Properties

Label 252.3.z.a.73.1
Level $252$
Weight $3$
Character 252.73
Analytic conductor $6.867$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,3,Mod(73,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.73"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 252.73
Dual form 252.3.z.a.145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 0.866025i) q^{5} -7.00000 q^{7} +(7.50000 - 12.9904i) q^{11} -13.8564i q^{13} +(-25.5000 - 14.7224i) q^{17} +(13.5000 - 7.79423i) q^{19} +(-4.50000 - 7.79423i) q^{23} +(-11.0000 + 19.0526i) q^{25} +6.00000 q^{29} +(-10.5000 - 6.06218i) q^{31} +(10.5000 - 6.06218i) q^{35} +(-15.5000 - 26.8468i) q^{37} -55.4256i q^{41} +10.0000 q^{43} +(-37.5000 + 21.6506i) q^{47} +49.0000 q^{49} +(-28.5000 + 49.3634i) q^{53} +25.9808i q^{55} +(70.5000 + 40.7032i) q^{59} +(-70.5000 + 40.7032i) q^{61} +(12.0000 + 20.7846i) q^{65} +(24.5000 - 42.4352i) q^{67} +126.000 q^{71} +(-22.5000 - 12.9904i) q^{73} +(-52.5000 + 90.9327i) q^{77} +(36.5000 + 63.2199i) q^{79} -13.8564i q^{83} +51.0000 q^{85} +(-49.5000 + 28.5788i) q^{89} +96.9948i q^{91} +(-13.5000 + 23.3827i) q^{95} -27.7128i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} - 14 q^{7} + 15 q^{11} - 51 q^{17} + 27 q^{19} - 9 q^{23} - 22 q^{25} + 12 q^{29} - 21 q^{31} + 21 q^{35} - 31 q^{37} + 20 q^{43} - 75 q^{47} + 98 q^{49} - 57 q^{53} + 141 q^{59} - 141 q^{61}+ \cdots - 27 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 + 0.866025i −0.300000 + 0.173205i −0.642443 0.766334i \(-0.722079\pi\)
0.342443 + 0.939539i \(0.388746\pi\)
\(6\) 0 0
\(7\) −7.00000 −1.00000
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7.50000 12.9904i 0.681818 1.18094i −0.292607 0.956233i \(-0.594523\pi\)
0.974425 0.224711i \(-0.0721438\pi\)
\(12\) 0 0
\(13\) 13.8564i 1.06588i −0.846154 0.532939i \(-0.821088\pi\)
0.846154 0.532939i \(-0.178912\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −25.5000 14.7224i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 13.5000 7.79423i 0.710526 0.410223i −0.100730 0.994914i \(-0.532118\pi\)
0.811256 + 0.584691i \(0.198784\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.50000 7.79423i −0.195652 0.338880i 0.751462 0.659776i \(-0.229349\pi\)
−0.947114 + 0.320897i \(0.896016\pi\)
\(24\) 0 0
\(25\) −11.0000 + 19.0526i −0.440000 + 0.762102i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 0.206897 0.103448 0.994635i \(-0.467012\pi\)
0.103448 + 0.994635i \(0.467012\pi\)
\(30\) 0 0
\(31\) −10.5000 6.06218i −0.338710 0.195554i 0.320992 0.947082i \(-0.395984\pi\)
−0.659701 + 0.751528i \(0.729317\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.5000 6.06218i 0.300000 0.173205i
\(36\) 0 0
\(37\) −15.5000 26.8468i −0.418919 0.725589i 0.576912 0.816806i \(-0.304258\pi\)
−0.995831 + 0.0912174i \(0.970924\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 55.4256i 1.35184i −0.736973 0.675922i \(-0.763745\pi\)
0.736973 0.675922i \(-0.236255\pi\)
\(42\) 0 0
\(43\) 10.0000 0.232558 0.116279 0.993217i \(-0.462903\pi\)
0.116279 + 0.993217i \(0.462903\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −37.5000 + 21.6506i −0.797872 + 0.460652i −0.842727 0.538342i \(-0.819051\pi\)
0.0448543 + 0.998994i \(0.485718\pi\)
\(48\) 0 0
\(49\) 49.0000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −28.5000 + 49.3634i −0.537736 + 0.931386i 0.461290 + 0.887250i \(0.347387\pi\)
−0.999026 + 0.0441362i \(0.985946\pi\)
\(54\) 0 0
\(55\) 25.9808i 0.472377i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 70.5000 + 40.7032i 1.19492 + 0.689885i 0.959417 0.281990i \(-0.0909946\pi\)
0.235498 + 0.971875i \(0.424328\pi\)
\(60\) 0 0
\(61\) −70.5000 + 40.7032i −1.15574 + 0.667265i −0.950279 0.311400i \(-0.899202\pi\)
−0.205459 + 0.978666i \(0.565869\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.0000 + 20.7846i 0.184615 + 0.319763i
\(66\) 0 0
\(67\) 24.5000 42.4352i 0.365672 0.633362i −0.623212 0.782053i \(-0.714173\pi\)
0.988884 + 0.148691i \(0.0475060\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 126.000 1.77465 0.887324 0.461147i \(-0.152562\pi\)
0.887324 + 0.461147i \(0.152562\pi\)
\(72\) 0 0
\(73\) −22.5000 12.9904i −0.308219 0.177950i 0.337910 0.941178i \(-0.390280\pi\)
−0.646129 + 0.763228i \(0.723613\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −52.5000 + 90.9327i −0.681818 + 1.18094i
\(78\) 0 0
\(79\) 36.5000 + 63.2199i 0.462025 + 0.800251i 0.999062 0.0433077i \(-0.0137896\pi\)
−0.537036 + 0.843559i \(0.680456\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.8564i 0.166945i −0.996510 0.0834723i \(-0.973399\pi\)
0.996510 0.0834723i \(-0.0266010\pi\)
\(84\) 0 0
\(85\) 51.0000 0.600000
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −49.5000 + 28.5788i −0.556180 + 0.321111i −0.751611 0.659607i \(-0.770723\pi\)
0.195431 + 0.980717i \(0.437389\pi\)
\(90\) 0 0
\(91\) 96.9948i 1.06588i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13.5000 + 23.3827i −0.142105 + 0.246134i
\(96\) 0 0
\(97\) 27.7128i 0.285699i −0.989744 0.142850i \(-0.954373\pi\)
0.989744 0.142850i \(-0.0456265\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −85.5000 49.3634i −0.846535 0.488747i 0.0129455 0.999916i \(-0.495879\pi\)
−0.859480 + 0.511169i \(0.829213\pi\)
\(102\) 0 0
\(103\) 61.5000 35.5070i 0.597087 0.344729i −0.170808 0.985304i \(-0.554638\pi\)
0.767895 + 0.640576i \(0.221304\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.5000 + 33.7750i 0.182243 + 0.315654i 0.942644 0.333800i \(-0.108331\pi\)
−0.760401 + 0.649454i \(0.774998\pi\)
\(108\) 0 0
\(109\) −51.5000 + 89.2006i −0.472477 + 0.818354i −0.999504 0.0314943i \(-0.989973\pi\)
0.527027 + 0.849849i \(0.323307\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 78.0000 0.690265 0.345133 0.938554i \(-0.387834\pi\)
0.345133 + 0.938554i \(0.387834\pi\)
\(114\) 0 0
\(115\) 13.5000 + 7.79423i 0.117391 + 0.0677759i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 178.500 + 103.057i 1.50000 + 0.866025i
\(120\) 0 0
\(121\) −52.0000 90.0666i −0.429752 0.744352i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 81.4064i 0.651251i
\(126\) 0 0
\(127\) 50.0000 0.393701 0.196850 0.980434i \(-0.436929\pi\)
0.196850 + 0.980434i \(0.436929\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −85.5000 + 49.3634i −0.652672 + 0.376820i −0.789479 0.613777i \(-0.789649\pi\)
0.136807 + 0.990598i \(0.456316\pi\)
\(132\) 0 0
\(133\) −94.5000 + 54.5596i −0.710526 + 0.410223i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 31.5000 54.5596i 0.229927 0.398245i −0.727859 0.685727i \(-0.759485\pi\)
0.957786 + 0.287481i \(0.0928179\pi\)
\(138\) 0 0
\(139\) 235.559i 1.69467i −0.531060 0.847334i \(-0.678206\pi\)
0.531060 0.847334i \(-0.321794\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −180.000 103.923i −1.25874 0.726735i
\(144\) 0 0
\(145\) −9.00000 + 5.19615i −0.0620690 + 0.0358355i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −88.5000 153.286i −0.593960 1.02877i −0.993693 0.112137i \(-0.964231\pi\)
0.399733 0.916632i \(-0.369103\pi\)
\(150\) 0 0
\(151\) −27.5000 + 47.6314i −0.182119 + 0.315440i −0.942602 0.333918i \(-0.891629\pi\)
0.760483 + 0.649358i \(0.224962\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 21.0000 0.135484
\(156\) 0 0
\(157\) 85.5000 + 49.3634i 0.544586 + 0.314417i 0.746935 0.664897i \(-0.231524\pi\)
−0.202350 + 0.979313i \(0.564858\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 31.5000 + 54.5596i 0.195652 + 0.338880i
\(162\) 0 0
\(163\) −11.5000 19.9186i −0.0705521 0.122200i 0.828591 0.559854i \(-0.189143\pi\)
−0.899143 + 0.437654i \(0.855809\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 277.128i 1.65945i −0.558172 0.829725i \(-0.688497\pi\)
0.558172 0.829725i \(-0.311503\pi\)
\(168\) 0 0
\(169\) −23.0000 −0.136095
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −121.500 + 70.1481i −0.702312 + 0.405480i −0.808208 0.588897i \(-0.799562\pi\)
0.105896 + 0.994377i \(0.466229\pi\)
\(174\) 0 0
\(175\) 77.0000 133.368i 0.440000 0.762102i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 31.5000 54.5596i 0.175978 0.304802i −0.764522 0.644598i \(-0.777025\pi\)
0.940499 + 0.339796i \(0.110358\pi\)
\(180\) 0 0
\(181\) 124.708i 0.688993i −0.938788 0.344496i \(-0.888050\pi\)
0.938788 0.344496i \(-0.111950\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 46.5000 + 26.8468i 0.251351 + 0.145118i
\(186\) 0 0
\(187\) −382.500 + 220.836i −2.04545 + 1.18094i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −28.5000 49.3634i −0.149215 0.258447i 0.781723 0.623626i \(-0.214341\pi\)
−0.930937 + 0.365179i \(0.881008\pi\)
\(192\) 0 0
\(193\) 104.500 180.999i 0.541451 0.937820i −0.457370 0.889276i \(-0.651209\pi\)
0.998821 0.0485439i \(-0.0154581\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 150.000 0.761421 0.380711 0.924694i \(-0.375679\pi\)
0.380711 + 0.924694i \(0.375679\pi\)
\(198\) 0 0
\(199\) −178.500 103.057i −0.896985 0.517874i −0.0207642 0.999784i \(-0.506610\pi\)
−0.876221 + 0.481910i \(0.839943\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −42.0000 −0.206897
\(204\) 0 0
\(205\) 48.0000 + 83.1384i 0.234146 + 0.405553i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 233.827i 1.11879i
\(210\) 0 0
\(211\) 346.000 1.63981 0.819905 0.572499i \(-0.194026\pi\)
0.819905 + 0.572499i \(0.194026\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.0000 + 8.66025i −0.0697674 + 0.0402803i
\(216\) 0 0
\(217\) 73.5000 + 42.4352i 0.338710 + 0.195554i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −204.000 + 353.338i −0.923077 + 1.59882i
\(222\) 0 0
\(223\) 332.554i 1.49127i 0.666353 + 0.745636i \(0.267854\pi\)
−0.666353 + 0.745636i \(0.732146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −121.500 70.1481i −0.535242 0.309022i 0.207906 0.978149i \(-0.433335\pi\)
−0.743149 + 0.669126i \(0.766668\pi\)
\(228\) 0 0
\(229\) 145.500 84.0045i 0.635371 0.366832i −0.147458 0.989068i \(-0.547109\pi\)
0.782829 + 0.622237i \(0.213776\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −136.500 236.425i −0.585837 1.01470i −0.994771 0.102135i \(-0.967433\pi\)
0.408934 0.912564i \(-0.365901\pi\)
\(234\) 0 0
\(235\) 37.5000 64.9519i 0.159574 0.276391i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 222.000 0.928870 0.464435 0.885607i \(-0.346257\pi\)
0.464435 + 0.885607i \(0.346257\pi\)
\(240\) 0 0
\(241\) −190.500 109.985i −0.790456 0.456370i 0.0496668 0.998766i \(-0.484184\pi\)
−0.840123 + 0.542396i \(0.817517\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −73.5000 + 42.4352i −0.300000 + 0.173205i
\(246\) 0 0
\(247\) −108.000 187.061i −0.437247 0.757334i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 96.9948i 0.386434i 0.981156 + 0.193217i \(0.0618921\pi\)
−0.981156 + 0.193217i \(0.938108\pi\)
\(252\) 0 0
\(253\) −135.000 −0.533597
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 166.500 96.1288i 0.647860 0.374042i −0.139776 0.990183i \(-0.544638\pi\)
0.787636 + 0.616141i \(0.211305\pi\)
\(258\) 0 0
\(259\) 108.500 + 187.928i 0.418919 + 0.725589i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −76.5000 + 132.502i −0.290875 + 0.503809i −0.974017 0.226476i \(-0.927280\pi\)
0.683142 + 0.730285i \(0.260613\pi\)
\(264\) 0 0
\(265\) 98.7269i 0.372554i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 394.500 + 227.765i 1.46654 + 0.846709i 0.999300 0.0374200i \(-0.0119139\pi\)
0.467243 + 0.884129i \(0.345247\pi\)
\(270\) 0 0
\(271\) 61.5000 35.5070i 0.226937 0.131022i −0.382221 0.924071i \(-0.624841\pi\)
0.609158 + 0.793049i \(0.291507\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 165.000 + 285.788i 0.600000 + 1.03923i
\(276\) 0 0
\(277\) −179.500 + 310.903i −0.648014 + 1.12239i 0.335582 + 0.942011i \(0.391067\pi\)
−0.983596 + 0.180383i \(0.942266\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 222.000 0.790036 0.395018 0.918673i \(-0.370738\pi\)
0.395018 + 0.918673i \(0.370738\pi\)
\(282\) 0 0
\(283\) 1.50000 + 0.866025i 0.00530035 + 0.00306016i 0.502648 0.864491i \(-0.332359\pi\)
−0.497347 + 0.867551i \(0.665693\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 387.979i 1.35184i
\(288\) 0 0
\(289\) 289.000 + 500.563i 1.00000 + 1.73205i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 235.559i 0.803955i 0.915649 + 0.401978i \(0.131677\pi\)
−0.915649 + 0.401978i \(0.868323\pi\)
\(294\) 0 0
\(295\) −141.000 −0.477966
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −108.000 + 62.3538i −0.361204 + 0.208541i
\(300\) 0 0
\(301\) −70.0000 −0.232558
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 70.5000 122.110i 0.231148 0.400359i
\(306\) 0 0
\(307\) 96.9948i 0.315944i −0.987444 0.157972i \(-0.949504\pi\)
0.987444 0.157972i \(-0.0504956\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −421.500 243.353i −1.35531 0.782486i −0.366319 0.930489i \(-0.619382\pi\)
−0.988987 + 0.148003i \(0.952715\pi\)
\(312\) 0 0
\(313\) 193.500 111.717i 0.618211 0.356924i −0.157961 0.987445i \(-0.550492\pi\)
0.776172 + 0.630521i \(0.217159\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 223.500 + 387.113i 0.705047 + 1.22118i 0.966674 + 0.256009i \(0.0824076\pi\)
−0.261627 + 0.965169i \(0.584259\pi\)
\(318\) 0 0
\(319\) 45.0000 77.9423i 0.141066 0.244333i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −459.000 −1.42105
\(324\) 0 0
\(325\) 264.000 + 152.420i 0.812308 + 0.468986i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 262.500 151.554i 0.797872 0.460652i
\(330\) 0 0
\(331\) −75.5000 130.770i −0.228097 0.395075i 0.729147 0.684357i \(-0.239917\pi\)
−0.957244 + 0.289282i \(0.906584\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 84.8705i 0.253345i
\(336\) 0 0
\(337\) 274.000 0.813056 0.406528 0.913638i \(-0.366739\pi\)
0.406528 + 0.913638i \(0.366739\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −157.500 + 90.9327i −0.461877 + 0.266665i
\(342\) 0 0
\(343\) −343.000 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 271.500 470.252i 0.782421 1.35519i −0.148107 0.988971i \(-0.547318\pi\)
0.930528 0.366221i \(-0.119349\pi\)
\(348\) 0 0
\(349\) 180.133i 0.516141i −0.966126 0.258071i \(-0.916913\pi\)
0.966126 0.258071i \(-0.0830867\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 262.500 + 151.554i 0.743626 + 0.429333i 0.823386 0.567481i \(-0.192082\pi\)
−0.0797602 + 0.996814i \(0.525415\pi\)
\(354\) 0 0
\(355\) −189.000 + 109.119i −0.532394 + 0.307378i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.5000 + 33.7750i 0.0543175 + 0.0940808i 0.891906 0.452221i \(-0.149368\pi\)
−0.837588 + 0.546302i \(0.816035\pi\)
\(360\) 0 0
\(361\) −59.0000 + 102.191i −0.163435 + 0.283078i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 45.0000 0.123288
\(366\) 0 0
\(367\) 301.500 + 174.071i 0.821526 + 0.474308i 0.850942 0.525259i \(-0.176032\pi\)
−0.0294165 + 0.999567i \(0.509365\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 199.500 345.544i 0.537736 0.931386i
\(372\) 0 0
\(373\) −191.500 331.688i −0.513405 0.889243i −0.999879 0.0155484i \(-0.995051\pi\)
0.486474 0.873695i \(-0.338283\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 83.1384i 0.220526i
\(378\) 0 0
\(379\) −230.000 −0.606860 −0.303430 0.952854i \(-0.598132\pi\)
−0.303430 + 0.952854i \(0.598132\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −277.500 + 160.215i −0.724543 + 0.418315i −0.816423 0.577455i \(-0.804046\pi\)
0.0918794 + 0.995770i \(0.470713\pi\)
\(384\) 0 0
\(385\) 181.865i 0.472377i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −100.500 + 174.071i −0.258355 + 0.447484i −0.965801 0.259283i \(-0.916514\pi\)
0.707447 + 0.706767i \(0.249847\pi\)
\(390\) 0 0
\(391\) 265.004i 0.677759i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −109.500 63.2199i −0.277215 0.160050i
\(396\) 0 0
\(397\) −46.5000 + 26.8468i −0.117128 + 0.0676241i −0.557420 0.830231i \(-0.688209\pi\)
0.440291 + 0.897855i \(0.354875\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −88.5000 153.286i −0.220698 0.382261i 0.734322 0.678801i \(-0.237500\pi\)
−0.955020 + 0.296541i \(0.904167\pi\)
\(402\) 0 0
\(403\) −84.0000 + 145.492i −0.208437 + 0.361023i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −465.000 −1.14251
\(408\) 0 0
\(409\) 289.500 + 167.143i 0.707824 + 0.408662i 0.810255 0.586078i \(-0.199329\pi\)
−0.102431 + 0.994740i \(0.532662\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −493.500 284.922i −1.19492 0.689885i
\(414\) 0 0
\(415\) 12.0000 + 20.7846i 0.0289157 + 0.0500834i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 595.825i 1.42202i 0.703183 + 0.711009i \(0.251761\pi\)
−0.703183 + 0.711009i \(0.748239\pi\)
\(420\) 0 0
\(421\) −22.0000 −0.0522565 −0.0261283 0.999659i \(-0.508318\pi\)
−0.0261283 + 0.999659i \(0.508318\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 561.000 323.894i 1.32000 0.762102i
\(426\) 0 0
\(427\) 493.500 284.922i 1.15574 0.667265i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 163.500 283.190i 0.379350 0.657054i −0.611618 0.791154i \(-0.709481\pi\)
0.990968 + 0.134100i \(0.0428142\pi\)
\(432\) 0 0
\(433\) 27.7128i 0.0640019i −0.999488 0.0320009i \(-0.989812\pi\)
0.999488 0.0320009i \(-0.0101880\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −121.500 70.1481i −0.278032 0.160522i
\(438\) 0 0
\(439\) 517.500 298.779i 1.17882 0.680589i 0.223075 0.974801i \(-0.428390\pi\)
0.955740 + 0.294212i \(0.0950571\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −364.500 631.333i −0.822799 1.42513i −0.903590 0.428399i \(-0.859078\pi\)
0.0807907 0.996731i \(-0.474255\pi\)
\(444\) 0 0
\(445\) 49.5000 85.7365i 0.111236 0.192666i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 270.000 0.601336 0.300668 0.953729i \(-0.402790\pi\)
0.300668 + 0.953729i \(0.402790\pi\)
\(450\) 0 0
\(451\) −720.000 415.692i −1.59645 0.921712i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −84.0000 145.492i −0.184615 0.319763i
\(456\) 0 0
\(457\) −399.500 691.954i −0.874179 1.51412i −0.857634 0.514260i \(-0.828067\pi\)
−0.0165451 0.999863i \(-0.505267\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 429.549i 0.931776i −0.884844 0.465888i \(-0.845735\pi\)
0.884844 0.465888i \(-0.154265\pi\)
\(462\) 0 0
\(463\) −814.000 −1.75810 −0.879050 0.476730i \(-0.841822\pi\)
−0.879050 + 0.476730i \(0.841822\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 346.500 200.052i 0.741970 0.428377i −0.0808151 0.996729i \(-0.525752\pi\)
0.822785 + 0.568353i \(0.192419\pi\)
\(468\) 0 0
\(469\) −171.500 + 297.047i −0.365672 + 0.633362i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 75.0000 129.904i 0.158562 0.274638i
\(474\) 0 0
\(475\) 342.946i 0.721992i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 466.500 + 269.334i 0.973904 + 0.562284i 0.900424 0.435013i \(-0.143256\pi\)
0.0734798 + 0.997297i \(0.476590\pi\)
\(480\) 0 0
\(481\) −372.000 + 214.774i −0.773389 + 0.446516i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.0000 + 41.5692i 0.0494845 + 0.0857097i
\(486\) 0 0
\(487\) 428.500 742.184i 0.879877 1.52399i 0.0284015 0.999597i \(-0.490958\pi\)
0.851475 0.524395i \(-0.175708\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −570.000 −1.16090 −0.580448 0.814297i \(-0.697123\pi\)
−0.580448 + 0.814297i \(0.697123\pi\)
\(492\) 0 0
\(493\) −153.000 88.3346i −0.310345 0.179178i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −882.000 −1.77465
\(498\) 0 0
\(499\) 212.500 + 368.061i 0.425852 + 0.737597i 0.996500 0.0835981i \(-0.0266412\pi\)
−0.570648 + 0.821195i \(0.693308\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 193.990i 0.385665i 0.981232 + 0.192833i \(0.0617675\pi\)
−0.981232 + 0.192833i \(0.938233\pi\)
\(504\) 0 0
\(505\) 171.000 0.338614
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 334.500 193.124i 0.657171 0.379418i −0.134027 0.990978i \(-0.542791\pi\)
0.791198 + 0.611560i \(0.209458\pi\)
\(510\) 0 0
\(511\) 157.500 + 90.9327i 0.308219 + 0.177950i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −61.5000 + 106.521i −0.119417 + 0.206837i
\(516\) 0 0
\(517\) 649.519i 1.25632i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 214.500 + 123.842i 0.411708 + 0.237700i 0.691523 0.722354i \(-0.256940\pi\)
−0.279815 + 0.960054i \(0.590273\pi\)
\(522\) 0 0
\(523\) 685.500 395.774i 1.31071 0.756737i 0.328494 0.944506i \(-0.393459\pi\)
0.982213 + 0.187769i \(0.0601255\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 178.500 + 309.171i 0.338710 + 0.586662i
\(528\) 0 0
\(529\) 224.000 387.979i 0.423440 0.733420i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −768.000 −1.44090
\(534\) 0 0
\(535\) −58.5000 33.7750i −0.109346 0.0631308i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 367.500 636.529i 0.681818 1.18094i
\(540\) 0 0
\(541\) 360.500 + 624.404i 0.666359 + 1.15417i 0.978915 + 0.204268i \(0.0654813\pi\)
−0.312556 + 0.949899i \(0.601185\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 178.401i 0.327342i
\(546\) 0 0
\(547\) −118.000 −0.215722 −0.107861 0.994166i \(-0.534400\pi\)
−0.107861 + 0.994166i \(0.534400\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 81.0000 46.7654i 0.147005 0.0848736i
\(552\) 0 0
\(553\) −255.500 442.539i −0.462025 0.800251i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −316.500 + 548.194i −0.568223 + 0.984190i 0.428519 + 0.903533i \(0.359035\pi\)
−0.996742 + 0.0806578i \(0.974298\pi\)
\(558\) 0 0
\(559\) 138.564i 0.247878i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 238.500 + 137.698i 0.423623 + 0.244579i 0.696626 0.717434i \(-0.254684\pi\)
−0.273003 + 0.962013i \(0.588017\pi\)
\(564\) 0 0
\(565\) −117.000 + 67.5500i −0.207080 + 0.119557i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 223.500 + 387.113i 0.392794 + 0.680340i 0.992817 0.119643i \(-0.0381751\pi\)
−0.600023 + 0.799983i \(0.704842\pi\)
\(570\) 0 0
\(571\) −263.500 + 456.395i −0.461471 + 0.799291i −0.999035 0.0439319i \(-0.986012\pi\)
0.537563 + 0.843223i \(0.319345\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 198.000 0.344348
\(576\) 0 0
\(577\) 145.500 + 84.0045i 0.252166 + 0.145588i 0.620756 0.784004i \(-0.286826\pi\)
−0.368589 + 0.929592i \(0.620159\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 96.9948i 0.166945i
\(582\) 0 0
\(583\) 427.500 + 740.452i 0.733276 + 1.27007i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 956.092i 1.62878i 0.580320 + 0.814388i \(0.302927\pi\)
−0.580320 + 0.814388i \(0.697073\pi\)
\(588\) 0 0
\(589\) −189.000 −0.320883
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 262.500 151.554i 0.442664 0.255572i −0.262063 0.965051i \(-0.584403\pi\)
0.704727 + 0.709478i \(0.251069\pi\)
\(594\) 0 0
\(595\) −357.000 −0.600000
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 403.500 698.883i 0.673623 1.16675i −0.303247 0.952912i \(-0.598071\pi\)
0.976869 0.213837i \(-0.0685960\pi\)
\(600\) 0 0
\(601\) 387.979i 0.645556i −0.946475 0.322778i \(-0.895383\pi\)
0.946475 0.322778i \(-0.104617\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 156.000 + 90.0666i 0.257851 + 0.148870i
\(606\) 0 0
\(607\) −634.500 + 366.329i −1.04530 + 0.603507i −0.921331 0.388779i \(-0.872897\pi\)
−0.123974 + 0.992286i \(0.539564\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 300.000 + 519.615i 0.490998 + 0.850434i
\(612\) 0 0
\(613\) −251.500 + 435.611i −0.410277 + 0.710621i −0.994920 0.100670i \(-0.967901\pi\)
0.584643 + 0.811291i \(0.301235\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −930.000 −1.50729 −0.753647 0.657280i \(-0.771707\pi\)
−0.753647 + 0.657280i \(0.771707\pi\)
\(618\) 0 0
\(619\) 457.500 + 264.138i 0.739095 + 0.426717i 0.821740 0.569862i \(-0.193003\pi\)
−0.0826450 + 0.996579i \(0.526337\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 346.500 200.052i 0.556180 0.321111i
\(624\) 0 0
\(625\) −204.500 354.204i −0.327200 0.566727i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 912.791i 1.45118i
\(630\) 0 0
\(631\) 194.000 0.307448 0.153724 0.988114i \(-0.450873\pi\)
0.153724 + 0.988114i \(0.450873\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −75.0000 + 43.3013i −0.118110 + 0.0681910i
\(636\) 0 0
\(637\) 678.964i 1.06588i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5000 + 28.5788i −0.0257410 + 0.0445848i −0.878609 0.477542i \(-0.841528\pi\)
0.852868 + 0.522127i \(0.174861\pi\)
\(642\) 0 0
\(643\) 346.410i 0.538741i 0.963037 + 0.269370i \(0.0868155\pi\)
−0.963037 + 0.269370i \(0.913184\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −661.500 381.917i −1.02241 0.590289i −0.107610 0.994193i \(-0.534320\pi\)
−0.914801 + 0.403904i \(0.867653\pi\)
\(648\) 0 0
\(649\) 1057.50 610.548i 1.62943 0.940752i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16.5000 28.5788i −0.0252680 0.0437654i 0.853115 0.521723i \(-0.174711\pi\)
−0.878383 + 0.477958i \(0.841377\pi\)
\(654\) 0 0
\(655\) 85.5000 148.090i 0.130534 0.226092i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 870.000 1.32018 0.660091 0.751186i \(-0.270518\pi\)
0.660091 + 0.751186i \(0.270518\pi\)
\(660\) 0 0
\(661\) 877.500 + 506.625i 1.32753 + 0.766452i 0.984918 0.173023i \(-0.0553536\pi\)
0.342616 + 0.939475i \(0.388687\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 94.5000 163.679i 0.142105 0.246134i
\(666\) 0 0
\(667\) −27.0000 46.7654i −0.0404798 0.0701130i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1221.10i 1.81981i
\(672\) 0 0
\(673\) −14.0000 −0.0208024 −0.0104012 0.999946i \(-0.503311\pi\)
−0.0104012 + 0.999946i \(0.503311\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 238.500 137.698i 0.352290 0.203394i −0.313404 0.949620i \(-0.601469\pi\)
0.665693 + 0.746226i \(0.268136\pi\)
\(678\) 0 0
\(679\) 193.990i 0.285699i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −136.500 + 236.425i −0.199854 + 0.346157i −0.948481 0.316835i \(-0.897380\pi\)
0.748627 + 0.662991i \(0.230713\pi\)
\(684\) 0 0
\(685\) 109.119i 0.159298i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 684.000 + 394.908i 0.992743 + 0.573160i
\(690\) 0 0
\(691\) 133.500 77.0763i 0.193198 0.111543i −0.400281 0.916393i \(-0.631087\pi\)
0.593479 + 0.804850i \(0.297754\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 204.000 + 353.338i 0.293525 + 0.508401i
\(696\) 0 0
\(697\) −816.000 + 1413.35i −1.17073 + 2.02777i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −906.000 −1.29244 −0.646220 0.763151i \(-0.723651\pi\)
−0.646220 + 0.763151i \(0.723651\pi\)
\(702\) 0 0
\(703\) −418.500 241.621i −0.595306 0.343700i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 598.500 + 345.544i 0.846535 + 0.488747i
\(708\) 0 0
\(709\) −351.500 608.816i −0.495769 0.858697i 0.504219 0.863576i \(-0.331780\pi\)
−0.999988 + 0.00487903i \(0.998447\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 109.119i 0.153042i
\(714\) 0 0
\(715\) 360.000 0.503497
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 514.500 297.047i 0.715577 0.413139i −0.0975455 0.995231i \(-0.531099\pi\)
0.813123 + 0.582092i \(0.197766\pi\)
\(720\) 0 0
\(721\) −430.500 + 248.549i −0.597087 + 0.344729i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −66.0000 + 114.315i −0.0910345 + 0.157676i
\(726\) 0 0
\(727\) 27.7128i 0.0381194i −0.999818 0.0190597i \(-0.993933\pi\)
0.999818 0.0190597i \(-0.00606726\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −255.000 147.224i −0.348837 0.201401i
\(732\) 0 0
\(733\) −838.500 + 484.108i −1.14393 + 0.660448i −0.947401 0.320050i \(-0.896300\pi\)
−0.196529 + 0.980498i \(0.562967\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −367.500 636.529i −0.498643 0.863675i
\(738\) 0 0
\(739\) 288.500 499.697i 0.390392 0.676180i −0.602109 0.798414i \(-0.705673\pi\)
0.992501 + 0.122235i \(0.0390060\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −162.000 −0.218035 −0.109017 0.994040i \(-0.534770\pi\)
−0.109017 + 0.994040i \(0.534770\pi\)
\(744\) 0 0
\(745\) 265.500 + 153.286i 0.356376 + 0.205754i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −136.500 236.425i −0.182243 0.315654i
\(750\) 0 0
\(751\) −387.500 671.170i −0.515979 0.893701i −0.999828 0.0185499i \(-0.994095\pi\)
0.483849 0.875151i \(-0.339238\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 95.2628i 0.126176i
\(756\) 0 0
\(757\) −950.000 −1.25495 −0.627477 0.778635i \(-0.715912\pi\)
−0.627477 + 0.778635i \(0.715912\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −169.500 + 97.8609i −0.222733 + 0.128595i −0.607215 0.794537i \(-0.707713\pi\)
0.384482 + 0.923133i \(0.374380\pi\)
\(762\) 0 0
\(763\) 360.500 624.404i 0.472477 0.818354i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 564.000 976.877i 0.735332 1.27363i
\(768\) 0 0
\(769\) 914.523i 1.18924i 0.804008 + 0.594618i \(0.202697\pi\)
−0.804008 + 0.594618i \(0.797303\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 154.500 + 89.2006i 0.199871 + 0.115395i 0.596595 0.802542i \(-0.296520\pi\)
−0.396725 + 0.917938i \(0.629853\pi\)
\(774\) 0 0
\(775\) 231.000 133.368i 0.298065 0.172088i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −432.000 748.246i −0.554557 0.960521i
\(780\) 0 0
\(781\) 945.000 1636.79i 1.20999 2.09576i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −171.000 −0.217834
\(786\) 0 0
\(787\) 289.500 + 167.143i 0.367853 + 0.212380i 0.672520 0.740079i \(-0.265212\pi\)
−0.304667 + 0.952459i \(0.598545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −546.000 −0.690265
\(792\) 0 0
\(793\) 564.000 + 976.877i 0.711223 + 1.23187i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 872.954i 1.09530i −0.836708 0.547650i \(-0.815523\pi\)
0.836708 0.547650i \(-0.184477\pi\)
\(798\) 0 0
\(799\) 1275.00 1.59574
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −337.500 + 194.856i −0.420299 + 0.242660i
\(804\) 0 0
\(805\) −94.5000 54.5596i −0.117391 0.0677759i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −232.500 + 402.702i −0.287392 + 0.497777i −0.973186 0.230018i \(-0.926122\pi\)
0.685795 + 0.727795i \(0.259455\pi\)
\(810\) 0 0
\(811\) 124.708i 0.153770i −0.997040 0.0768851i \(-0.975503\pi\)
0.997040 0.0768851i \(-0.0244975\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34.5000 + 19.9186i 0.0423313 + 0.0244400i
\(816\) 0 0
\(817\) 135.000 77.9423i 0.165239 0.0954006i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −376.500 652.117i −0.458587 0.794296i 0.540299 0.841473i \(-0.318311\pi\)
−0.998887 + 0.0471767i \(0.984978\pi\)
\(822\) 0 0
\(823\) 12.5000 21.6506i 0.0151883 0.0263070i −0.858331 0.513096i \(-0.828499\pi\)
0.873520 + 0.486789i \(0.161832\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 246.000 0.297461 0.148730 0.988878i \(-0.452481\pi\)
0.148730 + 0.988878i \(0.452481\pi\)
\(828\) 0 0
\(829\) −1282.50 740.452i −1.54704 0.893187i −0.998365 0.0571537i \(-0.981797\pi\)
−0.548679 0.836033i \(-0.684869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1249.50 721.399i −1.50000 0.866025i
\(834\) 0 0
\(835\) 240.000 + 415.692i 0.287425 + 0.497835i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 360.267i 0.429400i −0.976680 0.214700i \(-0.931123\pi\)
0.976680 0.214700i \(-0.0688774\pi\)
\(840\) 0 0
\(841\) −805.000 −0.957194
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 34.5000 19.9186i 0.0408284 0.0235723i
\(846\) 0 0
\(847\) 364.000 + 630.466i 0.429752 + 0.744352i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −139.500 + 241.621i −0.163925 + 0.283926i
\(852\) 0 0
\(853\) 1205.51i 1.41326i −0.707585 0.706628i \(-0.750215\pi\)
0.707585 0.706628i \(-0.249785\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −169.500 97.8609i −0.197783 0.114190i 0.397838 0.917456i \(-0.369761\pi\)
−0.595621 + 0.803266i \(0.703094\pi\)
\(858\) 0 0
\(859\) −1234.50 + 712.739i −1.43714 + 0.829731i −0.997650 0.0685183i \(-0.978173\pi\)
−0.439486 + 0.898249i \(0.644840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 427.500 + 740.452i 0.495365 + 0.857997i 0.999986 0.00534379i \(-0.00170099\pi\)
−0.504621 + 0.863341i \(0.668368\pi\)
\(864\) 0 0
\(865\) 121.500 210.444i 0.140462 0.243288i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1095.00 1.26007
\(870\) 0 0
\(871\) −588.000 339.482i −0.675086 0.389761i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 569.845i 0.651251i
\(876\) 0 0
\(877\) 120.500 + 208.712i 0.137400 + 0.237984i 0.926512 0.376266i \(-0.122792\pi\)
−0.789112 + 0.614250i \(0.789459\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1330.22i 1.50989i −0.655787 0.754946i \(-0.727663\pi\)
0.655787 0.754946i \(-0.272337\pi\)
\(882\) 0 0
\(883\) −1286.00 −1.45640 −0.728199 0.685365i \(-0.759642\pi\)
−0.728199 + 0.685365i \(0.759642\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1114.50 643.457i 1.25648 0.725431i 0.284094 0.958797i \(-0.408307\pi\)
0.972389 + 0.233366i \(0.0749740\pi\)
\(888\) 0 0
\(889\) −350.000 −0.393701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −337.500 + 584.567i −0.377940 + 0.654610i
\(894\) 0 0
\(895\) 109.119i 0.121921i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63.0000 36.3731i −0.0700779 0.0404595i
\(900\) 0 0
\(901\) 1453.50 839.179i 1.61321 0.931386i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 108.000 + 187.061i 0.119337 + 0.206698i
\(906\) 0 0
\(907\) 368.500 638.261i 0.406284 0.703705i −0.588186 0.808726i \(-0.700158\pi\)
0.994470 + 0.105021i \(0.0334909\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1266.00 −1.38968 −0.694841 0.719164i \(-0.744525\pi\)
−0.694841 + 0.719164i \(0.744525\pi\)
\(912\) 0 0
\(913\) −180.000 103.923i −0.197152 0.113826i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 598.500 345.544i 0.652672 0.376820i
\(918\) 0 0
\(919\) 236.500 + 409.630i 0.257345 + 0.445735i 0.965530 0.260293i \(-0.0838190\pi\)
−0.708185 + 0.706027i \(0.750486\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1745.91i 1.89156i
\(924\) 0 0
\(925\) 682.000 0.737297
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −289.500 + 167.143i −0.311625 + 0.179917i −0.647654 0.761935i \(-0.724250\pi\)
0.336028 + 0.941852i \(0.390916\pi\)
\(930\) 0 0
\(931\) 661.500 381.917i 0.710526 0.410223i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 382.500 662.509i 0.409091 0.708566i
\(936\) 0 0
\(937\) 859.097i 0.916859i −0.888731 0.458430i \(-0.848412\pi\)
0.888731 0.458430i \(-0.151588\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 106.500 + 61.4878i 0.113177 + 0.0653430i 0.555520 0.831503i \(-0.312519\pi\)
−0.442343 + 0.896846i \(0.645853\pi\)
\(942\) 0 0
\(943\) −432.000 + 249.415i −0.458112 + 0.264491i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −100.500 174.071i −0.106125 0.183813i 0.808073 0.589083i \(-0.200511\pi\)
−0.914197 + 0.405270i \(0.867178\pi\)
\(948\) 0 0
\(949\) −180.000 + 311.769i −0.189673 + 0.328524i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −66.0000 −0.0692550 −0.0346275 0.999400i \(-0.511024\pi\)
−0.0346275 + 0.999400i \(0.511024\pi\)
\(954\) 0 0
\(955\) 85.5000 + 49.3634i 0.0895288 + 0.0516895i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −220.500 + 381.917i −0.229927 + 0.398245i
\(960\) 0 0
\(961\) −407.000 704.945i −0.423517 0.733553i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 361.999i 0.375128i
\(966\) 0 0
\(967\) 194.000 0.200620 0.100310 0.994956i \(-0.468016\pi\)
0.100310 + 0.994956i \(0.468016\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1285.50 + 742.184i −1.32389 + 0.764350i −0.984347 0.176240i \(-0.943607\pi\)
−0.339546 + 0.940590i \(0.610273\pi\)
\(972\) 0 0
\(973\) 1648.91i 1.69467i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −760.500 + 1317.22i −0.778403 + 1.34823i 0.154458 + 0.987999i \(0.450637\pi\)
−0.932862 + 0.360235i \(0.882697\pi\)
\(978\) 0 0
\(979\) 857.365i 0.875756i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −973.500 562.050i −0.990336 0.571771i −0.0849611 0.996384i \(-0.527077\pi\)
−0.905375 + 0.424614i \(0.860410\pi\)
\(984\) 0 0
\(985\) −225.000 + 129.904i −0.228426 + 0.131882i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −45.0000 77.9423i −0.0455005 0.0788092i
\(990\) 0 0
\(991\) −411.500 + 712.739i −0.415237 + 0.719212i −0.995453 0.0952507i \(-0.969635\pi\)
0.580216 + 0.814463i \(0.302968\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 357.000 0.358794
\(996\) 0 0
\(997\) 109.500 + 63.2199i 0.109829 + 0.0634101i 0.553909 0.832578i \(-0.313136\pi\)
−0.444079 + 0.895988i \(0.646469\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.z.a.73.1 2
3.2 odd 2 28.3.h.a.17.1 yes 2
4.3 odd 2 1008.3.cg.c.577.1 2
7.2 even 3 1764.3.z.f.901.1 2
7.3 odd 6 1764.3.d.a.685.2 2
7.4 even 3 1764.3.d.a.685.1 2
7.5 odd 6 inner 252.3.z.a.145.1 2
7.6 odd 2 1764.3.z.f.325.1 2
12.11 even 2 112.3.s.a.17.1 2
15.2 even 4 700.3.o.a.549.2 4
15.8 even 4 700.3.o.a.549.1 4
15.14 odd 2 700.3.s.a.101.1 2
21.2 odd 6 196.3.h.a.117.1 2
21.5 even 6 28.3.h.a.5.1 2
21.11 odd 6 196.3.b.a.97.1 2
21.17 even 6 196.3.b.a.97.2 2
21.20 even 2 196.3.h.a.129.1 2
24.5 odd 2 448.3.s.a.129.1 2
24.11 even 2 448.3.s.b.129.1 2
28.19 even 6 1008.3.cg.c.145.1 2
84.11 even 6 784.3.c.a.97.2 2
84.23 even 6 784.3.s.b.705.1 2
84.47 odd 6 112.3.s.a.33.1 2
84.59 odd 6 784.3.c.a.97.1 2
84.83 odd 2 784.3.s.b.129.1 2
105.47 odd 12 700.3.o.a.649.1 4
105.68 odd 12 700.3.o.a.649.2 4
105.89 even 6 700.3.s.a.201.1 2
168.5 even 6 448.3.s.a.257.1 2
168.131 odd 6 448.3.s.b.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.3.h.a.5.1 2 21.5 even 6
28.3.h.a.17.1 yes 2 3.2 odd 2
112.3.s.a.17.1 2 12.11 even 2
112.3.s.a.33.1 2 84.47 odd 6
196.3.b.a.97.1 2 21.11 odd 6
196.3.b.a.97.2 2 21.17 even 6
196.3.h.a.117.1 2 21.2 odd 6
196.3.h.a.129.1 2 21.20 even 2
252.3.z.a.73.1 2 1.1 even 1 trivial
252.3.z.a.145.1 2 7.5 odd 6 inner
448.3.s.a.129.1 2 24.5 odd 2
448.3.s.a.257.1 2 168.5 even 6
448.3.s.b.129.1 2 24.11 even 2
448.3.s.b.257.1 2 168.131 odd 6
700.3.o.a.549.1 4 15.8 even 4
700.3.o.a.549.2 4 15.2 even 4
700.3.o.a.649.1 4 105.47 odd 12
700.3.o.a.649.2 4 105.68 odd 12
700.3.s.a.101.1 2 15.14 odd 2
700.3.s.a.201.1 2 105.89 even 6
784.3.c.a.97.1 2 84.59 odd 6
784.3.c.a.97.2 2 84.11 even 6
784.3.s.b.129.1 2 84.83 odd 2
784.3.s.b.705.1 2 84.23 even 6
1008.3.cg.c.145.1 2 28.19 even 6
1008.3.cg.c.577.1 2 4.3 odd 2
1764.3.d.a.685.1 2 7.4 even 3
1764.3.d.a.685.2 2 7.3 odd 6
1764.3.z.f.325.1 2 7.6 odd 2
1764.3.z.f.901.1 2 7.2 even 3