Properties

Label 700.3.o.a.549.2
Level $700$
Weight $3$
Character 700.549
Analytic conductor $19.074$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,3,Mod(549,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0736185052\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 549.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 700.549
Dual form 700.3.o.a.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} -7.00000i q^{7} +(3.00000 + 5.19615i) q^{9} +(-7.50000 + 12.9904i) q^{11} -13.8564 q^{13} +(-14.7224 + 25.5000i) q^{17} +(-13.5000 + 7.79423i) q^{19} +(-10.5000 - 6.06218i) q^{21} +(7.79423 - 4.50000i) q^{23} +25.9808 q^{27} +6.00000 q^{29} +(-10.5000 - 6.06218i) q^{31} +(12.9904 + 22.5000i) q^{33} +(26.8468 - 15.5000i) q^{37} +(-12.0000 + 20.7846i) q^{39} +55.4256i q^{41} -10.0000i q^{43} +(21.6506 + 37.5000i) q^{47} -49.0000 q^{49} +(25.5000 + 44.1673i) q^{51} +(-49.3634 - 28.5000i) q^{53} +27.0000i q^{57} +(70.5000 + 40.7032i) q^{59} +(-70.5000 + 40.7032i) q^{61} +(36.3731 - 21.0000i) q^{63} +(42.4352 + 24.5000i) q^{67} -15.5885i q^{69} -126.000 q^{71} +(-12.9904 + 22.5000i) q^{73} +(90.9327 + 52.5000i) q^{77} +(-36.5000 - 63.2199i) q^{79} +(-4.50000 + 7.79423i) q^{81} +13.8564 q^{83} +(5.19615 - 9.00000i) q^{87} +(-49.5000 + 28.5788i) q^{89} +96.9948i q^{91} +(-18.1865 + 10.5000i) q^{93} +27.7128 q^{97} -90.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} - 30 q^{11} - 54 q^{19} - 42 q^{21} + 24 q^{29} - 42 q^{31} - 48 q^{39} - 196 q^{49} + 102 q^{51} + 282 q^{59} - 282 q^{61} - 504 q^{71} - 146 q^{79} - 18 q^{81} - 198 q^{89} - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000i 1.00000i
\(8\) 0 0
\(9\) 3.00000 + 5.19615i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −7.50000 + 12.9904i −0.681818 + 1.18094i 0.292607 + 0.956233i \(0.405477\pi\)
−0.974425 + 0.224711i \(0.927856\pi\)
\(12\) 0 0
\(13\) −13.8564 −1.06588 −0.532939 0.846154i \(-0.678912\pi\)
−0.532939 + 0.846154i \(0.678912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −14.7224 + 25.5000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −13.5000 + 7.79423i −0.710526 + 0.410223i −0.811256 0.584691i \(-0.801216\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(20\) 0 0
\(21\) −10.5000 6.06218i −0.500000 0.288675i
\(22\) 0 0
\(23\) 7.79423 4.50000i 0.338880 0.195652i −0.320897 0.947114i \(-0.603984\pi\)
0.659776 + 0.751462i \(0.270651\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 25.9808 0.962250
\(28\) 0 0
\(29\) 6.00000 0.206897 0.103448 0.994635i \(-0.467012\pi\)
0.103448 + 0.994635i \(0.467012\pi\)
\(30\) 0 0
\(31\) −10.5000 6.06218i −0.338710 0.195554i 0.320992 0.947082i \(-0.395984\pi\)
−0.659701 + 0.751528i \(0.729317\pi\)
\(32\) 0 0
\(33\) 12.9904 + 22.5000i 0.393648 + 0.681818i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 26.8468 15.5000i 0.725589 0.418919i −0.0912174 0.995831i \(-0.529076\pi\)
0.816806 + 0.576912i \(0.195742\pi\)
\(38\) 0 0
\(39\) −12.0000 + 20.7846i −0.307692 + 0.532939i
\(40\) 0 0
\(41\) 55.4256i 1.35184i 0.736973 + 0.675922i \(0.236255\pi\)
−0.736973 + 0.675922i \(0.763745\pi\)
\(42\) 0 0
\(43\) 10.0000i 0.232558i −0.993217 0.116279i \(-0.962903\pi\)
0.993217 0.116279i \(-0.0370967\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 21.6506 + 37.5000i 0.460652 + 0.797872i 0.998994 0.0448543i \(-0.0142824\pi\)
−0.538342 + 0.842727i \(0.680949\pi\)
\(48\) 0 0
\(49\) −49.0000 −1.00000
\(50\) 0 0
\(51\) 25.5000 + 44.1673i 0.500000 + 0.866025i
\(52\) 0 0
\(53\) −49.3634 28.5000i −0.931386 0.537736i −0.0441362 0.999026i \(-0.514054\pi\)
−0.887250 + 0.461290i \(0.847387\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 27.0000i 0.473684i
\(58\) 0 0
\(59\) 70.5000 + 40.7032i 1.19492 + 0.689885i 0.959417 0.281990i \(-0.0909946\pi\)
0.235498 + 0.971875i \(0.424328\pi\)
\(60\) 0 0
\(61\) −70.5000 + 40.7032i −1.15574 + 0.667265i −0.950279 0.311400i \(-0.899202\pi\)
−0.205459 + 0.978666i \(0.565869\pi\)
\(62\) 0 0
\(63\) 36.3731 21.0000i 0.577350 0.333333i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 42.4352 + 24.5000i 0.633362 + 0.365672i 0.782053 0.623212i \(-0.214173\pi\)
−0.148691 + 0.988884i \(0.547506\pi\)
\(68\) 0 0
\(69\) 15.5885i 0.225920i
\(70\) 0 0
\(71\) −126.000 −1.77465 −0.887324 0.461147i \(-0.847438\pi\)
−0.887324 + 0.461147i \(0.847438\pi\)
\(72\) 0 0
\(73\) −12.9904 + 22.5000i −0.177950 + 0.308219i −0.941178 0.337910i \(-0.890280\pi\)
0.763228 + 0.646129i \(0.223613\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 90.9327 + 52.5000i 1.18094 + 0.681818i
\(78\) 0 0
\(79\) −36.5000 63.2199i −0.462025 0.800251i 0.537036 0.843559i \(-0.319544\pi\)
−0.999062 + 0.0433077i \(0.986210\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 13.8564 0.166945 0.0834723 0.996510i \(-0.473399\pi\)
0.0834723 + 0.996510i \(0.473399\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.19615 9.00000i 0.0597259 0.103448i
\(88\) 0 0
\(89\) −49.5000 + 28.5788i −0.556180 + 0.321111i −0.751611 0.659607i \(-0.770723\pi\)
0.195431 + 0.980717i \(0.437389\pi\)
\(90\) 0 0
\(91\) 96.9948i 1.06588i
\(92\) 0 0
\(93\) −18.1865 + 10.5000i −0.195554 + 0.112903i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 27.7128 0.285699 0.142850 0.989744i \(-0.454373\pi\)
0.142850 + 0.989744i \(0.454373\pi\)
\(98\) 0 0
\(99\) −90.0000 −0.909091
\(100\) 0 0
\(101\) 85.5000 + 49.3634i 0.846535 + 0.488747i 0.859480 0.511169i \(-0.170787\pi\)
−0.0129455 + 0.999916i \(0.504121\pi\)
\(102\) 0 0
\(103\) −35.5070 61.5000i −0.344729 0.597087i 0.640576 0.767895i \(-0.278696\pi\)
−0.985304 + 0.170808i \(0.945362\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 33.7750 19.5000i 0.315654 0.182243i −0.333800 0.942644i \(-0.608331\pi\)
0.649454 + 0.760401i \(0.274998\pi\)
\(108\) 0 0
\(109\) 51.5000 89.2006i 0.472477 0.818354i −0.527027 0.849849i \(-0.676693\pi\)
0.999504 + 0.0314943i \(0.0100266\pi\)
\(110\) 0 0
\(111\) 53.6936i 0.483726i
\(112\) 0 0
\(113\) 78.0000i 0.690265i 0.938554 + 0.345133i \(0.112166\pi\)
−0.938554 + 0.345133i \(0.887834\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −41.5692 72.0000i −0.355292 0.615385i
\(118\) 0 0
\(119\) 178.500 + 103.057i 1.50000 + 0.866025i
\(120\) 0 0
\(121\) −52.0000 90.0666i −0.429752 0.744352i
\(122\) 0 0
\(123\) 83.1384 + 48.0000i 0.675922 + 0.390244i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 50.0000i 0.393701i 0.980434 + 0.196850i \(0.0630713\pi\)
−0.980434 + 0.196850i \(0.936929\pi\)
\(128\) 0 0
\(129\) −15.0000 8.66025i −0.116279 0.0671338i
\(130\) 0 0
\(131\) 85.5000 49.3634i 0.652672 0.376820i −0.136807 0.990598i \(-0.543684\pi\)
0.789479 + 0.613777i \(0.210351\pi\)
\(132\) 0 0
\(133\) 54.5596 + 94.5000i 0.410223 + 0.710526i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −54.5596 31.5000i −0.398245 0.229927i 0.287481 0.957786i \(-0.407182\pi\)
−0.685727 + 0.727859i \(0.740515\pi\)
\(138\) 0 0
\(139\) 235.559i 1.69467i 0.531060 + 0.847334i \(0.321794\pi\)
−0.531060 + 0.847334i \(0.678206\pi\)
\(140\) 0 0
\(141\) 75.0000 0.531915
\(142\) 0 0
\(143\) 103.923 180.000i 0.726735 1.25874i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −42.4352 + 73.5000i −0.288675 + 0.500000i
\(148\) 0 0
\(149\) −88.5000 153.286i −0.593960 1.02877i −0.993693 0.112137i \(-0.964231\pi\)
0.399733 0.916632i \(-0.369103\pi\)
\(150\) 0 0
\(151\) −27.5000 + 47.6314i −0.182119 + 0.315440i −0.942602 0.333918i \(-0.891629\pi\)
0.760483 + 0.649358i \(0.224962\pi\)
\(152\) 0 0
\(153\) −176.669 −1.15470
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −49.3634 + 85.5000i −0.314417 + 0.544586i −0.979313 0.202350i \(-0.935142\pi\)
0.664897 + 0.746935i \(0.268476\pi\)
\(158\) 0 0
\(159\) −85.5000 + 49.3634i −0.537736 + 0.310462i
\(160\) 0 0
\(161\) −31.5000 54.5596i −0.195652 0.338880i
\(162\) 0 0
\(163\) −19.9186 + 11.5000i −0.122200 + 0.0705521i −0.559854 0.828591i \(-0.689143\pi\)
0.437654 + 0.899143i \(0.355809\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −277.128 −1.65945 −0.829725 0.558172i \(-0.811503\pi\)
−0.829725 + 0.558172i \(0.811503\pi\)
\(168\) 0 0
\(169\) 23.0000 0.136095
\(170\) 0 0
\(171\) −81.0000 46.7654i −0.473684 0.273482i
\(172\) 0 0
\(173\) −70.1481 121.500i −0.405480 0.702312i 0.588897 0.808208i \(-0.299562\pi\)
−0.994377 + 0.105896i \(0.966229\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 122.110 70.5000i 0.689885 0.398305i
\(178\) 0 0
\(179\) 31.5000 54.5596i 0.175978 0.304802i −0.764522 0.644598i \(-0.777025\pi\)
0.940499 + 0.339796i \(0.110358\pi\)
\(180\) 0 0
\(181\) 124.708i 0.688993i −0.938788 0.344496i \(-0.888050\pi\)
0.938788 0.344496i \(-0.111950\pi\)
\(182\) 0 0
\(183\) 141.000i 0.770492i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −220.836 382.500i −1.18094 2.04545i
\(188\) 0 0
\(189\) 181.865i 0.962250i
\(190\) 0 0
\(191\) 28.5000 + 49.3634i 0.149215 + 0.258447i 0.930937 0.365179i \(-0.118992\pi\)
−0.781723 + 0.623626i \(0.785659\pi\)
\(192\) 0 0
\(193\) −180.999 104.500i −0.937820 0.541451i −0.0485439 0.998821i \(-0.515458\pi\)
−0.889276 + 0.457370i \(0.848791\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 150.000i 0.761421i −0.924694 0.380711i \(-0.875679\pi\)
0.924694 0.380711i \(-0.124321\pi\)
\(198\) 0 0
\(199\) 178.500 + 103.057i 0.896985 + 0.517874i 0.876221 0.481910i \(-0.160057\pi\)
0.0207642 + 0.999784i \(0.493390\pi\)
\(200\) 0 0
\(201\) 73.5000 42.4352i 0.365672 0.211121i
\(202\) 0 0
\(203\) 42.0000i 0.206897i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 46.7654 + 27.0000i 0.225920 + 0.130435i
\(208\) 0 0
\(209\) 233.827i 1.11879i
\(210\) 0 0
\(211\) 346.000 1.63981 0.819905 0.572499i \(-0.194026\pi\)
0.819905 + 0.572499i \(0.194026\pi\)
\(212\) 0 0
\(213\) −109.119 + 189.000i −0.512297 + 0.887324i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −42.4352 + 73.5000i −0.195554 + 0.338710i
\(218\) 0 0
\(219\) 22.5000 + 38.9711i 0.102740 + 0.177950i
\(220\) 0 0
\(221\) 204.000 353.338i 0.923077 1.59882i
\(222\) 0 0
\(223\) 332.554 1.49127 0.745636 0.666353i \(-0.232146\pi\)
0.745636 + 0.666353i \(0.232146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −70.1481 + 121.500i −0.309022 + 0.535242i −0.978149 0.207906i \(-0.933335\pi\)
0.669126 + 0.743149i \(0.266668\pi\)
\(228\) 0 0
\(229\) −145.500 + 84.0045i −0.635371 + 0.366832i −0.782829 0.622237i \(-0.786224\pi\)
0.147458 + 0.989068i \(0.452891\pi\)
\(230\) 0 0
\(231\) 157.500 90.9327i 0.681818 0.393648i
\(232\) 0 0
\(233\) 236.425 136.500i 1.01470 0.585837i 0.102135 0.994771i \(-0.467433\pi\)
0.912564 + 0.408934i \(0.134099\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −126.440 −0.533501
\(238\) 0 0
\(239\) 222.000 0.928870 0.464435 0.885607i \(-0.346257\pi\)
0.464435 + 0.885607i \(0.346257\pi\)
\(240\) 0 0
\(241\) −190.500 109.985i −0.790456 0.456370i 0.0496668 0.998766i \(-0.484184\pi\)
−0.840123 + 0.542396i \(0.817517\pi\)
\(242\) 0 0
\(243\) 124.708 + 216.000i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 187.061 108.000i 0.757334 0.437247i
\(248\) 0 0
\(249\) 12.0000 20.7846i 0.0481928 0.0834723i
\(250\) 0 0
\(251\) 96.9948i 0.386434i −0.981156 0.193217i \(-0.938108\pi\)
0.981156 0.193217i \(-0.0618921\pi\)
\(252\) 0 0
\(253\) 135.000i 0.533597i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −96.1288 166.500i −0.374042 0.647860i 0.616141 0.787636i \(-0.288695\pi\)
−0.990183 + 0.139776i \(0.955362\pi\)
\(258\) 0 0
\(259\) −108.500 187.928i −0.418919 0.725589i
\(260\) 0 0
\(261\) 18.0000 + 31.1769i 0.0689655 + 0.119452i
\(262\) 0 0
\(263\) −132.502 76.5000i −0.503809 0.290875i 0.226476 0.974017i \(-0.427280\pi\)
−0.730285 + 0.683142i \(0.760613\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 99.0000i 0.370787i
\(268\) 0 0
\(269\) 394.500 + 227.765i 1.46654 + 0.846709i 0.999300 0.0374200i \(-0.0119139\pi\)
0.467243 + 0.884129i \(0.345247\pi\)
\(270\) 0 0
\(271\) 61.5000 35.5070i 0.226937 0.131022i −0.382221 0.924071i \(-0.624841\pi\)
0.609158 + 0.793049i \(0.291507\pi\)
\(272\) 0 0
\(273\) 145.492 + 84.0000i 0.532939 + 0.307692i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −310.903 179.500i −1.12239 0.648014i −0.180383 0.983596i \(-0.557734\pi\)
−0.942011 + 0.335582i \(0.891067\pi\)
\(278\) 0 0
\(279\) 72.7461i 0.260739i
\(280\) 0 0
\(281\) −222.000 −0.790036 −0.395018 0.918673i \(-0.629262\pi\)
−0.395018 + 0.918673i \(0.629262\pi\)
\(282\) 0 0
\(283\) 0.866025 1.50000i 0.00306016 0.00530035i −0.864491 0.502648i \(-0.832359\pi\)
0.867551 + 0.497347i \(0.165693\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 387.979 1.35184
\(288\) 0 0
\(289\) −289.000 500.563i −1.00000 1.73205i
\(290\) 0 0
\(291\) 24.0000 41.5692i 0.0824742 0.142850i
\(292\) 0 0
\(293\) −235.559 −0.803955 −0.401978 0.915649i \(-0.631677\pi\)
−0.401978 + 0.915649i \(0.631677\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −194.856 + 337.500i −0.656080 + 1.13636i
\(298\) 0 0
\(299\) −108.000 + 62.3538i −0.361204 + 0.208541i
\(300\) 0 0
\(301\) −70.0000 −0.232558
\(302\) 0 0
\(303\) 148.090 85.5000i 0.488747 0.282178i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 96.9948 0.315944 0.157972 0.987444i \(-0.449504\pi\)
0.157972 + 0.987444i \(0.449504\pi\)
\(308\) 0 0
\(309\) −123.000 −0.398058
\(310\) 0 0
\(311\) 421.500 + 243.353i 1.35531 + 0.782486i 0.988987 0.148003i \(-0.0472847\pi\)
0.366319 + 0.930489i \(0.380618\pi\)
\(312\) 0 0
\(313\) −111.717 193.500i −0.356924 0.618211i 0.630521 0.776172i \(-0.282841\pi\)
−0.987445 + 0.157961i \(0.949508\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 387.113 223.500i 1.22118 0.705047i 0.256009 0.966674i \(-0.417592\pi\)
0.965169 + 0.261627i \(0.0842591\pi\)
\(318\) 0 0
\(319\) −45.0000 + 77.9423i −0.141066 + 0.244333i
\(320\) 0 0
\(321\) 67.5500i 0.210436i
\(322\) 0 0
\(323\) 459.000i 1.42105i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −89.2006 154.500i −0.272785 0.472477i
\(328\) 0 0
\(329\) 262.500 151.554i 0.797872 0.460652i
\(330\) 0 0
\(331\) −75.5000 130.770i −0.228097 0.395075i 0.729147 0.684357i \(-0.239917\pi\)
−0.957244 + 0.289282i \(0.906584\pi\)
\(332\) 0 0
\(333\) 161.081 + 93.0000i 0.483726 + 0.279279i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 274.000i 0.813056i 0.913638 + 0.406528i \(0.133261\pi\)
−0.913638 + 0.406528i \(0.866739\pi\)
\(338\) 0 0
\(339\) 117.000 + 67.5500i 0.345133 + 0.199262i
\(340\) 0 0
\(341\) 157.500 90.9327i 0.461877 0.266665i
\(342\) 0 0
\(343\) 343.000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −470.252 271.500i −1.35519 0.782421i −0.366221 0.930528i \(-0.619349\pi\)
−0.988971 + 0.148107i \(0.952682\pi\)
\(348\) 0 0
\(349\) 180.133i 0.516141i 0.966126 + 0.258071i \(0.0830867\pi\)
−0.966126 + 0.258071i \(0.916913\pi\)
\(350\) 0 0
\(351\) −360.000 −1.02564
\(352\) 0 0
\(353\) −151.554 + 262.500i −0.429333 + 0.743626i −0.996814 0.0797602i \(-0.974585\pi\)
0.567481 + 0.823386i \(0.307918\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 309.171 178.500i 0.866025 0.500000i
\(358\) 0 0
\(359\) 19.5000 + 33.7750i 0.0543175 + 0.0940808i 0.891906 0.452221i \(-0.149368\pi\)
−0.837588 + 0.546302i \(0.816035\pi\)
\(360\) 0 0
\(361\) −59.0000 + 102.191i −0.163435 + 0.283078i
\(362\) 0 0
\(363\) −180.133 −0.496235
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −174.071 + 301.500i −0.474308 + 0.821526i −0.999567 0.0294165i \(-0.990635\pi\)
0.525259 + 0.850942i \(0.323968\pi\)
\(368\) 0 0
\(369\) −288.000 + 166.277i −0.780488 + 0.450615i
\(370\) 0 0
\(371\) −199.500 + 345.544i −0.537736 + 0.931386i
\(372\) 0 0
\(373\) −331.688 + 191.500i −0.889243 + 0.513405i −0.873695 0.486474i \(-0.838283\pi\)
−0.0155484 + 0.999879i \(0.504949\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −83.1384 −0.220526
\(378\) 0 0
\(379\) 230.000 0.606860 0.303430 0.952854i \(-0.401868\pi\)
0.303430 + 0.952854i \(0.401868\pi\)
\(380\) 0 0
\(381\) 75.0000 + 43.3013i 0.196850 + 0.113652i
\(382\) 0 0
\(383\) −160.215 277.500i −0.418315 0.724543i 0.577455 0.816423i \(-0.304046\pi\)
−0.995770 + 0.0918794i \(0.970713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 51.9615 30.0000i 0.134268 0.0775194i
\(388\) 0 0
\(389\) −100.500 + 174.071i −0.258355 + 0.447484i −0.965801 0.259283i \(-0.916514\pi\)
0.707447 + 0.706767i \(0.249847\pi\)
\(390\) 0 0
\(391\) 265.004i 0.677759i
\(392\) 0 0
\(393\) 171.000i 0.435115i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −26.8468 46.5000i −0.0676241 0.117128i 0.830231 0.557420i \(-0.188209\pi\)
−0.897855 + 0.440291i \(0.854875\pi\)
\(398\) 0 0
\(399\) 189.000 0.473684
\(400\) 0 0
\(401\) 88.5000 + 153.286i 0.220698 + 0.382261i 0.955020 0.296541i \(-0.0958331\pi\)
−0.734322 + 0.678801i \(0.762500\pi\)
\(402\) 0 0
\(403\) 145.492 + 84.0000i 0.361023 + 0.208437i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 465.000i 1.14251i
\(408\) 0 0
\(409\) −289.500 167.143i −0.707824 0.408662i 0.102431 0.994740i \(-0.467338\pi\)
−0.810255 + 0.586078i \(0.800671\pi\)
\(410\) 0 0
\(411\) −94.5000 + 54.5596i −0.229927 + 0.132748i
\(412\) 0 0
\(413\) 284.922 493.500i 0.689885 1.19492i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 353.338 + 204.000i 0.847334 + 0.489209i
\(418\) 0 0
\(419\) 595.825i 1.42202i 0.703183 + 0.711009i \(0.251761\pi\)
−0.703183 + 0.711009i \(0.748239\pi\)
\(420\) 0 0
\(421\) −22.0000 −0.0522565 −0.0261283 0.999659i \(-0.508318\pi\)
−0.0261283 + 0.999659i \(0.508318\pi\)
\(422\) 0 0
\(423\) −129.904 + 225.000i −0.307101 + 0.531915i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 284.922 + 493.500i 0.667265 + 1.15574i
\(428\) 0 0
\(429\) −180.000 311.769i −0.419580 0.726735i
\(430\) 0 0
\(431\) −163.500 + 283.190i −0.379350 + 0.657054i −0.990968 0.134100i \(-0.957186\pi\)
0.611618 + 0.791154i \(0.290519\pi\)
\(432\) 0 0
\(433\) −27.7128 −0.0640019 −0.0320009 0.999488i \(-0.510188\pi\)
−0.0320009 + 0.999488i \(0.510188\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −70.1481 + 121.500i −0.160522 + 0.278032i
\(438\) 0 0
\(439\) −517.500 + 298.779i −1.17882 + 0.680589i −0.955740 0.294212i \(-0.904943\pi\)
−0.223075 + 0.974801i \(0.571610\pi\)
\(440\) 0 0
\(441\) −147.000 254.611i −0.333333 0.577350i
\(442\) 0 0
\(443\) 631.333 364.500i 1.42513 0.822799i 0.428399 0.903590i \(-0.359078\pi\)
0.996731 + 0.0807907i \(0.0257445\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −306.573 −0.685846
\(448\) 0 0
\(449\) 270.000 0.601336 0.300668 0.953729i \(-0.402790\pi\)
0.300668 + 0.953729i \(0.402790\pi\)
\(450\) 0 0
\(451\) −720.000 415.692i −1.59645 0.921712i
\(452\) 0 0
\(453\) 47.6314 + 82.5000i 0.105147 + 0.182119i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 691.954 399.500i 1.51412 0.874179i 0.514260 0.857634i \(-0.328067\pi\)
0.999863 0.0165451i \(-0.00526672\pi\)
\(458\) 0 0
\(459\) −382.500 + 662.509i −0.833333 + 1.44338i
\(460\) 0 0
\(461\) 429.549i 0.931776i 0.884844 + 0.465888i \(0.154265\pi\)
−0.884844 + 0.465888i \(0.845735\pi\)
\(462\) 0 0
\(463\) 814.000i 1.75810i 0.476730 + 0.879050i \(0.341822\pi\)
−0.476730 + 0.879050i \(0.658178\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −200.052 346.500i −0.428377 0.741970i 0.568353 0.822785i \(-0.307581\pi\)
−0.996729 + 0.0808151i \(0.974248\pi\)
\(468\) 0 0
\(469\) 171.500 297.047i 0.365672 0.633362i
\(470\) 0 0
\(471\) 85.5000 + 148.090i 0.181529 + 0.314417i
\(472\) 0 0
\(473\) 129.904 + 75.0000i 0.274638 + 0.158562i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 342.000i 0.716981i
\(478\) 0 0
\(479\) 466.500 + 269.334i 0.973904 + 0.562284i 0.900424 0.435013i \(-0.143256\pi\)
0.0734798 + 0.997297i \(0.476590\pi\)
\(480\) 0 0
\(481\) −372.000 + 214.774i −0.773389 + 0.446516i
\(482\) 0 0
\(483\) −109.119 −0.225920
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 742.184 + 428.500i 1.52399 + 0.879877i 0.999597 + 0.0284015i \(0.00904169\pi\)
0.524395 + 0.851475i \(0.324292\pi\)
\(488\) 0 0
\(489\) 39.8372i 0.0814666i
\(490\) 0 0
\(491\) 570.000 1.16090 0.580448 0.814297i \(-0.302877\pi\)
0.580448 + 0.814297i \(0.302877\pi\)
\(492\) 0 0
\(493\) −88.3346 + 153.000i −0.179178 + 0.310345i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 882.000i 1.77465i
\(498\) 0 0
\(499\) −212.500 368.061i −0.425852 0.737597i 0.570648 0.821195i \(-0.306692\pi\)
−0.996500 + 0.0835981i \(0.973359\pi\)
\(500\) 0 0
\(501\) −240.000 + 415.692i −0.479042 + 0.829725i
\(502\) 0 0
\(503\) −193.990 −0.385665 −0.192833 0.981232i \(-0.561767\pi\)
−0.192833 + 0.981232i \(0.561767\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.9186 34.5000i 0.0392871 0.0680473i
\(508\) 0 0
\(509\) 334.500 193.124i 0.657171 0.379418i −0.134027 0.990978i \(-0.542791\pi\)
0.791198 + 0.611560i \(0.209458\pi\)
\(510\) 0 0
\(511\) 157.500 + 90.9327i 0.308219 + 0.177950i
\(512\) 0 0
\(513\) −350.740 + 202.500i −0.683704 + 0.394737i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −649.519 −1.25632
\(518\) 0 0
\(519\) −243.000 −0.468208
\(520\) 0 0
\(521\) −214.500 123.842i −0.411708 0.237700i 0.279815 0.960054i \(-0.409727\pi\)
−0.691523 + 0.722354i \(0.743060\pi\)
\(522\) 0 0
\(523\) −395.774 685.500i −0.756737 1.31071i −0.944506 0.328494i \(-0.893459\pi\)
0.187769 0.982213i \(-0.439874\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 309.171 178.500i 0.586662 0.338710i
\(528\) 0 0
\(529\) −224.000 + 387.979i −0.423440 + 0.733420i
\(530\) 0 0
\(531\) 488.438i 0.919846i
\(532\) 0 0
\(533\) 768.000i 1.44090i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −54.5596 94.5000i −0.101601 0.175978i
\(538\) 0 0
\(539\) 367.500 636.529i 0.681818 1.18094i
\(540\) 0 0
\(541\) 360.500 + 624.404i 0.666359 + 1.15417i 0.978915 + 0.204268i \(0.0654813\pi\)
−0.312556 + 0.949899i \(0.601185\pi\)
\(542\) 0 0
\(543\) −187.061 108.000i −0.344496 0.198895i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 118.000i 0.215722i −0.994166 0.107861i \(-0.965600\pi\)
0.994166 0.107861i \(-0.0344002\pi\)
\(548\) 0 0
\(549\) −423.000 244.219i −0.770492 0.444844i
\(550\) 0 0
\(551\) −81.0000 + 46.7654i −0.147005 + 0.0848736i
\(552\) 0 0
\(553\) −442.539 + 255.500i −0.800251 + 0.462025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 548.194 + 316.500i 0.984190 + 0.568223i 0.903533 0.428519i \(-0.140965\pi\)
0.0806578 + 0.996742i \(0.474298\pi\)
\(558\) 0 0
\(559\) 138.564i 0.247878i
\(560\) 0 0
\(561\) −765.000 −1.36364
\(562\) 0 0
\(563\) −137.698 + 238.500i −0.244579 + 0.423623i −0.962013 0.273003i \(-0.911983\pi\)
0.717434 + 0.696626i \(0.245316\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 54.5596 + 31.5000i 0.0962250 + 0.0555556i
\(568\) 0 0
\(569\) 223.500 + 387.113i 0.392794 + 0.680340i 0.992817 0.119643i \(-0.0381751\pi\)
−0.600023 + 0.799983i \(0.704842\pi\)
\(570\) 0 0
\(571\) −263.500 + 456.395i −0.461471 + 0.799291i −0.999035 0.0439319i \(-0.986012\pi\)
0.537563 + 0.843223i \(0.319345\pi\)
\(572\) 0 0
\(573\) 98.7269 0.172298
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −84.0045 + 145.500i −0.145588 + 0.252166i −0.929592 0.368589i \(-0.879841\pi\)
0.784004 + 0.620756i \(0.213174\pi\)
\(578\) 0 0
\(579\) −313.500 + 180.999i −0.541451 + 0.312607i
\(580\) 0 0
\(581\) 96.9948i 0.166945i
\(582\) 0 0
\(583\) 740.452 427.500i 1.27007 0.733276i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 956.092 1.62878 0.814388 0.580320i \(-0.197073\pi\)
0.814388 + 0.580320i \(0.197073\pi\)
\(588\) 0 0
\(589\) 189.000 0.320883
\(590\) 0 0
\(591\) −225.000 129.904i −0.380711 0.219803i
\(592\) 0 0
\(593\) 151.554 + 262.500i 0.255572 + 0.442664i 0.965051 0.262063i \(-0.0844027\pi\)
−0.709478 + 0.704727i \(0.751069\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 309.171 178.500i 0.517874 0.298995i
\(598\) 0 0
\(599\) 403.500 698.883i 0.673623 1.16675i −0.303247 0.952912i \(-0.598071\pi\)
0.976869 0.213837i \(-0.0685960\pi\)
\(600\) 0 0
\(601\) 387.979i 0.645556i −0.946475 0.322778i \(-0.895383\pi\)
0.946475 0.322778i \(-0.104617\pi\)
\(602\) 0 0
\(603\) 294.000i 0.487562i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −366.329 634.500i −0.603507 1.04530i −0.992286 0.123974i \(-0.960436\pi\)
0.388779 0.921331i \(-0.372897\pi\)
\(608\) 0 0
\(609\) −63.0000 36.3731i −0.103448 0.0597259i
\(610\) 0 0
\(611\) −300.000 519.615i −0.490998 0.850434i
\(612\) 0 0
\(613\) 435.611 + 251.500i 0.710621 + 0.410277i 0.811291 0.584643i \(-0.198765\pi\)
−0.100670 + 0.994920i \(0.532099\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 930.000i 1.50729i 0.657280 + 0.753647i \(0.271707\pi\)
−0.657280 + 0.753647i \(0.728293\pi\)
\(618\) 0 0
\(619\) −457.500 264.138i −0.739095 0.426717i 0.0826450 0.996579i \(-0.473663\pi\)
−0.821740 + 0.569862i \(0.806997\pi\)
\(620\) 0 0
\(621\) 202.500 116.913i 0.326087 0.188266i
\(622\) 0 0
\(623\) 200.052 + 346.500i 0.321111 + 0.556180i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −350.740 202.500i −0.559394 0.322967i
\(628\) 0 0
\(629\) 912.791i 1.45118i
\(630\) 0 0
\(631\) 194.000 0.307448 0.153724 0.988114i \(-0.450873\pi\)
0.153724 + 0.988114i \(0.450873\pi\)
\(632\) 0 0
\(633\) 299.645 519.000i 0.473372 0.819905i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 678.964 1.06588
\(638\) 0 0
\(639\) −378.000 654.715i −0.591549 1.02459i
\(640\) 0 0
\(641\) 16.5000 28.5788i 0.0257410 0.0445848i −0.852868 0.522127i \(-0.825139\pi\)
0.878609 + 0.477542i \(0.158472\pi\)
\(642\) 0 0
\(643\) 346.410 0.538741 0.269370 0.963037i \(-0.413184\pi\)
0.269370 + 0.963037i \(0.413184\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −381.917 + 661.500i −0.590289 + 1.02241i 0.403904 + 0.914801i \(0.367653\pi\)
−0.994193 + 0.107610i \(0.965680\pi\)
\(648\) 0 0
\(649\) −1057.50 + 610.548i −1.62943 + 0.940752i
\(650\) 0 0
\(651\) 73.5000 + 127.306i 0.112903 + 0.195554i
\(652\) 0 0
\(653\) 28.5788 16.5000i 0.0437654 0.0252680i −0.477958 0.878383i \(-0.658623\pi\)
0.521723 + 0.853115i \(0.325289\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −155.885 −0.237267
\(658\) 0 0
\(659\) 870.000 1.32018 0.660091 0.751186i \(-0.270518\pi\)
0.660091 + 0.751186i \(0.270518\pi\)
\(660\) 0 0
\(661\) 877.500 + 506.625i 1.32753 + 0.766452i 0.984918 0.173023i \(-0.0553536\pi\)
0.342616 + 0.939475i \(0.388687\pi\)
\(662\) 0 0
\(663\) −353.338 612.000i −0.532939 0.923077i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 46.7654 27.0000i 0.0701130 0.0404798i
\(668\) 0 0
\(669\) 288.000 498.831i 0.430493 0.745636i
\(670\) 0 0
\(671\) 1221.10i 1.81981i
\(672\) 0 0
\(673\) 14.0000i 0.0208024i 0.999946 + 0.0104012i \(0.00331086\pi\)
−0.999946 + 0.0104012i \(0.996689\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −137.698 238.500i −0.203394 0.352290i 0.746226 0.665693i \(-0.231864\pi\)
−0.949620 + 0.313404i \(0.898531\pi\)
\(678\) 0 0
\(679\) 193.990i 0.285699i
\(680\) 0 0
\(681\) 121.500 + 210.444i 0.178414 + 0.309022i
\(682\) 0 0
\(683\) −236.425 136.500i −0.346157 0.199854i 0.316835 0.948481i \(-0.397380\pi\)
−0.662991 + 0.748627i \(0.730713\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 291.000i 0.423581i
\(688\) 0 0
\(689\) 684.000 + 394.908i 0.992743 + 0.573160i
\(690\) 0 0
\(691\) 133.500 77.0763i 0.193198 0.111543i −0.400281 0.916393i \(-0.631087\pi\)
0.593479 + 0.804850i \(0.297754\pi\)
\(692\) 0 0
\(693\) 630.000i 0.909091i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1413.35 816.000i −2.02777 1.17073i
\(698\) 0 0
\(699\) 472.850i 0.676466i
\(700\) 0 0
\(701\) 906.000 1.29244 0.646220 0.763151i \(-0.276349\pi\)
0.646220 + 0.763151i \(0.276349\pi\)
\(702\) 0 0
\(703\) −241.621 + 418.500i −0.343700 + 0.595306i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 345.544 598.500i 0.488747 0.846535i
\(708\) 0 0
\(709\) 351.500 + 608.816i 0.495769 + 0.858697i 0.999988 0.00487903i \(-0.00155305\pi\)
−0.504219 + 0.863576i \(0.668220\pi\)
\(710\) 0 0
\(711\) 219.000 379.319i 0.308017 0.533501i
\(712\) 0 0
\(713\) −109.119 −0.153042
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 192.258 333.000i 0.268142 0.464435i
\(718\) 0 0
\(719\) 514.500 297.047i 0.715577 0.413139i −0.0975455 0.995231i \(-0.531099\pi\)
0.813123 + 0.582092i \(0.197766\pi\)
\(720\) 0 0
\(721\) −430.500 + 248.549i −0.597087 + 0.344729i
\(722\) 0 0
\(723\) −329.956 + 190.500i −0.456370 + 0.263485i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 27.7128 0.0381194 0.0190597 0.999818i \(-0.493933\pi\)
0.0190597 + 0.999818i \(0.493933\pi\)
\(728\) 0 0
\(729\) 351.000 0.481481
\(730\) 0 0
\(731\) 255.000 + 147.224i 0.348837 + 0.201401i
\(732\) 0 0
\(733\) 484.108 + 838.500i 0.660448 + 1.14393i 0.980498 + 0.196529i \(0.0629668\pi\)
−0.320050 + 0.947401i \(0.603700\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −636.529 + 367.500i −0.863675 + 0.498643i
\(738\) 0 0
\(739\) −288.500 + 499.697i −0.390392 + 0.676180i −0.992501 0.122235i \(-0.960994\pi\)
0.602109 + 0.798414i \(0.294327\pi\)
\(740\) 0 0
\(741\) 374.123i 0.504889i
\(742\) 0 0
\(743\) 162.000i 0.218035i −0.994040 0.109017i \(-0.965230\pi\)
0.994040 0.109017i \(-0.0347705\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 41.5692 + 72.0000i 0.0556482 + 0.0963855i
\(748\) 0 0
\(749\) −136.500 236.425i −0.182243 0.315654i
\(750\) 0 0
\(751\) −387.500 671.170i −0.515979 0.893701i −0.999828 0.0185499i \(-0.994095\pi\)
0.483849 0.875151i \(-0.339238\pi\)
\(752\) 0 0
\(753\) −145.492 84.0000i −0.193217 0.111554i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 950.000i 1.25495i −0.778635 0.627477i \(-0.784088\pi\)
0.778635 0.627477i \(-0.215912\pi\)
\(758\) 0 0
\(759\) 202.500 + 116.913i 0.266798 + 0.154036i
\(760\) 0 0
\(761\) 169.500 97.8609i 0.222733 0.128595i −0.384482 0.923133i \(-0.625620\pi\)
0.607215 + 0.794537i \(0.292287\pi\)
\(762\) 0 0
\(763\) −624.404 360.500i −0.818354 0.472477i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −976.877 564.000i −1.27363 0.735332i
\(768\) 0 0
\(769\) 914.523i 1.18924i −0.804008 0.594618i \(-0.797303\pi\)
0.804008 0.594618i \(-0.202697\pi\)
\(770\) 0 0
\(771\) −333.000 −0.431907
\(772\) 0 0
\(773\) −89.2006 + 154.500i −0.115395 + 0.199871i −0.917938 0.396725i \(-0.870147\pi\)
0.802542 + 0.596595i \(0.203480\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −375.855 −0.483726
\(778\) 0 0
\(779\) −432.000 748.246i −0.554557 0.960521i
\(780\) 0 0
\(781\) 945.000 1636.79i 1.20999 2.09576i
\(782\) 0 0
\(783\) 155.885 0.199086
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −167.143 + 289.500i −0.212380 + 0.367853i −0.952459 0.304667i \(-0.901455\pi\)
0.740079 + 0.672520i \(0.234788\pi\)
\(788\) 0 0
\(789\) −229.500 + 132.502i −0.290875 + 0.167936i
\(790\) 0 0
\(791\) 546.000 0.690265
\(792\) 0 0
\(793\) 976.877 564.000i 1.23187 0.711223i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −872.954 −1.09530 −0.547650 0.836708i \(-0.684477\pi\)
−0.547650 + 0.836708i \(0.684477\pi\)
\(798\) 0 0
\(799\) −1275.00 −1.59574
\(800\) 0 0
\(801\) −297.000 171.473i −0.370787 0.214074i
\(802\) 0 0
\(803\) −194.856 337.500i −0.242660 0.420299i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 683.294 394.500i 0.846709 0.488848i
\(808\) 0 0
\(809\) −232.500 + 402.702i −0.287392 + 0.497777i −0.973186 0.230018i \(-0.926122\pi\)
0.685795 + 0.727795i \(0.259455\pi\)
\(810\) 0 0
\(811\) 124.708i 0.153770i −0.997040 0.0768851i \(-0.975503\pi\)
0.997040 0.0768851i \(-0.0244975\pi\)
\(812\) 0 0
\(813\) 123.000i 0.151292i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 77.9423 + 135.000i 0.0954006 + 0.165239i
\(818\) 0 0
\(819\) −504.000 + 290.985i −0.615385 + 0.355292i
\(820\) 0 0
\(821\) 376.500 + 652.117i 0.458587 + 0.794296i 0.998887 0.0471767i \(-0.0150224\pi\)
−0.540299 + 0.841473i \(0.681689\pi\)
\(822\) 0 0
\(823\) −21.6506 12.5000i −0.0263070 0.0151883i 0.486789 0.873520i \(-0.338168\pi\)
−0.513096 + 0.858331i \(0.671501\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 246.000i 0.297461i −0.988878 0.148730i \(-0.952481\pi\)
0.988878 0.148730i \(-0.0475186\pi\)
\(828\) 0 0
\(829\) 1282.50 + 740.452i 1.54704 + 0.893187i 0.998365 + 0.0571537i \(0.0182025\pi\)
0.548679 + 0.836033i \(0.315131\pi\)
\(830\) 0 0
\(831\) −538.500 + 310.903i −0.648014 + 0.374131i
\(832\) 0 0
\(833\) 721.399 1249.50i 0.866025 1.50000i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −272.798 157.500i −0.325924 0.188172i
\(838\) 0 0
\(839\) 360.267i 0.429400i −0.976680 0.214700i \(-0.931123\pi\)
0.976680 0.214700i \(-0.0688774\pi\)
\(840\) 0 0
\(841\) −805.000 −0.957194
\(842\) 0 0
\(843\) −192.258 + 333.000i −0.228064 + 0.395018i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −630.466 + 364.000i −0.744352 + 0.429752i
\(848\) 0 0
\(849\) −1.50000 2.59808i −0.00176678 0.00306016i
\(850\) 0 0
\(851\) 139.500 241.621i 0.163925 0.283926i
\(852\) 0 0
\(853\) −1205.51 −1.41326 −0.706628 0.707585i \(-0.749785\pi\)
−0.706628 + 0.707585i \(0.749785\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −97.8609 + 169.500i −0.114190 + 0.197783i −0.917456 0.397838i \(-0.869761\pi\)
0.803266 + 0.595621i \(0.203094\pi\)
\(858\) 0 0
\(859\) 1234.50 712.739i 1.43714 0.829731i 0.439486 0.898249i \(-0.355160\pi\)
0.997650 + 0.0685183i \(0.0218272\pi\)
\(860\) 0 0
\(861\) 336.000 581.969i 0.390244 0.675922i
\(862\) 0 0
\(863\) −740.452 + 427.500i −0.857997 + 0.495365i −0.863341 0.504621i \(-0.831632\pi\)
0.00534379 + 0.999986i \(0.498299\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1001.13 −1.15470
\(868\) 0 0
\(869\) 1095.00 1.26007
\(870\) 0 0
\(871\) −588.000 339.482i −0.675086 0.389761i
\(872\) 0 0
\(873\) 83.1384 + 144.000i 0.0952330 + 0.164948i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −208.712 + 120.500i −0.237984 + 0.137400i −0.614250 0.789112i \(-0.710541\pi\)
0.376266 + 0.926512i \(0.377208\pi\)
\(878\) 0 0
\(879\) −204.000 + 353.338i −0.232082 + 0.401978i
\(880\) 0 0
\(881\) 1330.22i 1.50989i 0.655787 + 0.754946i \(0.272337\pi\)
−0.655787 + 0.754946i \(0.727663\pi\)
\(882\) 0 0
\(883\) 1286.00i 1.45640i 0.685365 + 0.728199i \(0.259642\pi\)
−0.685365 + 0.728199i \(0.740358\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −643.457 1114.50i −0.725431 1.25648i −0.958797 0.284094i \(-0.908307\pi\)
0.233366 0.972389i \(-0.425026\pi\)
\(888\) 0 0
\(889\) 350.000 0.393701
\(890\) 0 0
\(891\) −67.5000 116.913i −0.0757576 0.131216i
\(892\) 0 0
\(893\) −584.567 337.500i −0.654610 0.377940i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 216.000i 0.240803i
\(898\) 0 0
\(899\) −63.0000 36.3731i −0.0700779 0.0404595i
\(900\) 0 0
\(901\) 1453.50 839.179i 1.61321 0.931386i
\(902\) 0 0
\(903\) −60.6218 + 105.000i −0.0671338 + 0.116279i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 638.261 + 368.500i 0.703705 + 0.406284i 0.808726 0.588186i \(-0.200158\pi\)
−0.105021 + 0.994470i \(0.533491\pi\)
\(908\) 0 0
\(909\) 592.361i 0.651663i
\(910\) 0 0
\(911\) 1266.00 1.38968 0.694841 0.719164i \(-0.255475\pi\)
0.694841 + 0.719164i \(0.255475\pi\)
\(912\) 0 0
\(913\) −103.923 + 180.000i −0.113826 + 0.197152i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −345.544 598.500i −0.376820 0.652672i
\(918\) 0 0
\(919\) −236.500 409.630i −0.257345 0.445735i 0.708185 0.706027i \(-0.249514\pi\)
−0.965530 + 0.260293i \(0.916181\pi\)
\(920\) 0 0
\(921\) 84.0000 145.492i 0.0912052 0.157972i
\(922\) 0 0
\(923\) 1745.91 1.89156
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 213.042 369.000i 0.229819 0.398058i
\(928\) 0 0
\(929\) −289.500 + 167.143i −0.311625 + 0.179917i −0.647654 0.761935i \(-0.724250\pi\)
0.336028 + 0.941852i \(0.390916\pi\)
\(930\) 0 0
\(931\) 661.500 381.917i 0.710526 0.410223i
\(932\) 0 0
\(933\) 730.059 421.500i 0.782486 0.451768i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 859.097 0.916859 0.458430 0.888731i \(-0.348412\pi\)
0.458430 + 0.888731i \(0.348412\pi\)
\(938\) 0 0
\(939\) −387.000 −0.412141
\(940\) 0 0
\(941\) −106.500 61.4878i −0.113177 0.0653430i 0.442343 0.896846i \(-0.354147\pi\)
−0.555520 + 0.831503i \(0.687481\pi\)
\(942\) 0 0
\(943\) 249.415 + 432.000i 0.264491 + 0.458112i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −174.071 + 100.500i −0.183813 + 0.106125i −0.589083 0.808073i \(-0.700511\pi\)
0.405270 + 0.914197i \(0.367178\pi\)
\(948\) 0 0
\(949\) 180.000 311.769i 0.189673 0.328524i
\(950\) 0 0
\(951\) 774.227i 0.814119i
\(952\) 0 0
\(953\) 66.0000i 0.0692550i −0.999400 0.0346275i \(-0.988976\pi\)
0.999400 0.0346275i \(-0.0110245\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 77.9423 + 135.000i 0.0814444 + 0.141066i
\(958\) 0 0
\(959\) −220.500 + 381.917i −0.229927 + 0.398245i
\(960\) 0 0
\(961\) −407.000 704.945i −0.423517 0.733553i
\(962\) 0 0
\(963\) 202.650 + 117.000i 0.210436 + 0.121495i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 194.000i 0.200620i 0.994956 + 0.100310i \(0.0319835\pi\)
−0.994956 + 0.100310i \(0.968016\pi\)
\(968\) 0 0
\(969\) −688.500 397.506i −0.710526 0.410223i
\(970\) 0 0
\(971\) 1285.50 742.184i 1.32389 0.764350i 0.339546 0.940590i \(-0.389727\pi\)
0.984347 + 0.176240i \(0.0563934\pi\)
\(972\) 0 0
\(973\) 1648.91 1.69467
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1317.22 + 760.500i 1.34823 + 0.778403i 0.987999 0.154458i \(-0.0493633\pi\)
0.360235 + 0.932862i \(0.382697\pi\)
\(978\) 0 0
\(979\) 857.365i 0.875756i
\(980\) 0 0
\(981\) 618.000 0.629969
\(982\) 0 0
\(983\) 562.050 973.500i 0.571771 0.990336i −0.424614 0.905375i \(-0.639590\pi\)
0.996384 0.0849611i \(-0.0270766\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 525.000i 0.531915i
\(988\) 0 0
\(989\) −45.0000 77.9423i −0.0455005 0.0788092i
\(990\) 0 0
\(991\) −411.500 + 712.739i −0.415237 + 0.719212i −0.995453 0.0952507i \(-0.969635\pi\)
0.580216 + 0.814463i \(0.302968\pi\)
\(992\) 0 0
\(993\) −261.540 −0.263383
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −63.2199 + 109.500i −0.0634101 + 0.109829i −0.895988 0.444079i \(-0.853531\pi\)
0.832578 + 0.553909i \(0.186864\pi\)
\(998\) 0 0
\(999\) 697.500 402.702i 0.698198 0.403105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.3.o.a.549.2 4
5.2 odd 4 700.3.s.a.101.1 2
5.3 odd 4 28.3.h.a.17.1 yes 2
5.4 even 2 inner 700.3.o.a.549.1 4
7.5 odd 6 inner 700.3.o.a.649.1 4
15.8 even 4 252.3.z.a.73.1 2
20.3 even 4 112.3.s.a.17.1 2
35.3 even 12 196.3.b.a.97.2 2
35.12 even 12 700.3.s.a.201.1 2
35.13 even 4 196.3.h.a.129.1 2
35.18 odd 12 196.3.b.a.97.1 2
35.19 odd 6 inner 700.3.o.a.649.2 4
35.23 odd 12 196.3.h.a.117.1 2
35.33 even 12 28.3.h.a.5.1 2
40.3 even 4 448.3.s.b.129.1 2
40.13 odd 4 448.3.s.a.129.1 2
60.23 odd 4 1008.3.cg.c.577.1 2
105.23 even 12 1764.3.z.f.901.1 2
105.38 odd 12 1764.3.d.a.685.2 2
105.53 even 12 1764.3.d.a.685.1 2
105.68 odd 12 252.3.z.a.145.1 2
105.83 odd 4 1764.3.z.f.325.1 2
140.3 odd 12 784.3.c.a.97.1 2
140.23 even 12 784.3.s.b.705.1 2
140.83 odd 4 784.3.s.b.129.1 2
140.103 odd 12 112.3.s.a.33.1 2
140.123 even 12 784.3.c.a.97.2 2
280.173 even 12 448.3.s.a.257.1 2
280.243 odd 12 448.3.s.b.257.1 2
420.383 even 12 1008.3.cg.c.145.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.3.h.a.5.1 2 35.33 even 12
28.3.h.a.17.1 yes 2 5.3 odd 4
112.3.s.a.17.1 2 20.3 even 4
112.3.s.a.33.1 2 140.103 odd 12
196.3.b.a.97.1 2 35.18 odd 12
196.3.b.a.97.2 2 35.3 even 12
196.3.h.a.117.1 2 35.23 odd 12
196.3.h.a.129.1 2 35.13 even 4
252.3.z.a.73.1 2 15.8 even 4
252.3.z.a.145.1 2 105.68 odd 12
448.3.s.a.129.1 2 40.13 odd 4
448.3.s.a.257.1 2 280.173 even 12
448.3.s.b.129.1 2 40.3 even 4
448.3.s.b.257.1 2 280.243 odd 12
700.3.o.a.549.1 4 5.4 even 2 inner
700.3.o.a.549.2 4 1.1 even 1 trivial
700.3.o.a.649.1 4 7.5 odd 6 inner
700.3.o.a.649.2 4 35.19 odd 6 inner
700.3.s.a.101.1 2 5.2 odd 4
700.3.s.a.201.1 2 35.12 even 12
784.3.c.a.97.1 2 140.3 odd 12
784.3.c.a.97.2 2 140.123 even 12
784.3.s.b.129.1 2 140.83 odd 4
784.3.s.b.705.1 2 140.23 even 12
1008.3.cg.c.145.1 2 420.383 even 12
1008.3.cg.c.577.1 2 60.23 odd 4
1764.3.d.a.685.1 2 105.53 even 12
1764.3.d.a.685.2 2 105.38 odd 12
1764.3.z.f.325.1 2 105.83 odd 4
1764.3.z.f.901.1 2 105.23 even 12