Properties

Label 2-6897-1.1-c1-0-0
Degree $2$
Conductor $6897$
Sign $1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.426·2-s − 3-s − 1.81·4-s − 3.71·5-s + 0.426·6-s + 0.191·7-s + 1.62·8-s + 9-s + 1.58·10-s + 1.81·12-s − 3.42·13-s − 0.0816·14-s + 3.71·15-s + 2.94·16-s − 3.01·17-s − 0.426·18-s − 19-s + 6.76·20-s − 0.191·21-s − 3.58·23-s − 1.62·24-s + 8.82·25-s + 1.45·26-s − 27-s − 0.348·28-s − 3.86·29-s − 1.58·30-s + ⋯
L(s)  = 1  − 0.301·2-s − 0.577·3-s − 0.909·4-s − 1.66·5-s + 0.173·6-s + 0.0724·7-s + 0.575·8-s + 0.333·9-s + 0.500·10-s + 0.524·12-s − 0.950·13-s − 0.0218·14-s + 0.960·15-s + 0.735·16-s − 0.730·17-s − 0.100·18-s − 0.229·19-s + 1.51·20-s − 0.0418·21-s − 0.747·23-s − 0.332·24-s + 1.76·25-s + 0.286·26-s − 0.192·27-s − 0.0658·28-s − 0.716·29-s − 0.289·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02177358767\)
\(L(\frac12)\) \(\approx\) \(0.02177358767\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 0.426T + 2T^{2} \)
5 \( 1 + 3.71T + 5T^{2} \)
7 \( 1 - 0.191T + 7T^{2} \)
13 \( 1 + 3.42T + 13T^{2} \)
17 \( 1 + 3.01T + 17T^{2} \)
23 \( 1 + 3.58T + 23T^{2} \)
29 \( 1 + 3.86T + 29T^{2} \)
31 \( 1 - 3.39T + 31T^{2} \)
37 \( 1 + 5.08T + 37T^{2} \)
41 \( 1 - 5.96T + 41T^{2} \)
43 \( 1 + 9.30T + 43T^{2} \)
47 \( 1 + 4.37T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 9.02T + 59T^{2} \)
61 \( 1 + 9.90T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 8.13T + 71T^{2} \)
73 \( 1 + 13.1T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 + 0.914T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 + 6.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.989595099640236215298188775839, −7.35865954214023416207600656032, −6.81699201298416767858096268158, −5.72306434650964665755228863800, −4.92236103200635012152442096291, −4.33433446009497026850606031691, −3.91344152567999103615128947575, −2.88127887758078494003915472312, −1.47689912986574635175606327582, −0.084839586329581087123770546192, 0.084839586329581087123770546192, 1.47689912986574635175606327582, 2.88127887758078494003915472312, 3.91344152567999103615128947575, 4.33433446009497026850606031691, 4.92236103200635012152442096291, 5.72306434650964665755228863800, 6.81699201298416767858096268158, 7.35865954214023416207600656032, 7.989595099640236215298188775839

Graph of the $Z$-function along the critical line