + 0.219803i
\(592\) 0 0
\(593\) 151.554 262.500i 0.255572 0.442664i −0.709478 0.704727i \(-0.751069\pi\)
0.965051 + 0.262063i \(0.0844027\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 309.171 + 178.500i 0.517874 + 0.298995i
\(598\) 0 0
\(599\) 403.500 + 698.883i 0.673623 + 1.16675i 0.976869 + 0.213837i \(0.0685960\pi\)
−0.303247 + 0.952912i \(0.598071\pi\)
\(600\) 0 0
\(601\) 387.979i 0.645556i 0.946475 + 0.322778i \(0.104617\pi\)
−0.946475 + 0.322778i \(0.895383\pi\)
\(602\) 0 0
\(603\) 294.000i 0.487562i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −366.329 + 634.500i −0.603507 + 1.04530i 0.388779 + 0.921331i \(0.372897\pi\)
−0.992286 + 0.123974i \(0.960436\pi\)
\(608\) 0 0
\(609\) −63.0000 + 36.3731i −0.103448 + 0.0597259i
\(610\) 0 0
\(611\) −300.000 + 519.615i −0.490998 + 0.850434i
\(612\) 0 0
\(613\) 435.611 251.500i 0.710621 0.410277i −0.100670 0.994920i \(-0.532099\pi\)
0.811291 + 0.584643i \(0.198765\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 930.000i 1.50729i −0.657280 0.753647i \(-0.728293\pi\)
0.657280 0.753647i \(-0.271707\pi\)
\(618\) 0 0
\(619\) −457.500 + 264.138i −0.739095 + 0.426717i −0.821740 0.569862i \(-0.806997\pi\)
0.0826450 + 0.996579i \(0.473663\pi\)
\(620\) 0 0
\(621\) 202.500 + 116.913i 0.326087 + 0.188266i
\(622\) 0 0
\(623\) 200.052 346.500i 0.321111 0.556180i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −350.740 + 202.500i −0.559394 + 0.322967i
\(628\) 0 0
\(629\) 912.791i 1.45118i
\(630\) 0 0
\(631\) 194.000 0.307448 0.153724 0.988114i \(-0.450873\pi\)
0.153724 + 0.988114i \(0.450873\pi\)
\(632\) 0 0
\(633\) 299.645 + 519.000i 0.473372 + 0.819905i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 678.964 1.06588
\(638\) 0 0
\(639\) −378.000 + 654.715i −0.591549 + 1.02459i
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.0257410 + 0.0445848i 0.878609 0.477542i \(-0.158472\pi\)
−0.852868 + 0.522127i \(0.825139\pi\)
\(642\) 0 0
\(643\) 346.410 0.538741 0.269370 0.963037i \(-0.413184\pi\)
0.269370 + 0.963037i \(0.413184\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −381.917 661.500i −0.590289 1.02241i −0.994193 0.107610i \(-0.965680\pi\)
0.403904 0.914801i \(-0.367653\pi\)
\(648\) 0 0
\(649\) −1057.50 610.548i −1.62943 0.940752i
\(650\) 0 0
\(651\) 73.5000 127.306i 0.112903 0.195554i
\(652\) 0 0
\(653\) 28.5788 + 16.5000i 0.0437654 + 0.0252680i 0.521723 0.853115i \(-0.325289\pi\)
−0.477958 + 0.878383i \(0.658623\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −155.885 −0.237267
\(658\) 0 0
\(659\) 870.000 1.32018 0.660091 0.751186i \(-0.270518\pi\)
0.660091 + 0.751186i \(0.270518\pi\)
\(660\) 0 0
\(661\) 877.500 506.625i 1.32753 0.766452i 0.342616 0.939475i \(-0.388687\pi\)
0.984918 + 0.173023i \(0.0553536\pi\)
\(662\) 0 0
\(663\) −353.338 + 612.000i −0.532939 + 0.923077i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 46.7654 + 27.0000i 0.0701130 + 0.0404798i
\(668\) 0 0
\(669\) 288.000 + 498.831i 0.430493 + 0.745636i
\(670\) 0 0
\(671\) 1221.10i 1.81981i
\(672\) 0 0
\(673\) 14.0000i 0.0208024i −0.999946 0.0104012i \(-0.996689\pi\)
0.999946 0.0104012i \(-0.00331086\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −137.698 + 238.500i −0.203394 + 0.352290i −0.949620 0.313404i \(-0.898531\pi\)
0.746226 + 0.665693i \(0.231864\pi\)
\(678\) 0 0
\(679\) 193.990i 0.285699i
\(680\) 0 0
\(681\) 121.500 210.444i 0.178414 0.309022i
\(682\) 0 0
\(683\) −236.425 + 136.500i −0.346157 + 0.199854i −0.662991 0.748627i \(-0.730713\pi\)
0.316835 + 0.948481i \(0.397380\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 291.000i 0.423581i
\(688\) 0 0
\(689\) 684.000 394.908i 0.992743 0.573160i
\(690\) 0 0
\(691\) 133.500 + 77.0763i 0.193198 + 0.111543i 0.593479 0.804850i \(-0.297754\pi\)
−0.400281 + 0.916393i \(0.631087\pi\)
\(692\) 0 0
\(693\) 630.000i 0.909091i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1413.35 + 816.000i −2.02777 + 1.17073i
\(698\) 0 0
\(699\) 472.850i 0.676466i
\(700\) 0 0
\(701\) 906.000 1.29244 0.646220 0.763151i \(-0.276349\pi\)
0.646220 + 0.763151i \(0.276349\pi\)
\(702\) 0 0
\(703\) −241.621 418.500i −0.343700 0.595306i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 345.544 + 598.500i 0.488747 + 0.846535i
\(708\) 0 0
\(709\) 351.500 608.816i 0.495769 0.858697i −0.504219 0.863576i \(-0.668220\pi\)
0.999988 + 0.00487903i \(0.00155305\pi\)
\(710\) 0 0
\(711\) 219.000 + 379.319i 0.308017 + 0.533501i
\(712\) 0 0
\(713\) −109.119 −0.153042
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 192.258 + 333.000i 0.268142 + 0.464435i
\(718\) 0 0
\(719\) 514.500 + 297.047i 0.715577 + 0.413139i 0.813123 0.582092i \(-0.197766\pi\)
−0.0975455 + 0.995231i \(0.531099\pi\)
\(720\) 0 0
\(721\) −430.500 248.549i −0.597087 0.344729i
\(722\) 0 0
\(723\) −329.956 190.500i −0.456370 0.263485i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 27.7128 0.0381194 0.0190597 0.999818i \(-0.493933\pi\)
0.0190597 + 0.999818i \(0.493933\pi\)
\(728\) 0 0
\(729\) 351.000 0.481481
\(730\) 0 0
\(731\) 255.000 147.224i 0.348837 0.201401i
\(732\) 0 0
\(733\) 484.108 838.500i 0.660448 1.14393i −0.320050 0.947401i \(-0.603700\pi\)
0.980498 0.196529i \(-0.0629668\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −636.529 367.500i −0.863675 0.498643i
\(738\) 0 0
\(739\) −288.500 499.697i −0.390392 0.676180i 0.602109 0.798414i \(-0.294327\pi\)
−0.992501 + 0.122235i \(0.960994\pi\)
\(740\) 0 0
\(741\) 374.123i 0.504889i
\(742\) 0 0
\(743\) 162.000i 0.218035i 0.994040 + 0.109017i \(0.0347705\pi\)
−0.994040 + 0.109017i \(0.965230\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 41.5692 72.0000i 0.0556482 0.0963855i
\(748\) 0 0
\(749\) −136.500 + 236.425i −0.182243 + 0.315654i
\(750\) 0 0
\(751\) −387.500 + 671.170i −0.515979 + 0.893701i 0.483849 + 0.875151i \(0.339238\pi\)
−0.999828 + 0.0185499i \(0.994095\pi\)
\(752\) 0 0
\(753\) −145.492 + 84.0000i −0.193217 + 0.111554i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 950.000i 1.25495i 0.778635 + 0.627477i \(0.215912\pi\)
−0.778635 + 0.627477i \(0.784088\pi\)
\(758\) 0 0
\(759\) 202.500 116.913i 0.266798 0.154036i
\(760\) 0 0
\(761\) 169.500 + 97.8609i 0.222733 + 0.128595i 0.607215 0.794537i \(-0.292287\pi\)
−0.384482 + 0.923133i \(0.625620\pi\)
\(762\) 0 0
\(763\) −624.404 + 360.500i −0.818354 + 0.472477i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −976.877 + 564.000i −1.27363 + 0.735332i
\(768\) 0 0
\(769\) 914.523i 1.18924i 0.804008 + 0.594618i \(0.202697\pi\)
−0.804008 + 0.594618i \(0.797303\pi\)
\(770\) 0 0
\(771\) −333.000 −0.431907
\(772\) 0 0
\(773\) −89.2006 154.500i −0.115395 0.199871i 0.802542 0.596595i \(-0.203480\pi\)
−0.917938 + 0.396725i \(0.870147\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −375.855 −0.483726
\(778\) 0 0
\(779\) −432.000 + 748.246i −0.554557 + 0.960521i
\(780\) 0 0
\(781\) 945.000 + 1636.79i 1.20999 + 2.09576i
\(782\) 0 0
\(783\) 155.885 0.199086
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −167.143 289.500i −0.212380 0.367853i 0.740079 0.672520i \(-0.234788\pi\)
−0.952459 + 0.304667i \(0.901455\pi\)
\(788\) 0 0
\(789\) −229.500 132.502i −0.290875 0.167936i
\(790\) 0 0
\(791\) 546.000 0.690265
\(792\) 0 0
\(793\) 976.877 + 564.000i 1.23187 + 0.711223i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −872.954 −1.09530 −0.547650 0.836708i \(-0.684477\pi\)
−0.547650 + 0.836708i \(0.684477\pi\)
\(798\) 0 0
\(799\) −1275.00 −1.59574
\(800\) 0 0
\(801\) −297.000 + 171.473i −0.370787 + 0.214074i
\(802\) 0 0
\(803\) −194.856 + 337.500i −0.242660 + 0.420299i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 683.294 + 394.500i 0.846709 + 0.488848i
\(808\) 0 0
\(809\) −232.500 402.702i −0.287392 0.497777i 0.685795 0.727795i \(-0.259455\pi\)
−0.973186 + 0.230018i \(0.926122\pi\)
\(810\) 0 0
\(811\) 124.708i 0.153770i 0.997040 + 0.0768851i \(0.0244975\pi\)
−0.997040 + 0.0768851i \(0.975503\pi\)
\(812\) 0 0
\(813\) 123.000i 0.151292i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 77.9423 135.000i 0.0954006 0.165239i
\(818\) 0 0
\(819\) −504.000 290.985i −0.615385 0.355292i
\(820\) 0 0
\(821\) 376.500 652.117i 0.458587 0.794296i −0.540299 0.841473i \(-0.681689\pi\)
0.998887 + 0.0471767i \(0.0150224\pi\)
\(822\) 0 0
\(823\) −21.6506 + 12.5000i −0.0263070 + 0.0151883i −0.513096 0.858331i \(-0.671501\pi\)
0.486789 + 0.873520i \(0.338168\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 246.000i 0.297461i 0.988878 + 0.148730i \(0.0475186\pi\)
−0.988878 + 0.148730i \(0.952481\pi\)
\(828\) 0 0
\(829\) 1282.50 740.452i 1.54704 0.893187i 0.548679 0.836033i \(-0.315131\pi\)
0.998365 0.0571537i \(-0.0182025\pi\)
\(830\) 0 0
\(831\) −538.500 310.903i −0.648014 0.374131i
\(832\) 0 0
\(833\) 721.399 + 1249.50i 0.866025 + 1.50000i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −272.798 + 157.500i −0.325924 + 0.188172i
\(838\) 0 0
\(839\) 360.267i 0.429400i 0.976680 + 0.214700i \(0.0688774\pi\)
−0.976680 + 0.214700i \(0.931123\pi\)
\(840\) 0 0
\(841\) −805.000 −0.957194
\(842\) 0 0
\(843\) −192.258 333.000i −0.228064 0.395018i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −630.466 364.000i −0.744352 0.429752i
\(848\) 0 0
\(849\) −1.50000 + 2.59808i −0.00176678 + 0.00306016i
\(850\) 0 0
\(851\) 139.500 + 241.621i 0.163925 + 0.283926i
\(852\) 0 0
\(853\) −1205.51 −1.41326 −0.706628 0.707585i \(-0.749785\pi\)
−0.706628 + 0.707585i \(0.749785\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −97.8609 169.500i −0.114190 0.197783i 0.803266 0.595621i \(-0.203094\pi\)
−0.917456 + 0.397838i \(0.869761\pi\)
\(858\) 0 0
\(859\) 1234.50 + 712.739i 1.43714 + 0.829731i 0.997650 0.0685183i \(-0.0218272\pi\)
0.439486 + 0.898249i \(0.355160\pi\)
\(860\) 0 0
\(861\) 336.000 + 581.969i 0.390244 + 0.675922i
\(862\) 0 0
\(863\) −740.452 427.500i −0.857997 0.495365i 0.00534379 0.999986i \(-0.498299\pi\)
−0.863341 + 0.504621i \(0.831632\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1001.13 −1.15470
\(868\) 0 0
\(869\) 1095.00 1.26007
\(870\) 0 0
\(871\) −588.000 + 339.482i −0.675086 + 0.389761i
\(872\) 0 0
\(873\) 83.1384 144.000i 0.0952330 0.164948i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −208.712 120.500i −0.237984 0.137400i 0.376266 0.926512i \(-0.377208\pi\)
−0.614250 + 0.789112i \(0.710541\pi\)
\(878\) 0 0
\(879\) −204.000 353.338i −0.232082 0.401978i
\(880\) 0 0
\(881\) 1330.22i 1.50989i −0.655787 0.754946i \(-0.727663\pi\)
0.655787 0.754946i \(-0.272337\pi\)
\(882\) 0 0
\(883\) 1286.00i 1.45640i −0.685365 0.728199i \(-0.740358\pi\)
0.685365 0.728199i \(-0.259642\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −643.457 + 1114.50i −0.725431 + 1.25648i 0.233366 + 0.972389i \(0.425026\pi\)
−0.958797 + 0.284094i \(0.908307\pi\)
\(888\) 0 0
\(889\) 350.000 0.393701
\(890\) 0 0
\(891\) −67.5000 + 116.913i −0.0757576 + 0.131216i
\(892\) 0 0
\(893\) −584.567 + 337.500i −0.654610 + 0.377940i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 216.000i 0.240803i
\(898\) 0 0
\(899\) −63.0000 + 36.3731i −0.0700779 + 0.0404595i
\(900\) 0 0
\(901\) 1453.50 + 839.179i 1.61321 + 0.931386i
\(902\) 0 0
\(903\) −60.6218 105.000i −0.0671338 0.116279i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 638.261 368.500i 0.703705 0.406284i −0.105021 0.994470i \(-0.533491\pi\)
0.808726 + 0.588186i \(0.200158\pi\)
\(908\) 0 0
\(909\) 592.361i 0.651663i
\(910\) 0 0
\(911\) 1266.00 1.38968 0.694841 0.719164i \(-0.255475\pi\)
0.694841 + 0.719164i \(0.255475\pi\)
\(912\) 0 0
\(913\) −103.923 180.000i −0.113826 0.197152i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −345.544 + 598.500i −0.376820 + 0.652672i
\(918\) 0 0
\(919\) −236.500 + 409.630i −0.257345 + 0.445735i −0.965530 0.260293i \(-0.916181\pi\)
0.708185 + 0.706027i \(0.249514\pi\)
\(920\) 0 0
\(921\) 84.0000 + 145.492i 0.0912052 + 0.157972i
\(922\) 0 0
\(923\) 1745.91 1.89156
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 213.042 + 369.000i 0.229819 + 0.398058i
\(928\) 0 0
\(929\) −289.500 167.143i −0.311625 0.179917i 0.336028 0.941852i \(-0.390916\pi\)
−0.647654 + 0.761935i \(0.724250\pi\)
\(930\) 0 0
\(931\) 661.500 + 381.917i 0.710526 + 0.410223i
\(932\) 0 0
\(933\) 730.059 + 421.500i 0.782486 + 0.451768i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 859.097 0.916859 0.458430 0.888731i \(-0.348412\pi\)
0.458430 + 0.888731i \(0.348412\pi\)
\(938\) 0 0
\(939\) −387.000 −0.412141
\(940\) 0 0
\(941\) −106.500 + 61.4878i −0.113177 + 0.0653430i −0.555520 0.831503i \(-0.687481\pi\)
0.442343 + 0.896846i \(0.354147\pi\)
\(942\) 0 0
\(943\) 249.415 432.000i 0.264491 0.458112i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −174.071 100.500i −0.183813 0.106125i 0.405270 0.914197i \(-0.367178\pi\)
−0.589083 + 0.808073i \(0.700511\pi\)
\(948\) 0 0
\(949\) 180.000 + 311.769i 0.189673 + 0.328524i
\(950\) 0 0
\(951\) 774.227i 0.814119i
\(952\) 0 0
\(953\) 66.0000i 0.0692550i 0.999400 + 0.0346275i \(0.0110245\pi\)
−0.999400 + 0.0346275i \(0.988976\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 77.9423 135.000i 0.0814444 0.141066i
\(958\) 0 0
\(959\) −220.500 381.917i −0.229927 0.398245i
\(960\) 0 0
\(961\) −407.000 + 704.945i −0.423517 + 0.733553i
\(962\) 0 0
\(963\) 202.650 117.000i 0.210436 0.121495i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 194.000i 0.200620i −0.994956 0.100310i \(-0.968016\pi\)
0.994956 0.100310i \(-0.0319835\pi\)
\(968\) 0 0
\(969\) −688.500 + 397.506i −0.710526 + 0.410223i
\(970\) 0 0
\(971\) 1285.50 + 742.184i 1.32389 + 0.764350i 0.984347 0.176240i \(-0.0563934\pi\)
0.339546 + 0.940590i \(0.389727\pi\)
\(972\) 0 0
\(973\) 1648.91 1.69467
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1317.22 760.500i 1.34823 0.778403i 0.360235 0.932862i \(-0.382697\pi\)
0.987999 + 0.154458i \(0.0493633\pi\)
\(978\) 0 0
\(979\) 857.365i 0.875756i
\(980\) 0 0
\(981\) 618.000 0.629969
\(982\) 0 0
\(983\) 562.050 + 973.500i 0.571771 + 0.990336i 0.996384 + 0.0849611i \(0.0270766\pi\)
−0.424614 + 0.905375i \(0.639590\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 525.000i 0.531915i
\(988\) 0 0
\(989\) −45.0000 + 77.9423i −0.0455005 + 0.0788092i
\(990\) 0 0
\(991\) −411.500 712.739i −0.415237 0.719212i 0.580216 0.814463i \(-0.302968\pi\)
−0.995453 + 0.0952507i \(0.969635\pi\)
\(992\) 0 0
\(993\) −261.540 −0.263383
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −63.2199 109.500i −0.0634101 0.109829i 0.832578 0.553909i \(-0.186864\pi\)
−0.895988 + 0.444079i \(0.853531\pi\)
\(998\) 0 0
\(999\) 697.500 + 402.702i 0.698198 + 0.403105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.3.o.a.649.2 4
5.2 odd 4 28.3.h.a.5.1 2
5.3 odd 4 700.3.s.a.201.1 2
5.4 even 2 inner 700.3.o.a.649.1 4
7.3 odd 6 inner 700.3.o.a.549.1 4
15.2 even 4 252.3.z.a.145.1 2
20.7 even 4 112.3.s.a.33.1 2
35.2 odd 12 196.3.b.a.97.2 2
35.3 even 12 700.3.s.a.101.1 2
35.12 even 12 196.3.b.a.97.1 2
35.17 even 12 28.3.h.a.17.1 yes 2
35.24 odd 6 inner 700.3.o.a.549.2 4
35.27 even 4 196.3.h.a.117.1 2
35.32 odd 12 196.3.h.a.129.1 2
40.27 even 4 448.3.s.b.257.1 2
40.37 odd 4 448.3.s.a.257.1 2
60.47 odd 4 1008.3.cg.c.145.1 2
105.2 even 12 1764.3.d.a.685.2 2
105.17 odd 12 252.3.z.a.73.1 2
105.32 even 12 1764.3.z.f.325.1 2
105.47 odd 12 1764.3.d.a.685.1 2
105.62 odd 4 1764.3.z.f.901.1 2
140.27 odd 4 784.3.s.b.705.1 2
140.47 odd 12 784.3.c.a.97.2 2
140.67 even 12 784.3.s.b.129.1 2
140.87 odd 12 112.3.s.a.17.1 2
140.107 even 12 784.3.c.a.97.1 2
280.157 even 12 448.3.s.a.129.1 2
280.227 odd 12 448.3.s.b.129.1 2
420.227 even 12 1008.3.cg.c.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.3.h.a.5.1 2 5.2 odd 4
28.3.h.a.17.1 yes 2 35.17 even 12
112.3.s.a.17.1 2 140.87 odd 12
112.3.s.a.33.1 2 20.7 even 4
196.3.b.a.97.1 2 35.12 even 12
196.3.b.a.97.2 2 35.2 odd 12
196.3.h.a.117.1 2 35.27 even 4
196.3.h.a.129.1 2 35.32 odd 12
252.3.z.a.73.1 2 105.17 odd 12
252.3.z.a.145.1 2 15.2 even 4
448.3.s.a.129.1 2 280.157 even 12
448.3.s.a.257.1 2 40.37 odd 4
448.3.s.b.129.1 2 280.227 odd 12
448.3.s.b.257.1 2 40.27 even 4
700.3.o.a.549.1 4 7.3 odd 6 inner
700.3.o.a.549.2 4 35.24 odd 6 inner
700.3.o.a.649.1 4 5.4 even 2 inner
700.3.o.a.649.2 4 1.1 even 1 trivial
700.3.s.a.101.1 2 35.3 even 12
700.3.s.a.201.1 2 5.3 odd 4
784.3.c.a.97.1 2 140.107 even 12
784.3.c.a.97.2 2 140.47 odd 12
784.3.s.b.129.1 2 140.67 even 12
784.3.s.b.705.1 2 140.27 odd 4
1008.3.cg.c.145.1 2 60.47 odd 4
1008.3.cg.c.577.1 2 420.227 even 12
1764.3.d.a.685.1 2 105.47 odd 12
1764.3.d.a.685.2 2 105.2 even 12
1764.3.z.f.325.1 2 105.32 even 12
1764.3.z.f.901.1 2 105.62 odd 4