Properties

Label 6897.2.a.r
Level $6897$
Weight $2$
Character orbit 6897.a
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,-5,5,3,1,1,-6,5,-5,0,-5,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2179633.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 9x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{4} + 1) q^{5} + \beta_1 q^{6} + \beta_{3} q^{7} + ( - \beta_{3} - \beta_{2} - 1) q^{8} + q^{9} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{10}+ \cdots + ( - \beta_{2} - 2 \beta_1 + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 5 q^{3} + 5 q^{4} + 3 q^{5} + q^{6} + q^{7} - 6 q^{8} + 5 q^{9} - 5 q^{10} - 5 q^{12} - 16 q^{13} - 7 q^{14} - 3 q^{15} + 5 q^{16} - q^{17} - q^{18} - 5 q^{19} + 10 q^{20} - q^{21} - 5 q^{23}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 7x^{3} + 4x^{2} + 9x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 2\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 7\beta_{2} + 2\beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66695
1.29410
0.426019
−1.30941
−2.07765
−2.66695 −1.00000 5.11262 1.72144 2.66695 3.18859 −8.30122 1.00000 −4.59098
1.2 −1.29410 −1.00000 −0.325316 2.82255 1.29410 −2.68387 3.00918 1.00000 −3.65264
1.3 −0.426019 −1.00000 −1.81851 −3.71870 0.426019 0.191751 1.62676 1.00000 1.58424
1.4 1.30941 −1.00000 −0.285435 3.72141 −1.30941 3.27802 −2.99258 1.00000 4.87286
1.5 2.07765 −1.00000 2.31663 −1.54669 −2.07765 −2.97449 0.657857 1.00000 −3.21348
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6897.2.a.r 5
11.b odd 2 1 627.2.a.i 5
33.d even 2 1 1881.2.a.l 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.a.i 5 11.b odd 2 1
1881.2.a.l 5 33.d even 2 1
6897.2.a.r 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):

\( T_{2}^{5} + T_{2}^{4} - 7T_{2}^{3} - 4T_{2}^{2} + 9T_{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{5} - 3T_{5}^{4} - 16T_{5}^{3} + 49T_{5}^{2} + 30T_{5} - 104 \) Copy content Toggle raw display
\( T_{7}^{5} - T_{7}^{4} - 18T_{7}^{3} + 11T_{7}^{2} + 82T_{7} - 16 \) Copy content Toggle raw display
\( T_{13}^{5} + 16T_{13}^{4} + 95T_{13}^{3} + 257T_{13}^{2} + 309T_{13} + 130 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 7 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 3 T^{4} + \cdots - 104 \) Copy content Toggle raw display
$7$ \( T^{5} - T^{4} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 16 T^{4} + \cdots + 130 \) Copy content Toggle raw display
$17$ \( T^{5} + T^{4} + \cdots - 74 \) Copy content Toggle raw display
$19$ \( (T + 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} + 5 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 4 T^{4} + \cdots + 4696 \) Copy content Toggle raw display
$31$ \( T^{5} - 4 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$37$ \( T^{5} - 7 T^{4} + \cdots - 22516 \) Copy content Toggle raw display
$41$ \( T^{5} + 7 T^{4} + \cdots - 404 \) Copy content Toggle raw display
$43$ \( T^{5} + 12 T^{4} + \cdots + 640 \) Copy content Toggle raw display
$47$ \( T^{5} - 2 T^{4} + \cdots - 16 \) Copy content Toggle raw display
$53$ \( T^{5} - 21 T^{4} + \cdots + 11542 \) Copy content Toggle raw display
$59$ \( T^{5} - 14 T^{4} + \cdots - 43420 \) Copy content Toggle raw display
$61$ \( T^{5} + 13 T^{4} + \cdots + 28124 \) Copy content Toggle raw display
$67$ \( T^{5} - 13 T^{4} + \cdots - 28936 \) Copy content Toggle raw display
$71$ \( T^{5} + 7 T^{4} + \cdots - 3904 \) Copy content Toggle raw display
$73$ \( T^{5} + 16 T^{4} + \cdots + 1976 \) Copy content Toggle raw display
$79$ \( T^{5} - 11 T^{4} + \cdots - 19456 \) Copy content Toggle raw display
$83$ \( T^{5} - 20 T^{4} + \cdots - 9140 \) Copy content Toggle raw display
$89$ \( T^{5} - 7 T^{4} + \cdots - 79582 \) Copy content Toggle raw display
$97$ \( T^{5} - 12 T^{4} + \cdots - 11164 \) Copy content Toggle raw display
show more
show less