Properties

Label 630.3.bc.a.199.8
Level $630$
Weight $3$
Character 630.199
Analytic conductor $17.166$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,3,Mod(19,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 630.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,16,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1662566547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 42x^{14} + 1322x^{12} + 17616x^{10} + 175407x^{8} + 205392x^{6} + 203018x^{4} + 23226x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.8
Root \(2.51048 - 4.34828i\) of defining polynomial
Character \(\chi\) \(=\) 630.199
Dual form 630.3.bc.a.19.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(4.93710 + 0.790609i) q^{5} +(2.74755 - 6.43824i) q^{7} -2.82843i q^{8} +(6.60573 - 2.52276i) q^{10} +(4.76531 - 8.25377i) q^{11} -15.1849 q^{13} +(-1.18747 - 9.82802i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(11.6790 - 20.2287i) q^{17} +(-9.15855 + 5.28769i) q^{19} +(6.30647 - 7.76070i) q^{20} -13.4783i q^{22} +(-18.2632 + 10.5443i) q^{23} +(23.7499 + 7.80663i) q^{25} +(-18.5976 + 10.7373i) q^{26} +(-8.40380 - 11.1971i) q^{28} +37.0510 q^{29} +(13.4505 + 7.76565i) q^{31} +(-4.89898 - 2.82843i) q^{32} -33.0333i q^{34} +(18.6551 - 29.6140i) q^{35} +(-16.9168 + 9.76693i) q^{37} +(-7.47792 + 12.9521i) q^{38} +(2.23618 - 13.9642i) q^{40} -37.7426i q^{41} +18.2540i q^{43} +(-9.53063 - 16.5075i) q^{44} +(-14.9119 + 25.8281i) q^{46} +(-0.155040 - 0.268537i) q^{47} +(-33.9019 - 35.3788i) q^{49} +(34.6077 - 7.23256i) q^{50} +(-15.1849 + 26.3010i) q^{52} +(-8.87784 - 5.12562i) q^{53} +(30.0523 - 36.9821i) q^{55} +(-18.2101 - 7.77126i) q^{56} +(45.3780 - 26.1990i) q^{58} +(3.10758 + 1.79416i) q^{59} +(96.8741 - 55.9303i) q^{61} +21.9646 q^{62} -8.00000 q^{64} +(-74.9693 - 12.0053i) q^{65} +(11.0746 + 6.39394i) q^{67} +(-23.3581 - 40.4573i) q^{68} +(1.90747 - 49.4607i) q^{70} +32.7865 q^{71} +(-30.1530 + 52.2266i) q^{73} +(-13.8125 + 23.9240i) q^{74} +21.1508i q^{76} +(-40.0468 - 53.3579i) q^{77} +(45.6617 + 79.0884i) q^{79} +(-7.13544 - 18.6838i) q^{80} +(-26.6881 - 46.2251i) q^{82} -103.825 q^{83} +(73.6535 - 90.6374i) q^{85} +(12.9075 + 22.3565i) q^{86} +(-23.3452 - 13.4783i) q^{88} +(52.3329 - 30.2144i) q^{89} +(-41.7213 + 97.7639i) q^{91} +42.1771i q^{92} +(-0.379769 - 0.219259i) q^{94} +(-49.3972 + 18.8650i) q^{95} -130.271 q^{97} +(-66.5378 - 19.3578i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} + 6 q^{5} + 24 q^{10} + 12 q^{11} - 32 q^{14} - 32 q^{16} - 12 q^{19} - 42 q^{25} + 48 q^{26} + 136 q^{29} + 84 q^{31} + 190 q^{35} + 48 q^{40} - 24 q^{44} - 68 q^{46} + 296 q^{49} + 96 q^{50}+ \cdots + 310 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 4.93710 + 0.790609i 0.987420 + 0.158122i
\(6\) 0 0
\(7\) 2.74755 6.43824i 0.392508 0.919749i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.60573 2.52276i 0.660573 0.252276i
\(11\) 4.76531 8.25377i 0.433210 0.750342i −0.563937 0.825818i \(-0.690714\pi\)
0.997148 + 0.0754753i \(0.0240474\pi\)
\(12\) 0 0
\(13\) −15.1849 −1.16807 −0.584034 0.811729i \(-0.698527\pi\)
−0.584034 + 0.811729i \(0.698527\pi\)
\(14\) −1.18747 9.82802i −0.0848193 0.702001i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 11.6790 20.2287i 0.687002 1.18992i −0.285802 0.958289i \(-0.592260\pi\)
0.972803 0.231633i \(-0.0744068\pi\)
\(18\) 0 0
\(19\) −9.15855 + 5.28769i −0.482029 + 0.278300i −0.721262 0.692663i \(-0.756437\pi\)
0.239233 + 0.970962i \(0.423104\pi\)
\(20\) 6.30647 7.76070i 0.315324 0.388035i
\(21\) 0 0
\(22\) 13.4783i 0.612652i
\(23\) −18.2632 + 10.5443i −0.794053 + 0.458447i −0.841387 0.540432i \(-0.818261\pi\)
0.0473345 + 0.998879i \(0.484927\pi\)
\(24\) 0 0
\(25\) 23.7499 + 7.80663i 0.949995 + 0.312265i
\(26\) −18.5976 + 10.7373i −0.715293 + 0.412974i
\(27\) 0 0
\(28\) −8.40380 11.1971i −0.300136 0.399898i
\(29\) 37.0510 1.27762 0.638810 0.769365i \(-0.279427\pi\)
0.638810 + 0.769365i \(0.279427\pi\)
\(30\) 0 0
\(31\) 13.4505 + 7.76565i 0.433887 + 0.250505i 0.701001 0.713160i \(-0.252737\pi\)
−0.267114 + 0.963665i \(0.586070\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 33.0333i 0.971567i
\(35\) 18.6551 29.6140i 0.533002 0.846114i
\(36\) 0 0
\(37\) −16.9168 + 9.76693i −0.457212 + 0.263971i −0.710871 0.703322i \(-0.751699\pi\)
0.253660 + 0.967294i \(0.418366\pi\)
\(38\) −7.47792 + 12.9521i −0.196787 + 0.340846i
\(39\) 0 0
\(40\) 2.23618 13.9642i 0.0559045 0.349106i
\(41\) 37.7426i 0.920552i −0.887776 0.460276i \(-0.847751\pi\)
0.887776 0.460276i \(-0.152249\pi\)
\(42\) 0 0
\(43\) 18.2540i 0.424512i 0.977214 + 0.212256i \(0.0680810\pi\)
−0.977214 + 0.212256i \(0.931919\pi\)
\(44\) −9.53063 16.5075i −0.216605 0.375171i
\(45\) 0 0
\(46\) −14.9119 + 25.8281i −0.324171 + 0.561480i
\(47\) −0.155040 0.268537i −0.00329872 0.00571355i 0.864371 0.502854i \(-0.167717\pi\)
−0.867670 + 0.497141i \(0.834383\pi\)
\(48\) 0 0
\(49\) −33.9019 35.3788i −0.691875 0.722017i
\(50\) 34.6077 7.23256i 0.692153 0.144651i
\(51\) 0 0
\(52\) −15.1849 + 26.3010i −0.292017 + 0.505788i
\(53\) −8.87784 5.12562i −0.167506 0.0967099i 0.413903 0.910321i \(-0.364165\pi\)
−0.581410 + 0.813611i \(0.697499\pi\)
\(54\) 0 0
\(55\) 30.0523 36.9821i 0.546406 0.672403i
\(56\) −18.2101 7.77126i −0.325180 0.138772i
\(57\) 0 0
\(58\) 45.3780 26.1990i 0.782379 0.451707i
\(59\) 3.10758 + 1.79416i 0.0526708 + 0.0304095i 0.526104 0.850420i \(-0.323652\pi\)
−0.473433 + 0.880830i \(0.656986\pi\)
\(60\) 0 0
\(61\) 96.8741 55.9303i 1.58810 0.916890i 0.594480 0.804111i \(-0.297358\pi\)
0.993620 0.112779i \(-0.0359753\pi\)
\(62\) 21.9646 0.354267
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −74.9693 12.0053i −1.15337 0.184697i
\(66\) 0 0
\(67\) 11.0746 + 6.39394i 0.165293 + 0.0954319i 0.580364 0.814357i \(-0.302910\pi\)
−0.415072 + 0.909789i \(0.636243\pi\)
\(68\) −23.3581 40.4573i −0.343501 0.594961i
\(69\) 0 0
\(70\) 1.90747 49.4607i 0.0272495 0.706582i
\(71\) 32.7865 0.461781 0.230891 0.972980i \(-0.425836\pi\)
0.230891 + 0.972980i \(0.425836\pi\)
\(72\) 0 0
\(73\) −30.1530 + 52.2266i −0.413055 + 0.715433i −0.995222 0.0976365i \(-0.968872\pi\)
0.582167 + 0.813069i \(0.302205\pi\)
\(74\) −13.8125 + 23.9240i −0.186656 + 0.323297i
\(75\) 0 0
\(76\) 21.1508i 0.278300i
\(77\) −40.0468 53.3579i −0.520088 0.692960i
\(78\) 0 0
\(79\) 45.6617 + 79.0884i 0.577997 + 1.00112i 0.995709 + 0.0925400i \(0.0294986\pi\)
−0.417712 + 0.908579i \(0.637168\pi\)
\(80\) −7.13544 18.6838i −0.0891931 0.233548i
\(81\) 0 0
\(82\) −26.6881 46.2251i −0.325464 0.563720i
\(83\) −103.825 −1.25091 −0.625453 0.780262i \(-0.715086\pi\)
−0.625453 + 0.780262i \(0.715086\pi\)
\(84\) 0 0
\(85\) 73.6535 90.6374i 0.866512 1.06632i
\(86\) 12.9075 + 22.3565i 0.150088 + 0.259959i
\(87\) 0 0
\(88\) −23.3452 13.4783i −0.265286 0.153163i
\(89\) 52.3329 30.2144i 0.588010 0.339488i −0.176300 0.984336i \(-0.556413\pi\)
0.764310 + 0.644849i \(0.223080\pi\)
\(90\) 0 0
\(91\) −41.7213 + 97.7639i −0.458476 + 1.07433i
\(92\) 42.1771i 0.458447i
\(93\) 0 0
\(94\) −0.379769 0.219259i −0.00404009 0.00233255i
\(95\) −49.3972 + 18.8650i −0.519970 + 0.198579i
\(96\) 0 0
\(97\) −130.271 −1.34300 −0.671501 0.741003i \(-0.734350\pi\)
−0.671501 + 0.741003i \(0.734350\pi\)
\(98\) −66.5378 19.3578i −0.678957 0.197529i
\(99\) 0 0
\(100\) 37.2714 33.3294i 0.372714 0.333294i
\(101\) 124.520 + 71.8914i 1.23287 + 0.711796i 0.967627 0.252386i \(-0.0812153\pi\)
0.265241 + 0.964182i \(0.414549\pi\)
\(102\) 0 0
\(103\) −26.8014 46.4213i −0.260207 0.450692i 0.706090 0.708123i \(-0.250458\pi\)
−0.966297 + 0.257430i \(0.917124\pi\)
\(104\) 42.9493i 0.412974i
\(105\) 0 0
\(106\) −14.4975 −0.136768
\(107\) 94.2108 54.3926i 0.880475 0.508342i 0.00965987 0.999953i \(-0.496925\pi\)
0.870815 + 0.491611i \(0.163592\pi\)
\(108\) 0 0
\(109\) 30.6519 53.0907i 0.281210 0.487071i −0.690473 0.723358i \(-0.742597\pi\)
0.971683 + 0.236288i \(0.0759308\pi\)
\(110\) 10.6561 66.5439i 0.0968737 0.604945i
\(111\) 0 0
\(112\) −27.7978 + 3.35867i −0.248195 + 0.0299881i
\(113\) 95.2204i 0.842658i 0.906908 + 0.421329i \(0.138436\pi\)
−0.906908 + 0.421329i \(0.861564\pi\)
\(114\) 0 0
\(115\) −98.5037 + 37.6190i −0.856554 + 0.327122i
\(116\) 37.0510 64.1742i 0.319405 0.553226i
\(117\) 0 0
\(118\) 5.07465 0.0430055
\(119\) −98.1483 130.772i −0.824775 1.09892i
\(120\) 0 0
\(121\) 15.0836 + 26.1255i 0.124658 + 0.215913i
\(122\) 79.0974 137.001i 0.648339 1.12296i
\(123\) 0 0
\(124\) 26.9010 15.5313i 0.216944 0.125252i
\(125\) 111.083 + 57.3190i 0.888668 + 0.458552i
\(126\) 0 0
\(127\) 116.435i 0.916812i 0.888743 + 0.458406i \(0.151580\pi\)
−0.888743 + 0.458406i \(0.848420\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −100.307 + 38.3078i −0.771594 + 0.294676i
\(131\) −142.914 + 82.5112i −1.09094 + 0.629857i −0.933828 0.357723i \(-0.883553\pi\)
−0.157116 + 0.987580i \(0.550220\pi\)
\(132\) 0 0
\(133\) 8.87981 + 73.4932i 0.0667655 + 0.552580i
\(134\) 18.0848 0.134961
\(135\) 0 0
\(136\) −57.2153 33.0333i −0.420701 0.242892i
\(137\) 184.822 + 106.707i 1.34907 + 0.778884i 0.988117 0.153702i \(-0.0491195\pi\)
0.360949 + 0.932586i \(0.382453\pi\)
\(138\) 0 0
\(139\) 53.0872i 0.381922i 0.981598 + 0.190961i \(0.0611604\pi\)
−0.981598 + 0.190961i \(0.938840\pi\)
\(140\) −32.6378 61.9255i −0.233127 0.442325i
\(141\) 0 0
\(142\) 40.1551 23.1835i 0.282782 0.163264i
\(143\) −72.3607 + 125.332i −0.506019 + 0.876451i
\(144\) 0 0
\(145\) 182.924 + 29.2928i 1.26155 + 0.202020i
\(146\) 85.2857i 0.584149i
\(147\) 0 0
\(148\) 39.0677i 0.263971i
\(149\) 0.00284218 + 0.00492280i 1.90750e−5 + 3.30389e-5i 0.866035 0.499983i \(-0.166661\pi\)
−0.866016 + 0.500017i \(0.833327\pi\)
\(150\) 0 0
\(151\) −114.888 + 198.993i −0.760851 + 1.31783i 0.181562 + 0.983380i \(0.441885\pi\)
−0.942412 + 0.334453i \(0.891448\pi\)
\(152\) 14.9558 + 25.9043i 0.0983937 + 0.170423i
\(153\) 0 0
\(154\) −86.7768 37.0325i −0.563486 0.240471i
\(155\) 60.2669 + 48.9739i 0.388818 + 0.315961i
\(156\) 0 0
\(157\) −22.0591 + 38.2074i −0.140504 + 0.243360i −0.927686 0.373360i \(-0.878206\pi\)
0.787183 + 0.616720i \(0.211539\pi\)
\(158\) 111.848 + 64.5754i 0.707898 + 0.408705i
\(159\) 0 0
\(160\) −21.9506 17.8374i −0.137191 0.111484i
\(161\) 17.7074 + 146.554i 0.109984 + 0.910273i
\(162\) 0 0
\(163\) 26.4560 15.2744i 0.162307 0.0937079i −0.416646 0.909069i \(-0.636795\pi\)
0.578953 + 0.815361i \(0.303461\pi\)
\(164\) −65.3721 37.7426i −0.398611 0.230138i
\(165\) 0 0
\(166\) −127.159 + 73.4155i −0.766021 + 0.442262i
\(167\) −102.148 −0.611665 −0.305833 0.952085i \(-0.598935\pi\)
−0.305833 + 0.952085i \(0.598935\pi\)
\(168\) 0 0
\(169\) 61.5807 0.364383
\(170\) 26.1164 163.089i 0.153626 0.959344i
\(171\) 0 0
\(172\) 31.6169 + 18.2540i 0.183819 + 0.106128i
\(173\) 136.689 + 236.753i 0.790111 + 1.36851i 0.925898 + 0.377774i \(0.123311\pi\)
−0.135787 + 0.990738i \(0.543356\pi\)
\(174\) 0 0
\(175\) 115.515 131.458i 0.660086 0.751190i
\(176\) −38.1225 −0.216605
\(177\) 0 0
\(178\) 42.7296 74.0098i 0.240054 0.415786i
\(179\) −4.82428 + 8.35590i −0.0269513 + 0.0466810i −0.879186 0.476478i \(-0.841913\pi\)
0.852235 + 0.523159i \(0.175247\pi\)
\(180\) 0 0
\(181\) 221.537i 1.22396i 0.790873 + 0.611980i \(0.209627\pi\)
−0.790873 + 0.611980i \(0.790373\pi\)
\(182\) 18.0316 + 149.237i 0.0990747 + 0.819985i
\(183\) 0 0
\(184\) 29.8237 + 51.6562i 0.162085 + 0.280740i
\(185\) −91.2419 + 34.8457i −0.493199 + 0.188355i
\(186\) 0 0
\(187\) −111.308 192.792i −0.595232 1.03097i
\(188\) −0.620160 −0.00329872
\(189\) 0 0
\(190\) −47.1593 + 58.0339i −0.248207 + 0.305442i
\(191\) −104.905 181.701i −0.549241 0.951313i −0.998327 0.0578244i \(-0.981584\pi\)
0.449086 0.893489i \(-0.351750\pi\)
\(192\) 0 0
\(193\) 217.576 + 125.618i 1.12734 + 0.650868i 0.943264 0.332044i \(-0.107738\pi\)
0.184073 + 0.982913i \(0.441072\pi\)
\(194\) −159.549 + 92.1157i −0.822418 + 0.474823i
\(195\) 0 0
\(196\) −95.1798 + 23.3409i −0.485611 + 0.119086i
\(197\) 128.792i 0.653768i −0.945065 0.326884i \(-0.894001\pi\)
0.945065 0.326884i \(-0.105999\pi\)
\(198\) 0 0
\(199\) −173.384 100.103i −0.871275 0.503031i −0.00350309 0.999994i \(-0.501115\pi\)
−0.867772 + 0.496963i \(0.834448\pi\)
\(200\) 22.0805 67.1748i 0.110402 0.335874i
\(201\) 0 0
\(202\) 203.340 1.00663
\(203\) 101.800 238.543i 0.501476 1.17509i
\(204\) 0 0
\(205\) 29.8397 186.339i 0.145559 0.908971i
\(206\) −65.6497 37.9028i −0.318688 0.183994i
\(207\) 0 0
\(208\) 30.3698 + 52.6020i 0.146008 + 0.252894i
\(209\) 100.790i 0.482249i
\(210\) 0 0
\(211\) 167.518 0.793924 0.396962 0.917835i \(-0.370064\pi\)
0.396962 + 0.917835i \(0.370064\pi\)
\(212\) −17.7557 + 10.2512i −0.0837532 + 0.0483549i
\(213\) 0 0
\(214\) 76.9228 133.234i 0.359452 0.622590i
\(215\) −14.4318 + 90.1218i −0.0671246 + 0.419171i
\(216\) 0 0
\(217\) 86.9531 65.2610i 0.400706 0.300742i
\(218\) 86.6967i 0.397691i
\(219\) 0 0
\(220\) −34.0026 89.0343i −0.154557 0.404701i
\(221\) −177.345 + 307.170i −0.802465 + 1.38991i
\(222\) 0 0
\(223\) −66.6389 −0.298829 −0.149415 0.988775i \(-0.547739\pi\)
−0.149415 + 0.988775i \(0.547739\pi\)
\(224\) −31.6703 + 23.7695i −0.141385 + 0.106114i
\(225\) 0 0
\(226\) 67.3310 + 116.621i 0.297925 + 0.516021i
\(227\) −25.9245 + 44.9026i −0.114205 + 0.197809i −0.917462 0.397824i \(-0.869765\pi\)
0.803257 + 0.595633i \(0.203099\pi\)
\(228\) 0 0
\(229\) 63.0828 36.4209i 0.275471 0.159043i −0.355900 0.934524i \(-0.615826\pi\)
0.631371 + 0.775481i \(0.282492\pi\)
\(230\) −94.0412 + 115.726i −0.408875 + 0.503158i
\(231\) 0 0
\(232\) 104.796i 0.451707i
\(233\) −119.380 + 68.9243i −0.512362 + 0.295813i −0.733804 0.679361i \(-0.762257\pi\)
0.221442 + 0.975174i \(0.428924\pi\)
\(234\) 0 0
\(235\) −0.553139 1.44837i −0.00235378 0.00616327i
\(236\) 6.21515 3.58832i 0.0263354 0.0152048i
\(237\) 0 0
\(238\) −212.676 90.7607i −0.893597 0.381348i
\(239\) 350.640 1.46711 0.733557 0.679628i \(-0.237859\pi\)
0.733557 + 0.679628i \(0.237859\pi\)
\(240\) 0 0
\(241\) −264.464 152.688i −1.09736 0.633561i −0.161833 0.986818i \(-0.551741\pi\)
−0.935526 + 0.353257i \(0.885074\pi\)
\(242\) 36.9470 + 21.3314i 0.152674 + 0.0881462i
\(243\) 0 0
\(244\) 223.721i 0.916890i
\(245\) −139.406 201.472i −0.569004 0.822334i
\(246\) 0 0
\(247\) 139.072 80.2930i 0.563043 0.325073i
\(248\) 21.9646 38.0438i 0.0885669 0.153402i
\(249\) 0 0
\(250\) 176.580 8.34674i 0.706318 0.0333870i
\(251\) 419.508i 1.67135i 0.549228 + 0.835673i \(0.314922\pi\)
−0.549228 + 0.835673i \(0.685078\pi\)
\(252\) 0 0
\(253\) 200.987i 0.794415i
\(254\) 82.3321 + 142.603i 0.324142 + 0.561431i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −3.64460 6.31263i −0.0141813 0.0245628i 0.858848 0.512231i \(-0.171181\pi\)
−0.873029 + 0.487668i \(0.837848\pi\)
\(258\) 0 0
\(259\) 16.4020 + 135.750i 0.0633280 + 0.524130i
\(260\) −95.7631 + 117.845i −0.368319 + 0.453251i
\(261\) 0 0
\(262\) −116.689 + 202.110i −0.445376 + 0.771414i
\(263\) 118.435 + 68.3785i 0.450323 + 0.259994i 0.707967 0.706246i \(-0.249613\pi\)
−0.257643 + 0.966240i \(0.582946\pi\)
\(264\) 0 0
\(265\) −39.7784 32.3246i −0.150107 0.121980i
\(266\) 62.8430 + 83.7314i 0.236252 + 0.314780i
\(267\) 0 0
\(268\) 22.1493 12.7879i 0.0826465 0.0477160i
\(269\) −216.274 124.866i −0.803993 0.464186i 0.0408722 0.999164i \(-0.486986\pi\)
−0.844866 + 0.534979i \(0.820320\pi\)
\(270\) 0 0
\(271\) −388.441 + 224.266i −1.43336 + 0.827551i −0.997375 0.0724033i \(-0.976933\pi\)
−0.435985 + 0.899954i \(0.643600\pi\)
\(272\) −93.4322 −0.343501
\(273\) 0 0
\(274\) 301.813 1.10151
\(275\) 177.610 158.825i 0.645853 0.577545i
\(276\) 0 0
\(277\) 424.679 + 245.188i 1.53314 + 0.885157i 0.999215 + 0.0396228i \(0.0126156\pi\)
0.533922 + 0.845534i \(0.320718\pi\)
\(278\) 37.5383 + 65.0183i 0.135030 + 0.233879i
\(279\) 0 0
\(280\) −83.7610 52.7645i −0.299146 0.188445i
\(281\) 54.0733 0.192432 0.0962158 0.995360i \(-0.469326\pi\)
0.0962158 + 0.995360i \(0.469326\pi\)
\(282\) 0 0
\(283\) 81.2503 140.730i 0.287104 0.497278i −0.686014 0.727589i \(-0.740641\pi\)
0.973117 + 0.230311i \(0.0739743\pi\)
\(284\) 32.7865 56.7878i 0.115445 0.199957i
\(285\) 0 0
\(286\) 204.667i 0.715619i
\(287\) −242.996 103.700i −0.846676 0.361324i
\(288\) 0 0
\(289\) −128.299 222.221i −0.443942 0.768931i
\(290\) 244.749 93.4707i 0.843961 0.322313i
\(291\) 0 0
\(292\) 60.3061 + 104.453i 0.206528 + 0.357716i
\(293\) −298.153 −1.01759 −0.508794 0.860888i \(-0.669909\pi\)
−0.508794 + 0.860888i \(0.669909\pi\)
\(294\) 0 0
\(295\) 13.9239 + 11.3148i 0.0471998 + 0.0383553i
\(296\) 27.6251 + 47.8480i 0.0933279 + 0.161649i
\(297\) 0 0
\(298\) 0.00696189 + 0.00401945i 2.33620e−5 + 1.34881e-5i
\(299\) 277.325 160.114i 0.927508 0.535497i
\(300\) 0 0
\(301\) 117.524 + 50.1539i 0.390444 + 0.166624i
\(302\) 324.954i 1.07601i
\(303\) 0 0
\(304\) 36.6342 + 21.1508i 0.120507 + 0.0695749i
\(305\) 522.496 199.544i 1.71310 0.654242i
\(306\) 0 0
\(307\) −197.369 −0.642895 −0.321447 0.946927i \(-0.604169\pi\)
−0.321447 + 0.946927i \(0.604169\pi\)
\(308\) −132.465 + 16.0051i −0.430082 + 0.0519647i
\(309\) 0 0
\(310\) 108.441 + 17.3654i 0.349811 + 0.0560174i
\(311\) −277.559 160.249i −0.892474 0.515270i −0.0177229 0.999843i \(-0.505642\pi\)
−0.874751 + 0.484573i \(0.838975\pi\)
\(312\) 0 0
\(313\) −108.403 187.760i −0.346337 0.599873i 0.639259 0.768992i \(-0.279241\pi\)
−0.985596 + 0.169119i \(0.945908\pi\)
\(314\) 62.3925i 0.198702i
\(315\) 0 0
\(316\) 182.647 0.577997
\(317\) 339.651 196.098i 1.07145 0.618605i 0.142876 0.989741i \(-0.454365\pi\)
0.928579 + 0.371136i \(0.121032\pi\)
\(318\) 0 0
\(319\) 176.560 305.810i 0.553478 0.958652i
\(320\) −39.4968 6.32487i −0.123427 0.0197652i
\(321\) 0 0
\(322\) 125.316 + 166.970i 0.389181 + 0.518541i
\(323\) 247.020i 0.764769i
\(324\) 0 0
\(325\) −360.639 118.543i −1.10966 0.364747i
\(326\) 21.6013 37.4145i 0.0662615 0.114768i
\(327\) 0 0
\(328\) −106.752 −0.325464
\(329\) −2.15489 + 0.260364i −0.00654981 + 0.000791380i
\(330\) 0 0
\(331\) 171.860 + 297.670i 0.519214 + 0.899304i 0.999751 + 0.0223298i \(0.00710839\pi\)
−0.480537 + 0.876974i \(0.659558\pi\)
\(332\) −103.825 + 179.831i −0.312727 + 0.541659i
\(333\) 0 0
\(334\) −125.105 + 72.2296i −0.374567 + 0.216256i
\(335\) 49.6214 + 40.3232i 0.148124 + 0.120368i
\(336\) 0 0
\(337\) 86.0226i 0.255260i −0.991822 0.127630i \(-0.959263\pi\)
0.991822 0.127630i \(-0.0407370\pi\)
\(338\) 75.4206 43.5441i 0.223138 0.128829i
\(339\) 0 0
\(340\) −83.3351 218.209i −0.245103 0.641791i
\(341\) 128.192 74.0115i 0.375929 0.217043i
\(342\) 0 0
\(343\) −320.925 + 121.063i −0.935641 + 0.352954i
\(344\) 51.6301 0.150088
\(345\) 0 0
\(346\) 334.819 + 193.308i 0.967685 + 0.558693i
\(347\) −531.356 306.778i −1.53129 0.884088i −0.999303 0.0373324i \(-0.988114\pi\)
−0.531982 0.846756i \(-0.678553\pi\)
\(348\) 0 0
\(349\) 202.068i 0.578990i 0.957180 + 0.289495i \(0.0934874\pi\)
−0.957180 + 0.289495i \(0.906513\pi\)
\(350\) 48.5215 242.684i 0.138633 0.693384i
\(351\) 0 0
\(352\) −46.6903 + 26.9567i −0.132643 + 0.0765815i
\(353\) 255.952 443.323i 0.725078 1.25587i −0.233864 0.972269i \(-0.575137\pi\)
0.958942 0.283602i \(-0.0915296\pi\)
\(354\) 0 0
\(355\) 161.870 + 25.9213i 0.455972 + 0.0730177i
\(356\) 120.858i 0.339488i
\(357\) 0 0
\(358\) 13.6451i 0.0381149i
\(359\) −79.2023 137.182i −0.220619 0.382124i 0.734377 0.678742i \(-0.237475\pi\)
−0.954996 + 0.296618i \(0.904141\pi\)
\(360\) 0 0
\(361\) −124.581 + 215.780i −0.345099 + 0.597729i
\(362\) 156.650 + 271.326i 0.432736 + 0.749520i
\(363\) 0 0
\(364\) 127.611 + 170.027i 0.350579 + 0.467108i
\(365\) −190.159 + 234.009i −0.520985 + 0.641119i
\(366\) 0 0
\(367\) 163.167 282.613i 0.444596 0.770062i −0.553428 0.832897i \(-0.686681\pi\)
0.998024 + 0.0628347i \(0.0200141\pi\)
\(368\) 73.0529 + 42.1771i 0.198513 + 0.114612i
\(369\) 0 0
\(370\) −87.1084 + 107.195i −0.235428 + 0.289716i
\(371\) −57.3923 + 43.0747i −0.154696 + 0.116104i
\(372\) 0 0
\(373\) −252.630 + 145.856i −0.677292 + 0.391035i −0.798834 0.601551i \(-0.794549\pi\)
0.121542 + 0.992586i \(0.461216\pi\)
\(374\) −272.649 157.414i −0.729008 0.420893i
\(375\) 0 0
\(376\) −0.759537 + 0.438519i −0.00202005 + 0.00116627i
\(377\) −562.615 −1.49235
\(378\) 0 0
\(379\) −677.228 −1.78688 −0.893441 0.449181i \(-0.851716\pi\)
−0.893441 + 0.449181i \(0.851716\pi\)
\(380\) −16.7220 + 104.423i −0.0440052 + 0.274798i
\(381\) 0 0
\(382\) −256.964 148.358i −0.672680 0.388372i
\(383\) −124.602 215.817i −0.325332 0.563491i 0.656248 0.754545i \(-0.272143\pi\)
−0.981579 + 0.191055i \(0.938809\pi\)
\(384\) 0 0
\(385\) −155.530 295.095i −0.403973 0.766479i
\(386\) 355.300 0.920467
\(387\) 0 0
\(388\) −130.271 + 225.636i −0.335751 + 0.581537i
\(389\) −14.3803 + 24.9074i −0.0369673 + 0.0640293i −0.883917 0.467644i \(-0.845103\pi\)
0.846950 + 0.531673i \(0.178436\pi\)
\(390\) 0 0
\(391\) 492.587i 1.25981i
\(392\) −100.066 + 95.8890i −0.255272 + 0.244615i
\(393\) 0 0
\(394\) −91.0699 157.738i −0.231142 0.400349i
\(395\) 162.908 + 426.568i 0.412426 + 1.07992i
\(396\) 0 0
\(397\) −126.465 219.043i −0.318550 0.551746i 0.661635 0.749826i \(-0.269863\pi\)
−0.980186 + 0.198080i \(0.936529\pi\)
\(398\) −283.134 −0.711393
\(399\) 0 0
\(400\) −20.4568 97.8852i −0.0511420 0.244713i
\(401\) −103.441 179.165i −0.257958 0.446796i 0.707737 0.706476i \(-0.249716\pi\)
−0.965695 + 0.259680i \(0.916383\pi\)
\(402\) 0 0
\(403\) −204.244 117.921i −0.506810 0.292607i
\(404\) 249.039 143.783i 0.616434 0.355898i
\(405\) 0 0
\(406\) −43.9969 364.138i −0.108367 0.896891i
\(407\) 186.170i 0.457420i
\(408\) 0 0
\(409\) 577.695 + 333.532i 1.41246 + 0.815483i 0.995619 0.0934983i \(-0.0298050\pi\)
0.416838 + 0.908981i \(0.363138\pi\)
\(410\) −95.2156 249.318i −0.232233 0.608092i
\(411\) 0 0
\(412\) −107.205 −0.260207
\(413\) 20.0895 15.0778i 0.0486428 0.0365079i
\(414\) 0 0
\(415\) −512.595 82.0852i −1.23517 0.197796i
\(416\) 74.3904 + 42.9493i 0.178823 + 0.103244i
\(417\) 0 0
\(418\) 71.2693 + 123.442i 0.170501 + 0.295316i
\(419\) 82.9914i 0.198070i 0.995084 + 0.0990350i \(0.0315756\pi\)
−0.995084 + 0.0990350i \(0.968424\pi\)
\(420\) 0 0
\(421\) 155.483 0.369319 0.184659 0.982803i \(-0.440882\pi\)
0.184659 + 0.982803i \(0.440882\pi\)
\(422\) 205.167 118.453i 0.486177 0.280695i
\(423\) 0 0
\(424\) −14.4975 + 25.1103i −0.0341921 + 0.0592225i
\(425\) 435.293 389.254i 1.02422 0.915893i
\(426\) 0 0
\(427\) −93.9257 777.370i −0.219967 1.82054i
\(428\) 217.571i 0.508342i
\(429\) 0 0
\(430\) 46.0505 + 120.581i 0.107094 + 0.280421i
\(431\) −17.6114 + 30.5039i −0.0408618 + 0.0707748i −0.885733 0.464195i \(-0.846344\pi\)
0.844871 + 0.534970i \(0.179677\pi\)
\(432\) 0 0
\(433\) 98.0262 0.226388 0.113194 0.993573i \(-0.463892\pi\)
0.113194 + 0.993573i \(0.463892\pi\)
\(434\) 60.3489 141.413i 0.139053 0.325837i
\(435\) 0 0
\(436\) −61.3038 106.181i −0.140605 0.243535i
\(437\) 111.510 193.141i 0.255171 0.441969i
\(438\) 0 0
\(439\) 356.391 205.763i 0.811826 0.468708i −0.0357638 0.999360i \(-0.511386\pi\)
0.847589 + 0.530653i \(0.178053\pi\)
\(440\) −104.601 85.0008i −0.237730 0.193184i
\(441\) 0 0
\(442\) 501.606i 1.13486i
\(443\) 656.457 379.006i 1.48184 0.855543i 0.482057 0.876140i \(-0.339890\pi\)
0.999788 + 0.0205969i \(0.00655665\pi\)
\(444\) 0 0
\(445\) 282.260 107.797i 0.634293 0.242239i
\(446\) −81.6157 + 47.1208i −0.182995 + 0.105652i
\(447\) 0 0
\(448\) −21.9804 + 51.5059i −0.0490635 + 0.114969i
\(449\) 49.9480 0.111243 0.0556213 0.998452i \(-0.482286\pi\)
0.0556213 + 0.998452i \(0.482286\pi\)
\(450\) 0 0
\(451\) −311.519 179.855i −0.690729 0.398792i
\(452\) 164.926 + 95.2204i 0.364882 + 0.210665i
\(453\) 0 0
\(454\) 73.3256i 0.161510i
\(455\) −283.275 + 449.685i −0.622583 + 0.988318i
\(456\) 0 0
\(457\) 350.458 202.337i 0.766866 0.442750i −0.0648896 0.997892i \(-0.520670\pi\)
0.831755 + 0.555142i \(0.187336\pi\)
\(458\) 51.5069 89.2126i 0.112461 0.194787i
\(459\) 0 0
\(460\) −33.3456 + 208.232i −0.0724904 + 0.452679i
\(461\) 41.4395i 0.0898904i −0.998989 0.0449452i \(-0.985689\pi\)
0.998989 0.0449452i \(-0.0143113\pi\)
\(462\) 0 0
\(463\) 668.770i 1.44443i −0.691670 0.722213i \(-0.743125\pi\)
0.691670 0.722213i \(-0.256875\pi\)
\(464\) −74.1019 128.348i −0.159702 0.276613i
\(465\) 0 0
\(466\) −97.4737 + 168.829i −0.209171 + 0.362295i
\(467\) −248.677 430.721i −0.532498 0.922314i −0.999280 0.0379417i \(-0.987920\pi\)
0.466782 0.884373i \(-0.345413\pi\)
\(468\) 0 0
\(469\) 71.5939 53.7334i 0.152652 0.114570i
\(470\) −1.70161 1.38275i −0.00362044 0.00294203i
\(471\) 0 0
\(472\) 5.07465 8.78956i 0.0107514 0.0186219i
\(473\) 150.664 + 86.9860i 0.318529 + 0.183903i
\(474\) 0 0
\(475\) −258.793 + 54.0846i −0.544828 + 0.113862i
\(476\) −324.652 + 39.2260i −0.682041 + 0.0824076i
\(477\) 0 0
\(478\) 429.445 247.940i 0.898420 0.518703i
\(479\) −383.598 221.470i −0.800830 0.462360i 0.0429311 0.999078i \(-0.486330\pi\)
−0.843761 + 0.536718i \(0.819664\pi\)
\(480\) 0 0
\(481\) 256.880 148.310i 0.534054 0.308336i
\(482\) −431.867 −0.895990
\(483\) 0 0
\(484\) 60.3343 0.124658
\(485\) −643.162 102.994i −1.32611 0.212358i
\(486\) 0 0
\(487\) −97.2891 56.1699i −0.199772 0.115339i 0.396777 0.917915i \(-0.370129\pi\)
−0.596549 + 0.802576i \(0.703462\pi\)
\(488\) −158.195 274.001i −0.324170 0.561478i
\(489\) 0 0
\(490\) −313.199 148.177i −0.639182 0.302402i
\(491\) 677.177 1.37918 0.689590 0.724200i \(-0.257791\pi\)
0.689590 + 0.724200i \(0.257791\pi\)
\(492\) 0 0
\(493\) 432.719 749.492i 0.877727 1.52027i
\(494\) 113.551 196.677i 0.229861 0.398131i
\(495\) 0 0
\(496\) 62.1252i 0.125252i
\(497\) 90.0826 211.087i 0.181253 0.424723i
\(498\) 0 0
\(499\) −461.215 798.848i −0.924279 1.60090i −0.792717 0.609590i \(-0.791334\pi\)
−0.131562 0.991308i \(-0.541999\pi\)
\(500\) 210.363 135.083i 0.420726 0.270166i
\(501\) 0 0
\(502\) 296.637 + 513.790i 0.590910 + 1.02349i
\(503\) 136.712 0.271793 0.135896 0.990723i \(-0.456609\pi\)
0.135896 + 0.990723i \(0.456609\pi\)
\(504\) 0 0
\(505\) 557.927 + 453.381i 1.10481 + 0.897785i
\(506\) 142.119 + 246.158i 0.280868 + 0.486478i
\(507\) 0 0
\(508\) 201.672 + 116.435i 0.396991 + 0.229203i
\(509\) 619.262 357.531i 1.21662 0.702418i 0.252430 0.967615i \(-0.418770\pi\)
0.964194 + 0.265197i \(0.0854370\pi\)
\(510\) 0 0
\(511\) 253.400 + 337.628i 0.495891 + 0.660720i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −8.92741 5.15424i −0.0173685 0.0100277i
\(515\) −95.6198 250.376i −0.185670 0.486167i
\(516\) 0 0
\(517\) −2.95525 −0.00571616
\(518\) 116.078 + 154.661i 0.224088 + 0.298573i
\(519\) 0 0
\(520\) −33.9561 + 212.045i −0.0653003 + 0.407779i
\(521\) −14.6765 8.47346i −0.0281698 0.0162638i 0.485849 0.874043i \(-0.338510\pi\)
−0.514019 + 0.857779i \(0.671844\pi\)
\(522\) 0 0
\(523\) 351.622 + 609.027i 0.672317 + 1.16449i 0.977245 + 0.212113i \(0.0680343\pi\)
−0.304928 + 0.952375i \(0.598632\pi\)
\(524\) 330.045i 0.629857i
\(525\) 0 0
\(526\) 193.404 0.367687
\(527\) 314.178 181.391i 0.596162 0.344195i
\(528\) 0 0
\(529\) −42.1366 + 72.9828i −0.0796533 + 0.137964i
\(530\) −71.5753 11.4618i −0.135048 0.0216261i
\(531\) 0 0
\(532\) 136.174 + 58.1129i 0.255966 + 0.109235i
\(533\) 573.117i 1.07527i
\(534\) 0 0
\(535\) 508.131 194.058i 0.949778 0.362725i
\(536\) 18.0848 31.3238i 0.0337403 0.0584399i
\(537\) 0 0
\(538\) −353.174 −0.656458
\(539\) −453.562 + 111.227i −0.841488 + 0.206358i
\(540\) 0 0
\(541\) −473.725 820.515i −0.875647 1.51666i −0.856072 0.516856i \(-0.827102\pi\)
−0.0195742 0.999808i \(-0.506231\pi\)
\(542\) −317.160 + 549.338i −0.585167 + 1.01354i
\(543\) 0 0
\(544\) −114.431 + 66.0666i −0.210350 + 0.121446i
\(545\) 193.306 237.880i 0.354689 0.436478i
\(546\) 0 0
\(547\) 451.960i 0.826252i 0.910674 + 0.413126i \(0.135563\pi\)
−0.910674 + 0.413126i \(0.864437\pi\)
\(548\) 369.644 213.414i 0.674533 0.389442i
\(549\) 0 0
\(550\) 105.220 320.109i 0.191310 0.582016i
\(551\) −339.333 + 195.914i −0.615850 + 0.355561i
\(552\) 0 0
\(553\) 634.648 76.6814i 1.14765 0.138664i
\(554\) 693.498 1.25180
\(555\) 0 0
\(556\) 91.9497 + 53.0872i 0.165377 + 0.0954806i
\(557\) −331.417 191.344i −0.595004 0.343526i 0.172069 0.985085i \(-0.444955\pi\)
−0.767074 + 0.641559i \(0.778288\pi\)
\(558\) 0 0
\(559\) 277.185i 0.495858i
\(560\) −139.896 5.39513i −0.249814 0.00963417i
\(561\) 0 0
\(562\) 66.2260 38.2356i 0.117840 0.0680349i
\(563\) −22.9940 + 39.8268i −0.0408419 + 0.0707402i −0.885724 0.464213i \(-0.846337\pi\)
0.844882 + 0.534953i \(0.179671\pi\)
\(564\) 0 0
\(565\) −75.2821 + 470.112i −0.133243 + 0.832057i
\(566\) 229.811i 0.406026i
\(567\) 0 0
\(568\) 92.7341i 0.163264i
\(569\) −15.4807 26.8133i −0.0272068 0.0471236i 0.852101 0.523377i \(-0.175328\pi\)
−0.879308 + 0.476253i \(0.841995\pi\)
\(570\) 0 0
\(571\) −200.579 + 347.414i −0.351277 + 0.608430i −0.986474 0.163921i \(-0.947586\pi\)
0.635196 + 0.772351i \(0.280919\pi\)
\(572\) 144.721 + 250.665i 0.253010 + 0.438225i
\(573\) 0 0
\(574\) −370.935 + 44.8182i −0.646228 + 0.0780805i
\(575\) −516.064 + 107.851i −0.897503 + 0.187567i
\(576\) 0 0
\(577\) −388.494 + 672.891i −0.673300 + 1.16619i 0.303663 + 0.952780i \(0.401790\pi\)
−0.976963 + 0.213410i \(0.931543\pi\)
\(578\) −314.268 181.443i −0.543716 0.313915i
\(579\) 0 0
\(580\) 233.661 287.541i 0.402864 0.495761i
\(581\) −285.266 + 668.452i −0.490991 + 1.15052i
\(582\) 0 0
\(583\) −84.6114 + 48.8504i −0.145131 + 0.0837914i
\(584\) 147.719 + 85.2857i 0.252944 + 0.146037i
\(585\) 0 0
\(586\) −365.162 + 210.826i −0.623143 + 0.359772i
\(587\) 123.033 0.209596 0.104798 0.994494i \(-0.466580\pi\)
0.104798 + 0.994494i \(0.466580\pi\)
\(588\) 0 0
\(589\) −164.249 −0.278862
\(590\) 25.0541 + 4.01207i 0.0424645 + 0.00680011i
\(591\) 0 0
\(592\) 67.6673 + 39.0677i 0.114303 + 0.0659928i
\(593\) −211.024 365.504i −0.355858 0.616364i 0.631407 0.775452i \(-0.282478\pi\)
−0.987264 + 0.159088i \(0.949145\pi\)
\(594\) 0 0
\(595\) −381.178 723.230i −0.640636 1.21551i
\(596\) 0.0113687 1.90750e−5
\(597\) 0 0
\(598\) 226.435 392.196i 0.378653 0.655847i
\(599\) −414.355 + 717.684i −0.691745 + 1.19814i 0.279521 + 0.960140i \(0.409824\pi\)
−0.971266 + 0.237998i \(0.923509\pi\)
\(600\) 0 0
\(601\) 675.102i 1.12330i −0.827376 0.561649i \(-0.810167\pi\)
0.827376 0.561649i \(-0.189833\pi\)
\(602\) 179.401 21.6761i 0.298008 0.0360068i
\(603\) 0 0
\(604\) 229.777 + 397.985i 0.380425 + 0.658916i
\(605\) 53.8140 + 140.909i 0.0889487 + 0.232908i
\(606\) 0 0
\(607\) −491.492 851.289i −0.809707 1.40245i −0.913067 0.407809i \(-0.866293\pi\)
0.103360 0.994644i \(-0.467041\pi\)
\(608\) 59.8234 0.0983937
\(609\) 0 0
\(610\) 498.825 613.851i 0.817747 1.00631i
\(611\) 2.35426 + 4.07770i 0.00385313 + 0.00667382i
\(612\) 0 0
\(613\) 418.163 + 241.427i 0.682159 + 0.393844i 0.800668 0.599108i \(-0.204478\pi\)
−0.118509 + 0.992953i \(0.537812\pi\)
\(614\) −241.726 + 139.561i −0.393691 + 0.227298i
\(615\) 0 0
\(616\) −150.919 + 113.269i −0.244998 + 0.183879i
\(617\) 550.193i 0.891722i 0.895102 + 0.445861i \(0.147103\pi\)
−0.895102 + 0.445861i \(0.852897\pi\)
\(618\) 0 0
\(619\) 535.910 + 309.408i 0.865767 + 0.499851i 0.865939 0.500149i \(-0.166721\pi\)
−0.000172089 1.00000i \(0.500055\pi\)
\(620\) 145.092 55.4114i 0.234020 0.0893732i
\(621\) 0 0
\(622\) −453.252 −0.728702
\(623\) −50.7401 419.947i −0.0814448 0.674073i
\(624\) 0 0
\(625\) 503.113 + 370.813i 0.804981 + 0.593301i
\(626\) −265.533 153.306i −0.424174 0.244897i
\(627\) 0 0
\(628\) 44.1182 + 76.4149i 0.0702518 + 0.121680i
\(629\) 456.273i 0.725395i
\(630\) 0 0
\(631\) −167.847 −0.266001 −0.133000 0.991116i \(-0.542461\pi\)
−0.133000 + 0.991116i \(0.542461\pi\)
\(632\) 223.696 129.151i 0.353949 0.204353i
\(633\) 0 0
\(634\) 277.324 480.339i 0.437420 0.757633i
\(635\) −92.0547 + 574.852i −0.144968 + 0.905279i
\(636\) 0 0
\(637\) 514.796 + 537.224i 0.808157 + 0.843365i
\(638\) 499.386i 0.782736i
\(639\) 0 0
\(640\) −52.8458 + 20.1821i −0.0825716 + 0.0315345i
\(641\) 529.087 916.406i 0.825409 1.42965i −0.0761967 0.997093i \(-0.524278\pi\)
0.901606 0.432558i \(-0.142389\pi\)
\(642\) 0 0
\(643\) −68.2597 −0.106158 −0.0530791 0.998590i \(-0.516904\pi\)
−0.0530791 + 0.998590i \(0.516904\pi\)
\(644\) 271.546 + 115.884i 0.421656 + 0.179944i
\(645\) 0 0
\(646\) 174.670 + 302.537i 0.270387 + 0.468323i
\(647\) −26.7770 + 46.3792i −0.0413865 + 0.0716835i −0.885977 0.463730i \(-0.846511\pi\)
0.844590 + 0.535413i \(0.179844\pi\)
\(648\) 0 0
\(649\) 29.6172 17.0995i 0.0456351 0.0263474i
\(650\) −525.513 + 109.826i −0.808482 + 0.168963i
\(651\) 0 0
\(652\) 61.0976i 0.0937079i
\(653\) −39.7204 + 22.9326i −0.0608276 + 0.0351188i −0.530105 0.847932i \(-0.677848\pi\)
0.469278 + 0.883051i \(0.344514\pi\)
\(654\) 0 0
\(655\) −770.813 + 294.377i −1.17681 + 0.449431i
\(656\) −130.744 + 75.4852i −0.199305 + 0.115069i
\(657\) 0 0
\(658\) −2.45508 + 1.84261i −0.00373113 + 0.00280033i
\(659\) −997.845 −1.51418 −0.757090 0.653310i \(-0.773380\pi\)
−0.757090 + 0.653310i \(0.773380\pi\)
\(660\) 0 0
\(661\) 229.919 + 132.744i 0.347836 + 0.200823i 0.663732 0.747971i \(-0.268972\pi\)
−0.315896 + 0.948794i \(0.602305\pi\)
\(662\) 420.969 + 243.046i 0.635904 + 0.367139i
\(663\) 0 0
\(664\) 293.662i 0.442262i
\(665\) −14.2639 + 369.863i −0.0214495 + 0.556186i
\(666\) 0 0
\(667\) −676.670 + 390.676i −1.01450 + 0.585720i
\(668\) −102.148 + 176.926i −0.152916 + 0.264859i
\(669\) 0 0
\(670\) 89.2864 + 14.2980i 0.133263 + 0.0213403i
\(671\) 1066.10i 1.58882i
\(672\) 0 0
\(673\) 859.611i 1.27728i 0.769505 + 0.638641i \(0.220503\pi\)
−0.769505 + 0.638641i \(0.779497\pi\)
\(674\) −60.8271 105.356i −0.0902480 0.156314i
\(675\) 0 0
\(676\) 61.5807 106.661i 0.0910956 0.157782i
\(677\) −35.7345 61.8940i −0.0527836 0.0914239i 0.838426 0.545015i \(-0.183476\pi\)
−0.891210 + 0.453591i \(0.850143\pi\)
\(678\) 0 0
\(679\) −357.927 + 838.718i −0.527139 + 1.23522i
\(680\) −256.361 208.323i −0.377002 0.306358i
\(681\) 0 0
\(682\) 104.668 181.291i 0.153472 0.265822i
\(683\) 832.644 + 480.727i 1.21910 + 0.703847i 0.964725 0.263259i \(-0.0847975\pi\)
0.254373 + 0.967106i \(0.418131\pi\)
\(684\) 0 0
\(685\) 828.121 + 672.945i 1.20894 + 0.982402i
\(686\) −307.446 + 375.200i −0.448173 + 0.546938i
\(687\) 0 0
\(688\) 63.2337 36.5080i 0.0919095 0.0530639i
\(689\) 134.809 + 77.8320i 0.195659 + 0.112964i
\(690\) 0 0
\(691\) 433.591 250.334i 0.627483 0.362277i −0.152294 0.988335i \(-0.548666\pi\)
0.779777 + 0.626058i \(0.215333\pi\)
\(692\) 546.757 0.790111
\(693\) 0 0
\(694\) −867.701 −1.25029
\(695\) −41.9712 + 262.097i −0.0603903 + 0.377117i
\(696\) 0 0
\(697\) −763.483 440.797i −1.09538 0.632420i
\(698\) 142.883 + 247.481i 0.204704 + 0.354558i
\(699\) 0 0
\(700\) −112.177 331.536i −0.160253 0.473623i
\(701\) 913.148 1.30264 0.651318 0.758805i \(-0.274216\pi\)
0.651318 + 0.758805i \(0.274216\pi\)
\(702\) 0 0
\(703\) 103.289 178.902i 0.146926 0.254484i
\(704\) −38.1225 + 66.0301i −0.0541513 + 0.0937928i
\(705\) 0 0
\(706\) 723.943i 1.02541i
\(707\) 804.979 604.161i 1.13858 0.854542i
\(708\) 0 0
\(709\) −573.474 993.286i −0.808849 1.40097i −0.913661 0.406476i \(-0.866757\pi\)
0.104812 0.994492i \(-0.466576\pi\)
\(710\) 216.579 82.7124i 0.305040 0.116496i
\(711\) 0 0
\(712\) −85.4592 148.020i −0.120027 0.207893i
\(713\) −327.533 −0.459373
\(714\) 0 0
\(715\) −456.341 + 561.570i −0.638239 + 0.785412i
\(716\) 9.64856 + 16.7118i 0.0134756 + 0.0233405i
\(717\) 0 0
\(718\) −194.005 112.009i −0.270202 0.156001i
\(719\) 84.0179 48.5077i 0.116854 0.0674656i −0.440434 0.897785i \(-0.645175\pi\)
0.557288 + 0.830319i \(0.311842\pi\)
\(720\) 0 0
\(721\) −372.510 + 45.0085i −0.516657 + 0.0624251i
\(722\) 352.367i 0.488043i
\(723\) 0 0
\(724\) 383.713 + 221.537i 0.529991 + 0.305990i
\(725\) 879.956 + 289.243i 1.21373 + 0.398956i
\(726\) 0 0
\(727\) 175.776 0.241782 0.120891 0.992666i \(-0.461425\pi\)
0.120891 + 0.992666i \(0.461425\pi\)
\(728\) 276.518 + 118.006i 0.379833 + 0.162096i
\(729\) 0 0
\(730\) −67.4277 + 421.064i −0.0923667 + 0.576800i
\(731\) 369.254 + 213.189i 0.505136 + 0.291640i
\(732\) 0 0
\(733\) −346.840 600.745i −0.473179 0.819570i 0.526350 0.850268i \(-0.323560\pi\)
−0.999529 + 0.0306981i \(0.990227\pi\)
\(734\) 461.505i 0.628753i
\(735\) 0 0
\(736\) 119.295 0.162085
\(737\) 105.548 60.9383i 0.143213 0.0826842i
\(738\) 0 0
\(739\) −10.2585 + 17.7682i −0.0138816 + 0.0240436i −0.872883 0.487930i \(-0.837752\pi\)
0.859001 + 0.511974i \(0.171085\pi\)
\(740\) −30.8873 + 192.881i −0.0417396 + 0.260650i
\(741\) 0 0
\(742\) −39.8325 + 93.3381i −0.0536827 + 0.125793i
\(743\) 896.676i 1.20683i 0.797427 + 0.603416i \(0.206194\pi\)
−0.797427 + 0.603416i \(0.793806\pi\)
\(744\) 0 0
\(745\) 0.0101401 + 0.0265514i 1.36109e−5 + 3.56394e-5i
\(746\) −206.272 + 357.273i −0.276503 + 0.478918i
\(747\) 0 0
\(748\) −445.234 −0.595232
\(749\) −91.3435 755.999i −0.121954 1.00934i
\(750\) 0 0
\(751\) 298.227 + 516.545i 0.397107 + 0.687809i 0.993368 0.114982i \(-0.0366809\pi\)
−0.596261 + 0.802791i \(0.703348\pi\)
\(752\) −0.620160 + 1.07415i −0.000824680 + 0.00142839i
\(753\) 0 0
\(754\) −689.059 + 397.829i −0.913872 + 0.527624i
\(755\) −724.541 + 891.615i −0.959657 + 1.18095i
\(756\) 0 0
\(757\) 118.056i 0.155952i 0.996955 + 0.0779761i \(0.0248458\pi\)
−0.996955 + 0.0779761i \(0.975154\pi\)
\(758\) −829.432 + 478.873i −1.09424 + 0.631758i
\(759\) 0 0
\(760\) 53.3583 + 139.716i 0.0702083 + 0.183837i
\(761\) −695.093 + 401.312i −0.913395 + 0.527349i −0.881522 0.472143i \(-0.843480\pi\)
−0.0318728 + 0.999492i \(0.510147\pi\)
\(762\) 0 0
\(763\) −257.593 343.214i −0.337605 0.449822i
\(764\) −419.620 −0.549241
\(765\) 0 0
\(766\) −305.211 176.214i −0.398448 0.230044i
\(767\) −47.1882 27.2441i −0.0615231 0.0355204i
\(768\) 0 0
\(769\) 1022.31i 1.32940i 0.747109 + 0.664701i \(0.231441\pi\)
−0.747109 + 0.664701i \(0.768559\pi\)
\(770\) −399.147 251.440i −0.518373 0.326545i
\(771\) 0 0
\(772\) 435.152 251.235i 0.563669 0.325434i
\(773\) 343.943 595.726i 0.444945 0.770668i −0.553103 0.833113i \(-0.686556\pi\)
0.998048 + 0.0624449i \(0.0198898\pi\)
\(774\) 0 0
\(775\) 258.824 + 289.436i 0.333967 + 0.373466i
\(776\) 368.463i 0.474823i
\(777\) 0 0
\(778\) 40.6736i 0.0522797i
\(779\) 199.571 + 345.668i 0.256189 + 0.443733i
\(780\) 0 0
\(781\) 156.238 270.612i 0.200048 0.346494i
\(782\) 348.312 + 603.294i 0.445412 + 0.771476i
\(783\) 0 0
\(784\) −54.7521 + 188.197i −0.0698369 + 0.240048i
\(785\) −139.115 + 171.194i −0.177217 + 0.218081i
\(786\) 0 0
\(787\) −612.772 + 1061.35i −0.778618 + 1.34861i 0.154121 + 0.988052i \(0.450745\pi\)
−0.932739 + 0.360553i \(0.882588\pi\)
\(788\) −223.075 128.792i −0.283090 0.163442i
\(789\) 0 0
\(790\) 501.150 + 407.243i 0.634367 + 0.515498i
\(791\) 613.052 + 261.623i 0.775034 + 0.330750i
\(792\) 0 0
\(793\) −1471.02 + 849.295i −1.85501 + 1.07099i
\(794\) −309.774 178.848i −0.390143 0.225249i
\(795\) 0 0
\(796\) −346.767 + 200.206i −0.435637 + 0.251515i
\(797\) 691.172 0.867217 0.433608 0.901101i \(-0.357240\pi\)
0.433608 + 0.901101i \(0.357240\pi\)
\(798\) 0 0
\(799\) −7.24286 −0.00906491
\(800\) −94.2697 105.419i −0.117837 0.131774i
\(801\) 0 0
\(802\) −253.378 146.288i −0.315932 0.182404i
\(803\) 287.377 + 497.752i 0.357880 + 0.619866i
\(804\) 0 0
\(805\) −28.4439 + 737.551i −0.0353340 + 0.916212i
\(806\) −333.530 −0.413808
\(807\) 0 0
\(808\) 203.340 352.195i 0.251658 0.435884i
\(809\) −511.628 + 886.165i −0.632420 + 1.09538i 0.354636 + 0.935005i \(0.384605\pi\)
−0.987056 + 0.160379i \(0.948728\pi\)
\(810\) 0 0
\(811\) 346.588i 0.427359i −0.976904 0.213679i \(-0.931455\pi\)
0.976904 0.213679i \(-0.0685448\pi\)
\(812\) −311.369 414.865i −0.383460 0.510918i
\(813\) 0 0
\(814\) 131.642 + 228.011i 0.161722 + 0.280112i
\(815\) 142.692 54.4948i 0.175082 0.0668648i
\(816\) 0 0
\(817\) −96.5215 167.180i −0.118141 0.204627i
\(818\) 943.372 1.15327
\(819\) 0 0
\(820\) −292.909 238.023i −0.357206 0.290272i
\(821\) −302.304 523.605i −0.368214 0.637765i 0.621072 0.783753i \(-0.286697\pi\)
−0.989286 + 0.145988i \(0.953364\pi\)
\(822\) 0 0
\(823\) 1002.77 + 578.951i 1.21844 + 0.703464i 0.964583 0.263779i \(-0.0849689\pi\)
0.253853 + 0.967243i \(0.418302\pi\)
\(824\) −131.299 + 75.8057i −0.159344 + 0.0919972i
\(825\) 0 0
\(826\) 13.9429 32.6718i 0.0168800 0.0395543i
\(827\) 248.293i 0.300234i −0.988668 0.150117i \(-0.952035\pi\)
0.988668 0.150117i \(-0.0479650\pi\)
\(828\) 0 0
\(829\) 808.027 + 466.515i 0.974701 + 0.562744i 0.900666 0.434512i \(-0.143079\pi\)
0.0740349 + 0.997256i \(0.476412\pi\)
\(830\) −685.842 + 261.926i −0.826315 + 0.315574i
\(831\) 0 0
\(832\) 121.479 0.146008
\(833\) −1111.61 + 272.600i −1.33446 + 0.327250i
\(834\) 0 0
\(835\) −504.315 80.7592i −0.603970 0.0967176i
\(836\) 174.573 + 100.790i 0.208820 + 0.120562i
\(837\) 0 0
\(838\) 58.6838 + 101.643i 0.0700283 + 0.121293i
\(839\) 1426.14i 1.69981i 0.526934 + 0.849906i \(0.323341\pi\)
−0.526934 + 0.849906i \(0.676659\pi\)
\(840\) 0 0
\(841\) 531.775 0.632312
\(842\) 190.427 109.943i 0.226161 0.130574i
\(843\) 0 0
\(844\) 167.518 290.150i 0.198481 0.343779i
\(845\) 304.030 + 48.6862i 0.359798 + 0.0576169i
\(846\) 0 0
\(847\) 209.645 25.3304i 0.247515 0.0299060i
\(848\) 41.0050i 0.0483549i
\(849\) 0 0
\(850\) 257.879 784.536i 0.303387 0.922984i
\(851\) 205.970 356.751i 0.242033 0.419214i
\(852\) 0 0
\(853\) 350.268 0.410631 0.205315 0.978696i \(-0.434178\pi\)
0.205315 + 0.978696i \(0.434178\pi\)
\(854\) −664.719 885.665i −0.778359 1.03708i
\(855\) 0 0
\(856\) −153.846 266.468i −0.179726 0.311295i
\(857\) 15.1063 26.1649i 0.0176269 0.0305308i −0.857077 0.515188i \(-0.827722\pi\)
0.874704 + 0.484657i \(0.161056\pi\)
\(858\) 0 0
\(859\) 370.864 214.119i 0.431740 0.249265i −0.268348 0.963322i \(-0.586478\pi\)
0.700087 + 0.714057i \(0.253144\pi\)
\(860\) 141.664 + 115.118i 0.164725 + 0.133859i
\(861\) 0 0
\(862\) 49.8127i 0.0577874i
\(863\) −1021.22 + 589.602i −1.18334 + 0.683200i −0.956784 0.290798i \(-0.906079\pi\)
−0.226553 + 0.973999i \(0.572746\pi\)
\(864\) 0 0
\(865\) 487.669 + 1276.94i 0.563779 + 1.47623i
\(866\) 120.057 69.3150i 0.138634 0.0800404i
\(867\) 0 0
\(868\) −26.0823 215.868i −0.0300487 0.248696i
\(869\) 870.370 1.00158
\(870\) 0 0
\(871\) −168.167 97.0912i −0.193073 0.111471i
\(872\) −150.163 86.6967i −0.172205 0.0994229i
\(873\) 0 0
\(874\) 315.397i 0.360866i
\(875\) 674.241 557.695i 0.770561 0.637366i
\(876\) 0 0
\(877\) 1423.08 821.617i 1.62267 0.936850i 0.636470 0.771302i \(-0.280394\pi\)
0.986202 0.165548i \(-0.0529393\pi\)
\(878\) 290.992 504.014i 0.331426 0.574047i
\(879\) 0 0
\(880\) −188.215 30.1400i −0.213880 0.0342500i
\(881\) 571.268i 0.648431i 0.945983 + 0.324216i \(0.105100\pi\)
−0.945983 + 0.324216i \(0.894900\pi\)
\(882\) 0 0
\(883\) 13.3627i 0.0151333i −0.999971 0.00756666i \(-0.997591\pi\)
0.999971 0.00756666i \(-0.00240856\pi\)
\(884\) 354.689 + 614.340i 0.401232 + 0.694955i
\(885\) 0 0
\(886\) 535.995 928.370i 0.604960 1.04782i
\(887\) −662.731 1147.88i −0.747160 1.29412i −0.949179 0.314738i \(-0.898083\pi\)
0.202018 0.979382i \(-0.435250\pi\)
\(888\) 0 0
\(889\) 749.638 + 319.912i 0.843237 + 0.359856i
\(890\) 269.473 331.611i 0.302779 0.372597i
\(891\) 0 0
\(892\) −66.6389 + 115.422i −0.0747073 + 0.129397i
\(893\) 2.83988 + 1.63961i 0.00318016 + 0.00183607i
\(894\) 0 0
\(895\) −30.4242 + 37.4398i −0.0339935 + 0.0418321i
\(896\) 9.49976 + 78.6241i 0.0106024 + 0.0877502i
\(897\) 0 0
\(898\) 61.1735 35.3185i 0.0681219 0.0393302i
\(899\) 498.354 + 287.725i 0.554343 + 0.320050i
\(900\) 0 0
\(901\) −207.369 + 119.725i −0.230154 + 0.132880i
\(902\) −508.708 −0.563978
\(903\) 0 0
\(904\) 269.324 0.297925
\(905\) −175.149 + 1093.75i −0.193535 + 1.20856i
\(906\) 0 0
\(907\) −417.494 241.041i −0.460303 0.265756i 0.251869 0.967761i \(-0.418955\pi\)
−0.712171 + 0.702006i \(0.752288\pi\)
\(908\) 51.8490 + 89.8052i 0.0571025 + 0.0989044i
\(909\) 0 0
\(910\) −28.9647 + 751.055i −0.0318293 + 0.825335i
\(911\) −1582.96 −1.73761 −0.868806 0.495153i \(-0.835112\pi\)
−0.868806 + 0.495153i \(0.835112\pi\)
\(912\) 0 0
\(913\) −494.760 + 856.949i −0.541906 + 0.938608i
\(914\) 286.148 495.622i 0.313072 0.542256i
\(915\) 0 0
\(916\) 145.684i 0.159043i
\(917\) 138.564 + 1146.82i 0.151106 + 1.25062i
\(918\) 0 0
\(919\) 669.468 + 1159.55i 0.728474 + 1.26175i 0.957528 + 0.288340i \(0.0931034\pi\)
−0.229054 + 0.973414i \(0.573563\pi\)
\(920\) 106.403 + 278.611i 0.115655 + 0.302838i
\(921\) 0 0
\(922\) −29.3021 50.7528i −0.0317811 0.0550464i
\(923\) −497.859 −0.539392
\(924\) 0 0
\(925\) −478.019 + 99.9000i −0.516778 + 0.108000i
\(926\) −472.892 819.072i −0.510682 0.884527i
\(927\) 0 0
\(928\) −181.512 104.796i −0.195595 0.112927i
\(929\) −641.135 + 370.159i −0.690135 + 0.398449i −0.803662 0.595085i \(-0.797118\pi\)
0.113528 + 0.993535i \(0.463785\pi\)
\(930\) 0 0
\(931\) 497.564 + 144.756i 0.534441 + 0.155485i
\(932\) 275.697i 0.295813i
\(933\) 0 0
\(934\) −609.131 351.682i −0.652175 0.376533i
\(935\) −397.118 1039.83i −0.424725 1.11212i
\(936\) 0 0
\(937\) −272.107 −0.290402 −0.145201 0.989402i \(-0.546383\pi\)
−0.145201 + 0.989402i \(0.546383\pi\)
\(938\) 49.6890 116.434i 0.0529733 0.124130i
\(939\) 0 0
\(940\) −3.06179 0.490304i −0.00325722 0.000521600i
\(941\) −203.843 117.689i −0.216623 0.125068i 0.387762 0.921759i \(-0.373248\pi\)
−0.604386 + 0.796692i \(0.706581\pi\)
\(942\) 0 0
\(943\) 397.968 + 689.302i 0.422024 + 0.730967i
\(944\) 14.3533i 0.0152048i
\(945\) 0 0
\(946\) 246.034 0.260078
\(947\) −526.514 + 303.983i −0.555981 + 0.320996i −0.751531 0.659698i \(-0.770684\pi\)
0.195550 + 0.980694i \(0.437351\pi\)
\(948\) 0 0
\(949\) 457.870 793.055i 0.482477 0.835674i
\(950\) −278.712 + 249.234i −0.293381 + 0.262352i
\(951\) 0 0
\(952\) −369.878 + 277.605i −0.388528 + 0.291602i
\(953\) 188.561i 0.197860i −0.995094 0.0989302i \(-0.968458\pi\)
0.995094 0.0989302i \(-0.0315421\pi\)
\(954\) 0 0
\(955\) −374.272 980.013i −0.391908 1.02619i
\(956\) 350.640 607.327i 0.366779 0.635279i
\(957\) 0 0
\(958\) −626.412 −0.653875
\(959\) 1194.81 896.745i 1.24590 0.935084i
\(960\) 0 0
\(961\) −359.889 623.347i −0.374495 0.648644i
\(962\) 209.742 363.283i 0.218027 0.377633i
\(963\) 0 0
\(964\) −528.927 + 305.376i −0.548680 + 0.316780i
\(965\) 974.880 + 792.204i 1.01024 + 0.820937i
\(966\) 0 0
\(967\) 1088.32i 1.12546i 0.826640 + 0.562732i \(0.190250\pi\)
−0.826640 + 0.562732i \(0.809750\pi\)
\(968\) 73.8941 42.6628i 0.0763369 0.0440731i
\(969\) 0 0
\(970\) −860.537 + 328.643i −0.887151 + 0.338807i
\(971\) 164.230 94.8183i 0.169135 0.0976501i −0.413043 0.910712i \(-0.635534\pi\)
0.582178 + 0.813061i \(0.302201\pi\)
\(972\) 0 0
\(973\) 341.788 + 145.860i 0.351272 + 0.149907i
\(974\) −158.872 −0.163113
\(975\) 0 0
\(976\) −387.496 223.721i −0.397025 0.229222i
\(977\) 687.092 + 396.693i 0.703267 + 0.406032i 0.808563 0.588409i \(-0.200246\pi\)
−0.105296 + 0.994441i \(0.533579\pi\)
\(978\) 0 0
\(979\) 575.924i 0.588278i
\(980\) −488.366 + 39.9865i −0.498332 + 0.0408025i
\(981\) 0 0
\(982\) 829.369 478.837i 0.844572 0.487614i
\(983\) 26.9121 46.6132i 0.0273775 0.0474193i −0.852012 0.523522i \(-0.824618\pi\)
0.879390 + 0.476103i \(0.157951\pi\)
\(984\) 0 0
\(985\) 101.824 635.860i 0.103375 0.645543i
\(986\) 1223.92i 1.24129i
\(987\) 0 0
\(988\) 321.172i 0.325073i
\(989\) −192.475 333.377i −0.194616 0.337085i
\(990\) 0 0
\(991\) 718.340 1244.20i 0.724864 1.25550i −0.234166 0.972197i \(-0.575236\pi\)
0.959030 0.283304i \(-0.0914306\pi\)
\(992\) −43.9292 76.0875i −0.0442834 0.0767012i
\(993\) 0 0
\(994\) −38.9329 322.226i −0.0391680 0.324171i
\(995\) −776.870 631.298i −0.780774 0.634470i
\(996\) 0 0
\(997\) 110.002 190.529i 0.110333 0.191102i −0.805572 0.592499i \(-0.798142\pi\)
0.915905 + 0.401396i \(0.131475\pi\)
\(998\) −1129.74 652.257i −1.13201 0.653564i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.3.bc.a.199.8 16
3.2 odd 2 70.3.h.a.59.1 yes 16
5.4 even 2 inner 630.3.bc.a.199.3 16
7.5 odd 6 inner 630.3.bc.a.19.3 16
12.11 even 2 560.3.br.b.129.8 16
15.2 even 4 350.3.k.e.101.4 16
15.8 even 4 350.3.k.e.101.5 16
15.14 odd 2 70.3.h.a.59.8 yes 16
21.2 odd 6 490.3.h.b.19.5 16
21.5 even 6 70.3.h.a.19.8 yes 16
21.11 odd 6 490.3.d.a.489.8 16
21.17 even 6 490.3.d.a.489.1 16
21.20 even 2 490.3.h.b.129.4 16
35.19 odd 6 inner 630.3.bc.a.19.8 16
60.59 even 2 560.3.br.b.129.1 16
84.47 odd 6 560.3.br.b.369.1 16
105.44 odd 6 490.3.h.b.19.4 16
105.47 odd 12 350.3.k.e.201.4 16
105.59 even 6 490.3.d.a.489.16 16
105.68 odd 12 350.3.k.e.201.5 16
105.74 odd 6 490.3.d.a.489.9 16
105.89 even 6 70.3.h.a.19.1 16
105.104 even 2 490.3.h.b.129.5 16
420.299 odd 6 560.3.br.b.369.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.h.a.19.1 16 105.89 even 6
70.3.h.a.19.8 yes 16 21.5 even 6
70.3.h.a.59.1 yes 16 3.2 odd 2
70.3.h.a.59.8 yes 16 15.14 odd 2
350.3.k.e.101.4 16 15.2 even 4
350.3.k.e.101.5 16 15.8 even 4
350.3.k.e.201.4 16 105.47 odd 12
350.3.k.e.201.5 16 105.68 odd 12
490.3.d.a.489.1 16 21.17 even 6
490.3.d.a.489.8 16 21.11 odd 6
490.3.d.a.489.9 16 105.74 odd 6
490.3.d.a.489.16 16 105.59 even 6
490.3.h.b.19.4 16 105.44 odd 6
490.3.h.b.19.5 16 21.2 odd 6
490.3.h.b.129.4 16 21.20 even 2
490.3.h.b.129.5 16 105.104 even 2
560.3.br.b.129.1 16 60.59 even 2
560.3.br.b.129.8 16 12.11 even 2
560.3.br.b.369.1 16 84.47 odd 6
560.3.br.b.369.8 16 420.299 odd 6
630.3.bc.a.19.3 16 7.5 odd 6 inner
630.3.bc.a.19.8 16 35.19 odd 6 inner
630.3.bc.a.199.3 16 5.4 even 2 inner
630.3.bc.a.199.8 16 1.1 even 1 trivial