Properties

Label 6897.2.a.bq.1.19
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,24,37,9,1,3,0,24,-1,0,37,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61883 q^{2} +1.00000 q^{3} +0.620622 q^{4} -3.40265 q^{5} +1.61883 q^{6} +4.29833 q^{7} -2.23298 q^{8} +1.00000 q^{9} -5.50832 q^{10} +0.620622 q^{12} -6.30293 q^{13} +6.95829 q^{14} -3.40265 q^{15} -4.85607 q^{16} +3.03943 q^{17} +1.61883 q^{18} +1.00000 q^{19} -2.11176 q^{20} +4.29833 q^{21} +7.60064 q^{23} -2.23298 q^{24} +6.57801 q^{25} -10.2034 q^{26} +1.00000 q^{27} +2.66764 q^{28} +0.482994 q^{29} -5.50832 q^{30} +0.850012 q^{31} -3.39520 q^{32} +4.92033 q^{34} -14.6257 q^{35} +0.620622 q^{36} -0.380554 q^{37} +1.61883 q^{38} -6.30293 q^{39} +7.59806 q^{40} +5.41273 q^{41} +6.95829 q^{42} -1.20988 q^{43} -3.40265 q^{45} +12.3042 q^{46} -6.56066 q^{47} -4.85607 q^{48} +11.4757 q^{49} +10.6487 q^{50} +3.03943 q^{51} -3.91174 q^{52} -12.7236 q^{53} +1.61883 q^{54} -9.59811 q^{56} +1.00000 q^{57} +0.781886 q^{58} +0.187988 q^{59} -2.11176 q^{60} +14.8977 q^{61} +1.37603 q^{62} +4.29833 q^{63} +4.21587 q^{64} +21.4467 q^{65} +4.83822 q^{67} +1.88634 q^{68} +7.60064 q^{69} -23.6766 q^{70} +12.5140 q^{71} -2.23298 q^{72} -4.09126 q^{73} -0.616053 q^{74} +6.57801 q^{75} +0.620622 q^{76} -10.2034 q^{78} +13.0069 q^{79} +16.5235 q^{80} +1.00000 q^{81} +8.76230 q^{82} +6.43241 q^{83} +2.66764 q^{84} -10.3421 q^{85} -1.95860 q^{86} +0.482994 q^{87} +3.64434 q^{89} -5.50832 q^{90} -27.0921 q^{91} +4.71712 q^{92} +0.850012 q^{93} -10.6206 q^{94} -3.40265 q^{95} -3.39520 q^{96} +0.830401 q^{97} +18.5772 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + 24 q^{3} + 37 q^{4} + 9 q^{5} + q^{6} + 3 q^{7} + 24 q^{9} - q^{10} + 37 q^{12} + 3 q^{13} - 2 q^{14} + 9 q^{15} + 55 q^{16} - 3 q^{17} + q^{18} + 24 q^{19} + 12 q^{20} + 3 q^{21} + 30 q^{23}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61883 1.14469 0.572344 0.820014i \(-0.306034\pi\)
0.572344 + 0.820014i \(0.306034\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.620622 0.310311
\(5\) −3.40265 −1.52171 −0.760855 0.648922i \(-0.775220\pi\)
−0.760855 + 0.648922i \(0.775220\pi\)
\(6\) 1.61883 0.660886
\(7\) 4.29833 1.62462 0.812309 0.583228i \(-0.198210\pi\)
0.812309 + 0.583228i \(0.198210\pi\)
\(8\) −2.23298 −0.789479
\(9\) 1.00000 0.333333
\(10\) −5.50832 −1.74188
\(11\) 0 0
\(12\) 0.620622 0.179158
\(13\) −6.30293 −1.74812 −0.874060 0.485819i \(-0.838522\pi\)
−0.874060 + 0.485819i \(0.838522\pi\)
\(14\) 6.95829 1.85968
\(15\) −3.40265 −0.878560
\(16\) −4.85607 −1.21402
\(17\) 3.03943 0.737170 0.368585 0.929594i \(-0.379842\pi\)
0.368585 + 0.929594i \(0.379842\pi\)
\(18\) 1.61883 0.381563
\(19\) 1.00000 0.229416
\(20\) −2.11176 −0.472203
\(21\) 4.29833 0.937973
\(22\) 0 0
\(23\) 7.60064 1.58484 0.792422 0.609974i \(-0.208820\pi\)
0.792422 + 0.609974i \(0.208820\pi\)
\(24\) −2.23298 −0.455806
\(25\) 6.57801 1.31560
\(26\) −10.2034 −2.00105
\(27\) 1.00000 0.192450
\(28\) 2.66764 0.504137
\(29\) 0.482994 0.0896897 0.0448448 0.998994i \(-0.485721\pi\)
0.0448448 + 0.998994i \(0.485721\pi\)
\(30\) −5.50832 −1.00568
\(31\) 0.850012 0.152667 0.0763334 0.997082i \(-0.475679\pi\)
0.0763334 + 0.997082i \(0.475679\pi\)
\(32\) −3.39520 −0.600193
\(33\) 0 0
\(34\) 4.92033 0.843830
\(35\) −14.6257 −2.47220
\(36\) 0.620622 0.103437
\(37\) −0.380554 −0.0625627 −0.0312813 0.999511i \(-0.509959\pi\)
−0.0312813 + 0.999511i \(0.509959\pi\)
\(38\) 1.61883 0.262609
\(39\) −6.30293 −1.00928
\(40\) 7.59806 1.20136
\(41\) 5.41273 0.845326 0.422663 0.906287i \(-0.361095\pi\)
0.422663 + 0.906287i \(0.361095\pi\)
\(42\) 6.95829 1.07369
\(43\) −1.20988 −0.184505 −0.0922526 0.995736i \(-0.529407\pi\)
−0.0922526 + 0.995736i \(0.529407\pi\)
\(44\) 0 0
\(45\) −3.40265 −0.507237
\(46\) 12.3042 1.81415
\(47\) −6.56066 −0.956971 −0.478485 0.878096i \(-0.658814\pi\)
−0.478485 + 0.878096i \(0.658814\pi\)
\(48\) −4.85607 −0.700914
\(49\) 11.4757 1.63938
\(50\) 10.6487 1.50595
\(51\) 3.03943 0.425606
\(52\) −3.91174 −0.542460
\(53\) −12.7236 −1.74772 −0.873858 0.486181i \(-0.838390\pi\)
−0.873858 + 0.486181i \(0.838390\pi\)
\(54\) 1.61883 0.220295
\(55\) 0 0
\(56\) −9.59811 −1.28260
\(57\) 1.00000 0.132453
\(58\) 0.781886 0.102667
\(59\) 0.187988 0.0244739 0.0122370 0.999925i \(-0.496105\pi\)
0.0122370 + 0.999925i \(0.496105\pi\)
\(60\) −2.11176 −0.272627
\(61\) 14.8977 1.90745 0.953725 0.300682i \(-0.0972141\pi\)
0.953725 + 0.300682i \(0.0972141\pi\)
\(62\) 1.37603 0.174756
\(63\) 4.29833 0.541539
\(64\) 4.21587 0.526984
\(65\) 21.4467 2.66013
\(66\) 0 0
\(67\) 4.83822 0.591082 0.295541 0.955330i \(-0.404500\pi\)
0.295541 + 0.955330i \(0.404500\pi\)
\(68\) 1.88634 0.228752
\(69\) 7.60064 0.915010
\(70\) −23.6766 −2.82989
\(71\) 12.5140 1.48514 0.742571 0.669768i \(-0.233606\pi\)
0.742571 + 0.669768i \(0.233606\pi\)
\(72\) −2.23298 −0.263160
\(73\) −4.09126 −0.478846 −0.239423 0.970915i \(-0.576958\pi\)
−0.239423 + 0.970915i \(0.576958\pi\)
\(74\) −0.616053 −0.0716148
\(75\) 6.57801 0.759563
\(76\) 0.620622 0.0711902
\(77\) 0 0
\(78\) −10.2034 −1.15531
\(79\) 13.0069 1.46339 0.731693 0.681635i \(-0.238731\pi\)
0.731693 + 0.681635i \(0.238731\pi\)
\(80\) 16.5235 1.84738
\(81\) 1.00000 0.111111
\(82\) 8.76230 0.967635
\(83\) 6.43241 0.706048 0.353024 0.935614i \(-0.385153\pi\)
0.353024 + 0.935614i \(0.385153\pi\)
\(84\) 2.66764 0.291063
\(85\) −10.3421 −1.12176
\(86\) −1.95860 −0.211201
\(87\) 0.482994 0.0517824
\(88\) 0 0
\(89\) 3.64434 0.386299 0.193150 0.981169i \(-0.438130\pi\)
0.193150 + 0.981169i \(0.438130\pi\)
\(90\) −5.50832 −0.580628
\(91\) −27.0921 −2.84003
\(92\) 4.71712 0.491794
\(93\) 0.850012 0.0881422
\(94\) −10.6206 −1.09543
\(95\) −3.40265 −0.349104
\(96\) −3.39520 −0.346522
\(97\) 0.830401 0.0843145 0.0421572 0.999111i \(-0.486577\pi\)
0.0421572 + 0.999111i \(0.486577\pi\)
\(98\) 18.5772 1.87658
\(99\) 0 0
\(100\) 4.08245 0.408245
\(101\) −10.7206 −1.06674 −0.533370 0.845882i \(-0.679075\pi\)
−0.533370 + 0.845882i \(0.679075\pi\)
\(102\) 4.92033 0.487186
\(103\) 13.4613 1.32638 0.663191 0.748450i \(-0.269202\pi\)
0.663191 + 0.748450i \(0.269202\pi\)
\(104\) 14.0743 1.38010
\(105\) −14.6257 −1.42732
\(106\) −20.5973 −2.00059
\(107\) 15.5046 1.49888 0.749441 0.662071i \(-0.230322\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(108\) 0.620622 0.0597194
\(109\) −5.64576 −0.540766 −0.270383 0.962753i \(-0.587150\pi\)
−0.270383 + 0.962753i \(0.587150\pi\)
\(110\) 0 0
\(111\) −0.380554 −0.0361206
\(112\) −20.8730 −1.97232
\(113\) −4.35151 −0.409355 −0.204678 0.978829i \(-0.565615\pi\)
−0.204678 + 0.978829i \(0.565615\pi\)
\(114\) 1.61883 0.151618
\(115\) −25.8623 −2.41167
\(116\) 0.299756 0.0278317
\(117\) −6.30293 −0.582706
\(118\) 0.304321 0.0280150
\(119\) 13.0645 1.19762
\(120\) 7.59806 0.693604
\(121\) 0 0
\(122\) 24.1168 2.18343
\(123\) 5.41273 0.488049
\(124\) 0.527536 0.0473741
\(125\) −5.36940 −0.480254
\(126\) 6.95829 0.619894
\(127\) 17.1349 1.52047 0.760236 0.649646i \(-0.225083\pi\)
0.760236 + 0.649646i \(0.225083\pi\)
\(128\) 13.6152 1.20343
\(129\) −1.20988 −0.106524
\(130\) 34.7186 3.04502
\(131\) 14.6778 1.28241 0.641204 0.767371i \(-0.278435\pi\)
0.641204 + 0.767371i \(0.278435\pi\)
\(132\) 0 0
\(133\) 4.29833 0.372713
\(134\) 7.83227 0.676605
\(135\) −3.40265 −0.292853
\(136\) −6.78700 −0.581981
\(137\) −17.7825 −1.51926 −0.759630 0.650356i \(-0.774620\pi\)
−0.759630 + 0.650356i \(0.774620\pi\)
\(138\) 12.3042 1.04740
\(139\) 12.0482 1.02192 0.510959 0.859605i \(-0.329290\pi\)
0.510959 + 0.859605i \(0.329290\pi\)
\(140\) −9.07704 −0.767150
\(141\) −6.56066 −0.552507
\(142\) 20.2581 1.70002
\(143\) 0 0
\(144\) −4.85607 −0.404673
\(145\) −1.64346 −0.136482
\(146\) −6.62307 −0.548129
\(147\) 11.4757 0.946498
\(148\) −0.236180 −0.0194139
\(149\) −9.83653 −0.805840 −0.402920 0.915235i \(-0.632005\pi\)
−0.402920 + 0.915235i \(0.632005\pi\)
\(150\) 10.6487 0.869463
\(151\) −10.2538 −0.834444 −0.417222 0.908805i \(-0.636996\pi\)
−0.417222 + 0.908805i \(0.636996\pi\)
\(152\) −2.23298 −0.181119
\(153\) 3.03943 0.245723
\(154\) 0 0
\(155\) −2.89229 −0.232314
\(156\) −3.91174 −0.313190
\(157\) 3.25955 0.260140 0.130070 0.991505i \(-0.458480\pi\)
0.130070 + 0.991505i \(0.458480\pi\)
\(158\) 21.0559 1.67512
\(159\) −12.7236 −1.00904
\(160\) 11.5527 0.913320
\(161\) 32.6701 2.57476
\(162\) 1.61883 0.127188
\(163\) 0.267410 0.0209451 0.0104726 0.999945i \(-0.496666\pi\)
0.0104726 + 0.999945i \(0.496666\pi\)
\(164\) 3.35926 0.262314
\(165\) 0 0
\(166\) 10.4130 0.808205
\(167\) 11.7560 0.909704 0.454852 0.890567i \(-0.349692\pi\)
0.454852 + 0.890567i \(0.349692\pi\)
\(168\) −9.59811 −0.740510
\(169\) 26.7270 2.05592
\(170\) −16.7422 −1.28406
\(171\) 1.00000 0.0764719
\(172\) −0.750879 −0.0572540
\(173\) −0.604841 −0.0459852 −0.0229926 0.999736i \(-0.507319\pi\)
−0.0229926 + 0.999736i \(0.507319\pi\)
\(174\) 0.781886 0.0592746
\(175\) 28.2745 2.13735
\(176\) 0 0
\(177\) 0.187988 0.0141300
\(178\) 5.89958 0.442192
\(179\) −0.304566 −0.0227643 −0.0113822 0.999935i \(-0.503623\pi\)
−0.0113822 + 0.999935i \(0.503623\pi\)
\(180\) −2.11176 −0.157401
\(181\) 10.4909 0.779783 0.389892 0.920861i \(-0.372512\pi\)
0.389892 + 0.920861i \(0.372512\pi\)
\(182\) −43.8576 −3.25094
\(183\) 14.8977 1.10127
\(184\) −16.9721 −1.25120
\(185\) 1.29489 0.0952023
\(186\) 1.37603 0.100895
\(187\) 0 0
\(188\) −4.07169 −0.296958
\(189\) 4.29833 0.312658
\(190\) −5.50832 −0.399615
\(191\) −9.78243 −0.707832 −0.353916 0.935277i \(-0.615150\pi\)
−0.353916 + 0.935277i \(0.615150\pi\)
\(192\) 4.21587 0.304254
\(193\) −9.09080 −0.654370 −0.327185 0.944960i \(-0.606100\pi\)
−0.327185 + 0.944960i \(0.606100\pi\)
\(194\) 1.34428 0.0965138
\(195\) 21.4467 1.53583
\(196\) 7.12206 0.508718
\(197\) 14.6543 1.04408 0.522040 0.852921i \(-0.325171\pi\)
0.522040 + 0.852921i \(0.325171\pi\)
\(198\) 0 0
\(199\) 11.3370 0.803661 0.401831 0.915714i \(-0.368374\pi\)
0.401831 + 0.915714i \(0.368374\pi\)
\(200\) −14.6886 −1.03864
\(201\) 4.83822 0.341261
\(202\) −17.3549 −1.22109
\(203\) 2.07607 0.145711
\(204\) 1.88634 0.132070
\(205\) −18.4176 −1.28634
\(206\) 21.7916 1.51829
\(207\) 7.60064 0.528281
\(208\) 30.6075 2.12225
\(209\) 0 0
\(210\) −23.6766 −1.63384
\(211\) −11.0746 −0.762404 −0.381202 0.924492i \(-0.624490\pi\)
−0.381202 + 0.924492i \(0.624490\pi\)
\(212\) −7.89652 −0.542336
\(213\) 12.5140 0.857447
\(214\) 25.0993 1.71575
\(215\) 4.11680 0.280763
\(216\) −2.23298 −0.151935
\(217\) 3.65364 0.248025
\(218\) −9.13954 −0.619008
\(219\) −4.09126 −0.276462
\(220\) 0 0
\(221\) −19.1573 −1.28866
\(222\) −0.616053 −0.0413468
\(223\) 25.6691 1.71893 0.859467 0.511192i \(-0.170796\pi\)
0.859467 + 0.511192i \(0.170796\pi\)
\(224\) −14.5937 −0.975084
\(225\) 6.57801 0.438534
\(226\) −7.04436 −0.468584
\(227\) −23.4800 −1.55842 −0.779210 0.626764i \(-0.784379\pi\)
−0.779210 + 0.626764i \(0.784379\pi\)
\(228\) 0.620622 0.0411017
\(229\) 13.7327 0.907481 0.453741 0.891134i \(-0.350089\pi\)
0.453741 + 0.891134i \(0.350089\pi\)
\(230\) −41.8668 −2.76061
\(231\) 0 0
\(232\) −1.07852 −0.0708081
\(233\) −4.64661 −0.304410 −0.152205 0.988349i \(-0.548637\pi\)
−0.152205 + 0.988349i \(0.548637\pi\)
\(234\) −10.2034 −0.667017
\(235\) 22.3236 1.45623
\(236\) 0.116669 0.00759452
\(237\) 13.0069 0.844886
\(238\) 21.1492 1.37090
\(239\) −6.86628 −0.444143 −0.222071 0.975030i \(-0.571282\pi\)
−0.222071 + 0.975030i \(0.571282\pi\)
\(240\) 16.5235 1.06659
\(241\) −4.81072 −0.309886 −0.154943 0.987923i \(-0.549519\pi\)
−0.154943 + 0.987923i \(0.549519\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 9.24581 0.591902
\(245\) −39.0477 −2.49466
\(246\) 8.76230 0.558664
\(247\) −6.30293 −0.401046
\(248\) −1.89806 −0.120527
\(249\) 6.43241 0.407637
\(250\) −8.69217 −0.549741
\(251\) −24.9376 −1.57405 −0.787023 0.616923i \(-0.788379\pi\)
−0.787023 + 0.616923i \(0.788379\pi\)
\(252\) 2.66764 0.168046
\(253\) 0 0
\(254\) 27.7385 1.74047
\(255\) −10.3421 −0.647648
\(256\) 13.6090 0.850563
\(257\) 4.05550 0.252975 0.126487 0.991968i \(-0.459630\pi\)
0.126487 + 0.991968i \(0.459630\pi\)
\(258\) −1.95860 −0.121937
\(259\) −1.63575 −0.101640
\(260\) 13.3103 0.825468
\(261\) 0.482994 0.0298966
\(262\) 23.7610 1.46796
\(263\) 5.92290 0.365222 0.182611 0.983185i \(-0.441545\pi\)
0.182611 + 0.983185i \(0.441545\pi\)
\(264\) 0 0
\(265\) 43.2938 2.65952
\(266\) 6.95829 0.426640
\(267\) 3.64434 0.223030
\(268\) 3.00270 0.183419
\(269\) 14.5610 0.887801 0.443900 0.896076i \(-0.353594\pi\)
0.443900 + 0.896076i \(0.353594\pi\)
\(270\) −5.50832 −0.335226
\(271\) 8.16105 0.495748 0.247874 0.968792i \(-0.420268\pi\)
0.247874 + 0.968792i \(0.420268\pi\)
\(272\) −14.7597 −0.894938
\(273\) −27.0921 −1.63969
\(274\) −28.7869 −1.73908
\(275\) 0 0
\(276\) 4.71712 0.283938
\(277\) 4.53940 0.272746 0.136373 0.990658i \(-0.456455\pi\)
0.136373 + 0.990658i \(0.456455\pi\)
\(278\) 19.5041 1.16978
\(279\) 0.850012 0.0508889
\(280\) 32.6590 1.95175
\(281\) −29.6230 −1.76716 −0.883579 0.468282i \(-0.844873\pi\)
−0.883579 + 0.468282i \(0.844873\pi\)
\(282\) −10.6206 −0.632449
\(283\) −9.09551 −0.540672 −0.270336 0.962766i \(-0.587135\pi\)
−0.270336 + 0.962766i \(0.587135\pi\)
\(284\) 7.76647 0.460855
\(285\) −3.40265 −0.201555
\(286\) 0 0
\(287\) 23.2657 1.37333
\(288\) −3.39520 −0.200064
\(289\) −7.76186 −0.456580
\(290\) −2.66048 −0.156229
\(291\) 0.830401 0.0486790
\(292\) −2.53912 −0.148591
\(293\) 25.8607 1.51080 0.755400 0.655264i \(-0.227443\pi\)
0.755400 + 0.655264i \(0.227443\pi\)
\(294\) 18.5772 1.08344
\(295\) −0.639656 −0.0372422
\(296\) 0.849771 0.0493919
\(297\) 0 0
\(298\) −15.9237 −0.922435
\(299\) −47.9063 −2.77050
\(300\) 4.08245 0.235701
\(301\) −5.20048 −0.299750
\(302\) −16.5992 −0.955178
\(303\) −10.7206 −0.615883
\(304\) −4.85607 −0.278515
\(305\) −50.6915 −2.90258
\(306\) 4.92033 0.281277
\(307\) −13.6516 −0.779140 −0.389570 0.920997i \(-0.627376\pi\)
−0.389570 + 0.920997i \(0.627376\pi\)
\(308\) 0 0
\(309\) 13.4613 0.765787
\(310\) −4.68214 −0.265928
\(311\) −5.06909 −0.287442 −0.143721 0.989618i \(-0.545907\pi\)
−0.143721 + 0.989618i \(0.545907\pi\)
\(312\) 14.0743 0.796803
\(313\) 15.3606 0.868231 0.434116 0.900857i \(-0.357061\pi\)
0.434116 + 0.900857i \(0.357061\pi\)
\(314\) 5.27666 0.297779
\(315\) −14.6257 −0.824066
\(316\) 8.07234 0.454104
\(317\) 1.01520 0.0570194 0.0285097 0.999594i \(-0.490924\pi\)
0.0285097 + 0.999594i \(0.490924\pi\)
\(318\) −20.5973 −1.15504
\(319\) 0 0
\(320\) −14.3451 −0.801917
\(321\) 15.5046 0.865380
\(322\) 52.8875 2.94730
\(323\) 3.03943 0.169118
\(324\) 0.620622 0.0344790
\(325\) −41.4607 −2.29983
\(326\) 0.432892 0.0239757
\(327\) −5.64576 −0.312211
\(328\) −12.0865 −0.667367
\(329\) −28.1999 −1.55471
\(330\) 0 0
\(331\) −7.51641 −0.413139 −0.206570 0.978432i \(-0.566230\pi\)
−0.206570 + 0.978432i \(0.566230\pi\)
\(332\) 3.99209 0.219094
\(333\) −0.380554 −0.0208542
\(334\) 19.0310 1.04133
\(335\) −16.4627 −0.899456
\(336\) −20.8730 −1.13872
\(337\) −19.8591 −1.08179 −0.540897 0.841089i \(-0.681915\pi\)
−0.540897 + 0.841089i \(0.681915\pi\)
\(338\) 43.2665 2.35339
\(339\) −4.35151 −0.236341
\(340\) −6.41854 −0.348094
\(341\) 0 0
\(342\) 1.61883 0.0875365
\(343\) 19.2380 1.03875
\(344\) 2.70165 0.145663
\(345\) −25.8623 −1.39238
\(346\) −0.979137 −0.0526388
\(347\) −16.0320 −0.860643 −0.430322 0.902676i \(-0.641600\pi\)
−0.430322 + 0.902676i \(0.641600\pi\)
\(348\) 0.299756 0.0160686
\(349\) −8.91102 −0.476996 −0.238498 0.971143i \(-0.576655\pi\)
−0.238498 + 0.971143i \(0.576655\pi\)
\(350\) 45.7717 2.44660
\(351\) −6.30293 −0.336426
\(352\) 0 0
\(353\) 5.45154 0.290156 0.145078 0.989420i \(-0.453657\pi\)
0.145078 + 0.989420i \(0.453657\pi\)
\(354\) 0.304321 0.0161745
\(355\) −42.5808 −2.25995
\(356\) 2.26176 0.119873
\(357\) 13.0645 0.691446
\(358\) −0.493042 −0.0260581
\(359\) 2.61761 0.138152 0.0690760 0.997611i \(-0.477995\pi\)
0.0690760 + 0.997611i \(0.477995\pi\)
\(360\) 7.59806 0.400453
\(361\) 1.00000 0.0526316
\(362\) 16.9830 0.892608
\(363\) 0 0
\(364\) −16.8140 −0.881291
\(365\) 13.9211 0.728664
\(366\) 24.1168 1.26061
\(367\) −24.5721 −1.28265 −0.641326 0.767268i \(-0.721616\pi\)
−0.641326 + 0.767268i \(0.721616\pi\)
\(368\) −36.9093 −1.92403
\(369\) 5.41273 0.281775
\(370\) 2.09621 0.108977
\(371\) −54.6902 −2.83937
\(372\) 0.527536 0.0273515
\(373\) 15.2655 0.790417 0.395208 0.918591i \(-0.370672\pi\)
0.395208 + 0.918591i \(0.370672\pi\)
\(374\) 0 0
\(375\) −5.36940 −0.277275
\(376\) 14.6498 0.755508
\(377\) −3.04428 −0.156788
\(378\) 6.95829 0.357896
\(379\) 13.2369 0.679932 0.339966 0.940438i \(-0.389584\pi\)
0.339966 + 0.940438i \(0.389584\pi\)
\(380\) −2.11176 −0.108331
\(381\) 17.1349 0.877845
\(382\) −15.8361 −0.810247
\(383\) 15.6941 0.801932 0.400966 0.916093i \(-0.368674\pi\)
0.400966 + 0.916093i \(0.368674\pi\)
\(384\) 13.6152 0.694798
\(385\) 0 0
\(386\) −14.7165 −0.749050
\(387\) −1.20988 −0.0615017
\(388\) 0.515365 0.0261637
\(389\) −12.9049 −0.654305 −0.327153 0.944972i \(-0.606089\pi\)
−0.327153 + 0.944972i \(0.606089\pi\)
\(390\) 34.7186 1.75804
\(391\) 23.1016 1.16830
\(392\) −25.6250 −1.29426
\(393\) 14.6778 0.740399
\(394\) 23.7230 1.19514
\(395\) −44.2577 −2.22685
\(396\) 0 0
\(397\) 24.3055 1.21986 0.609930 0.792455i \(-0.291198\pi\)
0.609930 + 0.792455i \(0.291198\pi\)
\(398\) 18.3528 0.919941
\(399\) 4.29833 0.215186
\(400\) −31.9433 −1.59716
\(401\) 10.5381 0.526250 0.263125 0.964762i \(-0.415247\pi\)
0.263125 + 0.964762i \(0.415247\pi\)
\(402\) 7.83227 0.390638
\(403\) −5.35757 −0.266880
\(404\) −6.65345 −0.331021
\(405\) −3.40265 −0.169079
\(406\) 3.36081 0.166794
\(407\) 0 0
\(408\) −6.78700 −0.336007
\(409\) 34.0436 1.68335 0.841674 0.539986i \(-0.181571\pi\)
0.841674 + 0.539986i \(0.181571\pi\)
\(410\) −29.8150 −1.47246
\(411\) −17.7825 −0.877145
\(412\) 8.35438 0.411591
\(413\) 0.808034 0.0397608
\(414\) 12.3042 0.604717
\(415\) −21.8872 −1.07440
\(416\) 21.3998 1.04921
\(417\) 12.0482 0.590005
\(418\) 0 0
\(419\) −22.7546 −1.11163 −0.555817 0.831305i \(-0.687595\pi\)
−0.555817 + 0.831305i \(0.687595\pi\)
\(420\) −9.07704 −0.442914
\(421\) 25.5640 1.24591 0.622957 0.782256i \(-0.285931\pi\)
0.622957 + 0.782256i \(0.285931\pi\)
\(422\) −17.9279 −0.872714
\(423\) −6.56066 −0.318990
\(424\) 28.4115 1.37979
\(425\) 19.9934 0.969822
\(426\) 20.2581 0.981509
\(427\) 64.0351 3.09888
\(428\) 9.62247 0.465119
\(429\) 0 0
\(430\) 6.66441 0.321387
\(431\) −19.3171 −0.930473 −0.465237 0.885186i \(-0.654031\pi\)
−0.465237 + 0.885186i \(0.654031\pi\)
\(432\) −4.85607 −0.233638
\(433\) −6.43654 −0.309320 −0.154660 0.987968i \(-0.549428\pi\)
−0.154660 + 0.987968i \(0.549428\pi\)
\(434\) 5.91463 0.283911
\(435\) −1.64346 −0.0787977
\(436\) −3.50388 −0.167805
\(437\) 7.60064 0.363588
\(438\) −6.62307 −0.316462
\(439\) −28.2963 −1.35051 −0.675255 0.737585i \(-0.735966\pi\)
−0.675255 + 0.737585i \(0.735966\pi\)
\(440\) 0 0
\(441\) 11.4757 0.546461
\(442\) −31.0125 −1.47512
\(443\) −39.6011 −1.88151 −0.940754 0.339091i \(-0.889881\pi\)
−0.940754 + 0.339091i \(0.889881\pi\)
\(444\) −0.236180 −0.0112086
\(445\) −12.4004 −0.587835
\(446\) 41.5541 1.96764
\(447\) −9.83653 −0.465252
\(448\) 18.1212 0.856148
\(449\) −0.108917 −0.00514010 −0.00257005 0.999997i \(-0.500818\pi\)
−0.00257005 + 0.999997i \(0.500818\pi\)
\(450\) 10.6487 0.501984
\(451\) 0 0
\(452\) −2.70064 −0.127027
\(453\) −10.2538 −0.481766
\(454\) −38.0101 −1.78390
\(455\) 92.1849 4.32170
\(456\) −2.23298 −0.104569
\(457\) −3.71701 −0.173874 −0.0869371 0.996214i \(-0.527708\pi\)
−0.0869371 + 0.996214i \(0.527708\pi\)
\(458\) 22.2309 1.03878
\(459\) 3.03943 0.141869
\(460\) −16.0507 −0.748368
\(461\) 6.87357 0.320134 0.160067 0.987106i \(-0.448829\pi\)
0.160067 + 0.987106i \(0.448829\pi\)
\(462\) 0 0
\(463\) 30.4807 1.41656 0.708278 0.705933i \(-0.249472\pi\)
0.708278 + 0.705933i \(0.249472\pi\)
\(464\) −2.34545 −0.108885
\(465\) −2.89229 −0.134127
\(466\) −7.52209 −0.348454
\(467\) 23.4716 1.08614 0.543068 0.839689i \(-0.317262\pi\)
0.543068 + 0.839689i \(0.317262\pi\)
\(468\) −3.91174 −0.180820
\(469\) 20.7963 0.960283
\(470\) 36.1382 1.66693
\(471\) 3.25955 0.150192
\(472\) −0.419774 −0.0193216
\(473\) 0 0
\(474\) 21.0559 0.967131
\(475\) 6.57801 0.301820
\(476\) 8.10811 0.371635
\(477\) −12.7236 −0.582572
\(478\) −11.1154 −0.508405
\(479\) −11.2954 −0.516099 −0.258049 0.966132i \(-0.583080\pi\)
−0.258049 + 0.966132i \(0.583080\pi\)
\(480\) 11.5527 0.527305
\(481\) 2.39861 0.109367
\(482\) −7.78775 −0.354722
\(483\) 32.6701 1.48654
\(484\) 0 0
\(485\) −2.82556 −0.128302
\(486\) 1.61883 0.0734318
\(487\) 39.7896 1.80304 0.901519 0.432739i \(-0.142453\pi\)
0.901519 + 0.432739i \(0.142453\pi\)
\(488\) −33.2662 −1.50589
\(489\) 0.267410 0.0120927
\(490\) −63.2117 −2.85561
\(491\) −35.3165 −1.59381 −0.796905 0.604105i \(-0.793531\pi\)
−0.796905 + 0.604105i \(0.793531\pi\)
\(492\) 3.35926 0.151447
\(493\) 1.46803 0.0661166
\(494\) −10.2034 −0.459073
\(495\) 0 0
\(496\) −4.12772 −0.185340
\(497\) 53.7894 2.41279
\(498\) 10.4130 0.466617
\(499\) −8.18525 −0.366422 −0.183211 0.983074i \(-0.558649\pi\)
−0.183211 + 0.983074i \(0.558649\pi\)
\(500\) −3.33237 −0.149028
\(501\) 11.7560 0.525218
\(502\) −40.3698 −1.80179
\(503\) −8.33435 −0.371610 −0.185805 0.982587i \(-0.559489\pi\)
−0.185805 + 0.982587i \(0.559489\pi\)
\(504\) −9.59811 −0.427534
\(505\) 36.4785 1.62327
\(506\) 0 0
\(507\) 26.7270 1.18699
\(508\) 10.6343 0.471819
\(509\) −1.31934 −0.0584788 −0.0292394 0.999572i \(-0.509309\pi\)
−0.0292394 + 0.999572i \(0.509309\pi\)
\(510\) −16.7422 −0.741355
\(511\) −17.5856 −0.777941
\(512\) −5.19970 −0.229796
\(513\) 1.00000 0.0441511
\(514\) 6.56517 0.289577
\(515\) −45.8041 −2.01837
\(516\) −0.750879 −0.0330556
\(517\) 0 0
\(518\) −2.64800 −0.116347
\(519\) −0.604841 −0.0265496
\(520\) −47.8900 −2.10012
\(521\) −11.2800 −0.494186 −0.247093 0.968992i \(-0.579475\pi\)
−0.247093 + 0.968992i \(0.579475\pi\)
\(522\) 0.781886 0.0342222
\(523\) 27.2021 1.18946 0.594732 0.803924i \(-0.297258\pi\)
0.594732 + 0.803924i \(0.297258\pi\)
\(524\) 9.10938 0.397945
\(525\) 28.2745 1.23400
\(526\) 9.58819 0.418065
\(527\) 2.58355 0.112541
\(528\) 0 0
\(529\) 34.7698 1.51173
\(530\) 70.0855 3.04432
\(531\) 0.187988 0.00815797
\(532\) 2.66764 0.115657
\(533\) −34.1161 −1.47773
\(534\) 5.89958 0.255300
\(535\) −52.7565 −2.28086
\(536\) −10.8037 −0.466647
\(537\) −0.304566 −0.0131430
\(538\) 23.5719 1.01625
\(539\) 0 0
\(540\) −2.11176 −0.0908755
\(541\) −25.1418 −1.08093 −0.540465 0.841367i \(-0.681752\pi\)
−0.540465 + 0.841367i \(0.681752\pi\)
\(542\) 13.2114 0.567477
\(543\) 10.4909 0.450208
\(544\) −10.3195 −0.442445
\(545\) 19.2105 0.822888
\(546\) −43.8576 −1.87693
\(547\) −26.7928 −1.14558 −0.572788 0.819704i \(-0.694138\pi\)
−0.572788 + 0.819704i \(0.694138\pi\)
\(548\) −11.0362 −0.471443
\(549\) 14.8977 0.635816
\(550\) 0 0
\(551\) 0.482994 0.0205762
\(552\) −16.9721 −0.722381
\(553\) 55.9078 2.37744
\(554\) 7.34853 0.312209
\(555\) 1.29489 0.0549650
\(556\) 7.47740 0.317112
\(557\) 44.4127 1.88183 0.940913 0.338647i \(-0.109969\pi\)
0.940913 + 0.338647i \(0.109969\pi\)
\(558\) 1.37603 0.0582519
\(559\) 7.62580 0.322537
\(560\) 71.0235 3.00129
\(561\) 0 0
\(562\) −47.9547 −2.02285
\(563\) −16.4171 −0.691899 −0.345949 0.938253i \(-0.612443\pi\)
−0.345949 + 0.938253i \(0.612443\pi\)
\(564\) −4.07169 −0.171449
\(565\) 14.8066 0.622920
\(566\) −14.7241 −0.618901
\(567\) 4.29833 0.180513
\(568\) −27.9436 −1.17249
\(569\) 29.8588 1.25175 0.625873 0.779925i \(-0.284743\pi\)
0.625873 + 0.779925i \(0.284743\pi\)
\(570\) −5.50832 −0.230718
\(571\) 1.14808 0.0480458 0.0240229 0.999711i \(-0.492353\pi\)
0.0240229 + 0.999711i \(0.492353\pi\)
\(572\) 0 0
\(573\) −9.78243 −0.408667
\(574\) 37.6633 1.57204
\(575\) 49.9971 2.08502
\(576\) 4.21587 0.175661
\(577\) −13.0927 −0.545055 −0.272527 0.962148i \(-0.587860\pi\)
−0.272527 + 0.962148i \(0.587860\pi\)
\(578\) −12.5652 −0.522641
\(579\) −9.09080 −0.377801
\(580\) −1.01997 −0.0423517
\(581\) 27.6486 1.14706
\(582\) 1.34428 0.0557223
\(583\) 0 0
\(584\) 9.13571 0.378039
\(585\) 21.4467 0.886710
\(586\) 41.8642 1.72939
\(587\) −30.3647 −1.25329 −0.626643 0.779306i \(-0.715572\pi\)
−0.626643 + 0.779306i \(0.715572\pi\)
\(588\) 7.12206 0.293709
\(589\) 0.850012 0.0350241
\(590\) −1.03550 −0.0426307
\(591\) 14.6543 0.602799
\(592\) 1.84800 0.0759522
\(593\) −2.44837 −0.100543 −0.0502713 0.998736i \(-0.516009\pi\)
−0.0502713 + 0.998736i \(0.516009\pi\)
\(594\) 0 0
\(595\) −44.4539 −1.82243
\(596\) −6.10476 −0.250061
\(597\) 11.3370 0.463994
\(598\) −77.5524 −3.17135
\(599\) −19.7952 −0.808808 −0.404404 0.914580i \(-0.632521\pi\)
−0.404404 + 0.914580i \(0.632521\pi\)
\(600\) −14.6886 −0.599659
\(601\) −15.5014 −0.632317 −0.316159 0.948706i \(-0.602393\pi\)
−0.316159 + 0.948706i \(0.602393\pi\)
\(602\) −8.41870 −0.343121
\(603\) 4.83822 0.197027
\(604\) −6.36374 −0.258937
\(605\) 0 0
\(606\) −17.3549 −0.704994
\(607\) −29.4019 −1.19339 −0.596693 0.802470i \(-0.703519\pi\)
−0.596693 + 0.802470i \(0.703519\pi\)
\(608\) −3.39520 −0.137694
\(609\) 2.07607 0.0841265
\(610\) −82.0610 −3.32255
\(611\) 41.3514 1.67290
\(612\) 1.88634 0.0762507
\(613\) 1.74886 0.0706359 0.0353180 0.999376i \(-0.488756\pi\)
0.0353180 + 0.999376i \(0.488756\pi\)
\(614\) −22.0997 −0.891872
\(615\) −18.4176 −0.742669
\(616\) 0 0
\(617\) 12.9992 0.523329 0.261665 0.965159i \(-0.415729\pi\)
0.261665 + 0.965159i \(0.415729\pi\)
\(618\) 21.7916 0.876587
\(619\) 35.6811 1.43414 0.717072 0.696999i \(-0.245482\pi\)
0.717072 + 0.696999i \(0.245482\pi\)
\(620\) −1.79502 −0.0720897
\(621\) 7.60064 0.305003
\(622\) −8.20601 −0.329031
\(623\) 15.6646 0.627588
\(624\) 30.6075 1.22528
\(625\) −14.6199 −0.584794
\(626\) 24.8662 0.993854
\(627\) 0 0
\(628\) 2.02295 0.0807243
\(629\) −1.15667 −0.0461194
\(630\) −23.6766 −0.943298
\(631\) −23.4314 −0.932791 −0.466395 0.884576i \(-0.654448\pi\)
−0.466395 + 0.884576i \(0.654448\pi\)
\(632\) −29.0441 −1.15531
\(633\) −11.0746 −0.440174
\(634\) 1.64344 0.0652694
\(635\) −58.3039 −2.31372
\(636\) −7.89652 −0.313118
\(637\) −72.3304 −2.86584
\(638\) 0 0
\(639\) 12.5140 0.495047
\(640\) −46.3277 −1.83126
\(641\) 22.6263 0.893685 0.446843 0.894613i \(-0.352548\pi\)
0.446843 + 0.894613i \(0.352548\pi\)
\(642\) 25.0993 0.990590
\(643\) 37.7505 1.48873 0.744367 0.667771i \(-0.232751\pi\)
0.744367 + 0.667771i \(0.232751\pi\)
\(644\) 20.2758 0.798978
\(645\) 4.11680 0.162099
\(646\) 4.92033 0.193588
\(647\) −31.1079 −1.22298 −0.611489 0.791253i \(-0.709429\pi\)
−0.611489 + 0.791253i \(0.709429\pi\)
\(648\) −2.23298 −0.0877199
\(649\) 0 0
\(650\) −67.1180 −2.63259
\(651\) 3.65364 0.143197
\(652\) 0.165960 0.00649950
\(653\) −8.14725 −0.318826 −0.159413 0.987212i \(-0.550960\pi\)
−0.159413 + 0.987212i \(0.550960\pi\)
\(654\) −9.13954 −0.357384
\(655\) −49.9435 −1.95145
\(656\) −26.2846 −1.02624
\(657\) −4.09126 −0.159615
\(658\) −45.6510 −1.77966
\(659\) −4.80144 −0.187038 −0.0935188 0.995618i \(-0.529812\pi\)
−0.0935188 + 0.995618i \(0.529812\pi\)
\(660\) 0 0
\(661\) 8.02763 0.312239 0.156119 0.987738i \(-0.450102\pi\)
0.156119 + 0.987738i \(0.450102\pi\)
\(662\) −12.1678 −0.472916
\(663\) −19.1573 −0.744009
\(664\) −14.3635 −0.557410
\(665\) −14.6257 −0.567161
\(666\) −0.616053 −0.0238716
\(667\) 3.67106 0.142144
\(668\) 7.29601 0.282291
\(669\) 25.6691 0.992427
\(670\) −26.6504 −1.02960
\(671\) 0 0
\(672\) −14.5937 −0.562965
\(673\) 2.50991 0.0967501 0.0483750 0.998829i \(-0.484596\pi\)
0.0483750 + 0.998829i \(0.484596\pi\)
\(674\) −32.1486 −1.23832
\(675\) 6.57801 0.253188
\(676\) 16.5873 0.637975
\(677\) 2.38010 0.0914748 0.0457374 0.998953i \(-0.485436\pi\)
0.0457374 + 0.998953i \(0.485436\pi\)
\(678\) −7.04436 −0.270537
\(679\) 3.56934 0.136979
\(680\) 23.0938 0.885606
\(681\) −23.4800 −0.899754
\(682\) 0 0
\(683\) 14.4781 0.553988 0.276994 0.960872i \(-0.410662\pi\)
0.276994 + 0.960872i \(0.410662\pi\)
\(684\) 0.620622 0.0237301
\(685\) 60.5075 2.31187
\(686\) 31.1431 1.18905
\(687\) 13.7327 0.523935
\(688\) 5.87527 0.223993
\(689\) 80.1958 3.05522
\(690\) −41.8668 −1.59384
\(691\) −35.9981 −1.36943 −0.684717 0.728809i \(-0.740074\pi\)
−0.684717 + 0.728809i \(0.740074\pi\)
\(692\) −0.375378 −0.0142697
\(693\) 0 0
\(694\) −25.9531 −0.985168
\(695\) −40.9959 −1.55506
\(696\) −1.07852 −0.0408811
\(697\) 16.4516 0.623149
\(698\) −14.4255 −0.546012
\(699\) −4.64661 −0.175751
\(700\) 17.5478 0.663243
\(701\) −1.23499 −0.0466448 −0.0233224 0.999728i \(-0.507424\pi\)
−0.0233224 + 0.999728i \(0.507424\pi\)
\(702\) −10.2034 −0.385103
\(703\) −0.380554 −0.0143529
\(704\) 0 0
\(705\) 22.3236 0.840756
\(706\) 8.82514 0.332139
\(707\) −46.0808 −1.73305
\(708\) 0.116669 0.00438470
\(709\) −10.7414 −0.403400 −0.201700 0.979447i \(-0.564647\pi\)
−0.201700 + 0.979447i \(0.564647\pi\)
\(710\) −68.9312 −2.58694
\(711\) 13.0069 0.487795
\(712\) −8.13775 −0.304975
\(713\) 6.46064 0.241953
\(714\) 21.1492 0.791490
\(715\) 0 0
\(716\) −0.189020 −0.00706402
\(717\) −6.86628 −0.256426
\(718\) 4.23747 0.158141
\(719\) 11.4775 0.428039 0.214020 0.976829i \(-0.431344\pi\)
0.214020 + 0.976829i \(0.431344\pi\)
\(720\) 16.5235 0.615794
\(721\) 57.8612 2.15486
\(722\) 1.61883 0.0602467
\(723\) −4.81072 −0.178913
\(724\) 6.51089 0.241975
\(725\) 3.17714 0.117996
\(726\) 0 0
\(727\) 32.7108 1.21318 0.606588 0.795016i \(-0.292538\pi\)
0.606588 + 0.795016i \(0.292538\pi\)
\(728\) 60.4963 2.24214
\(729\) 1.00000 0.0370370
\(730\) 22.5360 0.834093
\(731\) −3.67735 −0.136012
\(732\) 9.24581 0.341735
\(733\) −25.3791 −0.937398 −0.468699 0.883358i \(-0.655277\pi\)
−0.468699 + 0.883358i \(0.655277\pi\)
\(734\) −39.7781 −1.46824
\(735\) −39.0477 −1.44030
\(736\) −25.8057 −0.951212
\(737\) 0 0
\(738\) 8.76230 0.322545
\(739\) 50.7555 1.86707 0.933535 0.358486i \(-0.116707\pi\)
0.933535 + 0.358486i \(0.116707\pi\)
\(740\) 0.803637 0.0295423
\(741\) −6.30293 −0.231544
\(742\) −88.5343 −3.25019
\(743\) 17.8336 0.654252 0.327126 0.944981i \(-0.393920\pi\)
0.327126 + 0.944981i \(0.393920\pi\)
\(744\) −1.89806 −0.0695864
\(745\) 33.4702 1.22625
\(746\) 24.7123 0.904781
\(747\) 6.43241 0.235349
\(748\) 0 0
\(749\) 66.6438 2.43511
\(750\) −8.69217 −0.317393
\(751\) −33.9006 −1.23705 −0.618524 0.785766i \(-0.712269\pi\)
−0.618524 + 0.785766i \(0.712269\pi\)
\(752\) 31.8590 1.16178
\(753\) −24.9376 −0.908776
\(754\) −4.92818 −0.179474
\(755\) 34.8901 1.26978
\(756\) 2.66764 0.0970211
\(757\) −16.1516 −0.587040 −0.293520 0.955953i \(-0.594827\pi\)
−0.293520 + 0.955953i \(0.594827\pi\)
\(758\) 21.4283 0.778310
\(759\) 0 0
\(760\) 7.59806 0.275610
\(761\) 11.2925 0.409354 0.204677 0.978830i \(-0.434386\pi\)
0.204677 + 0.978830i \(0.434386\pi\)
\(762\) 27.7385 1.00486
\(763\) −24.2674 −0.878537
\(764\) −6.07119 −0.219648
\(765\) −10.3421 −0.373920
\(766\) 25.4062 0.917963
\(767\) −1.18487 −0.0427833
\(768\) 13.6090 0.491073
\(769\) 42.2894 1.52500 0.762498 0.646990i \(-0.223973\pi\)
0.762498 + 0.646990i \(0.223973\pi\)
\(770\) 0 0
\(771\) 4.05550 0.146055
\(772\) −5.64195 −0.203058
\(773\) 27.0257 0.972048 0.486024 0.873945i \(-0.338447\pi\)
0.486024 + 0.873945i \(0.338447\pi\)
\(774\) −1.95860 −0.0704003
\(775\) 5.59139 0.200849
\(776\) −1.85427 −0.0665645
\(777\) −1.63575 −0.0586821
\(778\) −20.8909 −0.748975
\(779\) 5.41273 0.193931
\(780\) 13.3103 0.476584
\(781\) 0 0
\(782\) 37.3977 1.33734
\(783\) 0.482994 0.0172608
\(784\) −55.7267 −1.99024
\(785\) −11.0911 −0.395858
\(786\) 23.7610 0.847525
\(787\) 9.33805 0.332866 0.166433 0.986053i \(-0.446775\pi\)
0.166433 + 0.986053i \(0.446775\pi\)
\(788\) 9.09481 0.323989
\(789\) 5.92290 0.210861
\(790\) −71.6459 −2.54905
\(791\) −18.7042 −0.665046
\(792\) 0 0
\(793\) −93.8989 −3.33445
\(794\) 39.3466 1.39636
\(795\) 43.2938 1.53547
\(796\) 7.03601 0.249385
\(797\) 19.7735 0.700414 0.350207 0.936672i \(-0.386111\pi\)
0.350207 + 0.936672i \(0.386111\pi\)
\(798\) 6.95829 0.246321
\(799\) −19.9407 −0.705450
\(800\) −22.3337 −0.789615
\(801\) 3.64434 0.128766
\(802\) 17.0595 0.602392
\(803\) 0 0
\(804\) 3.00270 0.105897
\(805\) −111.165 −3.91805
\(806\) −8.67302 −0.305494
\(807\) 14.5610 0.512572
\(808\) 23.9390 0.842170
\(809\) −47.4270 −1.66745 −0.833723 0.552183i \(-0.813795\pi\)
−0.833723 + 0.552183i \(0.813795\pi\)
\(810\) −5.50832 −0.193543
\(811\) 7.40695 0.260093 0.130047 0.991508i \(-0.458487\pi\)
0.130047 + 0.991508i \(0.458487\pi\)
\(812\) 1.28845 0.0452158
\(813\) 8.16105 0.286220
\(814\) 0 0
\(815\) −0.909901 −0.0318724
\(816\) −14.7597 −0.516693
\(817\) −1.20988 −0.0423284
\(818\) 55.1109 1.92691
\(819\) −27.0921 −0.946675
\(820\) −11.4304 −0.399166
\(821\) −54.3694 −1.89751 −0.948753 0.316019i \(-0.897654\pi\)
−0.948753 + 0.316019i \(0.897654\pi\)
\(822\) −28.7869 −1.00406
\(823\) 26.0284 0.907292 0.453646 0.891182i \(-0.350123\pi\)
0.453646 + 0.891182i \(0.350123\pi\)
\(824\) −30.0589 −1.04715
\(825\) 0 0
\(826\) 1.30807 0.0455137
\(827\) −23.7981 −0.827542 −0.413771 0.910381i \(-0.635789\pi\)
−0.413771 + 0.910381i \(0.635789\pi\)
\(828\) 4.71712 0.163931
\(829\) −3.64388 −0.126557 −0.0632785 0.997996i \(-0.520156\pi\)
−0.0632785 + 0.997996i \(0.520156\pi\)
\(830\) −35.4317 −1.22985
\(831\) 4.53940 0.157470
\(832\) −26.5724 −0.921231
\(833\) 34.8795 1.20850
\(834\) 19.5041 0.675372
\(835\) −40.0014 −1.38431
\(836\) 0 0
\(837\) 0.850012 0.0293807
\(838\) −36.8359 −1.27247
\(839\) 43.2108 1.49180 0.745901 0.666057i \(-0.232019\pi\)
0.745901 + 0.666057i \(0.232019\pi\)
\(840\) 32.6590 1.12684
\(841\) −28.7667 −0.991956
\(842\) 41.3839 1.42618
\(843\) −29.6230 −1.02027
\(844\) −6.87311 −0.236582
\(845\) −90.9425 −3.12852
\(846\) −10.6206 −0.365144
\(847\) 0 0
\(848\) 61.7866 2.12176
\(849\) −9.09551 −0.312157
\(850\) 32.3660 1.11014
\(851\) −2.89245 −0.0991521
\(852\) 7.76647 0.266075
\(853\) −43.3987 −1.48594 −0.742971 0.669323i \(-0.766584\pi\)
−0.742971 + 0.669323i \(0.766584\pi\)
\(854\) 103.662 3.54725
\(855\) −3.40265 −0.116368
\(856\) −34.6214 −1.18334
\(857\) −28.5773 −0.976181 −0.488091 0.872793i \(-0.662306\pi\)
−0.488091 + 0.872793i \(0.662306\pi\)
\(858\) 0 0
\(859\) 5.13029 0.175043 0.0875215 0.996163i \(-0.472105\pi\)
0.0875215 + 0.996163i \(0.472105\pi\)
\(860\) 2.55498 0.0871239
\(861\) 23.2657 0.792893
\(862\) −31.2712 −1.06510
\(863\) 16.8331 0.573007 0.286503 0.958079i \(-0.407507\pi\)
0.286503 + 0.958079i \(0.407507\pi\)
\(864\) −3.39520 −0.115507
\(865\) 2.05806 0.0699762
\(866\) −10.4197 −0.354075
\(867\) −7.76186 −0.263606
\(868\) 2.26753 0.0769649
\(869\) 0 0
\(870\) −2.66048 −0.0901988
\(871\) −30.4950 −1.03328
\(872\) 12.6069 0.426923
\(873\) 0.830401 0.0281048
\(874\) 12.3042 0.416195
\(875\) −23.0795 −0.780229
\(876\) −2.53912 −0.0857891
\(877\) 25.8834 0.874021 0.437011 0.899456i \(-0.356037\pi\)
0.437011 + 0.899456i \(0.356037\pi\)
\(878\) −45.8070 −1.54591
\(879\) 25.8607 0.872260
\(880\) 0 0
\(881\) −26.6715 −0.898585 −0.449292 0.893385i \(-0.648324\pi\)
−0.449292 + 0.893385i \(0.648324\pi\)
\(882\) 18.5772 0.625527
\(883\) −42.0700 −1.41577 −0.707884 0.706329i \(-0.750350\pi\)
−0.707884 + 0.706329i \(0.750350\pi\)
\(884\) −11.8895 −0.399886
\(885\) −0.639656 −0.0215018
\(886\) −64.1077 −2.15374
\(887\) −37.1891 −1.24869 −0.624344 0.781149i \(-0.714634\pi\)
−0.624344 + 0.781149i \(0.714634\pi\)
\(888\) 0.849771 0.0285164
\(889\) 73.6514 2.47019
\(890\) −20.0742 −0.672888
\(891\) 0 0
\(892\) 15.9308 0.533404
\(893\) −6.56066 −0.219544
\(894\) −15.9237 −0.532568
\(895\) 1.03633 0.0346407
\(896\) 58.5227 1.95511
\(897\) −47.9063 −1.59955
\(898\) −0.176318 −0.00588381
\(899\) 0.410551 0.0136926
\(900\) 4.08245 0.136082
\(901\) −38.6724 −1.28837
\(902\) 0 0
\(903\) −5.20048 −0.173061
\(904\) 9.71684 0.323177
\(905\) −35.6969 −1.18660
\(906\) −16.5992 −0.551472
\(907\) −2.40581 −0.0798836 −0.0399418 0.999202i \(-0.512717\pi\)
−0.0399418 + 0.999202i \(0.512717\pi\)
\(908\) −14.5722 −0.483594
\(909\) −10.7206 −0.355580
\(910\) 149.232 4.94699
\(911\) −35.6645 −1.18162 −0.590809 0.806812i \(-0.701191\pi\)
−0.590809 + 0.806812i \(0.701191\pi\)
\(912\) −4.85607 −0.160801
\(913\) 0 0
\(914\) −6.01721 −0.199032
\(915\) −50.6915 −1.67581
\(916\) 8.52280 0.281601
\(917\) 63.0902 2.08342
\(918\) 4.92033 0.162395
\(919\) 11.5249 0.380171 0.190085 0.981768i \(-0.439124\pi\)
0.190085 + 0.981768i \(0.439124\pi\)
\(920\) 57.7501 1.90396
\(921\) −13.6516 −0.449836
\(922\) 11.1272 0.366454
\(923\) −78.8750 −2.59620
\(924\) 0 0
\(925\) −2.50329 −0.0823076
\(926\) 49.3431 1.62152
\(927\) 13.4613 0.442127
\(928\) −1.63986 −0.0538311
\(929\) −5.55193 −0.182153 −0.0910764 0.995844i \(-0.529031\pi\)
−0.0910764 + 0.995844i \(0.529031\pi\)
\(930\) −4.68214 −0.153533
\(931\) 11.4757 0.376100
\(932\) −2.88379 −0.0944616
\(933\) −5.06909 −0.165954
\(934\) 37.9966 1.24329
\(935\) 0 0
\(936\) 14.0743 0.460034
\(937\) −54.6356 −1.78487 −0.892434 0.451178i \(-0.851004\pi\)
−0.892434 + 0.451178i \(0.851004\pi\)
\(938\) 33.6657 1.09922
\(939\) 15.3606 0.501273
\(940\) 13.8545 0.451885
\(941\) −5.19429 −0.169329 −0.0846644 0.996410i \(-0.526982\pi\)
−0.0846644 + 0.996410i \(0.526982\pi\)
\(942\) 5.27666 0.171923
\(943\) 41.1402 1.33971
\(944\) −0.912882 −0.0297118
\(945\) −14.6257 −0.475775
\(946\) 0 0
\(947\) 24.4580 0.794777 0.397388 0.917651i \(-0.369917\pi\)
0.397388 + 0.917651i \(0.369917\pi\)
\(948\) 8.07234 0.262177
\(949\) 25.7869 0.837079
\(950\) 10.6487 0.345489
\(951\) 1.01520 0.0329202
\(952\) −29.1728 −0.945496
\(953\) −53.5669 −1.73520 −0.867601 0.497260i \(-0.834339\pi\)
−0.867601 + 0.497260i \(0.834339\pi\)
\(954\) −20.5973 −0.666864
\(955\) 33.2862 1.07712
\(956\) −4.26136 −0.137822
\(957\) 0 0
\(958\) −18.2853 −0.590772
\(959\) −76.4350 −2.46822
\(960\) −14.3451 −0.462987
\(961\) −30.2775 −0.976693
\(962\) 3.88294 0.125191
\(963\) 15.5046 0.499627
\(964\) −2.98564 −0.0961609
\(965\) 30.9328 0.995761
\(966\) 52.8875 1.70163
\(967\) −43.3890 −1.39530 −0.697648 0.716440i \(-0.745770\pi\)
−0.697648 + 0.716440i \(0.745770\pi\)
\(968\) 0 0
\(969\) 3.03943 0.0976406
\(970\) −4.57412 −0.146866
\(971\) 16.1868 0.519459 0.259729 0.965681i \(-0.416367\pi\)
0.259729 + 0.965681i \(0.416367\pi\)
\(972\) 0.620622 0.0199065
\(973\) 51.7874 1.66023
\(974\) 64.4127 2.06392
\(975\) −41.4607 −1.32781
\(976\) −72.3441 −2.31568
\(977\) −5.00884 −0.160247 −0.0801235 0.996785i \(-0.525531\pi\)
−0.0801235 + 0.996785i \(0.525531\pi\)
\(978\) 0.432892 0.0138423
\(979\) 0 0
\(980\) −24.2338 −0.774122
\(981\) −5.64576 −0.180255
\(982\) −57.1715 −1.82442
\(983\) 59.5077 1.89800 0.949000 0.315276i \(-0.102097\pi\)
0.949000 + 0.315276i \(0.102097\pi\)
\(984\) −12.0865 −0.385305
\(985\) −49.8636 −1.58879
\(986\) 2.37649 0.0756829
\(987\) −28.1999 −0.897613
\(988\) −3.91174 −0.124449
\(989\) −9.19588 −0.292412
\(990\) 0 0
\(991\) −11.0714 −0.351695 −0.175847 0.984417i \(-0.556267\pi\)
−0.175847 + 0.984417i \(0.556267\pi\)
\(992\) −2.88597 −0.0916295
\(993\) −7.51641 −0.238526
\(994\) 87.0762 2.76189
\(995\) −38.5759 −1.22294
\(996\) 3.99209 0.126494
\(997\) −42.7111 −1.35268 −0.676338 0.736592i \(-0.736434\pi\)
−0.676338 + 0.736592i \(0.736434\pi\)
\(998\) −13.2506 −0.419439
\(999\) −0.380554 −0.0120402
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bq.1.19 24
11.7 odd 10 627.2.j.d.115.3 48
11.8 odd 10 627.2.j.d.229.3 yes 48
11.10 odd 2 6897.2.a.bp.1.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.j.d.115.3 48 11.7 odd 10
627.2.j.d.229.3 yes 48 11.8 odd 10
6897.2.a.bp.1.6 24 11.10 odd 2
6897.2.a.bq.1.19 24 1.1 even 1 trivial