Properties

Label 560.3.br.b.369.8
Level $560$
Weight $3$
Character 560.369
Analytic conductor $15.259$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(129,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.129"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.br (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 42x^{14} + 1322x^{12} + 17616x^{10} + 175407x^{8} + 205392x^{6} + 203018x^{4} + 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 369.8
Root \(2.51048 - 4.34828i\) of defining polynomial
Character \(\chi\) \(=\) 560.369
Dual form 560.3.br.b.129.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.51048 + 4.34828i) q^{3} +(-4.93710 + 0.790609i) q^{5} +(-2.74755 - 6.43824i) q^{7} +(-8.10505 + 14.0384i) q^{9} +(4.76531 + 8.25377i) q^{11} -15.1849 q^{13} +(-15.8323 - 19.4831i) q^{15} +(-11.6790 - 20.2287i) q^{17} +(9.15855 + 5.28769i) q^{19} +(21.0976 - 28.1102i) q^{21} +(-18.2632 - 10.5443i) q^{23} +(23.7499 - 7.80663i) q^{25} -36.2016 q^{27} -37.0510 q^{29} +(-13.4505 + 7.76565i) q^{31} +(-23.9265 + 41.4419i) q^{33} +(18.6551 + 29.6140i) q^{35} +(-16.9168 - 9.76693i) q^{37} +(-38.1214 - 66.0282i) q^{39} -37.7426i q^{41} +18.2540i q^{43} +(28.9166 - 75.7167i) q^{45} +(-0.155040 + 0.268537i) q^{47} +(-33.9019 + 35.3788i) q^{49} +(58.6400 - 101.567i) q^{51} +(8.87784 - 5.12562i) q^{53} +(-30.0523 - 36.9821i) q^{55} +53.0986i q^{57} +(3.10758 - 1.79416i) q^{59} +(96.8741 + 55.9303i) q^{61} +(112.651 + 13.6111i) q^{63} +(74.9693 - 12.0053i) q^{65} +(-11.0746 + 6.39394i) q^{67} -105.885i q^{69} +32.7865 q^{71} +(-30.1530 - 52.2266i) q^{73} +(93.5691 + 83.6728i) q^{75} +(40.0468 - 53.3579i) q^{77} +(-45.6617 + 79.0884i) q^{79} +(-17.9382 - 31.0698i) q^{81} -103.825 q^{83} +(73.6535 + 90.6374i) q^{85} +(-93.0158 - 161.108i) q^{87} +(-52.3329 - 30.2144i) q^{89} +(41.7213 + 97.7639i) q^{91} +(-67.5345 - 38.9911i) q^{93} +(-49.3972 - 18.8650i) q^{95} -130.271 q^{97} -154.492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{5} - 12 q^{9} + 12 q^{11} + 28 q^{15} + 12 q^{19} - 8 q^{21} - 42 q^{25} - 136 q^{29} - 84 q^{31} + 190 q^{35} - 312 q^{39} + 384 q^{45} + 296 q^{49} + 76 q^{51} + 372 q^{59} + 348 q^{61} - 104 q^{65}+ \cdots - 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.51048 + 4.34828i 0.836828 + 1.44943i 0.892534 + 0.450981i \(0.148926\pi\)
−0.0557061 + 0.998447i \(0.517741\pi\)
\(4\) 0 0
\(5\) −4.93710 + 0.790609i −0.987420 + 0.158122i
\(6\) 0 0
\(7\) −2.74755 6.43824i −0.392508 0.919749i
\(8\) 0 0
\(9\) −8.10505 + 14.0384i −0.900561 + 1.55982i
\(10\) 0 0
\(11\) 4.76531 + 8.25377i 0.433210 + 0.750342i 0.997148 0.0754753i \(-0.0240474\pi\)
−0.563937 + 0.825818i \(0.690714\pi\)
\(12\) 0 0
\(13\) −15.1849 −1.16807 −0.584034 0.811729i \(-0.698527\pi\)
−0.584034 + 0.811729i \(0.698527\pi\)
\(14\) 0 0
\(15\) −15.8323 19.4831i −1.05549 1.29887i
\(16\) 0 0
\(17\) −11.6790 20.2287i −0.687002 1.18992i −0.972803 0.231633i \(-0.925593\pi\)
0.285802 0.958289i \(-0.407740\pi\)
\(18\) 0 0
\(19\) 9.15855 + 5.28769i 0.482029 + 0.278300i 0.721262 0.692663i \(-0.243563\pi\)
−0.239233 + 0.970962i \(0.576896\pi\)
\(20\) 0 0
\(21\) 21.0976 28.1102i 1.00465 1.33858i
\(22\) 0 0
\(23\) −18.2632 10.5443i −0.794053 0.458447i 0.0473345 0.998879i \(-0.484927\pi\)
−0.841387 + 0.540432i \(0.818261\pi\)
\(24\) 0 0
\(25\) 23.7499 7.80663i 0.949995 0.312265i
\(26\) 0 0
\(27\) −36.2016 −1.34080
\(28\) 0 0
\(29\) −37.0510 −1.27762 −0.638810 0.769365i \(-0.720573\pi\)
−0.638810 + 0.769365i \(0.720573\pi\)
\(30\) 0 0
\(31\) −13.4505 + 7.76565i −0.433887 + 0.250505i −0.701001 0.713160i \(-0.747263\pi\)
0.267114 + 0.963665i \(0.413930\pi\)
\(32\) 0 0
\(33\) −23.9265 + 41.4419i −0.725045 + 1.25581i
\(34\) 0 0
\(35\) 18.6551 + 29.6140i 0.533002 + 0.846114i
\(36\) 0 0
\(37\) −16.9168 9.76693i −0.457212 0.263971i 0.253660 0.967294i \(-0.418366\pi\)
−0.710871 + 0.703322i \(0.751699\pi\)
\(38\) 0 0
\(39\) −38.1214 66.0282i −0.977471 1.69303i
\(40\) 0 0
\(41\) 37.7426i 0.920552i −0.887776 0.460276i \(-0.847751\pi\)
0.887776 0.460276i \(-0.152249\pi\)
\(42\) 0 0
\(43\) 18.2540i 0.424512i 0.977214 + 0.212256i \(0.0680810\pi\)
−0.977214 + 0.212256i \(0.931919\pi\)
\(44\) 0 0
\(45\) 28.9166 75.7167i 0.642590 1.68259i
\(46\) 0 0
\(47\) −0.155040 + 0.268537i −0.00329872 + 0.00571355i −0.867670 0.497141i \(-0.834383\pi\)
0.864371 + 0.502854i \(0.167717\pi\)
\(48\) 0 0
\(49\) −33.9019 + 35.3788i −0.691875 + 0.722017i
\(50\) 0 0
\(51\) 58.6400 101.567i 1.14980 1.99152i
\(52\) 0 0
\(53\) 8.87784 5.12562i 0.167506 0.0967099i −0.413903 0.910321i \(-0.635835\pi\)
0.581410 + 0.813611i \(0.302501\pi\)
\(54\) 0 0
\(55\) −30.0523 36.9821i −0.546406 0.672403i
\(56\) 0 0
\(57\) 53.0986i 0.931555i
\(58\) 0 0
\(59\) 3.10758 1.79416i 0.0526708 0.0304095i −0.473433 0.880830i \(-0.656986\pi\)
0.526104 + 0.850420i \(0.323652\pi\)
\(60\) 0 0
\(61\) 96.8741 + 55.9303i 1.58810 + 0.916890i 0.993620 + 0.112779i \(0.0359753\pi\)
0.594480 + 0.804111i \(0.297358\pi\)
\(62\) 0 0
\(63\) 112.651 + 13.6111i 1.78812 + 0.216049i
\(64\) 0 0
\(65\) 74.9693 12.0053i 1.15337 0.184697i
\(66\) 0 0
\(67\) −11.0746 + 6.39394i −0.165293 + 0.0954319i −0.580364 0.814357i \(-0.697090\pi\)
0.415072 + 0.909789i \(0.363757\pi\)
\(68\) 0 0
\(69\) 105.885i 1.53456i
\(70\) 0 0
\(71\) 32.7865 0.461781 0.230891 0.972980i \(-0.425836\pi\)
0.230891 + 0.972980i \(0.425836\pi\)
\(72\) 0 0
\(73\) −30.1530 52.2266i −0.413055 0.715433i 0.582167 0.813069i \(-0.302205\pi\)
−0.995222 + 0.0976365i \(0.968872\pi\)
\(74\) 0 0
\(75\) 93.5691 + 83.6728i 1.24759 + 1.11564i
\(76\) 0 0
\(77\) 40.0468 53.3579i 0.520088 0.692960i
\(78\) 0 0
\(79\) −45.6617 + 79.0884i −0.577997 + 1.00112i 0.417712 + 0.908579i \(0.362832\pi\)
−0.995709 + 0.0925400i \(0.970501\pi\)
\(80\) 0 0
\(81\) −17.9382 31.0698i −0.221459 0.383578i
\(82\) 0 0
\(83\) −103.825 −1.25091 −0.625453 0.780262i \(-0.715086\pi\)
−0.625453 + 0.780262i \(0.715086\pi\)
\(84\) 0 0
\(85\) 73.6535 + 90.6374i 0.866512 + 1.06632i
\(86\) 0 0
\(87\) −93.0158 161.108i −1.06915 1.85182i
\(88\) 0 0
\(89\) −52.3329 30.2144i −0.588010 0.339488i 0.176300 0.984336i \(-0.443587\pi\)
−0.764310 + 0.644849i \(0.776920\pi\)
\(90\) 0 0
\(91\) 41.7213 + 97.7639i 0.458476 + 1.07433i
\(92\) 0 0
\(93\) −67.5345 38.9911i −0.726178 0.419259i
\(94\) 0 0
\(95\) −49.3972 18.8650i −0.519970 0.198579i
\(96\) 0 0
\(97\) −130.271 −1.34300 −0.671501 0.741003i \(-0.734350\pi\)
−0.671501 + 0.741003i \(0.734350\pi\)
\(98\) 0 0
\(99\) −154.492 −1.56053
\(100\) 0 0
\(101\) −124.520 + 71.8914i −1.23287 + 0.711796i −0.967627 0.252386i \(-0.918785\pi\)
−0.265241 + 0.964182i \(0.585451\pi\)
\(102\) 0 0
\(103\) 26.8014 46.4213i 0.260207 0.450692i −0.706090 0.708123i \(-0.749542\pi\)
0.966297 + 0.257430i \(0.0828757\pi\)
\(104\) 0 0
\(105\) −81.9367 + 155.463i −0.780350 + 1.48060i
\(106\) 0 0
\(107\) 94.2108 + 54.3926i 0.880475 + 0.508342i 0.870815 0.491611i \(-0.163592\pi\)
0.00965987 + 0.999953i \(0.496925\pi\)
\(108\) 0 0
\(109\) 30.6519 + 53.0907i 0.281210 + 0.487071i 0.971683 0.236288i \(-0.0759308\pi\)
−0.690473 + 0.723358i \(0.742597\pi\)
\(110\) 0 0
\(111\) 98.0789i 0.883593i
\(112\) 0 0
\(113\) 95.2204i 0.842658i 0.906908 + 0.421329i \(0.138436\pi\)
−0.906908 + 0.421329i \(0.861564\pi\)
\(114\) 0 0
\(115\) 98.5037 + 37.6190i 0.856554 + 0.327122i
\(116\) 0 0
\(117\) 123.074 213.171i 1.05192 1.82197i
\(118\) 0 0
\(119\) −98.1483 + 130.772i −0.824775 + 1.09892i
\(120\) 0 0
\(121\) 15.0836 26.1255i 0.124658 0.215913i
\(122\) 0 0
\(123\) 164.116 94.7522i 1.33427 0.770343i
\(124\) 0 0
\(125\) −111.083 + 57.3190i −0.888668 + 0.458552i
\(126\) 0 0
\(127\) 116.435i 0.916812i 0.888743 + 0.458406i \(0.151580\pi\)
−0.888743 + 0.458406i \(0.848420\pi\)
\(128\) 0 0
\(129\) −79.3736 + 45.8263i −0.615299 + 0.355243i
\(130\) 0 0
\(131\) −142.914 82.5112i −1.09094 0.629857i −0.157116 0.987580i \(-0.550220\pi\)
−0.933828 + 0.357723i \(0.883553\pi\)
\(132\) 0 0
\(133\) 8.87981 73.4932i 0.0667655 0.552580i
\(134\) 0 0
\(135\) 178.731 28.6214i 1.32393 0.212010i
\(136\) 0 0
\(137\) −184.822 + 106.707i −1.34907 + 0.778884i −0.988117 0.153702i \(-0.950880\pi\)
−0.360949 + 0.932586i \(0.617547\pi\)
\(138\) 0 0
\(139\) 53.0872i 0.381922i 0.981598 + 0.190961i \(0.0611604\pi\)
−0.981598 + 0.190961i \(0.938840\pi\)
\(140\) 0 0
\(141\) −1.55690 −0.0110418
\(142\) 0 0
\(143\) −72.3607 125.332i −0.506019 0.876451i
\(144\) 0 0
\(145\) 182.924 29.2928i 1.26155 0.202020i
\(146\) 0 0
\(147\) −238.947 58.5970i −1.62549 0.398619i
\(148\) 0 0
\(149\) −0.00284218 + 0.00492280i −1.90750e−5 + 3.30389e-5i −0.866035 0.499983i \(-0.833339\pi\)
0.866016 + 0.500017i \(0.166673\pi\)
\(150\) 0 0
\(151\) 114.888 + 198.993i 0.760851 + 1.31783i 0.942412 + 0.334453i \(0.108552\pi\)
−0.181562 + 0.983380i \(0.558115\pi\)
\(152\) 0 0
\(153\) 378.636 2.47475
\(154\) 0 0
\(155\) 60.2669 48.9739i 0.388818 0.315961i
\(156\) 0 0
\(157\) −22.0591 38.2074i −0.140504 0.243360i 0.787183 0.616720i \(-0.211539\pi\)
−0.927686 + 0.373360i \(0.878206\pi\)
\(158\) 0 0
\(159\) 44.5753 + 25.7356i 0.280348 + 0.161859i
\(160\) 0 0
\(161\) −17.7074 + 146.554i −0.109984 + 0.910273i
\(162\) 0 0
\(163\) −26.4560 15.2744i −0.162307 0.0937079i 0.416646 0.909069i \(-0.363205\pi\)
−0.578953 + 0.815361i \(0.696539\pi\)
\(164\) 0 0
\(165\) 85.3630 223.519i 0.517352 1.35466i
\(166\) 0 0
\(167\) −102.148 −0.611665 −0.305833 0.952085i \(-0.598935\pi\)
−0.305833 + 0.952085i \(0.598935\pi\)
\(168\) 0 0
\(169\) 61.5807 0.364383
\(170\) 0 0
\(171\) −148.461 + 85.7140i −0.868193 + 0.501251i
\(172\) 0 0
\(173\) −136.689 + 236.753i −0.790111 + 1.36851i 0.135787 + 0.990738i \(0.456644\pi\)
−0.925898 + 0.377774i \(0.876689\pi\)
\(174\) 0 0
\(175\) −115.515 131.458i −0.660086 0.751190i
\(176\) 0 0
\(177\) 15.6030 + 9.00842i 0.0881528 + 0.0508950i
\(178\) 0 0
\(179\) −4.82428 8.35590i −0.0269513 0.0466810i 0.852235 0.523159i \(-0.175247\pi\)
−0.879186 + 0.476478i \(0.841913\pi\)
\(180\) 0 0
\(181\) 221.537i 1.22396i −0.790873 0.611980i \(-0.790373\pi\)
0.790873 0.611980i \(-0.209627\pi\)
\(182\) 0 0
\(183\) 561.648i 3.06911i
\(184\) 0 0
\(185\) 91.2419 + 34.8457i 0.493199 + 0.188355i
\(186\) 0 0
\(187\) 111.308 192.792i 0.595232 1.03097i
\(188\) 0 0
\(189\) 99.4660 + 233.075i 0.526275 + 1.23320i
\(190\) 0 0
\(191\) −104.905 + 181.701i −0.549241 + 0.951313i 0.449086 + 0.893489i \(0.351750\pi\)
−0.998327 + 0.0578244i \(0.981584\pi\)
\(192\) 0 0
\(193\) 217.576 125.618i 1.12734 0.650868i 0.184073 0.982913i \(-0.441072\pi\)
0.943264 + 0.332044i \(0.107738\pi\)
\(194\) 0 0
\(195\) 240.412 + 295.848i 1.23288 + 1.51717i
\(196\) 0 0
\(197\) 128.792i 0.653768i −0.945065 0.326884i \(-0.894001\pi\)
0.945065 0.326884i \(-0.105999\pi\)
\(198\) 0 0
\(199\) 173.384 100.103i 0.871275 0.503031i 0.00350309 0.999994i \(-0.498885\pi\)
0.867772 + 0.496963i \(0.165552\pi\)
\(200\) 0 0
\(201\) −55.6053 32.1037i −0.276643 0.159720i
\(202\) 0 0
\(203\) 101.800 + 238.543i 0.501476 + 1.17509i
\(204\) 0 0
\(205\) 29.8397 + 186.339i 0.145559 + 0.908971i
\(206\) 0 0
\(207\) 296.048 170.924i 1.43019 0.825718i
\(208\) 0 0
\(209\) 100.790i 0.482249i
\(210\) 0 0
\(211\) −167.518 −0.793924 −0.396962 0.917835i \(-0.629936\pi\)
−0.396962 + 0.917835i \(0.629936\pi\)
\(212\) 0 0
\(213\) 82.3099 + 142.565i 0.386431 + 0.669319i
\(214\) 0 0
\(215\) −14.4318 90.1218i −0.0671246 0.419171i
\(216\) 0 0
\(217\) 86.9531 + 65.2610i 0.400706 + 0.300742i
\(218\) 0 0
\(219\) 151.397 262.228i 0.691312 1.19739i
\(220\) 0 0
\(221\) 177.345 + 307.170i 0.802465 + 1.38991i
\(222\) 0 0
\(223\) 66.6389 0.298829 0.149415 0.988775i \(-0.452261\pi\)
0.149415 + 0.988775i \(0.452261\pi\)
\(224\) 0 0
\(225\) −82.9016 + 396.682i −0.368452 + 1.76303i
\(226\) 0 0
\(227\) −25.9245 44.9026i −0.114205 0.197809i 0.803257 0.595633i \(-0.203099\pi\)
−0.917462 + 0.397824i \(0.869765\pi\)
\(228\) 0 0
\(229\) 63.0828 + 36.4209i 0.275471 + 0.159043i 0.631371 0.775481i \(-0.282492\pi\)
−0.355900 + 0.934524i \(0.615826\pi\)
\(230\) 0 0
\(231\) 332.552 + 40.1806i 1.43962 + 0.173942i
\(232\) 0 0
\(233\) 119.380 + 68.9243i 0.512362 + 0.295813i 0.733804 0.679361i \(-0.237743\pi\)
−0.221442 + 0.975174i \(0.571076\pi\)
\(234\) 0 0
\(235\) 0.553139 1.44837i 0.00235378 0.00616327i
\(236\) 0 0
\(237\) −458.532 −1.93473
\(238\) 0 0
\(239\) 350.640 1.46711 0.733557 0.679628i \(-0.237859\pi\)
0.733557 + 0.679628i \(0.237859\pi\)
\(240\) 0 0
\(241\) −264.464 + 152.688i −1.09736 + 0.633561i −0.935526 0.353257i \(-0.885074\pi\)
−0.161833 + 0.986818i \(0.551741\pi\)
\(242\) 0 0
\(243\) −72.8405 + 126.163i −0.299755 + 0.519191i
\(244\) 0 0
\(245\) 139.406 201.472i 0.569004 0.822334i
\(246\) 0 0
\(247\) −139.072 80.2930i −0.563043 0.325073i
\(248\) 0 0
\(249\) −260.652 451.462i −1.04679 1.81310i
\(250\) 0 0
\(251\) 419.508i 1.67135i −0.549228 0.835673i \(-0.685078\pi\)
0.549228 0.835673i \(-0.314922\pi\)
\(252\) 0 0
\(253\) 200.987i 0.794415i
\(254\) 0 0
\(255\) −209.211 + 547.810i −0.820436 + 2.14827i
\(256\) 0 0
\(257\) 3.64460 6.31263i 0.0141813 0.0245628i −0.858848 0.512231i \(-0.828819\pi\)
0.873029 + 0.487668i \(0.162152\pi\)
\(258\) 0 0
\(259\) −16.4020 + 135.750i −0.0633280 + 0.524130i
\(260\) 0 0
\(261\) 300.300 520.135i 1.15057 1.99285i
\(262\) 0 0
\(263\) 118.435 68.3785i 0.450323 0.259994i −0.257643 0.966240i \(-0.582946\pi\)
0.707967 + 0.706246i \(0.249613\pi\)
\(264\) 0 0
\(265\) −39.7784 + 32.3246i −0.150107 + 0.121980i
\(266\) 0 0
\(267\) 303.411i 1.13637i
\(268\) 0 0
\(269\) 216.274 124.866i 0.803993 0.464186i −0.0408722 0.999164i \(-0.513014\pi\)
0.844866 + 0.534979i \(0.179680\pi\)
\(270\) 0 0
\(271\) 388.441 + 224.266i 1.43336 + 0.827551i 0.997375 0.0724033i \(-0.0230669\pi\)
0.435985 + 0.899954i \(0.356400\pi\)
\(272\) 0 0
\(273\) −320.365 + 426.851i −1.17350 + 1.56356i
\(274\) 0 0
\(275\) 177.610 + 158.825i 0.645853 + 0.577545i
\(276\) 0 0
\(277\) 424.679 245.188i 1.53314 0.885157i 0.533922 0.845534i \(-0.320718\pi\)
0.999215 0.0396228i \(-0.0126156\pi\)
\(278\) 0 0
\(279\) 251.764i 0.902380i
\(280\) 0 0
\(281\) −54.0733 −0.192432 −0.0962158 0.995360i \(-0.530674\pi\)
−0.0962158 + 0.995360i \(0.530674\pi\)
\(282\) 0 0
\(283\) −81.2503 140.730i −0.287104 0.497278i 0.686014 0.727589i \(-0.259359\pi\)
−0.973117 + 0.230311i \(0.926026\pi\)
\(284\) 0 0
\(285\) −41.9803 262.153i −0.147299 0.919836i
\(286\) 0 0
\(287\) −242.996 + 103.700i −0.846676 + 0.361324i
\(288\) 0 0
\(289\) −128.299 + 222.221i −0.443942 + 0.768931i
\(290\) 0 0
\(291\) −327.044 566.456i −1.12386 1.94659i
\(292\) 0 0
\(293\) 298.153 1.01759 0.508794 0.860888i \(-0.330091\pi\)
0.508794 + 0.860888i \(0.330091\pi\)
\(294\) 0 0
\(295\) −13.9239 + 11.3148i −0.0471998 + 0.0383553i
\(296\) 0 0
\(297\) −172.512 298.800i −0.580849 1.00606i
\(298\) 0 0
\(299\) 277.325 + 160.114i 0.927508 + 0.535497i
\(300\) 0 0
\(301\) 117.524 50.1539i 0.390444 0.166624i
\(302\) 0 0
\(303\) −625.209 360.964i −2.06339 1.19130i
\(304\) 0 0
\(305\) −522.496 199.544i −1.71310 0.654242i
\(306\) 0 0
\(307\) 197.369 0.642895 0.321447 0.946927i \(-0.395831\pi\)
0.321447 + 0.946927i \(0.395831\pi\)
\(308\) 0 0
\(309\) 269.137 0.870995
\(310\) 0 0
\(311\) −277.559 + 160.249i −0.892474 + 0.515270i −0.874751 0.484573i \(-0.838975\pi\)
−0.0177229 + 0.999843i \(0.505642\pi\)
\(312\) 0 0
\(313\) −108.403 + 187.760i −0.346337 + 0.599873i −0.985596 0.169119i \(-0.945908\pi\)
0.639259 + 0.768992i \(0.279241\pi\)
\(314\) 0 0
\(315\) −566.932 + 21.8639i −1.79978 + 0.0694092i
\(316\) 0 0
\(317\) −339.651 196.098i −1.07145 0.618605i −0.142876 0.989741i \(-0.545635\pi\)
−0.928579 + 0.371136i \(0.878968\pi\)
\(318\) 0 0
\(319\) −176.560 305.810i −0.553478 0.958652i
\(320\) 0 0
\(321\) 546.207i 1.70158i
\(322\) 0 0
\(323\) 247.020i 0.764769i
\(324\) 0 0
\(325\) −360.639 + 118.543i −1.10966 + 0.364747i
\(326\) 0 0
\(327\) −153.902 + 266.567i −0.470649 + 0.815188i
\(328\) 0 0
\(329\) 2.15489 + 0.260364i 0.00654981 + 0.000791380i
\(330\) 0 0
\(331\) −171.860 + 297.670i −0.519214 + 0.899304i 0.480537 + 0.876974i \(0.340442\pi\)
−0.999751 + 0.0223298i \(0.992892\pi\)
\(332\) 0 0
\(333\) 274.223 158.323i 0.823494 0.475444i
\(334\) 0 0
\(335\) 49.6214 40.3232i 0.148124 0.120368i
\(336\) 0 0
\(337\) 86.0226i 0.255260i 0.991822 + 0.127630i \(0.0407370\pi\)
−0.991822 + 0.127630i \(0.959263\pi\)
\(338\) 0 0
\(339\) −414.045 + 239.049i −1.22137 + 0.705159i
\(340\) 0 0
\(341\) −128.192 74.0115i −0.375929 0.217043i
\(342\) 0 0
\(343\) 320.925 + 121.063i 0.935641 + 0.352954i
\(344\) 0 0
\(345\) 83.7136 + 522.764i 0.242648 + 1.51526i
\(346\) 0 0
\(347\) −531.356 + 306.778i −1.53129 + 0.884088i −0.531982 + 0.846756i \(0.678553\pi\)
−0.999303 + 0.0373324i \(0.988114\pi\)
\(348\) 0 0
\(349\) 202.068i 0.578990i −0.957180 0.289495i \(-0.906513\pi\)
0.957180 0.289495i \(-0.0934874\pi\)
\(350\) 0 0
\(351\) 549.718 1.56615
\(352\) 0 0
\(353\) −255.952 443.323i −0.725078 1.25587i −0.958942 0.283602i \(-0.908470\pi\)
0.233864 0.972269i \(-0.424863\pi\)
\(354\) 0 0
\(355\) −161.870 + 25.9213i −0.455972 + 0.0730177i
\(356\) 0 0
\(357\) −815.032 98.4762i −2.28300 0.275844i
\(358\) 0 0
\(359\) −79.2023 + 137.182i −0.220619 + 0.382124i −0.954996 0.296618i \(-0.904141\pi\)
0.734377 + 0.678742i \(0.237475\pi\)
\(360\) 0 0
\(361\) −124.581 215.780i −0.345099 0.597729i
\(362\) 0 0
\(363\) 151.468 0.417268
\(364\) 0 0
\(365\) 190.159 + 234.009i 0.520985 + 0.641119i
\(366\) 0 0
\(367\) −163.167 282.613i −0.444596 0.770062i 0.553428 0.832897i \(-0.313319\pi\)
−0.998024 + 0.0628347i \(0.979986\pi\)
\(368\) 0 0
\(369\) 529.844 + 305.906i 1.43589 + 0.829013i
\(370\) 0 0
\(371\) −57.3923 43.0747i −0.154696 0.116104i
\(372\) 0 0
\(373\) −252.630 145.856i −0.677292 0.391035i 0.121542 0.992586i \(-0.461216\pi\)
−0.798834 + 0.601551i \(0.794549\pi\)
\(374\) 0 0
\(375\) −528.112 339.124i −1.40830 0.904331i
\(376\) 0 0
\(377\) 562.615 1.49235
\(378\) 0 0
\(379\) 677.228 1.78688 0.893441 0.449181i \(-0.148284\pi\)
0.893441 + 0.449181i \(0.148284\pi\)
\(380\) 0 0
\(381\) −506.293 + 292.309i −1.32885 + 0.767214i
\(382\) 0 0
\(383\) −124.602 + 215.817i −0.325332 + 0.563491i −0.981579 0.191055i \(-0.938809\pi\)
0.656248 + 0.754545i \(0.272143\pi\)
\(384\) 0 0
\(385\) −155.530 + 295.095i −0.403973 + 0.766479i
\(386\) 0 0
\(387\) −256.256 147.950i −0.662160 0.382298i
\(388\) 0 0
\(389\) 14.3803 + 24.9074i 0.0369673 + 0.0640293i 0.883917 0.467644i \(-0.154897\pi\)
−0.846950 + 0.531673i \(0.821564\pi\)
\(390\) 0 0
\(391\) 492.587i 1.25981i
\(392\) 0 0
\(393\) 828.572i 2.10833i
\(394\) 0 0
\(395\) 162.908 426.568i 0.412426 1.07992i
\(396\) 0 0
\(397\) −126.465 + 219.043i −0.318550 + 0.551746i −0.980186 0.198080i \(-0.936529\pi\)
0.661635 + 0.749826i \(0.269863\pi\)
\(398\) 0 0
\(399\) 341.862 145.891i 0.856796 0.365643i
\(400\) 0 0
\(401\) 103.441 179.165i 0.257958 0.446796i −0.707737 0.706476i \(-0.750284\pi\)
0.965695 + 0.259680i \(0.0836171\pi\)
\(402\) 0 0
\(403\) 204.244 117.921i 0.506810 0.292607i
\(404\) 0 0
\(405\) 113.126 + 139.213i 0.279325 + 0.343735i
\(406\) 0 0
\(407\) 186.170i 0.457420i
\(408\) 0 0
\(409\) 577.695 333.532i 1.41246 0.815483i 0.416838 0.908981i \(-0.363138\pi\)
0.995619 + 0.0934983i \(0.0298050\pi\)
\(410\) 0 0
\(411\) −927.985 535.773i −2.25787 1.30358i
\(412\) 0 0
\(413\) −20.0895 15.0778i −0.0486428 0.0365079i
\(414\) 0 0
\(415\) 512.595 82.0852i 1.23517 0.197796i
\(416\) 0 0
\(417\) −230.838 + 133.274i −0.553569 + 0.319603i
\(418\) 0 0
\(419\) 82.9914i 0.198070i −0.995084 0.0990350i \(-0.968424\pi\)
0.995084 0.0990350i \(-0.0315756\pi\)
\(420\) 0 0
\(421\) 155.483 0.369319 0.184659 0.982803i \(-0.440882\pi\)
0.184659 + 0.982803i \(0.440882\pi\)
\(422\) 0 0
\(423\) −2.51321 4.35301i −0.00594140 0.0102908i
\(424\) 0 0
\(425\) −435.293 389.254i −1.02422 0.915893i
\(426\) 0 0
\(427\) 93.9257 777.370i 0.219967 1.82054i
\(428\) 0 0
\(429\) 363.321 629.290i 0.846901 1.46688i
\(430\) 0 0
\(431\) −17.6114 30.5039i −0.0408618 0.0707748i 0.844871 0.534970i \(-0.179677\pi\)
−0.885733 + 0.464195i \(0.846344\pi\)
\(432\) 0 0
\(433\) 98.0262 0.226388 0.113194 0.993573i \(-0.463892\pi\)
0.113194 + 0.993573i \(0.463892\pi\)
\(434\) 0 0
\(435\) 586.602 + 721.867i 1.34851 + 1.65947i
\(436\) 0 0
\(437\) −111.510 193.141i −0.255171 0.441969i
\(438\) 0 0
\(439\) −356.391 205.763i −0.811826 0.468708i 0.0357638 0.999360i \(-0.488614\pi\)
−0.847589 + 0.530653i \(0.821947\pi\)
\(440\) 0 0
\(441\) −221.884 762.674i −0.503139 1.72942i
\(442\) 0 0
\(443\) 656.457 + 379.006i 1.48184 + 0.855543i 0.999788 0.0205969i \(-0.00655665\pi\)
0.482057 + 0.876140i \(0.339890\pi\)
\(444\) 0 0
\(445\) 282.260 + 107.797i 0.634293 + 0.242239i
\(446\) 0 0
\(447\) −0.0285410 −6.38500e−5
\(448\) 0 0
\(449\) −49.9480 −0.111243 −0.0556213 0.998452i \(-0.517714\pi\)
−0.0556213 + 0.998452i \(0.517714\pi\)
\(450\) 0 0
\(451\) 311.519 179.855i 0.690729 0.398792i
\(452\) 0 0
\(453\) −576.851 + 999.135i −1.27340 + 2.20560i
\(454\) 0 0
\(455\) −283.275 449.685i −0.622583 0.988318i
\(456\) 0 0
\(457\) 350.458 + 202.337i 0.766866 + 0.442750i 0.831755 0.555142i \(-0.187336\pi\)
−0.0648896 + 0.997892i \(0.520670\pi\)
\(458\) 0 0
\(459\) 422.800 + 732.311i 0.921133 + 1.59545i
\(460\) 0 0
\(461\) 41.4395i 0.0898904i −0.998989 0.0449452i \(-0.985689\pi\)
0.998989 0.0449452i \(-0.0143113\pi\)
\(462\) 0 0
\(463\) 668.770i 1.44443i −0.691670 0.722213i \(-0.743125\pi\)
0.691670 0.722213i \(-0.256875\pi\)
\(464\) 0 0
\(465\) 364.251 + 139.109i 0.783336 + 0.299160i
\(466\) 0 0
\(467\) −248.677 + 430.721i −0.532498 + 0.922314i 0.466782 + 0.884373i \(0.345413\pi\)
−0.999280 + 0.0379417i \(0.987920\pi\)
\(468\) 0 0
\(469\) 71.5939 + 53.7334i 0.152652 + 0.114570i
\(470\) 0 0
\(471\) 110.758 191.838i 0.235155 0.407300i
\(472\) 0 0
\(473\) −150.664 + 86.9860i −0.318529 + 0.183903i
\(474\) 0 0
\(475\) 258.793 + 54.0846i 0.544828 + 0.113862i
\(476\) 0 0
\(477\) 166.174i 0.348372i
\(478\) 0 0
\(479\) −383.598 + 221.470i −0.800830 + 0.462360i −0.843761 0.536718i \(-0.819664\pi\)
0.0429311 + 0.999078i \(0.486330\pi\)
\(480\) 0 0
\(481\) 256.880 + 148.310i 0.534054 + 0.308336i
\(482\) 0 0
\(483\) −681.712 + 290.924i −1.41141 + 0.602328i
\(484\) 0 0
\(485\) 643.162 102.994i 1.32611 0.212358i
\(486\) 0 0
\(487\) 97.2891 56.1699i 0.199772 0.115339i −0.396777 0.917915i \(-0.629871\pi\)
0.596549 + 0.802576i \(0.296538\pi\)
\(488\) 0 0
\(489\) 153.384i 0.313670i
\(490\) 0 0
\(491\) 677.177 1.37918 0.689590 0.724200i \(-0.257791\pi\)
0.689590 + 0.724200i \(0.257791\pi\)
\(492\) 0 0
\(493\) 432.719 + 749.492i 0.877727 + 1.52027i
\(494\) 0 0
\(495\) 762.744 122.143i 1.54090 0.246754i
\(496\) 0 0
\(497\) −90.0826 211.087i −0.181253 0.424723i
\(498\) 0 0
\(499\) 461.215 798.848i 0.924279 1.60090i 0.131562 0.991308i \(-0.458001\pi\)
0.792717 0.609590i \(-0.208666\pi\)
\(500\) 0 0
\(501\) −256.441 444.169i −0.511858 0.886564i
\(502\) 0 0
\(503\) 136.712 0.271793 0.135896 0.990723i \(-0.456609\pi\)
0.135896 + 0.990723i \(0.456609\pi\)
\(504\) 0 0
\(505\) 557.927 453.381i 1.10481 0.897785i
\(506\) 0 0
\(507\) 154.597 + 267.770i 0.304925 + 0.528146i
\(508\) 0 0
\(509\) −619.262 357.531i −1.21662 0.702418i −0.252430 0.967615i \(-0.581230\pi\)
−0.964194 + 0.265197i \(0.914563\pi\)
\(510\) 0 0
\(511\) −253.400 + 337.628i −0.495891 + 0.660720i
\(512\) 0 0
\(513\) −331.554 191.423i −0.646305 0.373144i
\(514\) 0 0
\(515\) −95.6198 + 250.376i −0.185670 + 0.486167i
\(516\) 0 0
\(517\) −2.95525 −0.00571616
\(518\) 0 0
\(519\) −1372.62 −2.64475
\(520\) 0 0
\(521\) 14.6765 8.47346i 0.0281698 0.0162638i −0.485849 0.874043i \(-0.661490\pi\)
0.514019 + 0.857779i \(0.328156\pi\)
\(522\) 0 0
\(523\) −351.622 + 609.027i −0.672317 + 1.16449i 0.304928 + 0.952375i \(0.401368\pi\)
−0.977245 + 0.212113i \(0.931966\pi\)
\(524\) 0 0
\(525\) 281.619 832.316i 0.536418 1.58536i
\(526\) 0 0
\(527\) 314.178 + 181.391i 0.596162 + 0.344195i
\(528\) 0 0
\(529\) −42.1366 72.9828i −0.0796533 0.137964i
\(530\) 0 0
\(531\) 58.1670i 0.109542i
\(532\) 0 0
\(533\) 573.117i 1.07527i
\(534\) 0 0
\(535\) −508.131 194.058i −0.949778 0.362725i
\(536\) 0 0
\(537\) 24.2225 41.9547i 0.0451071 0.0781279i
\(538\) 0 0
\(539\) −453.562 111.227i −0.841488 0.206358i
\(540\) 0 0
\(541\) −473.725 + 820.515i −0.875647 + 1.51666i −0.0195742 + 0.999808i \(0.506231\pi\)
−0.856072 + 0.516856i \(0.827102\pi\)
\(542\) 0 0
\(543\) 963.305 556.165i 1.77404 1.02424i
\(544\) 0 0
\(545\) −193.306 237.880i −0.354689 0.436478i
\(546\) 0 0
\(547\) 451.960i 0.826252i 0.910674 + 0.413126i \(0.135563\pi\)
−0.910674 + 0.413126i \(0.864437\pi\)
\(548\) 0 0
\(549\) −1570.34 + 906.635i −2.86036 + 1.65143i
\(550\) 0 0
\(551\) −339.333 195.914i −0.615850 0.355561i
\(552\) 0 0
\(553\) 634.648 + 76.6814i 1.14765 + 0.138664i
\(554\) 0 0
\(555\) 77.5421 + 484.225i 0.139715 + 0.872478i
\(556\) 0 0
\(557\) 331.417 191.344i 0.595004 0.343526i −0.172069 0.985085i \(-0.555045\pi\)
0.767074 + 0.641559i \(0.221712\pi\)
\(558\) 0 0
\(559\) 277.185i 0.495858i
\(560\) 0 0
\(561\) 1117.75 1.99243
\(562\) 0 0
\(563\) −22.9940 39.8268i −0.0408419 0.0707402i 0.844882 0.534953i \(-0.179671\pi\)
−0.885724 + 0.464213i \(0.846337\pi\)
\(564\) 0 0
\(565\) −75.2821 470.112i −0.133243 0.832057i
\(566\) 0 0
\(567\) −150.749 + 200.856i −0.265871 + 0.354244i
\(568\) 0 0
\(569\) 15.4807 26.8133i 0.0272068 0.0471236i −0.852101 0.523377i \(-0.824672\pi\)
0.879308 + 0.476253i \(0.158005\pi\)
\(570\) 0 0
\(571\) 200.579 + 347.414i 0.351277 + 0.608430i 0.986474 0.163921i \(-0.0524141\pi\)
−0.635196 + 0.772351i \(0.719081\pi\)
\(572\) 0 0
\(573\) −1053.45 −1.83848
\(574\) 0 0
\(575\) −516.064 107.851i −0.897503 0.187567i
\(576\) 0 0
\(577\) −388.494 672.891i −0.673300 1.16619i −0.976963 0.213410i \(-0.931543\pi\)
0.303663 0.952780i \(-0.401790\pi\)
\(578\) 0 0
\(579\) 1092.44 + 630.722i 1.88677 + 1.08933i
\(580\) 0 0
\(581\) 285.266 + 668.452i 0.490991 + 1.15052i
\(582\) 0 0
\(583\) 84.6114 + 48.8504i 0.145131 + 0.0837914i
\(584\) 0 0
\(585\) −439.095 + 1149.75i −0.750589 + 1.96538i
\(586\) 0 0
\(587\) 123.033 0.209596 0.104798 0.994494i \(-0.466580\pi\)
0.104798 + 0.994494i \(0.466580\pi\)
\(588\) 0 0
\(589\) −164.249 −0.278862
\(590\) 0 0
\(591\) 560.025 323.331i 0.947589 0.547091i
\(592\) 0 0
\(593\) 211.024 365.504i 0.355858 0.616364i −0.631407 0.775452i \(-0.717522\pi\)
0.987264 + 0.159088i \(0.0508554\pi\)
\(594\) 0 0
\(595\) 381.178 723.230i 0.640636 1.21551i
\(596\) 0 0
\(597\) 870.553 + 502.614i 1.45821 + 0.841900i
\(598\) 0 0
\(599\) −414.355 717.684i −0.691745 1.19814i −0.971266 0.237998i \(-0.923509\pi\)
0.279521 0.960140i \(-0.409824\pi\)
\(600\) 0 0
\(601\) 675.102i 1.12330i 0.827376 + 0.561649i \(0.189833\pi\)
−0.827376 + 0.561649i \(0.810167\pi\)
\(602\) 0 0
\(603\) 207.293i 0.343769i
\(604\) 0 0
\(605\) −53.8140 + 140.909i −0.0889487 + 0.232908i
\(606\) 0 0
\(607\) 491.492 851.289i 0.809707 1.40245i −0.103360 0.994644i \(-0.532959\pi\)
0.913067 0.407809i \(-0.133707\pi\)
\(608\) 0 0
\(609\) −781.687 + 1041.51i −1.28356 + 1.71020i
\(610\) 0 0
\(611\) 2.35426 4.07770i 0.00385313 0.00667382i
\(612\) 0 0
\(613\) 418.163 241.427i 0.682159 0.393844i −0.118509 0.992953i \(-0.537812\pi\)
0.800668 + 0.599108i \(0.204478\pi\)
\(614\) 0 0
\(615\) −735.343 + 597.552i −1.19568 + 0.971630i
\(616\) 0 0
\(617\) 550.193i 0.891722i 0.895102 + 0.445861i \(0.147103\pi\)
−0.895102 + 0.445861i \(0.852897\pi\)
\(618\) 0 0
\(619\) −535.910 + 309.408i −0.865767 + 0.499851i −0.865939 0.500149i \(-0.833279\pi\)
0.000172089 1.00000i \(0.499945\pi\)
\(620\) 0 0
\(621\) 661.158 + 381.720i 1.06467 + 0.614686i
\(622\) 0 0
\(623\) −50.7401 + 419.947i −0.0814448 + 0.674073i
\(624\) 0 0
\(625\) 503.113 370.813i 0.804981 0.593301i
\(626\) 0 0
\(627\) −438.264 + 253.032i −0.698985 + 0.403559i
\(628\) 0 0
\(629\) 456.273i 0.725395i
\(630\) 0 0
\(631\) 167.847 0.266001 0.133000 0.991116i \(-0.457539\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(632\) 0 0
\(633\) −420.551 728.416i −0.664378 1.15074i
\(634\) 0 0
\(635\) −92.0547 574.852i −0.144968 0.905279i
\(636\) 0 0
\(637\) 514.796 537.224i 0.808157 0.843365i
\(638\) 0 0
\(639\) −265.736 + 460.268i −0.415862 + 0.720294i
\(640\) 0 0
\(641\) −529.087 916.406i −0.825409 1.42965i −0.901606 0.432558i \(-0.857611\pi\)
0.0761967 0.997093i \(-0.475722\pi\)
\(642\) 0 0
\(643\) 68.2597 0.106158 0.0530791 0.998590i \(-0.483096\pi\)
0.0530791 + 0.998590i \(0.483096\pi\)
\(644\) 0 0
\(645\) 355.644 289.003i 0.551387 0.448066i
\(646\) 0 0
\(647\) −26.7770 46.3792i −0.0413865 0.0716835i 0.844590 0.535413i \(-0.179844\pi\)
−0.885977 + 0.463730i \(0.846511\pi\)
\(648\) 0 0
\(649\) 29.6172 + 17.0995i 0.0456351 + 0.0263474i
\(650\) 0 0
\(651\) −65.4791 + 541.934i −0.100582 + 0.832463i
\(652\) 0 0
\(653\) 39.7204 + 22.9326i 0.0608276 + 0.0351188i 0.530105 0.847932i \(-0.322152\pi\)
−0.469278 + 0.883051i \(0.655486\pi\)
\(654\) 0 0
\(655\) 770.813 + 294.377i 1.17681 + 0.449431i
\(656\) 0 0
\(657\) 977.567 1.48793
\(658\) 0 0
\(659\) −997.845 −1.51418 −0.757090 0.653310i \(-0.773380\pi\)
−0.757090 + 0.653310i \(0.773380\pi\)
\(660\) 0 0
\(661\) 229.919 132.744i 0.347836 0.200823i −0.315896 0.948794i \(-0.602305\pi\)
0.663732 + 0.747971i \(0.268972\pi\)
\(662\) 0 0
\(663\) −890.441 + 1542.29i −1.34305 + 2.32623i
\(664\) 0 0
\(665\) 14.2639 + 369.863i 0.0214495 + 0.556186i
\(666\) 0 0
\(667\) 676.670 + 390.676i 1.01450 + 0.585720i
\(668\) 0 0
\(669\) 167.296 + 289.765i 0.250069 + 0.433131i
\(670\) 0 0
\(671\) 1066.10i 1.58882i
\(672\) 0 0
\(673\) 859.611i 1.27728i −0.769505 0.638641i \(-0.779497\pi\)
0.769505 0.638641i \(-0.220503\pi\)
\(674\) 0 0
\(675\) −859.784 + 282.613i −1.27375 + 0.418686i
\(676\) 0 0
\(677\) 35.7345 61.8940i 0.0527836 0.0914239i −0.838426 0.545015i \(-0.816524\pi\)
0.891210 + 0.453591i \(0.149857\pi\)
\(678\) 0 0
\(679\) 357.927 + 838.718i 0.527139 + 1.23522i
\(680\) 0 0
\(681\) 130.166 225.454i 0.191140 0.331064i
\(682\) 0 0
\(683\) 832.644 480.727i 1.21910 0.703847i 0.254373 0.967106i \(-0.418131\pi\)
0.964725 + 0.263259i \(0.0847975\pi\)
\(684\) 0 0
\(685\) 828.121 672.945i 1.20894 0.982402i
\(686\) 0 0
\(687\) 365.736i 0.532367i
\(688\) 0 0
\(689\) −134.809 + 77.8320i −0.195659 + 0.112964i
\(690\) 0 0
\(691\) −433.591 250.334i −0.627483 0.362277i 0.152294 0.988335i \(-0.451334\pi\)
−0.779777 + 0.626058i \(0.784667\pi\)
\(692\) 0 0
\(693\) 424.476 + 994.659i 0.612520 + 1.43529i
\(694\) 0 0
\(695\) −41.9712 262.097i −0.0603903 0.377117i
\(696\) 0 0
\(697\) −763.483 + 440.797i −1.09538 + 0.632420i
\(698\) 0 0
\(699\) 692.133i 0.990176i
\(700\) 0 0
\(701\) −913.148 −1.30264 −0.651318 0.758805i \(-0.725784\pi\)
−0.651318 + 0.758805i \(0.725784\pi\)
\(702\) 0 0
\(703\) −103.289 178.902i −0.146926 0.254484i
\(704\) 0 0
\(705\) 7.68657 1.23090i 0.0109029 0.00174596i
\(706\) 0 0
\(707\) 804.979 + 604.161i 1.13858 + 0.854542i
\(708\) 0 0
\(709\) −573.474 + 993.286i −0.808849 + 1.40097i 0.104812 + 0.994492i \(0.466576\pi\)
−0.913661 + 0.406476i \(0.866757\pi\)
\(710\) 0 0
\(711\) −740.181 1282.03i −1.04104 1.80314i
\(712\) 0 0
\(713\) 327.533 0.459373
\(714\) 0 0
\(715\) 456.341 + 561.570i 0.638239 + 0.785412i
\(716\) 0 0
\(717\) 880.277 + 1524.68i 1.22772 + 2.12648i
\(718\) 0 0
\(719\) 84.0179 + 48.5077i 0.116854 + 0.0674656i 0.557288 0.830319i \(-0.311842\pi\)
−0.440434 + 0.897785i \(0.645175\pi\)
\(720\) 0 0
\(721\) −372.510 45.0085i −0.516657 0.0624251i
\(722\) 0 0
\(723\) −1327.86 766.642i −1.83660 1.06036i
\(724\) 0 0
\(725\) −879.956 + 289.243i −1.21373 + 0.398956i
\(726\) 0 0
\(727\) −175.776 −0.241782 −0.120891 0.992666i \(-0.538575\pi\)
−0.120891 + 0.992666i \(0.538575\pi\)
\(728\) 0 0
\(729\) −1054.35 −1.44629
\(730\) 0 0
\(731\) 369.254 213.189i 0.505136 0.291640i
\(732\) 0 0
\(733\) −346.840 + 600.745i −0.473179 + 0.819570i −0.999529 0.0306981i \(-0.990227\pi\)
0.526350 + 0.850268i \(0.323560\pi\)
\(734\) 0 0
\(735\) 1226.03 + 100.385i 1.66807 + 0.136579i
\(736\) 0 0
\(737\) −105.548 60.9383i −0.143213 0.0826842i
\(738\) 0 0
\(739\) 10.2585 + 17.7682i 0.0138816 + 0.0240436i 0.872883 0.487930i \(-0.162248\pi\)
−0.859001 + 0.511974i \(0.828915\pi\)
\(740\) 0 0
\(741\) 806.296i 1.08812i
\(742\) 0 0
\(743\) 896.676i 1.20683i −0.797427 0.603416i \(-0.793806\pi\)
0.797427 0.603416i \(-0.206194\pi\)
\(744\) 0 0
\(745\) 0.0101401 0.0265514i 1.36109e−5 3.56394e-5i
\(746\) 0 0
\(747\) 841.509 1457.54i 1.12652 1.95119i
\(748\) 0 0
\(749\) 91.3435 755.999i 0.121954 1.00934i
\(750\) 0 0
\(751\) −298.227 + 516.545i −0.397107 + 0.687809i −0.993368 0.114982i \(-0.963319\pi\)
0.596261 + 0.802791i \(0.296652\pi\)
\(752\) 0 0
\(753\) 1824.14 1053.17i 2.42249 1.39863i
\(754\) 0 0
\(755\) −724.541 891.615i −0.959657 1.18095i
\(756\) 0 0
\(757\) 118.056i 0.155952i −0.996955 0.0779761i \(-0.975154\pi\)
0.996955 0.0779761i \(-0.0248458\pi\)
\(758\) 0 0
\(759\) 873.949 504.575i 1.15145 0.664789i
\(760\) 0 0
\(761\) 695.093 + 401.312i 0.913395 + 0.527349i 0.881522 0.472143i \(-0.156520\pi\)
0.0318728 + 0.999492i \(0.489853\pi\)
\(762\) 0 0
\(763\) 257.593 343.214i 0.337605 0.449822i
\(764\) 0 0
\(765\) −1869.36 + 299.353i −2.44361 + 0.391312i
\(766\) 0 0
\(767\) −47.1882 + 27.2441i −0.0615231 + 0.0355204i
\(768\) 0 0
\(769\) 1022.31i 1.32940i −0.747109 0.664701i \(-0.768559\pi\)
0.747109 0.664701i \(-0.231441\pi\)
\(770\) 0 0
\(771\) 36.5988 0.0474693
\(772\) 0 0
\(773\) −343.943 595.726i −0.444945 0.770668i 0.553103 0.833113i \(-0.313444\pi\)
−0.998048 + 0.0624449i \(0.980110\pi\)
\(774\) 0 0
\(775\) −258.824 + 289.436i −0.333967 + 0.373466i
\(776\) 0 0
\(777\) −631.455 + 269.477i −0.812684 + 0.346817i
\(778\) 0 0
\(779\) 199.571 345.668i 0.256189 0.443733i
\(780\) 0 0
\(781\) 156.238 + 270.612i 0.200048 + 0.346494i
\(782\) 0 0
\(783\) 1341.31 1.71303
\(784\) 0 0
\(785\) 139.115 + 171.194i 0.177217 + 0.218081i
\(786\) 0 0
\(787\) 612.772 + 1061.35i 0.778618 + 1.34861i 0.932739 + 0.360553i \(0.117412\pi\)
−0.154121 + 0.988052i \(0.549255\pi\)
\(788\) 0 0
\(789\) 594.658 + 343.326i 0.753686 + 0.435141i
\(790\) 0 0
\(791\) 613.052 261.623i 0.775034 0.330750i
\(792\) 0 0
\(793\) −1471.02 849.295i −1.85501 1.07099i
\(794\) 0 0
\(795\) −240.420 91.8174i −0.302414 0.115494i
\(796\) 0 0
\(797\) −691.172 −0.867217 −0.433608 0.901101i \(-0.642760\pi\)
−0.433608 + 0.901101i \(0.642760\pi\)
\(798\) 0 0
\(799\) 7.24286 0.00906491
\(800\) 0 0
\(801\) 848.321 489.778i 1.05908 0.611458i
\(802\) 0 0
\(803\) 287.377 497.752i 0.357880 0.619866i
\(804\) 0 0
\(805\) −28.4439 737.551i −0.0353340 0.916212i
\(806\) 0 0
\(807\) 1085.91 + 626.948i 1.34561 + 0.776887i
\(808\) 0 0
\(809\) 511.628 + 886.165i 0.632420 + 1.09538i 0.987056 + 0.160379i \(0.0512716\pi\)
−0.354636 + 0.935005i \(0.615395\pi\)
\(810\) 0 0
\(811\) 346.588i 0.427359i −0.976904 0.213679i \(-0.931455\pi\)
0.976904 0.213679i \(-0.0685448\pi\)
\(812\) 0 0
\(813\) 2252.07i 2.77007i
\(814\) 0 0
\(815\) 142.692 + 54.4948i 0.175082 + 0.0668648i
\(816\) 0 0
\(817\) −96.5215 + 167.180i −0.118141 + 0.204627i
\(818\) 0 0
\(819\) −1710.60 206.683i −2.08864 0.252360i
\(820\) 0 0
\(821\) 302.304 523.605i 0.368214 0.637765i −0.621072 0.783753i \(-0.713303\pi\)
0.989286 + 0.145988i \(0.0466360\pi\)
\(822\) 0 0
\(823\) −1002.77 + 578.951i −1.21844 + 0.703464i −0.964583 0.263779i \(-0.915031\pi\)
−0.253853 + 0.967243i \(0.581698\pi\)
\(824\) 0 0
\(825\) −244.729 + 1171.02i −0.296642 + 1.41942i
\(826\) 0 0
\(827\) 248.293i 0.300234i 0.988668 + 0.150117i \(0.0479650\pi\)
−0.988668 + 0.150117i \(0.952035\pi\)
\(828\) 0 0
\(829\) 808.027 466.515i 0.974701 0.562744i 0.0740349 0.997256i \(-0.476412\pi\)
0.900666 + 0.434512i \(0.143079\pi\)
\(830\) 0 0
\(831\) 2132.30 + 1231.08i 2.56594 + 1.48145i
\(832\) 0 0
\(833\) 1111.61 + 272.600i 1.33446 + 0.327250i
\(834\) 0 0
\(835\) 504.315 80.7592i 0.603970 0.0967176i
\(836\) 0 0
\(837\) 486.930 281.129i 0.581757 0.335877i
\(838\) 0 0
\(839\) 1426.14i 1.69981i −0.526934 0.849906i \(-0.676659\pi\)
0.526934 0.849906i \(-0.323341\pi\)
\(840\) 0 0
\(841\) 531.775 0.632312
\(842\) 0 0
\(843\) −135.750 235.126i −0.161032 0.278916i
\(844\) 0 0
\(845\) −304.030 + 48.6862i −0.359798 + 0.0576169i
\(846\) 0 0
\(847\) −209.645 25.3304i −0.247515 0.0299060i
\(848\) 0 0
\(849\) 407.955 706.599i 0.480512 0.832272i
\(850\) 0 0
\(851\) 205.970 + 356.751i 0.242033 + 0.419214i
\(852\) 0 0
\(853\) 350.268 0.410631 0.205315 0.978696i \(-0.434178\pi\)
0.205315 + 0.978696i \(0.434178\pi\)
\(854\) 0 0
\(855\) 665.200 540.553i 0.778012 0.632226i
\(856\) 0 0
\(857\) −15.1063 26.1649i −0.0176269 0.0305308i 0.857077 0.515188i \(-0.172278\pi\)
−0.874704 + 0.484657i \(0.838944\pi\)
\(858\) 0 0
\(859\) −370.864 214.119i −0.431740 0.249265i 0.268348 0.963322i \(-0.413522\pi\)
−0.700087 + 0.714057i \(0.746856\pi\)
\(860\) 0 0
\(861\) −1060.95 796.279i −1.23223 0.924830i
\(862\) 0 0
\(863\) −1021.22 589.602i −1.18334 0.683200i −0.226553 0.973999i \(-0.572746\pi\)
−0.956784 + 0.290798i \(0.906079\pi\)
\(864\) 0 0
\(865\) 487.669 1276.94i 0.563779 1.47623i
\(866\) 0 0
\(867\) −1288.37 −1.48601
\(868\) 0 0
\(869\) −870.370 −1.00158
\(870\) 0 0
\(871\) 168.167 97.0912i 0.193073 0.111471i
\(872\) 0 0
\(873\) 1055.85 1828.79i 1.20946 2.09484i
\(874\) 0 0
\(875\) 674.241 + 557.695i 0.770561 + 0.637366i
\(876\) 0 0
\(877\) 1423.08 + 821.617i 1.62267 + 0.936850i 0.986202 + 0.165548i \(0.0529393\pi\)
0.636470 + 0.771302i \(0.280394\pi\)
\(878\) 0 0
\(879\) 748.509 + 1296.45i 0.851546 + 1.47492i
\(880\) 0 0
\(881\) 571.268i 0.648431i 0.945983 + 0.324216i \(0.105100\pi\)
−0.945983 + 0.324216i \(0.894900\pi\)
\(882\) 0 0
\(883\) 13.3627i 0.0151333i −0.999971 0.00756666i \(-0.997591\pi\)
0.999971 0.00756666i \(-0.00240856\pi\)
\(884\) 0 0
\(885\) −84.1559 32.1395i −0.0950914 0.0363159i
\(886\) 0 0
\(887\) −662.731 + 1147.88i −0.747160 + 1.29412i 0.202018 + 0.979382i \(0.435250\pi\)
−0.949179 + 0.314738i \(0.898083\pi\)
\(888\) 0 0
\(889\) 749.638 319.912i 0.843237 0.359856i
\(890\) 0 0
\(891\) 170.962 296.115i 0.191876 0.332340i
\(892\) 0 0
\(893\) −2.83988 + 1.63961i −0.00318016 + 0.00183607i
\(894\) 0 0
\(895\) 30.4242 + 37.4398i 0.0339935 + 0.0418321i
\(896\) 0 0
\(897\) 1607.85i 1.79247i
\(898\) 0 0
\(899\) 498.354 287.725i 0.554343 0.320050i
\(900\) 0 0
\(901\) −207.369 119.725i −0.230154 0.132880i
\(902\) 0 0
\(903\) 513.124 + 385.116i 0.568244 + 0.426485i
\(904\) 0 0
\(905\) 175.149 + 1093.75i 0.193535 + 1.20856i
\(906\) 0 0
\(907\) 417.494 241.041i 0.460303 0.265756i −0.251869 0.967761i \(-0.581045\pi\)
0.712171 + 0.702006i \(0.247712\pi\)
\(908\) 0 0
\(909\) 2330.73i 2.56406i
\(910\) 0 0
\(911\) −1582.96 −1.73761 −0.868806 0.495153i \(-0.835112\pi\)
−0.868806 + 0.495153i \(0.835112\pi\)
\(912\) 0 0
\(913\) −494.760 856.949i −0.541906 0.938608i
\(914\) 0 0
\(915\) −444.044 2772.91i −0.485294 3.03050i
\(916\) 0 0
\(917\) −138.564 + 1146.82i −0.151106 + 1.25062i
\(918\) 0 0
\(919\) −669.468 + 1159.55i −0.728474 + 1.26175i 0.229054 + 0.973414i \(0.426437\pi\)
−0.957528 + 0.288340i \(0.906897\pi\)
\(920\) 0 0
\(921\) 495.491 + 858.215i 0.537992 + 0.931830i
\(922\) 0 0
\(923\) −497.859 −0.539392
\(924\) 0 0
\(925\) −478.019 99.9000i −0.516778 0.108000i
\(926\) 0 0
\(927\) 434.453 + 752.494i 0.468665 + 0.811752i
\(928\) 0 0
\(929\) 641.135 + 370.159i 0.690135 + 0.398449i 0.803662 0.595085i \(-0.202882\pi\)
−0.113528 + 0.993535i \(0.536215\pi\)
\(930\) 0 0
\(931\) −497.564 + 144.756i −0.534441 + 0.155485i
\(932\) 0 0
\(933\) −1393.62 804.604i −1.49369 0.862384i
\(934\) 0 0
\(935\) −397.118 + 1039.83i −0.424725 + 1.11212i
\(936\) 0 0
\(937\) −272.107 −0.290402 −0.145201 0.989402i \(-0.546383\pi\)
−0.145201 + 0.989402i \(0.546383\pi\)
\(938\) 0 0
\(939\) −1088.58 −1.15930
\(940\) 0 0
\(941\) 203.843 117.689i 0.216623 0.125068i −0.387762 0.921759i \(-0.626752\pi\)
0.604386 + 0.796692i \(0.293419\pi\)
\(942\) 0 0
\(943\) −397.968 + 689.302i −0.422024 + 0.730967i
\(944\) 0 0
\(945\) −675.344 1072.07i −0.714650 1.13447i
\(946\) 0 0
\(947\) −526.514 303.983i −0.555981 0.320996i 0.195550 0.980694i \(-0.437351\pi\)
−0.751531 + 0.659698i \(0.770684\pi\)
\(948\) 0 0
\(949\) 457.870 + 793.055i 0.482477 + 0.835674i
\(950\) 0 0
\(951\) 1969.20i 2.07066i
\(952\) 0 0
\(953\) 188.561i 0.197860i −0.995094 0.0989302i \(-0.968458\pi\)
0.995094 0.0989302i \(-0.0315421\pi\)
\(954\) 0 0
\(955\) 374.272 980.013i 0.391908 1.02619i
\(956\) 0 0
\(957\) 886.499 1535.46i 0.926331 1.60445i
\(958\) 0 0
\(959\) 1194.81 + 896.745i 1.24590 + 0.935084i
\(960\) 0 0
\(961\) −359.889 + 623.347i −0.374495 + 0.648644i
\(962\) 0 0
\(963\) −1527.17 + 881.710i −1.58584 + 0.915586i
\(964\) 0 0
\(965\) −974.880 + 792.204i −1.01024 + 0.820937i
\(966\) 0 0
\(967\) 1088.32i 1.12546i 0.826640 + 0.562732i \(0.190250\pi\)
−0.826640 + 0.562732i \(0.809750\pi\)
\(968\) 0 0
\(969\) 1074.11 620.140i 1.10848 0.639980i
\(970\) 0 0
\(971\) 164.230 + 94.8183i 0.169135 + 0.0976501i 0.582178 0.813061i \(-0.302201\pi\)
−0.413043 + 0.910712i \(0.635534\pi\)
\(972\) 0 0
\(973\) 341.788 145.860i 0.351272 0.149907i
\(974\) 0 0
\(975\) −1420.84 1270.56i −1.45727 1.30314i
\(976\) 0 0
\(977\) −687.092 + 396.693i −0.703267 + 0.406032i −0.808563 0.588409i \(-0.799754\pi\)
0.105296 + 0.994441i \(0.466421\pi\)
\(978\) 0 0
\(979\) 575.924i 0.588278i
\(980\) 0 0
\(981\) −993.741 −1.01299
\(982\) 0 0
\(983\) 26.9121 + 46.6132i 0.0273775 + 0.0474193i 0.879390 0.476103i \(-0.157951\pi\)
−0.852012 + 0.523522i \(0.824618\pi\)
\(984\) 0 0
\(985\) 101.824 + 635.860i 0.103375 + 0.645543i
\(986\) 0 0
\(987\) 4.27767 + 10.0237i 0.00433401 + 0.0101557i
\(988\) 0 0
\(989\) 192.475 333.377i 0.194616 0.337085i
\(990\) 0 0
\(991\) −718.340 1244.20i −0.724864 1.25550i −0.959030 0.283304i \(-0.908569\pi\)
0.234166 0.972197i \(-0.424764\pi\)
\(992\) 0 0
\(993\) −1725.80 −1.73797
\(994\) 0 0
\(995\) −776.870 + 631.298i −0.780774 + 0.634470i
\(996\) 0 0
\(997\) 110.002 + 190.529i 0.110333 + 0.191102i 0.915905 0.401396i \(-0.131475\pi\)
−0.805572 + 0.592499i \(0.798142\pi\)
\(998\) 0 0
\(999\) 612.417 + 353.579i 0.613030 + 0.353933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.br.b.369.8 16
4.3 odd 2 70.3.h.a.19.1 16
5.4 even 2 inner 560.3.br.b.369.1 16
7.3 odd 6 inner 560.3.br.b.129.1 16
12.11 even 2 630.3.bc.a.19.8 16
20.3 even 4 350.3.k.e.201.4 16
20.7 even 4 350.3.k.e.201.5 16
20.19 odd 2 70.3.h.a.19.8 yes 16
28.3 even 6 70.3.h.a.59.8 yes 16
28.11 odd 6 490.3.h.b.129.5 16
28.19 even 6 490.3.d.a.489.9 16
28.23 odd 6 490.3.d.a.489.16 16
28.27 even 2 490.3.h.b.19.4 16
35.24 odd 6 inner 560.3.br.b.129.8 16
60.59 even 2 630.3.bc.a.19.3 16
84.59 odd 6 630.3.bc.a.199.3 16
140.3 odd 12 350.3.k.e.101.4 16
140.19 even 6 490.3.d.a.489.8 16
140.39 odd 6 490.3.h.b.129.4 16
140.59 even 6 70.3.h.a.59.1 yes 16
140.79 odd 6 490.3.d.a.489.1 16
140.87 odd 12 350.3.k.e.101.5 16
140.139 even 2 490.3.h.b.19.5 16
420.59 odd 6 630.3.bc.a.199.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.1 16 4.3 odd 2
70.3.h.a.19.8 yes 16 20.19 odd 2
70.3.h.a.59.1 yes 16 140.59 even 6
70.3.h.a.59.8 yes 16 28.3 even 6
350.3.k.e.101.4 16 140.3 odd 12
350.3.k.e.101.5 16 140.87 odd 12
350.3.k.e.201.4 16 20.3 even 4
350.3.k.e.201.5 16 20.7 even 4
490.3.d.a.489.1 16 140.79 odd 6
490.3.d.a.489.8 16 140.19 even 6
490.3.d.a.489.9 16 28.19 even 6
490.3.d.a.489.16 16 28.23 odd 6
490.3.h.b.19.4 16 28.27 even 2
490.3.h.b.19.5 16 140.139 even 2
490.3.h.b.129.4 16 140.39 odd 6
490.3.h.b.129.5 16 28.11 odd 6
560.3.br.b.129.1 16 7.3 odd 6 inner
560.3.br.b.129.8 16 35.24 odd 6 inner
560.3.br.b.369.1 16 5.4 even 2 inner
560.3.br.b.369.8 16 1.1 even 1 trivial
630.3.bc.a.19.3 16 60.59 even 2
630.3.bc.a.19.8 16 12.11 even 2
630.3.bc.a.199.3 16 84.59 odd 6
630.3.bc.a.199.8 16 420.59 odd 6