Properties

Label 70.3.h.a.19.1
Level $70$
Weight $3$
Character 70.19
Analytic conductor $1.907$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(19,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90736185052\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 42x^{14} + 1322x^{12} + 17616x^{10} + 175407x^{8} + 205392x^{6} + 203018x^{4} + 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-2.51048 - 4.34828i\) of defining polynomial
Character \(\chi\) \(=\) 70.19
Dual form 70.3.h.a.59.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(-2.51048 - 4.34828i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-4.93710 + 0.790609i) q^{5} +7.10072i q^{6} +(2.74755 + 6.43824i) q^{7} -2.82843i q^{8} +(-8.10505 + 14.0384i) q^{9} +(6.60573 + 2.52276i) q^{10} +(-4.76531 - 8.25377i) q^{11} +(5.02097 - 8.69657i) q^{12} -15.1849 q^{13} +(1.18747 - 9.82802i) q^{14} +(15.8323 + 19.4831i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(-11.6790 - 20.2287i) q^{17} +(19.8532 - 11.4623i) q^{18} +(-9.15855 - 5.28769i) q^{19} +(-6.30647 - 7.76070i) q^{20} +(21.0976 - 28.1102i) q^{21} +13.4783i q^{22} +(18.2632 + 10.5443i) q^{23} +(-12.2988 + 7.10072i) q^{24} +(23.7499 - 7.80663i) q^{25} +(18.5976 + 10.7373i) q^{26} +36.2016 q^{27} +(-8.40380 + 11.1971i) q^{28} -37.0510 q^{29} +(-5.61389 - 35.0569i) q^{30} +(13.4505 - 7.76565i) q^{31} +(4.89898 - 2.82843i) q^{32} +(-23.9265 + 41.4419i) q^{33} +33.0333i q^{34} +(-18.6551 - 29.6140i) q^{35} -32.4202 q^{36} +(-16.9168 - 9.76693i) q^{37} +(7.47792 + 12.9521i) q^{38} +(38.1214 + 66.0282i) q^{39} +(2.23618 + 13.9642i) q^{40} -37.7426i q^{41} +(-45.7161 + 19.5096i) q^{42} -18.2540i q^{43} +(9.53063 - 16.5075i) q^{44} +(28.9166 - 75.7167i) q^{45} +(-14.9119 - 25.8281i) q^{46} +(0.155040 - 0.268537i) q^{47} +20.0839 q^{48} +(-33.9019 + 35.3788i) q^{49} +(-34.6077 - 7.23256i) q^{50} +(-58.6400 + 101.567i) q^{51} +(-15.1849 - 26.3010i) q^{52} +(8.87784 - 5.12562i) q^{53} +(-44.3378 - 25.5984i) q^{54} +(30.0523 + 36.9821i) q^{55} +(18.2101 - 7.77126i) q^{56} +53.0986i q^{57} +(45.3780 + 26.1990i) q^{58} +(-3.10758 + 1.79416i) q^{59} +(-17.9134 + 46.9054i) q^{60} +(96.8741 + 55.9303i) q^{61} -21.9646 q^{62} +(-112.651 - 13.6111i) q^{63} -8.00000 q^{64} +(74.9693 - 12.0053i) q^{65} +(58.6077 - 33.8371i) q^{66} +(11.0746 - 6.39394i) q^{67} +(23.3581 - 40.4573i) q^{68} -105.885i q^{69} +(1.90747 + 49.4607i) q^{70} -32.7865 q^{71} +(39.7065 + 22.9245i) q^{72} +(-30.1530 - 52.2266i) q^{73} +(13.8125 + 23.9240i) q^{74} +(-93.5691 - 83.6728i) q^{75} -21.1508i q^{76} +(40.0468 - 53.3579i) q^{77} -107.824i q^{78} +(45.6617 - 79.0884i) q^{79} +(7.13544 - 18.6838i) q^{80} +(-17.9382 - 31.0698i) q^{81} +(-26.6881 + 46.2251i) q^{82} +103.825 q^{83} +(69.7860 + 8.43189i) q^{84} +(73.6535 + 90.6374i) q^{85} +(-12.9075 + 22.3565i) q^{86} +(93.0158 + 161.108i) q^{87} +(-23.3452 + 13.4783i) q^{88} +(-52.3329 - 30.2144i) q^{89} +(-88.9552 + 72.2865i) q^{90} +(-41.7213 - 97.7639i) q^{91} +42.1771i q^{92} +(-67.5345 - 38.9911i) q^{93} +(-0.379769 + 0.219259i) q^{94} +(49.3972 + 18.8650i) q^{95} +(-24.5976 - 14.2014i) q^{96} -130.271 q^{97} +(66.5378 - 19.3578i) q^{98} +154.492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} - 6 q^{5} - 12 q^{9} + 24 q^{10} - 12 q^{11} + 32 q^{14} - 28 q^{15} - 32 q^{16} - 12 q^{19} - 8 q^{21} - 24 q^{24} - 42 q^{25} - 48 q^{26} - 136 q^{29} + 32 q^{30} + 84 q^{31} - 190 q^{35}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) −2.51048 4.34828i −0.836828 1.44943i −0.892534 0.450981i \(-0.851074\pi\)
0.0557061 0.998447i \(-0.482259\pi\)
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) −4.93710 + 0.790609i −0.987420 + 0.158122i
\(6\) 7.10072i 1.18345i
\(7\) 2.74755 + 6.43824i 0.392508 + 0.919749i
\(8\) 2.82843i 0.353553i
\(9\) −8.10505 + 14.0384i −0.900561 + 1.55982i
\(10\) 6.60573 + 2.52276i 0.660573 + 0.252276i
\(11\) −4.76531 8.25377i −0.433210 0.750342i 0.563937 0.825818i \(-0.309286\pi\)
−0.997148 + 0.0754753i \(0.975953\pi\)
\(12\) 5.02097 8.69657i 0.418414 0.724714i
\(13\) −15.1849 −1.16807 −0.584034 0.811729i \(-0.698527\pi\)
−0.584034 + 0.811729i \(0.698527\pi\)
\(14\) 1.18747 9.82802i 0.0848193 0.702001i
\(15\) 15.8323 + 19.4831i 1.05549 + 1.29887i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) −11.6790 20.2287i −0.687002 1.18992i −0.972803 0.231633i \(-0.925593\pi\)
0.285802 0.958289i \(-0.407740\pi\)
\(18\) 19.8532 11.4623i 1.10296 0.636793i
\(19\) −9.15855 5.28769i −0.482029 0.278300i 0.239233 0.970962i \(-0.423104\pi\)
−0.721262 + 0.692663i \(0.756437\pi\)
\(20\) −6.30647 7.76070i −0.315324 0.388035i
\(21\) 21.0976 28.1102i 1.00465 1.33858i
\(22\) 13.4783i 0.612652i
\(23\) 18.2632 + 10.5443i 0.794053 + 0.458447i 0.841387 0.540432i \(-0.181739\pi\)
−0.0473345 + 0.998879i \(0.515073\pi\)
\(24\) −12.2988 + 7.10072i −0.512450 + 0.295863i
\(25\) 23.7499 7.80663i 0.949995 0.312265i
\(26\) 18.5976 + 10.7373i 0.715293 + 0.412974i
\(27\) 36.2016 1.34080
\(28\) −8.40380 + 11.1971i −0.300136 + 0.399898i
\(29\) −37.0510 −1.27762 −0.638810 0.769365i \(-0.720573\pi\)
−0.638810 + 0.769365i \(0.720573\pi\)
\(30\) −5.61389 35.0569i −0.187130 1.16856i
\(31\) 13.4505 7.76565i 0.433887 0.250505i −0.267114 0.963665i \(-0.586070\pi\)
0.701001 + 0.713160i \(0.252737\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) −23.9265 + 41.4419i −0.725045 + 1.25581i
\(34\) 33.0333i 0.971567i
\(35\) −18.6551 29.6140i −0.533002 0.846114i
\(36\) −32.4202 −0.900561
\(37\) −16.9168 9.76693i −0.457212 0.263971i 0.253660 0.967294i \(-0.418366\pi\)
−0.710871 + 0.703322i \(0.751699\pi\)
\(38\) 7.47792 + 12.9521i 0.196787 + 0.340846i
\(39\) 38.1214 + 66.0282i 0.977471 + 1.69303i
\(40\) 2.23618 + 13.9642i 0.0559045 + 0.349106i
\(41\) 37.7426i 0.920552i −0.887776 0.460276i \(-0.847751\pi\)
0.887776 0.460276i \(-0.152249\pi\)
\(42\) −45.7161 + 19.5096i −1.08848 + 0.464515i
\(43\) 18.2540i 0.424512i −0.977214 0.212256i \(-0.931919\pi\)
0.977214 0.212256i \(-0.0680810\pi\)
\(44\) 9.53063 16.5075i 0.216605 0.375171i
\(45\) 28.9166 75.7167i 0.642590 1.68259i
\(46\) −14.9119 25.8281i −0.324171 0.561480i
\(47\) 0.155040 0.268537i 0.00329872 0.00571355i −0.864371 0.502854i \(-0.832283\pi\)
0.867670 + 0.497141i \(0.165617\pi\)
\(48\) 20.0839 0.418414
\(49\) −33.9019 + 35.3788i −0.691875 + 0.722017i
\(50\) −34.6077 7.23256i −0.692153 0.144651i
\(51\) −58.6400 + 101.567i −1.14980 + 1.99152i
\(52\) −15.1849 26.3010i −0.292017 0.505788i
\(53\) 8.87784 5.12562i 0.167506 0.0967099i −0.413903 0.910321i \(-0.635835\pi\)
0.581410 + 0.813611i \(0.302501\pi\)
\(54\) −44.3378 25.5984i −0.821070 0.474045i
\(55\) 30.0523 + 36.9821i 0.546406 + 0.672403i
\(56\) 18.2101 7.77126i 0.325180 0.138772i
\(57\) 53.0986i 0.931555i
\(58\) 45.3780 + 26.1990i 0.782379 + 0.451707i
\(59\) −3.10758 + 1.79416i −0.0526708 + 0.0304095i −0.526104 0.850420i \(-0.676348\pi\)
0.473433 + 0.880830i \(0.343014\pi\)
\(60\) −17.9134 + 46.9054i −0.298557 + 0.781757i
\(61\) 96.8741 + 55.9303i 1.58810 + 0.916890i 0.993620 + 0.112779i \(0.0359753\pi\)
0.594480 + 0.804111i \(0.297358\pi\)
\(62\) −21.9646 −0.354267
\(63\) −112.651 13.6111i −1.78812 0.216049i
\(64\) −8.00000 −0.125000
\(65\) 74.9693 12.0053i 1.15337 0.184697i
\(66\) 58.6077 33.8371i 0.887995 0.512684i
\(67\) 11.0746 6.39394i 0.165293 0.0954319i −0.415072 0.909789i \(-0.636243\pi\)
0.580364 + 0.814357i \(0.302910\pi\)
\(68\) 23.3581 40.4573i 0.343501 0.594961i
\(69\) 105.885i 1.53456i
\(70\) 1.90747 + 49.4607i 0.0272495 + 0.706582i
\(71\) −32.7865 −0.461781 −0.230891 0.972980i \(-0.574164\pi\)
−0.230891 + 0.972980i \(0.574164\pi\)
\(72\) 39.7065 + 22.9245i 0.551479 + 0.318396i
\(73\) −30.1530 52.2266i −0.413055 0.715433i 0.582167 0.813069i \(-0.302205\pi\)
−0.995222 + 0.0976365i \(0.968872\pi\)
\(74\) 13.8125 + 23.9240i 0.186656 + 0.323297i
\(75\) −93.5691 83.6728i −1.24759 1.11564i
\(76\) 21.1508i 0.278300i
\(77\) 40.0468 53.3579i 0.520088 0.692960i
\(78\) 107.824i 1.38235i
\(79\) 45.6617 79.0884i 0.577997 1.00112i −0.417712 0.908579i \(-0.637168\pi\)
0.995709 0.0925400i \(-0.0294986\pi\)
\(80\) 7.13544 18.6838i 0.0891931 0.233548i
\(81\) −17.9382 31.0698i −0.221459 0.383578i
\(82\) −26.6881 + 46.2251i −0.325464 + 0.563720i
\(83\) 103.825 1.25091 0.625453 0.780262i \(-0.284914\pi\)
0.625453 + 0.780262i \(0.284914\pi\)
\(84\) 69.7860 + 8.43189i 0.830785 + 0.100380i
\(85\) 73.6535 + 90.6374i 0.866512 + 1.06632i
\(86\) −12.9075 + 22.3565i −0.150088 + 0.259959i
\(87\) 93.0158 + 161.108i 1.06915 + 1.85182i
\(88\) −23.3452 + 13.4783i −0.265286 + 0.153163i
\(89\) −52.3329 30.2144i −0.588010 0.339488i 0.176300 0.984336i \(-0.443587\pi\)
−0.764310 + 0.644849i \(0.776920\pi\)
\(90\) −88.9552 + 72.2865i −0.988391 + 0.803183i
\(91\) −41.7213 97.7639i −0.458476 1.07433i
\(92\) 42.1771i 0.458447i
\(93\) −67.5345 38.9911i −0.726178 0.419259i
\(94\) −0.379769 + 0.219259i −0.00404009 + 0.00233255i
\(95\) 49.3972 + 18.8650i 0.519970 + 0.198579i
\(96\) −24.5976 14.2014i −0.256225 0.147932i
\(97\) −130.271 −1.34300 −0.671501 0.741003i \(-0.734350\pi\)
−0.671501 + 0.741003i \(0.734350\pi\)
\(98\) 66.5378 19.3578i 0.678957 0.197529i
\(99\) 154.492 1.56053
\(100\) 37.2714 + 33.3294i 0.372714 + 0.333294i
\(101\) −124.520 + 71.8914i −1.23287 + 0.711796i −0.967627 0.252386i \(-0.918785\pi\)
−0.265241 + 0.964182i \(0.585451\pi\)
\(102\) 143.638 82.9295i 1.40822 0.813034i
\(103\) −26.8014 + 46.4213i −0.260207 + 0.450692i −0.966297 0.257430i \(-0.917124\pi\)
0.706090 + 0.708123i \(0.250458\pi\)
\(104\) 42.9493i 0.412974i
\(105\) −81.9367 + 155.463i −0.780350 + 1.48060i
\(106\) −14.4975 −0.136768
\(107\) −94.2108 54.3926i −0.880475 0.508342i −0.00965987 0.999953i \(-0.503075\pi\)
−0.870815 + 0.491611i \(0.836408\pi\)
\(108\) 36.2016 + 62.7031i 0.335200 + 0.580584i
\(109\) 30.6519 + 53.0907i 0.281210 + 0.487071i 0.971683 0.236288i \(-0.0759308\pi\)
−0.690473 + 0.723358i \(0.742597\pi\)
\(110\) −10.6561 66.5439i −0.0968737 0.604945i
\(111\) 98.0789i 0.883593i
\(112\) −27.7978 3.35867i −0.248195 0.0299881i
\(113\) 95.2204i 0.842658i 0.906908 + 0.421329i \(0.138436\pi\)
−0.906908 + 0.421329i \(0.861564\pi\)
\(114\) 37.5464 65.0323i 0.329354 0.570459i
\(115\) −98.5037 37.6190i −0.856554 0.327122i
\(116\) −37.0510 64.1742i −0.319405 0.553226i
\(117\) 123.074 213.171i 1.05192 1.82197i
\(118\) 5.07465 0.0430055
\(119\) 98.1483 130.772i 0.824775 1.09892i
\(120\) 55.1065 44.7805i 0.459221 0.373171i
\(121\) 15.0836 26.1255i 0.124658 0.215913i
\(122\) −79.0974 137.001i −0.648339 1.12296i
\(123\) −164.116 + 94.7522i −1.33427 + 0.770343i
\(124\) 26.9010 + 15.5313i 0.216944 + 0.125252i
\(125\) −111.083 + 57.3190i −0.888668 + 0.458552i
\(126\) 128.345 + 96.3267i 1.01861 + 0.764497i
\(127\) 116.435i 0.916812i −0.888743 0.458406i \(-0.848420\pi\)
0.888743 0.458406i \(-0.151580\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) −79.3736 + 45.8263i −0.615299 + 0.355243i
\(130\) −100.307 38.3078i −0.771594 0.294676i
\(131\) 142.914 + 82.5112i 1.09094 + 0.629857i 0.933828 0.357723i \(-0.116447\pi\)
0.157116 + 0.987580i \(0.449780\pi\)
\(132\) −95.7059 −0.725045
\(133\) 8.87981 73.4932i 0.0667655 0.552580i
\(134\) −18.0848 −0.134961
\(135\) −178.731 + 28.6214i −1.32393 + 0.212010i
\(136\) −57.2153 + 33.0333i −0.420701 + 0.242892i
\(137\) −184.822 + 106.707i −1.34907 + 0.778884i −0.988117 0.153702i \(-0.950880\pi\)
−0.360949 + 0.932586i \(0.617547\pi\)
\(138\) −74.8719 + 129.682i −0.542550 + 0.939724i
\(139\) 53.0872i 0.381922i −0.981598 0.190961i \(-0.938840\pi\)
0.981598 0.190961i \(-0.0611604\pi\)
\(140\) 32.6378 61.9255i 0.233127 0.442325i
\(141\) −1.55690 −0.0110418
\(142\) 40.1551 + 23.1835i 0.282782 + 0.163264i
\(143\) 72.3607 + 125.332i 0.506019 + 0.876451i
\(144\) −32.4202 56.1534i −0.225140 0.389954i
\(145\) 182.924 29.2928i 1.26155 0.202020i
\(146\) 85.2857i 0.584149i
\(147\) 238.947 + 58.5970i 1.62549 + 0.398619i
\(148\) 39.0677i 0.263971i
\(149\) −0.00284218 + 0.00492280i −1.90750e−5 + 3.30389e-5i −0.866035 0.499983i \(-0.833339\pi\)
0.866016 + 0.500017i \(0.166673\pi\)
\(150\) 55.4327 + 168.641i 0.369551 + 1.12427i
\(151\) −114.888 198.993i −0.760851 1.31783i −0.942412 0.334453i \(-0.891448\pi\)
0.181562 0.983380i \(-0.441885\pi\)
\(152\) −14.9558 + 25.9043i −0.0983937 + 0.170423i
\(153\) 378.636 2.47475
\(154\) −86.7768 + 37.0325i −0.563486 + 0.240471i
\(155\) −60.2669 + 48.9739i −0.388818 + 0.315961i
\(156\) −76.2428 + 132.056i −0.488736 + 0.846515i
\(157\) −22.0591 38.2074i −0.140504 0.243360i 0.787183 0.616720i \(-0.211539\pi\)
−0.927686 + 0.373360i \(0.878206\pi\)
\(158\) −111.848 + 64.5754i −0.707898 + 0.408705i
\(159\) −44.5753 25.7356i −0.280348 0.161859i
\(160\) −21.9506 + 17.8374i −0.137191 + 0.111484i
\(161\) −17.7074 + 146.554i −0.109984 + 0.910273i
\(162\) 50.7368i 0.313190i
\(163\) 26.4560 + 15.2744i 0.162307 + 0.0937079i 0.578953 0.815361i \(-0.303461\pi\)
−0.416646 + 0.909069i \(0.636795\pi\)
\(164\) 65.3721 37.7426i 0.398611 0.230138i
\(165\) 85.3630 223.519i 0.517352 1.35466i
\(166\) −127.159 73.4155i −0.766021 0.442262i
\(167\) 102.148 0.611665 0.305833 0.952085i \(-0.401065\pi\)
0.305833 + 0.952085i \(0.401065\pi\)
\(168\) −79.5078 59.6730i −0.473261 0.355197i
\(169\) 61.5807 0.364383
\(170\) −26.1164 163.089i −0.153626 0.959344i
\(171\) 148.461 85.7140i 0.868193 0.501251i
\(172\) 31.6169 18.2540i 0.183819 0.106128i
\(173\) −136.689 + 236.753i −0.790111 + 1.36851i 0.135787 + 0.990738i \(0.456644\pi\)
−0.925898 + 0.377774i \(0.876689\pi\)
\(174\) 263.088i 1.51200i
\(175\) 115.515 + 131.458i 0.660086 + 0.751190i
\(176\) 38.1225 0.216605
\(177\) 15.6030 + 9.00842i 0.0881528 + 0.0508950i
\(178\) 42.7296 + 74.0098i 0.240054 + 0.415786i
\(179\) 4.82428 + 8.35590i 0.0269513 + 0.0466810i 0.879186 0.476478i \(-0.158087\pi\)
−0.852235 + 0.523159i \(0.824753\pi\)
\(180\) 160.062 25.6317i 0.889231 0.142398i
\(181\) 221.537i 1.22396i −0.790873 0.611980i \(-0.790373\pi\)
0.790873 0.611980i \(-0.209627\pi\)
\(182\) −18.0316 + 149.237i −0.0990747 + 0.819985i
\(183\) 561.648i 3.06911i
\(184\) 29.8237 51.6562i 0.162085 0.280740i
\(185\) 91.2419 + 34.8457i 0.493199 + 0.188355i
\(186\) 55.1417 + 95.5082i 0.296461 + 0.513485i
\(187\) −111.308 + 192.792i −0.595232 + 1.03097i
\(188\) 0.620160 0.00329872
\(189\) 99.4660 + 233.075i 0.526275 + 1.23320i
\(190\) −47.1593 58.0339i −0.248207 0.305442i
\(191\) 104.905 181.701i 0.549241 0.951313i −0.449086 0.893489i \(-0.648250\pi\)
0.998327 0.0578244i \(-0.0184164\pi\)
\(192\) 20.0839 + 34.7863i 0.104603 + 0.181178i
\(193\) 217.576 125.618i 1.12734 0.650868i 0.184073 0.982913i \(-0.441072\pi\)
0.943264 + 0.332044i \(0.107738\pi\)
\(194\) 159.549 + 92.1157i 0.822418 + 0.474823i
\(195\) −240.412 295.848i −1.23288 1.51717i
\(196\) −95.1798 23.3409i −0.485611 0.119086i
\(197\) 128.792i 0.653768i −0.945065 0.326884i \(-0.894001\pi\)
0.945065 0.326884i \(-0.105999\pi\)
\(198\) −189.214 109.243i −0.955625 0.551730i
\(199\) −173.384 + 100.103i −0.871275 + 0.503031i −0.867772 0.496963i \(-0.834448\pi\)
−0.00350309 + 0.999994i \(0.501115\pi\)
\(200\) −22.0805 67.1748i −0.110402 0.335874i
\(201\) −55.6053 32.1037i −0.276643 0.159720i
\(202\) 203.340 1.00663
\(203\) −101.800 238.543i −0.501476 1.17509i
\(204\) −234.560 −1.14980
\(205\) 29.8397 + 186.339i 0.145559 + 0.908971i
\(206\) 65.6497 37.9028i 0.318688 0.183994i
\(207\) −296.048 + 170.924i −1.43019 + 0.825718i
\(208\) 30.3698 52.6020i 0.146008 0.252894i
\(209\) 100.790i 0.482249i
\(210\) 210.281 132.464i 1.00134 0.630783i
\(211\) 167.518 0.793924 0.396962 0.917835i \(-0.370064\pi\)
0.396962 + 0.917835i \(0.370064\pi\)
\(212\) 17.7557 + 10.2512i 0.0837532 + 0.0483549i
\(213\) 82.3099 + 142.565i 0.386431 + 0.669319i
\(214\) 76.9228 + 133.234i 0.359452 + 0.622590i
\(215\) 14.4318 + 90.1218i 0.0671246 + 0.419171i
\(216\) 102.394i 0.474045i
\(217\) 86.9531 + 65.2610i 0.400706 + 0.300742i
\(218\) 86.6967i 0.397691i
\(219\) −151.397 + 262.228i −0.691312 + 1.19739i
\(220\) −34.0026 + 89.0343i −0.154557 + 0.404701i
\(221\) 177.345 + 307.170i 0.802465 + 1.38991i
\(222\) 69.3522 120.122i 0.312397 0.541088i
\(223\) −66.6389 −0.298829 −0.149415 0.988775i \(-0.547739\pi\)
−0.149415 + 0.988775i \(0.547739\pi\)
\(224\) 31.6703 + 23.7695i 0.141385 + 0.106114i
\(225\) −82.9016 + 396.682i −0.368452 + 1.76303i
\(226\) 67.3310 116.621i 0.297925 0.516021i
\(227\) 25.9245 + 44.9026i 0.114205 + 0.197809i 0.917462 0.397824i \(-0.130235\pi\)
−0.803257 + 0.595633i \(0.796901\pi\)
\(228\) −91.9695 + 53.0986i −0.403375 + 0.232889i
\(229\) 63.0828 + 36.4209i 0.275471 + 0.159043i 0.631371 0.775481i \(-0.282492\pi\)
−0.355900 + 0.934524i \(0.615826\pi\)
\(230\) 94.0412 + 115.726i 0.408875 + 0.503158i
\(231\) −332.552 40.1806i −1.43962 0.173942i
\(232\) 104.796i 0.451707i
\(233\) 119.380 + 68.9243i 0.512362 + 0.295813i 0.733804 0.679361i \(-0.237743\pi\)
−0.221442 + 0.975174i \(0.571076\pi\)
\(234\) −301.469 + 174.053i −1.28833 + 0.743817i
\(235\) −0.553139 + 1.44837i −0.00235378 + 0.00616327i
\(236\) −6.21515 3.58832i −0.0263354 0.0152048i
\(237\) −458.532 −1.93473
\(238\) −212.676 + 90.7607i −0.893597 + 0.381348i
\(239\) −350.640 −1.46711 −0.733557 0.679628i \(-0.762141\pi\)
−0.733557 + 0.679628i \(0.762141\pi\)
\(240\) −99.1560 + 15.8785i −0.413150 + 0.0661604i
\(241\) −264.464 + 152.688i −1.09736 + 0.633561i −0.935526 0.353257i \(-0.885074\pi\)
−0.161833 + 0.986818i \(0.551741\pi\)
\(242\) −36.9470 + 21.3314i −0.152674 + 0.0881462i
\(243\) 72.8405 126.163i 0.299755 0.519191i
\(244\) 223.721i 0.916890i
\(245\) 139.406 201.472i 0.569004 0.822334i
\(246\) 268.000 1.08943
\(247\) 139.072 + 80.2930i 0.563043 + 0.325073i
\(248\) −21.9646 38.0438i −0.0885669 0.153402i
\(249\) −260.652 451.462i −1.04679 1.81310i
\(250\) 176.580 + 8.34674i 0.706318 + 0.0333870i
\(251\) 419.508i 1.67135i 0.549228 + 0.835673i \(0.314922\pi\)
−0.549228 + 0.835673i \(0.685078\pi\)
\(252\) −89.0763 208.729i −0.353477 0.828290i
\(253\) 200.987i 0.794415i
\(254\) −82.3321 + 142.603i −0.324142 + 0.561431i
\(255\) 209.211 547.810i 0.820436 2.14827i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 3.64460 6.31263i 0.0141813 0.0245628i −0.858848 0.512231i \(-0.828819\pi\)
0.873029 + 0.487668i \(0.162152\pi\)
\(258\) 129.616 0.502389
\(259\) 16.4020 135.750i 0.0633280 0.524130i
\(260\) 95.7631 + 117.845i 0.368319 + 0.453251i
\(261\) 300.300 520.135i 1.15057 1.99285i
\(262\) −116.689 202.110i −0.445376 0.771414i
\(263\) −118.435 + 68.3785i −0.450323 + 0.259994i −0.707967 0.706246i \(-0.750387\pi\)
0.257643 + 0.966240i \(0.417054\pi\)
\(264\) 117.215 + 67.6743i 0.443997 + 0.256342i
\(265\) −39.7784 + 32.3246i −0.150107 + 0.121980i
\(266\) −62.8430 + 83.7314i −0.236252 + 0.314780i
\(267\) 303.411i 1.13637i
\(268\) 22.1493 + 12.7879i 0.0826465 + 0.0477160i
\(269\) 216.274 124.866i 0.803993 0.464186i −0.0408722 0.999164i \(-0.513014\pi\)
0.844866 + 0.534979i \(0.179680\pi\)
\(270\) 239.138 + 91.3281i 0.885697 + 0.338252i
\(271\) −388.441 224.266i −1.43336 0.827551i −0.435985 0.899954i \(-0.643600\pi\)
−0.997375 + 0.0724033i \(0.976933\pi\)
\(272\) 93.4322 0.343501
\(273\) −320.365 + 426.851i −1.17350 + 1.56356i
\(274\) 301.813 1.10151
\(275\) −177.610 158.825i −0.645853 0.577545i
\(276\) 183.398 105.885i 0.664485 0.383641i
\(277\) 424.679 245.188i 1.53314 0.885157i 0.533922 0.845534i \(-0.320718\pi\)
0.999215 0.0396228i \(-0.0126156\pi\)
\(278\) −37.5383 + 65.0183i −0.135030 + 0.233879i
\(279\) 251.764i 0.902380i
\(280\) −83.7610 + 52.7645i −0.299146 + 0.188445i
\(281\) −54.0733 −0.192432 −0.0962158 0.995360i \(-0.530674\pi\)
−0.0962158 + 0.995360i \(0.530674\pi\)
\(282\) 1.90680 + 1.10089i 0.00676172 + 0.00390388i
\(283\) 81.2503 + 140.730i 0.287104 + 0.497278i 0.973117 0.230311i \(-0.0739743\pi\)
−0.686014 + 0.727589i \(0.740641\pi\)
\(284\) −32.7865 56.7878i −0.115445 0.199957i
\(285\) −41.9803 262.153i −0.147299 0.919836i
\(286\) 204.667i 0.715619i
\(287\) 242.996 103.700i 0.846676 0.361324i
\(288\) 91.6981i 0.318396i
\(289\) −128.299 + 222.221i −0.443942 + 0.768931i
\(290\) −244.749 93.4707i −0.843961 0.322313i
\(291\) 327.044 + 566.456i 1.12386 + 1.94659i
\(292\) 60.3061 104.453i 0.206528 0.357716i
\(293\) 298.153 1.01759 0.508794 0.860888i \(-0.330091\pi\)
0.508794 + 0.860888i \(0.330091\pi\)
\(294\) −251.215 240.728i −0.854473 0.818802i
\(295\) 13.9239 11.3148i 0.0471998 0.0383553i
\(296\) −27.6251 + 47.8480i −0.0933279 + 0.161649i
\(297\) −172.512 298.800i −0.580849 1.00606i
\(298\) 0.00696189 0.00401945i 2.33620e−5 1.34881e-5i
\(299\) −277.325 160.114i −0.927508 0.535497i
\(300\) 51.3564 245.739i 0.171188 0.819131i
\(301\) 117.524 50.1539i 0.390444 0.166624i
\(302\) 324.954i 1.07601i
\(303\) 625.209 + 360.964i 2.06339 + 1.19130i
\(304\) 36.6342 21.1508i 0.120507 0.0695749i
\(305\) −522.496 199.544i −1.71310 0.654242i
\(306\) −463.733 267.736i −1.51547 0.874955i
\(307\) −197.369 −0.642895 −0.321447 0.946927i \(-0.604169\pi\)
−0.321447 + 0.946927i \(0.604169\pi\)
\(308\) 132.465 + 16.0051i 0.430082 + 0.0519647i
\(309\) 269.137 0.870995
\(310\) 108.441 17.3654i 0.349811 0.0560174i
\(311\) 277.559 160.249i 0.892474 0.515270i 0.0177229 0.999843i \(-0.494358\pi\)
0.874751 + 0.484573i \(0.161025\pi\)
\(312\) 186.756 107.824i 0.598577 0.345588i
\(313\) −108.403 + 187.760i −0.346337 + 0.599873i −0.985596 0.169119i \(-0.945908\pi\)
0.639259 + 0.768992i \(0.279241\pi\)
\(314\) 62.3925i 0.198702i
\(315\) 566.932 21.8639i 1.79978 0.0694092i
\(316\) 182.647 0.577997
\(317\) −339.651 196.098i −1.07145 0.618605i −0.142876 0.989741i \(-0.545635\pi\)
−0.928579 + 0.371136i \(0.878968\pi\)
\(318\) 36.3956 + 63.0390i 0.114452 + 0.198236i
\(319\) 176.560 + 305.810i 0.553478 + 0.958652i
\(320\) 39.4968 6.32487i 0.123427 0.0197652i
\(321\) 546.207i 1.70158i
\(322\) 125.316 166.970i 0.389181 0.518541i
\(323\) 247.020i 0.764769i
\(324\) 35.8763 62.1396i 0.110729 0.191789i
\(325\) −360.639 + 118.543i −1.10966 + 0.364747i
\(326\) −21.6013 37.4145i −0.0662615 0.114768i
\(327\) 153.902 266.567i 0.470649 0.815188i
\(328\) −106.752 −0.325464
\(329\) 2.15489 + 0.260364i 0.00654981 + 0.000791380i
\(330\) −262.600 + 213.393i −0.795757 + 0.646646i
\(331\) 171.860 297.670i 0.519214 0.899304i −0.480537 0.876974i \(-0.659558\pi\)
0.999751 0.0223298i \(-0.00710839\pi\)
\(332\) 103.825 + 179.831i 0.312727 + 0.541659i
\(333\) 274.223 158.323i 0.823494 0.475444i
\(334\) −125.105 72.2296i −0.374567 0.216256i
\(335\) −49.6214 + 40.3232i −0.148124 + 0.120368i
\(336\) 55.1815 + 129.305i 0.164231 + 0.384836i
\(337\) 86.0226i 0.255260i 0.991822 + 0.127630i \(0.0407370\pi\)
−0.991822 + 0.127630i \(0.959263\pi\)
\(338\) −75.4206 43.5441i −0.223138 0.128829i
\(339\) 414.045 239.049i 1.22137 0.705159i
\(340\) −83.3351 + 218.209i −0.245103 + 0.641791i
\(341\) −128.192 74.0115i −0.375929 0.217043i
\(342\) −242.436 −0.708876
\(343\) −320.925 121.063i −0.935641 0.352954i
\(344\) −51.6301 −0.150088
\(345\) 83.7136 + 522.764i 0.242648 + 1.51526i
\(346\) 334.819 193.308i 0.967685 0.558693i
\(347\) 531.356 306.778i 1.53129 0.884088i 0.531982 0.846756i \(-0.321447\pi\)
0.999303 0.0373324i \(-0.0118860\pi\)
\(348\) −186.032 + 322.216i −0.534574 + 0.925909i
\(349\) 202.068i 0.578990i −0.957180 0.289495i \(-0.906513\pi\)
0.957180 0.289495i \(-0.0934874\pi\)
\(350\) −48.5215 242.684i −0.138633 0.693384i
\(351\) −549.718 −1.56615
\(352\) −46.6903 26.9567i −0.132643 0.0765815i
\(353\) −255.952 443.323i −0.725078 1.25587i −0.958942 0.283602i \(-0.908470\pi\)
0.233864 0.972269i \(-0.424863\pi\)
\(354\) −12.7398 22.0660i −0.0359882 0.0623334i
\(355\) 161.870 25.9213i 0.455972 0.0730177i
\(356\) 120.858i 0.339488i
\(357\) −815.032 98.4762i −2.28300 0.275844i
\(358\) 13.6451i 0.0381149i
\(359\) 79.2023 137.182i 0.220619 0.382124i −0.734377 0.678742i \(-0.762525\pi\)
0.954996 + 0.296618i \(0.0958588\pi\)
\(360\) −214.159 81.7884i −0.594886 0.227190i
\(361\) −124.581 215.780i −0.345099 0.597729i
\(362\) −156.650 + 271.326i −0.432736 + 0.749520i
\(363\) −151.468 −0.417268
\(364\) 127.611 170.027i 0.350579 0.467108i
\(365\) 190.159 + 234.009i 0.520985 + 0.641119i
\(366\) −397.145 + 687.876i −1.08510 + 1.87944i
\(367\) 163.167 + 282.613i 0.444596 + 0.770062i 0.998024 0.0628347i \(-0.0200141\pi\)
−0.553428 + 0.832897i \(0.686681\pi\)
\(368\) −73.0529 + 42.1771i −0.198513 + 0.114612i
\(369\) 529.844 + 305.906i 1.43589 + 0.829013i
\(370\) −87.1084 107.195i −0.235428 0.289716i
\(371\) 57.3923 + 43.0747i 0.154696 + 0.116104i
\(372\) 155.964i 0.419259i
\(373\) −252.630 145.856i −0.677292 0.391035i 0.121542 0.992586i \(-0.461216\pi\)
−0.798834 + 0.601551i \(0.794549\pi\)
\(374\) 272.649 157.414i 0.729008 0.420893i
\(375\) 528.112 + 339.124i 1.40830 + 0.904331i
\(376\) −0.759537 0.438519i −0.00202005 0.00116627i
\(377\) 562.615 1.49235
\(378\) 42.9883 355.790i 0.113726 0.941244i
\(379\) −677.228 −1.78688 −0.893441 0.449181i \(-0.851716\pi\)
−0.893441 + 0.449181i \(0.851716\pi\)
\(380\) 16.7220 + 104.423i 0.0440052 + 0.274798i
\(381\) −506.293 + 292.309i −1.32885 + 0.767214i
\(382\) −256.964 + 148.358i −0.672680 + 0.388372i
\(383\) 124.602 215.817i 0.325332 0.563491i −0.656248 0.754545i \(-0.727857\pi\)
0.981579 + 0.191055i \(0.0611908\pi\)
\(384\) 56.8057i 0.147932i
\(385\) −155.530 + 295.095i −0.403973 + 0.766479i
\(386\) −355.300 −0.920467
\(387\) 256.256 + 147.950i 0.662160 + 0.382298i
\(388\) −130.271 225.636i −0.335751 0.581537i
\(389\) 14.3803 + 24.9074i 0.0369673 + 0.0640293i 0.883917 0.467644i \(-0.154897\pi\)
−0.846950 + 0.531673i \(0.821564\pi\)
\(390\) 85.2463 + 532.335i 0.218580 + 1.36496i
\(391\) 492.587i 1.25981i
\(392\) 100.066 + 95.8890i 0.255272 + 0.244615i
\(393\) 828.572i 2.10833i
\(394\) −91.0699 + 157.738i −0.231142 + 0.400349i
\(395\) −162.908 + 426.568i −0.412426 + 1.07992i
\(396\) 154.492 + 267.589i 0.390132 + 0.675729i
\(397\) −126.465 + 219.043i −0.318550 + 0.551746i −0.980186 0.198080i \(-0.936529\pi\)
0.661635 + 0.749826i \(0.269863\pi\)
\(398\) 283.134 0.711393
\(399\) −341.862 + 145.891i −0.856796 + 0.365643i
\(400\) −20.4568 + 97.8852i −0.0511420 + 0.244713i
\(401\) 103.441 179.165i 0.257958 0.446796i −0.707737 0.706476i \(-0.750284\pi\)
0.965695 + 0.259680i \(0.0836171\pi\)
\(402\) 45.4016 + 78.6378i 0.112939 + 0.195616i
\(403\) −204.244 + 117.921i −0.506810 + 0.292607i
\(404\) −249.039 143.783i −0.616434 0.355898i
\(405\) 113.126 + 139.213i 0.279325 + 0.343735i
\(406\) −43.9969 + 364.138i −0.108367 + 0.896891i
\(407\) 186.170i 0.457420i
\(408\) 287.276 + 165.859i 0.704108 + 0.406517i
\(409\) 577.695 333.532i 1.41246 0.815483i 0.416838 0.908981i \(-0.363138\pi\)
0.995619 + 0.0934983i \(0.0298050\pi\)
\(410\) 95.2156 249.318i 0.232233 0.608092i
\(411\) 927.985 + 535.773i 2.25787 + 1.30358i
\(412\) −107.205 −0.260207
\(413\) −20.0895 15.0778i −0.0486428 0.0365079i
\(414\) 483.445 1.16774
\(415\) −512.595 + 82.0852i −1.23517 + 0.197796i
\(416\) −74.3904 + 42.9493i −0.178823 + 0.103244i
\(417\) −230.838 + 133.274i −0.553569 + 0.319603i
\(418\) 71.2693 123.442i 0.170501 0.295316i
\(419\) 82.9914i 0.198070i 0.995084 + 0.0990350i \(0.0315756\pi\)
−0.995084 + 0.0990350i \(0.968424\pi\)
\(420\) −351.207 + 13.5444i −0.836206 + 0.0322485i
\(421\) 155.483 0.369319 0.184659 0.982803i \(-0.440882\pi\)
0.184659 + 0.982803i \(0.440882\pi\)
\(422\) −205.167 118.453i −0.486177 0.280695i
\(423\) 2.51321 + 4.35301i 0.00594140 + 0.0102908i
\(424\) −14.4975 25.1103i −0.0341921 0.0592225i
\(425\) −435.293 389.254i −1.02422 0.915893i
\(426\) 232.807i 0.546496i
\(427\) −93.9257 + 777.370i −0.219967 + 1.82054i
\(428\) 217.571i 0.508342i
\(429\) 363.321 629.290i 0.846901 1.46688i
\(430\) 46.0505 120.581i 0.107094 0.280421i
\(431\) 17.6114 + 30.5039i 0.0408618 + 0.0707748i 0.885733 0.464195i \(-0.153656\pi\)
−0.844871 + 0.534970i \(0.820323\pi\)
\(432\) −72.4033 + 125.406i −0.167600 + 0.290292i
\(433\) 98.0262 0.226388 0.113194 0.993573i \(-0.463892\pi\)
0.113194 + 0.993573i \(0.463892\pi\)
\(434\) −60.3489 141.413i −0.139053 0.325837i
\(435\) −586.602 721.867i −1.34851 1.65947i
\(436\) −61.3038 + 106.181i −0.140605 + 0.243535i
\(437\) −111.510 193.141i −0.255171 0.441969i
\(438\) 370.846 214.108i 0.846681 0.488832i
\(439\) 356.391 + 205.763i 0.811826 + 0.468708i 0.847589 0.530653i \(-0.178053\pi\)
−0.0357638 + 0.999360i \(0.511386\pi\)
\(440\) 104.601 85.0008i 0.237730 0.193184i
\(441\) −221.884 762.674i −0.503139 1.72942i
\(442\) 501.606i 1.13486i
\(443\) −656.457 379.006i −1.48184 0.855543i −0.482057 0.876140i \(-0.660110\pi\)
−0.999788 + 0.0205969i \(0.993443\pi\)
\(444\) −169.878 + 98.0789i −0.382607 + 0.220898i
\(445\) 282.260 + 107.797i 0.634293 + 0.242239i
\(446\) 81.6157 + 47.1208i 0.182995 + 0.105652i
\(447\) 0.0285410 6.38500e−5
\(448\) −21.9804 51.5059i −0.0490635 0.114969i
\(449\) −49.9480 −0.111243 −0.0556213 0.998452i \(-0.517714\pi\)
−0.0556213 + 0.998452i \(0.517714\pi\)
\(450\) 382.030 427.214i 0.848956 0.949365i
\(451\) −311.519 + 179.855i −0.690729 + 0.398792i
\(452\) −164.926 + 95.2204i −0.364882 + 0.210665i
\(453\) −576.851 + 999.135i −1.27340 + 2.20560i
\(454\) 73.3256i 0.161510i
\(455\) 283.275 + 449.685i 0.622583 + 0.988318i
\(456\) 150.186 0.329354
\(457\) 350.458 + 202.337i 0.766866 + 0.442750i 0.831755 0.555142i \(-0.187336\pi\)
−0.0648896 + 0.997892i \(0.520670\pi\)
\(458\) −51.5069 89.2126i −0.112461 0.194787i
\(459\) −422.800 732.311i −0.921133 1.59545i
\(460\) −33.3456 208.232i −0.0724904 0.452679i
\(461\) 41.4395i 0.0898904i −0.998989 0.0449452i \(-0.985689\pi\)
0.998989 0.0449452i \(-0.0143113\pi\)
\(462\) 378.879 + 284.361i 0.820085 + 0.615500i
\(463\) 668.770i 1.44443i 0.691670 + 0.722213i \(0.256875\pi\)
−0.691670 + 0.722213i \(0.743125\pi\)
\(464\) 74.1019 128.348i 0.159702 0.276613i
\(465\) 364.251 + 139.109i 0.783336 + 0.299160i
\(466\) −97.4737 168.829i −0.209171 0.362295i
\(467\) 248.677 430.721i 0.532498 0.922314i −0.466782 0.884373i \(-0.654587\pi\)
0.999280 0.0379417i \(-0.0120801\pi\)
\(468\) 492.297 1.05192
\(469\) 71.5939 + 53.7334i 0.152652 + 0.114570i
\(470\) 1.70161 1.38275i 0.00362044 0.00294203i
\(471\) −110.758 + 191.838i −0.235155 + 0.407300i
\(472\) 5.07465 + 8.78956i 0.0107514 + 0.0186219i
\(473\) −150.664 + 86.9860i −0.318529 + 0.183903i
\(474\) 561.585 + 324.231i 1.18478 + 0.684032i
\(475\) −258.793 54.0846i −0.544828 0.113862i
\(476\) 324.652 + 39.2260i 0.682041 + 0.0824076i
\(477\) 166.174i 0.348372i
\(478\) 429.445 + 247.940i 0.898420 + 0.518703i
\(479\) 383.598 221.470i 0.800830 0.462360i −0.0429311 0.999078i \(-0.513670\pi\)
0.843761 + 0.536718i \(0.180336\pi\)
\(480\) 132.669 + 50.6668i 0.276393 + 0.105556i
\(481\) 256.880 + 148.310i 0.534054 + 0.308336i
\(482\) 431.867 0.895990
\(483\) 681.712 290.924i 1.41141 0.602328i
\(484\) 60.3343 0.124658
\(485\) 643.162 102.994i 1.32611 0.212358i
\(486\) −178.422 + 103.012i −0.367124 + 0.211959i
\(487\) −97.2891 + 56.1699i −0.199772 + 0.115339i −0.596549 0.802576i \(-0.703462\pi\)
0.396777 + 0.917915i \(0.370129\pi\)
\(488\) 158.195 274.001i 0.324170 0.561478i
\(489\) 153.384i 0.313670i
\(490\) −313.199 + 148.177i −0.639182 + 0.302402i
\(491\) −677.177 −1.37918 −0.689590 0.724200i \(-0.742209\pi\)
−0.689590 + 0.724200i \(0.742209\pi\)
\(492\) −328.231 189.504i −0.667137 0.385171i
\(493\) 432.719 + 749.492i 0.877727 + 1.52027i
\(494\) −113.551 196.677i −0.229861 0.398131i
\(495\) −762.744 + 122.143i −1.54090 + 0.246754i
\(496\) 62.1252i 0.125252i
\(497\) −90.0826 211.087i −0.181253 0.424723i
\(498\) 737.234i 1.48039i
\(499\) −461.215 + 798.848i −0.924279 + 1.60090i −0.131562 + 0.991308i \(0.541999\pi\)
−0.792717 + 0.609590i \(0.791334\pi\)
\(500\) −210.363 135.083i −0.420726 0.270166i
\(501\) −256.441 444.169i −0.511858 0.886564i
\(502\) 296.637 513.790i 0.590910 1.02349i
\(503\) −136.712 −0.271793 −0.135896 0.990723i \(-0.543391\pi\)
−0.135896 + 0.990723i \(0.543391\pi\)
\(504\) −38.4980 + 318.626i −0.0763849 + 0.632195i
\(505\) 557.927 453.381i 1.10481 0.897785i
\(506\) −142.119 + 246.158i −0.280868 + 0.486478i
\(507\) −154.597 267.770i −0.304925 0.528146i
\(508\) 201.672 116.435i 0.396991 0.229203i
\(509\) −619.262 357.531i −1.21662 0.702418i −0.252430 0.967615i \(-0.581230\pi\)
−0.964194 + 0.265197i \(0.914563\pi\)
\(510\) −643.590 + 522.993i −1.26194 + 1.02548i
\(511\) 253.400 337.628i 0.495891 0.660720i
\(512\) 22.6274i 0.0441942i
\(513\) −331.554 191.423i −0.646305 0.373144i
\(514\) −8.92741 + 5.15424i −0.0173685 + 0.0100277i
\(515\) 95.6198 250.376i 0.185670 0.486167i
\(516\) −158.747 91.6527i −0.307649 0.177622i
\(517\) −2.95525 −0.00571616
\(518\) −116.078 + 154.661i −0.224088 + 0.298573i
\(519\) 1372.62 2.64475
\(520\) −33.9561 212.045i −0.0653003 0.407779i
\(521\) 14.6765 8.47346i 0.0281698 0.0162638i −0.485849 0.874043i \(-0.661490\pi\)
0.514019 + 0.857779i \(0.328156\pi\)
\(522\) −735.581 + 424.688i −1.40916 + 0.813579i
\(523\) 351.622 609.027i 0.672317 1.16449i −0.304928 0.952375i \(-0.598632\pi\)
0.977245 0.212113i \(-0.0680343\pi\)
\(524\) 330.045i 0.629857i
\(525\) 281.619 832.316i 0.536418 1.58536i
\(526\) 193.404 0.367687
\(527\) −314.178 181.391i −0.596162 0.344195i
\(528\) −95.7059 165.767i −0.181261 0.313954i
\(529\) −42.1366 72.9828i −0.0796533 0.137964i
\(530\) 71.5753 11.4618i 0.135048 0.0216261i
\(531\) 58.1670i 0.109542i
\(532\) 136.174 58.1129i 0.255966 0.109235i
\(533\) 573.117i 1.07527i
\(534\) 214.544 371.601i 0.401768 0.695882i
\(535\) 508.131 + 194.058i 0.949778 + 0.362725i
\(536\) −18.0848 31.3238i −0.0337403 0.0584399i
\(537\) 24.2225 41.9547i 0.0451071 0.0781279i
\(538\) −353.174 −0.656458
\(539\) 453.562 + 111.227i 0.841488 + 0.206358i
\(540\) −228.305 280.950i −0.422786 0.520278i
\(541\) −473.725 + 820.515i −0.875647 + 1.51666i −0.0195742 + 0.999808i \(0.506231\pi\)
−0.856072 + 0.516856i \(0.827102\pi\)
\(542\) 317.160 + 549.338i 0.585167 + 1.01354i
\(543\) −963.305 + 556.165i −1.77404 + 1.02424i
\(544\) −114.431 66.0666i −0.210350 0.121446i
\(545\) −193.306 237.880i −0.354689 0.436478i
\(546\) 694.194 296.251i 1.27142 0.542585i
\(547\) 451.960i 0.826252i −0.910674 0.413126i \(-0.864437\pi\)
0.910674 0.413126i \(-0.135563\pi\)
\(548\) −369.644 213.414i −0.674533 0.389442i
\(549\) −1570.34 + 906.635i −2.86036 + 1.65143i
\(550\) 105.220 + 320.109i 0.191310 + 0.582016i
\(551\) 339.333 + 195.914i 0.615850 + 0.355561i
\(552\) −299.488 −0.542550
\(553\) 634.648 + 76.6814i 1.14765 + 0.138664i
\(554\) −693.498 −1.25180
\(555\) −77.5421 484.225i −0.139715 0.872478i
\(556\) 91.9497 53.0872i 0.165377 0.0954806i
\(557\) 331.417 191.344i 0.595004 0.343526i −0.172069 0.985085i \(-0.555045\pi\)
0.767074 + 0.641559i \(0.221712\pi\)
\(558\) 178.024 308.347i 0.319039 0.552592i
\(559\) 277.185i 0.495858i
\(560\) 139.896 5.39513i 0.249814 0.00963417i
\(561\) 1117.75 1.99243
\(562\) 66.2260 + 38.2356i 0.117840 + 0.0680349i
\(563\) 22.9940 + 39.8268i 0.0408419 + 0.0707402i 0.885724 0.464213i \(-0.153663\pi\)
−0.844882 + 0.534953i \(0.820329\pi\)
\(564\) −1.55690 2.69663i −0.00276046 0.00478126i
\(565\) −75.2821 470.112i −0.133243 0.832057i
\(566\) 229.811i 0.406026i
\(567\) 150.749 200.856i 0.265871 0.354244i
\(568\) 92.7341i 0.163264i
\(569\) 15.4807 26.8133i 0.0272068 0.0471236i −0.852101 0.523377i \(-0.824672\pi\)
0.879308 + 0.476253i \(0.158005\pi\)
\(570\) −133.955 + 350.755i −0.235009 + 0.615360i
\(571\) −200.579 347.414i −0.351277 0.608430i 0.635196 0.772351i \(-0.280919\pi\)
−0.986474 + 0.163921i \(0.947586\pi\)
\(572\) −144.721 + 250.665i −0.253010 + 0.438225i
\(573\) −1053.45 −1.83848
\(574\) −370.935 44.8182i −0.646228 0.0780805i
\(575\) 516.064 + 107.851i 0.897503 + 0.187567i
\(576\) 64.8404 112.307i 0.112570 0.194977i
\(577\) −388.494 672.891i −0.673300 1.16619i −0.976963 0.213410i \(-0.931543\pi\)
0.303663 0.952780i \(-0.401790\pi\)
\(578\) 314.268 181.443i 0.543716 0.313915i
\(579\) −1092.44 630.722i −1.88677 1.08933i
\(580\) 233.661 + 287.541i 0.402864 + 0.495761i
\(581\) 285.266 + 668.452i 0.490991 + 1.15052i
\(582\) 925.019i 1.58938i
\(583\) −84.6114 48.8504i −0.145131 0.0837914i
\(584\) −147.719 + 85.2857i −0.252944 + 0.146037i
\(585\) −439.095 + 1149.75i −0.750589 + 1.96538i
\(586\) −365.162 210.826i −0.623143 0.359772i
\(587\) −123.033 −0.209596 −0.104798 0.994494i \(-0.533420\pi\)
−0.104798 + 0.994494i \(0.533420\pi\)
\(588\) 137.454 + 472.466i 0.233766 + 0.803514i
\(589\) −164.249 −0.278862
\(590\) −25.0541 + 4.01207i −0.0424645 + 0.00680011i
\(591\) −560.025 + 323.331i −0.947589 + 0.547091i
\(592\) 67.6673 39.0677i 0.114303 0.0659928i
\(593\) 211.024 365.504i 0.355858 0.616364i −0.631407 0.775452i \(-0.717522\pi\)
0.987264 + 0.159088i \(0.0508554\pi\)
\(594\) 487.938i 0.821445i
\(595\) −381.178 + 723.230i −0.640636 + 1.21551i
\(596\) −0.0113687 −1.90750e−5
\(597\) 870.553 + 502.614i 1.45821 + 0.841900i
\(598\) 226.435 + 392.196i 0.378653 + 0.655847i
\(599\) 414.355 + 717.684i 0.691745 + 1.19814i 0.971266 + 0.237998i \(0.0764911\pi\)
−0.279521 + 0.960140i \(0.590176\pi\)
\(600\) −236.662 + 264.653i −0.394437 + 0.441089i
\(601\) 675.102i 1.12330i 0.827376 + 0.561649i \(0.189833\pi\)
−0.827376 + 0.561649i \(0.810167\pi\)
\(602\) −179.401 21.6761i −0.298008 0.0360068i
\(603\) 207.293i 0.343769i
\(604\) 229.777 397.985i 0.380425 0.658916i
\(605\) −53.8140 + 140.909i −0.0889487 + 0.232908i
\(606\) −510.481 884.178i −0.842377 1.45904i
\(607\) −491.492 + 851.289i −0.809707 + 1.40245i 0.103360 + 0.994644i \(0.467041\pi\)
−0.913067 + 0.407809i \(0.866293\pi\)
\(608\) −59.8234 −0.0983937
\(609\) −781.687 + 1041.51i −1.28356 + 1.71020i
\(610\) 498.825 + 613.851i 0.817747 + 1.00631i
\(611\) −2.35426 + 4.07770i −0.00385313 + 0.00667382i
\(612\) 378.636 + 655.817i 0.618687 + 1.07160i
\(613\) 418.163 241.427i 0.682159 0.393844i −0.118509 0.992953i \(-0.537812\pi\)
0.800668 + 0.599108i \(0.204478\pi\)
\(614\) 241.726 + 139.561i 0.393691 + 0.227298i
\(615\) 735.343 597.552i 1.19568 0.971630i
\(616\) −150.919 113.269i −0.244998 0.183879i
\(617\) 550.193i 0.891722i 0.895102 + 0.445861i \(0.147103\pi\)
−0.895102 + 0.445861i \(0.852897\pi\)
\(618\) −329.625 190.309i −0.533373 0.307943i
\(619\) 535.910 309.408i 0.865767 0.499851i −0.000172089 1.00000i \(-0.500055\pi\)
0.865939 + 0.500149i \(0.166721\pi\)
\(620\) −145.092 55.4114i −0.234020 0.0893732i
\(621\) 661.158 + 381.720i 1.06467 + 0.614686i
\(622\) −453.252 −0.728702
\(623\) 50.7401 419.947i 0.0814448 0.674073i
\(624\) −304.971 −0.488736
\(625\) 503.113 370.813i 0.804981 0.593301i
\(626\) 265.533 153.306i 0.424174 0.244897i
\(627\) 438.264 253.032i 0.698985 0.403559i
\(628\) 44.1182 76.4149i 0.0702518 0.121680i
\(629\) 456.273i 0.725395i
\(630\) −709.807 374.104i −1.12668 0.593815i
\(631\) −167.847 −0.266001 −0.133000 0.991116i \(-0.542461\pi\)
−0.133000 + 0.991116i \(0.542461\pi\)
\(632\) −223.696 129.151i −0.353949 0.204353i
\(633\) −420.551 728.416i −0.664378 1.15074i
\(634\) 277.324 + 480.339i 0.437420 + 0.757633i
\(635\) 92.0547 + 574.852i 0.144968 + 0.905279i
\(636\) 102.942i 0.161859i
\(637\) 514.796 537.224i 0.808157 0.843365i
\(638\) 499.386i 0.782736i
\(639\) 265.736 460.268i 0.415862 0.720294i
\(640\) −52.8458 20.1821i −0.0825716 0.0315345i
\(641\) −529.087 916.406i −0.825409 1.42965i −0.901606 0.432558i \(-0.857611\pi\)
0.0761967 0.997093i \(-0.475722\pi\)
\(642\) 386.227 668.964i 0.601599 1.04200i
\(643\) −68.2597 −0.106158 −0.0530791 0.998590i \(-0.516904\pi\)
−0.0530791 + 0.998590i \(0.516904\pi\)
\(644\) −271.546 + 115.884i −0.421656 + 0.179944i
\(645\) 355.644 289.003i 0.551387 0.448066i
\(646\) 174.670 302.537i 0.270387 0.468323i
\(647\) 26.7770 + 46.3792i 0.0413865 + 0.0716835i 0.885977 0.463730i \(-0.153489\pi\)
−0.844590 + 0.535413i \(0.820156\pi\)
\(648\) −87.8786 + 50.7368i −0.135615 + 0.0782975i
\(649\) 29.6172 + 17.0995i 0.0456351 + 0.0263474i
\(650\) 525.513 + 109.826i 0.808482 + 0.168963i
\(651\) 65.4791 541.934i 0.100582 0.832463i
\(652\) 61.0976i 0.0937079i
\(653\) 39.7204 + 22.9326i 0.0608276 + 0.0351188i 0.530105 0.847932i \(-0.322152\pi\)
−0.469278 + 0.883051i \(0.655486\pi\)
\(654\) −376.982 + 217.651i −0.576425 + 0.332799i
\(655\) −770.813 294.377i −1.17681 0.449431i
\(656\) 130.744 + 75.4852i 0.199305 + 0.115069i
\(657\) 977.567 1.48793
\(658\) −2.45508 1.84261i −0.00373113 0.00280033i
\(659\) 997.845 1.51418 0.757090 0.653310i \(-0.226620\pi\)
0.757090 + 0.653310i \(0.226620\pi\)
\(660\) 472.509 75.6660i 0.715923 0.114645i
\(661\) 229.919 132.744i 0.347836 0.200823i −0.315896 0.948794i \(-0.602305\pi\)
0.663732 + 0.747971i \(0.268972\pi\)
\(662\) −420.969 + 243.046i −0.635904 + 0.367139i
\(663\) 890.441 1542.29i 1.34305 2.32623i
\(664\) 293.662i 0.442262i
\(665\) 14.2639 + 369.863i 0.0214495 + 0.556186i
\(666\) −447.805 −0.672380
\(667\) −676.670 390.676i −1.01450 0.585720i
\(668\) 102.148 + 176.926i 0.152916 + 0.264859i
\(669\) 167.296 + 289.765i 0.250069 + 0.433131i
\(670\) 89.2864 14.2980i 0.133263 0.0213403i
\(671\) 1066.10i 1.58882i
\(672\) 23.8490 197.385i 0.0354895 0.293727i
\(673\) 859.611i 1.27728i −0.769505 0.638641i \(-0.779497\pi\)
0.769505 0.638641i \(-0.220503\pi\)
\(674\) 60.8271 105.356i 0.0902480 0.156314i
\(675\) 859.784 282.613i 1.27375 0.418686i
\(676\) 61.5807 + 106.661i 0.0910956 + 0.157782i
\(677\) 35.7345 61.8940i 0.0527836 0.0914239i −0.838426 0.545015i \(-0.816524\pi\)
0.891210 + 0.453591i \(0.149857\pi\)
\(678\) −676.133 −0.997246
\(679\) −357.927 838.718i −0.527139 1.23522i
\(680\) 256.361 208.323i 0.377002 0.306358i
\(681\) 130.166 225.454i 0.191140 0.331064i
\(682\) 104.668 + 181.291i 0.153472 + 0.265822i
\(683\) −832.644 + 480.727i −1.21910 + 0.703847i −0.964725 0.263259i \(-0.915202\pi\)
−0.254373 + 0.967106i \(0.581869\pi\)
\(684\) 296.922 + 171.428i 0.434096 + 0.250626i
\(685\) 828.121 672.945i 1.20894 0.982402i
\(686\) 307.446 + 375.200i 0.448173 + 0.546938i
\(687\) 365.736i 0.532367i
\(688\) 63.2337 + 36.5080i 0.0919095 + 0.0530639i
\(689\) −134.809 + 77.8320i −0.195659 + 0.112964i
\(690\) 267.122 699.447i 0.387134 1.01369i
\(691\) 433.591 + 250.334i 0.627483 + 0.362277i 0.779777 0.626058i \(-0.215333\pi\)
−0.152294 + 0.988335i \(0.548666\pi\)
\(692\) −546.757 −0.790111
\(693\) 424.476 + 994.659i 0.612520 + 1.43529i
\(694\) −867.701 −1.25029
\(695\) 41.9712 + 262.097i 0.0603903 + 0.377117i
\(696\) 455.683 263.088i 0.654716 0.378001i
\(697\) −763.483 + 440.797i −1.09538 + 0.632420i
\(698\) −142.883 + 247.481i −0.204704 + 0.354558i
\(699\) 692.133i 0.990176i
\(700\) −112.177 + 331.536i −0.160253 + 0.473623i
\(701\) −913.148 −1.30264 −0.651318 0.758805i \(-0.725784\pi\)
−0.651318 + 0.758805i \(0.725784\pi\)
\(702\) 673.264 + 388.709i 0.959065 + 0.553717i
\(703\) 103.289 + 178.902i 0.146926 + 0.254484i
\(704\) 38.1225 + 66.0301i 0.0541513 + 0.0937928i
\(705\) 7.68657 1.23090i 0.0109029 0.00174596i
\(706\) 723.943i 1.02541i
\(707\) −804.979 604.161i −1.13858 0.854542i
\(708\) 36.0337i 0.0508950i
\(709\) −573.474 + 993.286i −0.808849 + 1.40097i 0.104812 + 0.994492i \(0.466576\pi\)
−0.913661 + 0.406476i \(0.866757\pi\)
\(710\) −216.579 82.7124i −0.305040 0.116496i
\(711\) 740.181 + 1282.03i 1.04104 + 1.80314i
\(712\) −85.4592 + 148.020i −0.120027 + 0.207893i
\(713\) 327.533 0.459373
\(714\) 928.573 + 696.923i 1.30052 + 0.976083i
\(715\) −456.341 561.570i −0.638239 0.785412i
\(716\) −9.64856 + 16.7118i −0.0134756 + 0.0233405i
\(717\) 880.277 + 1524.68i 1.22772 + 2.12648i
\(718\) −194.005 + 112.009i −0.270202 + 0.156001i
\(719\) −84.0179 48.5077i −0.116854 0.0674656i 0.440434 0.897785i \(-0.354825\pi\)
−0.557288 + 0.830319i \(0.688158\pi\)
\(720\) 204.457 + 251.603i 0.283968 + 0.349449i
\(721\) −372.510 45.0085i −0.516657 0.0624251i
\(722\) 352.367i 0.488043i
\(723\) 1327.86 + 766.642i 1.83660 + 1.06036i
\(724\) 383.713 221.537i 0.529991 0.305990i
\(725\) −879.956 + 289.243i −1.21373 + 0.398956i
\(726\) 185.510 + 107.104i 0.255523 + 0.147526i
\(727\) 175.776 0.241782 0.120891 0.992666i \(-0.461425\pi\)
0.120891 + 0.992666i \(0.461425\pi\)
\(728\) −276.518 + 118.006i −0.379833 + 0.162096i
\(729\) −1054.35 −1.44629
\(730\) −67.4277 421.064i −0.0923667 0.576800i
\(731\) −369.254 + 213.189i −0.505136 + 0.291640i
\(732\) 972.803 561.648i 1.32897 0.767279i
\(733\) −346.840 + 600.745i −0.473179 + 0.819570i −0.999529 0.0306981i \(-0.990227\pi\)
0.526350 + 0.850268i \(0.323560\pi\)
\(734\) 461.505i 0.628753i
\(735\) −1226.03 100.385i −1.66807 0.136579i
\(736\) 119.295 0.162085
\(737\) −105.548 60.9383i −0.143213 0.0826842i
\(738\) −432.616 749.313i −0.586201 1.01533i
\(739\) −10.2585 17.7682i −0.0138816 0.0240436i 0.859001 0.511974i \(-0.171085\pi\)
−0.872883 + 0.487930i \(0.837752\pi\)
\(740\) 30.8873 + 192.881i 0.0417396 + 0.260650i
\(741\) 806.296i 1.08812i
\(742\) −39.8325 93.3381i −0.0536827 0.125793i
\(743\) 896.676i 1.20683i 0.797427 + 0.603416i \(0.206194\pi\)
−0.797427 + 0.603416i \(0.793806\pi\)
\(744\) −110.283 + 191.016i −0.148230 + 0.256743i
\(745\) 0.0101401 0.0265514i 1.36109e−5 3.56394e-5i
\(746\) 206.272 + 357.273i 0.276503 + 0.478918i
\(747\) −841.509 + 1457.54i −1.12652 + 1.95119i
\(748\) −445.234 −0.595232
\(749\) 91.3435 755.999i 0.121954 1.00934i
\(750\) −407.006 788.772i −0.542674 1.05170i
\(751\) 298.227 516.545i 0.397107 0.687809i −0.596261 0.802791i \(-0.703348\pi\)
0.993368 + 0.114982i \(0.0366809\pi\)
\(752\) 0.620160 + 1.07415i 0.000824680 + 0.00142839i
\(753\) 1824.14 1053.17i 2.42249 1.39863i
\(754\) −689.059 397.829i −0.913872 0.527624i
\(755\) 724.541 + 891.615i 0.959657 + 1.18095i
\(756\) −304.231 + 405.355i −0.402423 + 0.536184i
\(757\) 118.056i 0.155952i −0.996955 0.0779761i \(-0.975154\pi\)
0.996955 0.0779761i \(-0.0248458\pi\)
\(758\) 829.432 + 478.873i 1.09424 + 0.631758i
\(759\) −873.949 + 504.575i −1.15145 + 0.664789i
\(760\) 53.3583 139.716i 0.0702083 0.183837i
\(761\) 695.093 + 401.312i 0.913395 + 0.527349i 0.881522 0.472143i \(-0.156520\pi\)
0.0318728 + 0.999492i \(0.489853\pi\)
\(762\) 826.773 1.08500
\(763\) −257.593 + 343.214i −0.337605 + 0.449822i
\(764\) 419.620 0.549241
\(765\) −1869.36 + 299.353i −2.44361 + 0.391312i
\(766\) −305.211 + 176.214i −0.398448 + 0.230044i
\(767\) 47.1882 27.2441i 0.0615231 0.0355204i
\(768\) −40.1677 + 69.5725i −0.0523017 + 0.0905892i
\(769\) 1022.31i 1.32940i −0.747109 0.664701i \(-0.768559\pi\)
0.747109 0.664701i \(-0.231441\pi\)
\(770\) 399.147 251.440i 0.518373 0.326545i
\(771\) −36.5988 −0.0474693
\(772\) 435.152 + 251.235i 0.563669 + 0.325434i
\(773\) −343.943 595.726i −0.444945 0.770668i 0.553103 0.833113i \(-0.313444\pi\)
−0.998048 + 0.0624449i \(0.980110\pi\)
\(774\) −209.232 362.401i −0.270326 0.468218i
\(775\) 258.824 289.436i 0.333967 0.373466i
\(776\) 368.463i 0.474823i
\(777\) −631.455 + 269.477i −0.812684 + 0.346817i
\(778\) 40.6736i 0.0522797i
\(779\) −199.571 + 345.668i −0.256189 + 0.443733i
\(780\) 272.013 712.253i 0.348735 0.913145i
\(781\) 156.238 + 270.612i 0.200048 + 0.346494i
\(782\) −348.312 + 603.294i −0.445412 + 0.771476i
\(783\) −1341.31 −1.71303
\(784\) −54.7521 188.197i −0.0698369 0.240048i
\(785\) 139.115 + 171.194i 0.177217 + 0.218081i
\(786\) −585.889 + 1014.79i −0.745406 + 1.29108i
\(787\) −612.772 1061.35i −0.778618 1.34861i −0.932739 0.360553i \(-0.882588\pi\)
0.154121 0.988052i \(-0.450745\pi\)
\(788\) 223.075 128.792i 0.283090 0.163442i
\(789\) 594.658 + 343.326i 0.753686 + 0.435141i
\(790\) 501.150 407.243i 0.634367 0.515498i
\(791\) −613.052 + 261.623i −0.775034 + 0.330750i
\(792\) 436.970i 0.551730i
\(793\) −1471.02 849.295i −1.85501 1.07099i
\(794\) 309.774 178.848i 0.390143 0.225249i
\(795\) 240.420 + 91.8174i 0.302414 + 0.115494i
\(796\) −346.767 200.206i −0.435637 0.251515i
\(797\) −691.172 −0.867217 −0.433608 0.901101i \(-0.642760\pi\)
−0.433608 + 0.901101i \(0.642760\pi\)
\(798\) 521.854 + 63.0530i 0.653953 + 0.0790138i
\(799\) −7.24286 −0.00906491
\(800\) 94.2697 105.419i 0.117837 0.131774i
\(801\) 848.321 489.778i 1.05908 0.611458i
\(802\) −253.378 + 146.288i −0.315932 + 0.182404i
\(803\) −287.377 + 497.752i −0.357880 + 0.619866i
\(804\) 128.415i 0.159720i
\(805\) −28.4439 737.551i −0.0353340 0.916212i
\(806\) 333.530 0.413808
\(807\) −1085.91 626.948i −1.34561 0.776887i
\(808\) 203.340 + 352.195i 0.251658 + 0.435884i
\(809\) 511.628 + 886.165i 0.632420 + 1.09538i 0.987056 + 0.160379i \(0.0512716\pi\)
−0.354636 + 0.935005i \(0.615395\pi\)
\(810\) −40.1130 250.492i −0.0495222 0.309250i
\(811\) 346.588i 0.427359i 0.976904 + 0.213679i \(0.0685448\pi\)
−0.976904 + 0.213679i \(0.931455\pi\)
\(812\) 311.369 414.865i 0.383460 0.510918i
\(813\) 2252.07i 2.77007i
\(814\) 131.642 228.011i 0.161722 0.280112i
\(815\) −142.692 54.4948i −0.175082 0.0668648i
\(816\) −234.560 406.270i −0.287451 0.497880i
\(817\) −96.5215 + 167.180i −0.118141 + 0.204627i
\(818\) −943.372 −1.15327
\(819\) 1710.60 + 206.683i 2.08864 + 0.252360i
\(820\) −292.909 + 238.023i −0.357206 + 0.290272i
\(821\) 302.304 523.605i 0.368214 0.637765i −0.621072 0.783753i \(-0.713303\pi\)
0.989286 + 0.145988i \(0.0466360\pi\)
\(822\) −757.697 1312.37i −0.921772 1.59656i
\(823\) 1002.77 578.951i 1.21844 0.703464i 0.253853 0.967243i \(-0.418302\pi\)
0.964583 + 0.263779i \(0.0849689\pi\)
\(824\) 131.299 + 75.8057i 0.159344 + 0.0919972i
\(825\) −244.729 + 1171.02i −0.296642 + 1.41942i
\(826\) 13.9429 + 32.6718i 0.0168800 + 0.0395543i
\(827\) 248.293i 0.300234i −0.988668 0.150117i \(-0.952035\pi\)
0.988668 0.150117i \(-0.0479650\pi\)
\(828\) −592.097 341.847i −0.715093 0.412859i
\(829\) 808.027 466.515i 0.974701 0.562744i 0.0740349 0.997256i \(-0.476412\pi\)
0.900666 + 0.434512i \(0.143079\pi\)
\(830\) 685.842 + 261.926i 0.826315 + 0.315574i
\(831\) −2132.30 1231.08i −2.56594 1.48145i
\(832\) 121.479 0.146008
\(833\) 1111.61 + 272.600i 1.33446 + 0.327250i
\(834\) 376.957 0.451987
\(835\) −504.315 + 80.7592i −0.603970 + 0.0967176i
\(836\) −174.573 + 100.790i −0.208820 + 0.120562i
\(837\) 486.930 281.129i 0.581757 0.335877i
\(838\) 58.6838 101.643i 0.0700283 0.121293i
\(839\) 1426.14i 1.69981i 0.526934 + 0.849906i \(0.323341\pi\)
−0.526934 + 0.849906i \(0.676659\pi\)
\(840\) 439.716 + 231.752i 0.523471 + 0.275895i
\(841\) 531.775 0.632312
\(842\) −190.427 109.943i −0.226161 0.130574i
\(843\) 135.750 + 235.126i 0.161032 + 0.278916i
\(844\) 167.518 + 290.150i 0.198481 + 0.343779i
\(845\) −304.030 + 48.6862i −0.359798 + 0.0576169i
\(846\) 7.10843i 0.00840240i
\(847\) 209.645 + 25.3304i 0.247515 + 0.0299060i
\(848\) 41.0050i 0.0483549i
\(849\) 407.955 706.599i 0.480512 0.832272i
\(850\) 257.879 + 784.536i 0.303387 + 0.922984i
\(851\) −205.970 356.751i −0.242033 0.419214i
\(852\) −164.620 + 285.130i −0.193216 + 0.334659i
\(853\) 350.268 0.410631 0.205315 0.978696i \(-0.434178\pi\)
0.205315 + 0.978696i \(0.434178\pi\)
\(854\) 664.719 885.665i 0.778359 1.03708i
\(855\) −665.200 + 540.553i −0.778012 + 0.632226i
\(856\) −153.846 + 266.468i −0.179726 + 0.311295i
\(857\) −15.1063 26.1649i −0.0176269 0.0305308i 0.857077 0.515188i \(-0.172278\pi\)
−0.874704 + 0.484657i \(0.838944\pi\)
\(858\) −889.950 + 513.813i −1.03724 + 0.598850i
\(859\) 370.864 + 214.119i 0.431740 + 0.249265i 0.700087 0.714057i \(-0.253144\pi\)
−0.268348 + 0.963322i \(0.586478\pi\)
\(860\) −141.664 + 115.118i −0.164725 + 0.133859i
\(861\) −1060.95 796.279i −1.23223 0.924830i
\(862\) 49.8127i 0.0577874i
\(863\) 1021.22 + 589.602i 1.18334 + 0.683200i 0.956784 0.290798i \(-0.0939209\pi\)
0.226553 + 0.973999i \(0.427254\pi\)
\(864\) 177.351 102.394i 0.205267 0.118511i
\(865\) 487.669 1276.94i 0.563779 1.47623i
\(866\) −120.057 69.3150i −0.138634 0.0800404i
\(867\) 1288.37 1.48601
\(868\) −26.0823 + 215.868i −0.0300487 + 0.248696i
\(869\) −870.370 −1.00158
\(870\) 208.000 + 1298.89i 0.239081 + 1.49298i
\(871\) −168.167 + 97.0912i −0.193073 + 0.111471i
\(872\) 150.163 86.6967i 0.172205 0.0994229i
\(873\) 1055.85 1828.79i 1.20946 2.09484i
\(874\) 315.397i 0.360866i
\(875\) −674.241 557.695i −0.770561 0.637366i
\(876\) −605.590 −0.691312
\(877\) 1423.08 + 821.617i 1.62267 + 0.936850i 0.986202 + 0.165548i \(0.0529393\pi\)
0.636470 + 0.771302i \(0.280394\pi\)
\(878\) −290.992 504.014i −0.331426 0.574047i
\(879\) −748.509 1296.45i −0.851546 1.47492i
\(880\) −188.215 + 30.1400i −0.213880 + 0.0342500i
\(881\) 571.268i 0.648431i 0.945983 + 0.324216i \(0.105100\pi\)
−0.945983 + 0.324216i \(0.894900\pi\)
\(882\) −267.540 + 1090.98i −0.303334 + 1.23694i
\(883\) 13.3627i 0.0151333i 0.999971 + 0.00756666i \(0.00240856\pi\)
−0.999971 + 0.00756666i \(0.997591\pi\)
\(884\) −354.689 + 614.340i −0.401232 + 0.694955i
\(885\) −84.1559 32.1395i −0.0950914 0.0363159i
\(886\) 535.995 + 928.370i 0.604960 + 1.04782i
\(887\) 662.731 1147.88i 0.747160 1.29412i −0.202018 0.979382i \(-0.564750\pi\)
0.949179 0.314738i \(-0.101917\pi\)
\(888\) 277.409 0.312397
\(889\) 749.638 319.912i 0.843237 0.359856i
\(890\) −269.473 331.611i −0.302779 0.372597i
\(891\) −170.962 + 296.115i −0.191876 + 0.332340i
\(892\) −66.6389 115.422i −0.0747073 0.129397i
\(893\) −2.83988 + 1.63961i −0.00318016 + 0.00183607i
\(894\) −0.0349554 0.0201815i −3.91000e−5 2.25744e-5i
\(895\) −30.4242 37.4398i −0.0339935 0.0418321i
\(896\) −9.49976 + 78.6241i −0.0106024 + 0.0877502i
\(897\) 1607.85i 1.79247i
\(898\) 61.1735 + 35.3185i 0.0681219 + 0.0393302i
\(899\) −498.354 + 287.725i −0.554343 + 0.320050i
\(900\) −769.975 + 253.092i −0.855528 + 0.281214i
\(901\) −207.369 119.725i −0.230154 0.132880i
\(902\) 508.708 0.563978
\(903\) −513.124 385.116i −0.568244 0.426485i
\(904\) 269.324 0.297925
\(905\) 175.149 + 1093.75i 0.193535 + 1.20856i
\(906\) 1412.99 815.791i 1.55959 0.900431i
\(907\) −417.494 + 241.041i −0.460303 + 0.265756i −0.712171 0.702006i \(-0.752288\pi\)
0.251869 + 0.967761i \(0.418955\pi\)
\(908\) −51.8490 + 89.8052i −0.0571025 + 0.0989044i
\(909\) 2330.73i 2.56406i
\(910\) −28.9647 751.055i −0.0318293 0.825335i
\(911\) 1582.96 1.73761 0.868806 0.495153i \(-0.164888\pi\)
0.868806 + 0.495153i \(0.164888\pi\)
\(912\) −183.939 106.197i −0.201688 0.116444i
\(913\) −494.760 856.949i −0.541906 0.938608i
\(914\) −286.148 495.622i −0.313072 0.542256i
\(915\) 444.044 + 2772.91i 0.485294 + 3.03050i
\(916\) 145.684i 0.159043i
\(917\) −138.564 + 1146.82i −0.151106 + 1.25062i
\(918\) 1195.86i 1.30268i
\(919\) 669.468 1159.55i 0.728474 1.26175i −0.229054 0.973414i \(-0.573563\pi\)
0.957528 0.288340i \(-0.0931034\pi\)
\(920\) −106.403 + 278.611i −0.115655 + 0.302838i
\(921\) 495.491 + 858.215i 0.537992 + 0.931830i
\(922\) −29.3021 + 50.7528i −0.0317811 + 0.0550464i
\(923\) 497.859 0.539392
\(924\) −262.957 616.178i −0.284586 0.666859i
\(925\) −478.019 99.9000i −0.516778 0.108000i
\(926\) 472.892 819.072i 0.510682 0.884527i
\(927\) −434.453 752.494i −0.468665 0.811752i
\(928\) −181.512 + 104.796i −0.195595 + 0.112927i
\(929\) 641.135 + 370.159i 0.690135 + 0.398449i 0.803662 0.595085i \(-0.202882\pi\)
−0.113528 + 0.993535i \(0.536215\pi\)
\(930\) −347.750 427.938i −0.373924 0.460148i
\(931\) 497.564 144.756i 0.534441 0.155485i
\(932\) 275.697i 0.295813i
\(933\) −1393.62 804.604i −1.49369 0.862384i
\(934\) −609.131 + 351.682i −0.652175 + 0.376533i
\(935\) 397.118 1039.83i 0.424725 1.11212i
\(936\) −602.938 348.106i −0.644164 0.371909i
\(937\) −272.107 −0.290402 −0.145201 0.989402i \(-0.546383\pi\)
−0.145201 + 0.989402i \(0.546383\pi\)
\(938\) −49.6890 116.434i −0.0529733 0.124130i
\(939\) 1088.58 1.15930
\(940\) −3.06179 + 0.490304i −0.00325722 + 0.000521600i
\(941\) 203.843 117.689i 0.216623 0.125068i −0.387762 0.921759i \(-0.626752\pi\)
0.604386 + 0.796692i \(0.293419\pi\)
\(942\) 271.300 156.635i 0.288005 0.166279i
\(943\) 397.968 689.302i 0.422024 0.730967i
\(944\) 14.3533i 0.0152048i
\(945\) −675.344 1072.07i −0.714650 1.13447i
\(946\) 246.034 0.260078
\(947\) 526.514 + 303.983i 0.555981 + 0.320996i 0.751531 0.659698i \(-0.229316\pi\)
−0.195550 + 0.980694i \(0.562649\pi\)
\(948\) −458.532 794.201i −0.483683 0.837764i
\(949\) 457.870 + 793.055i 0.482477 + 0.835674i
\(950\) 278.712 + 249.234i 0.293381 + 0.262352i
\(951\) 1969.20i 2.07066i
\(952\) −369.878 277.605i −0.388528 0.291602i
\(953\) 188.561i 0.197860i −0.995094 0.0989302i \(-0.968458\pi\)
0.995094 0.0989302i \(-0.0315421\pi\)
\(954\) 117.503 203.520i 0.123168 0.213334i
\(955\) −374.272 + 980.013i −0.391908 + 1.02619i
\(956\) −350.640 607.327i −0.366779 0.635279i
\(957\) 886.499 1535.46i 0.926331 1.60445i
\(958\) −626.412 −0.653875
\(959\) −1194.81 896.745i −1.24590 0.935084i
\(960\) −126.658 155.865i −0.131936 0.162359i
\(961\) −359.889 + 623.347i −0.374495 + 0.648644i
\(962\) −209.742 363.283i −0.218027 0.377633i
\(963\) 1527.17 881.710i 1.58584 0.915586i
\(964\) −528.927 305.376i −0.548680 0.316780i
\(965\) −974.880 + 792.204i −1.01024 + 0.820937i
\(966\) −1040.64 125.735i −1.07727 0.130161i
\(967\) 1088.32i 1.12546i −0.826640 0.562732i \(-0.809750\pi\)
0.826640 0.562732i \(-0.190250\pi\)
\(968\) −73.8941 42.6628i −0.0763369 0.0440731i
\(969\) 1074.11 620.140i 1.10848 0.639980i
\(970\) −860.537 328.643i −0.887151 0.338807i
\(971\) −164.230 94.8183i −0.169135 0.0976501i 0.413043 0.910712i \(-0.364466\pi\)
−0.582178 + 0.813061i \(0.697799\pi\)
\(972\) 291.362 0.299755
\(973\) 341.788 145.860i 0.351272 0.149907i
\(974\) 158.872 0.163113
\(975\) 1420.84 + 1270.56i 1.45727 + 1.30314i
\(976\) −387.496 + 223.721i −0.397025 + 0.229222i
\(977\) −687.092 + 396.693i −0.703267 + 0.406032i −0.808563 0.588409i \(-0.799754\pi\)
0.105296 + 0.994441i \(0.466421\pi\)
\(978\) −108.459 + 187.857i −0.110899 + 0.192083i
\(979\) 575.924i 0.588278i
\(980\) 488.366 + 39.9865i 0.498332 + 0.0408025i
\(981\) −993.741 −1.01299
\(982\) 829.369 + 478.837i 0.844572 + 0.487614i
\(983\) −26.9121 46.6132i −0.0273775 0.0474193i 0.852012 0.523522i \(-0.175382\pi\)
−0.879390 + 0.476103i \(0.842049\pi\)
\(984\) 268.000 + 464.189i 0.272357 + 0.471737i
\(985\) 101.824 + 635.860i 0.103375 + 0.645543i
\(986\) 1223.92i 1.24129i
\(987\) −4.27767 10.0237i −0.00433401 0.0101557i
\(988\) 321.172i 0.325073i
\(989\) 192.475 333.377i 0.194616 0.337085i
\(990\) 1020.54 + 389.747i 1.03084 + 0.393684i
\(991\) 718.340 + 1244.20i 0.724864 + 1.25550i 0.959030 + 0.283304i \(0.0914306\pi\)
−0.234166 + 0.972197i \(0.575236\pi\)
\(992\) 43.9292 76.0875i 0.0442834 0.0767012i
\(993\) −1725.80 −1.73797
\(994\) −38.9329 + 322.226i −0.0391680 + 0.324171i
\(995\) 776.870 631.298i 0.780774 0.634470i
\(996\) 521.303 902.923i 0.523397 0.906550i
\(997\) 110.002 + 190.529i 0.110333 + 0.191102i 0.915905 0.401396i \(-0.131475\pi\)
−0.805572 + 0.592499i \(0.798142\pi\)
\(998\) 1129.74 652.257i 1.13201 0.653564i
\(999\) −612.417 353.579i −0.613030 0.353933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.3.h.a.19.1 16
3.2 odd 2 630.3.bc.a.19.8 16
4.3 odd 2 560.3.br.b.369.8 16
5.2 odd 4 350.3.k.e.201.5 16
5.3 odd 4 350.3.k.e.201.4 16
5.4 even 2 inner 70.3.h.a.19.8 yes 16
7.2 even 3 490.3.d.a.489.16 16
7.3 odd 6 inner 70.3.h.a.59.8 yes 16
7.4 even 3 490.3.h.b.129.5 16
7.5 odd 6 490.3.d.a.489.9 16
7.6 odd 2 490.3.h.b.19.4 16
15.14 odd 2 630.3.bc.a.19.3 16
20.19 odd 2 560.3.br.b.369.1 16
21.17 even 6 630.3.bc.a.199.3 16
28.3 even 6 560.3.br.b.129.1 16
35.3 even 12 350.3.k.e.101.4 16
35.4 even 6 490.3.h.b.129.4 16
35.9 even 6 490.3.d.a.489.1 16
35.17 even 12 350.3.k.e.101.5 16
35.19 odd 6 490.3.d.a.489.8 16
35.24 odd 6 inner 70.3.h.a.59.1 yes 16
35.34 odd 2 490.3.h.b.19.5 16
105.59 even 6 630.3.bc.a.199.8 16
140.59 even 6 560.3.br.b.129.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.1 16 1.1 even 1 trivial
70.3.h.a.19.8 yes 16 5.4 even 2 inner
70.3.h.a.59.1 yes 16 35.24 odd 6 inner
70.3.h.a.59.8 yes 16 7.3 odd 6 inner
350.3.k.e.101.4 16 35.3 even 12
350.3.k.e.101.5 16 35.17 even 12
350.3.k.e.201.4 16 5.3 odd 4
350.3.k.e.201.5 16 5.2 odd 4
490.3.d.a.489.1 16 35.9 even 6
490.3.d.a.489.8 16 35.19 odd 6
490.3.d.a.489.9 16 7.5 odd 6
490.3.d.a.489.16 16 7.2 even 3
490.3.h.b.19.4 16 7.6 odd 2
490.3.h.b.19.5 16 35.34 odd 2
490.3.h.b.129.4 16 35.4 even 6
490.3.h.b.129.5 16 7.4 even 3
560.3.br.b.129.1 16 28.3 even 6
560.3.br.b.129.8 16 140.59 even 6
560.3.br.b.369.1 16 20.19 odd 2
560.3.br.b.369.8 16 4.3 odd 2
630.3.bc.a.19.3 16 15.14 odd 2
630.3.bc.a.19.8 16 3.2 odd 2
630.3.bc.a.199.3 16 21.17 even 6
630.3.bc.a.199.8 16 105.59 even 6