Properties

Label 6897.2.a.bq.1.15
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,24,37,9,1,3,0,24,-1,0,37,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27260 q^{2} +1.00000 q^{3} -0.380477 q^{4} -0.389881 q^{5} +1.27260 q^{6} -3.02973 q^{7} -3.02941 q^{8} +1.00000 q^{9} -0.496164 q^{10} -0.380477 q^{12} -0.780173 q^{13} -3.85565 q^{14} -0.389881 q^{15} -3.09428 q^{16} +3.23952 q^{17} +1.27260 q^{18} +1.00000 q^{19} +0.148341 q^{20} -3.02973 q^{21} -8.08948 q^{23} -3.02941 q^{24} -4.84799 q^{25} -0.992851 q^{26} +1.00000 q^{27} +1.15274 q^{28} +4.61676 q^{29} -0.496164 q^{30} +10.3448 q^{31} +2.12101 q^{32} +4.12263 q^{34} +1.18123 q^{35} -0.380477 q^{36} -0.658789 q^{37} +1.27260 q^{38} -0.780173 q^{39} +1.18111 q^{40} -7.65258 q^{41} -3.85565 q^{42} +5.34992 q^{43} -0.389881 q^{45} -10.2947 q^{46} +1.72384 q^{47} -3.09428 q^{48} +2.17926 q^{49} -6.16958 q^{50} +3.23952 q^{51} +0.296838 q^{52} +7.36492 q^{53} +1.27260 q^{54} +9.17828 q^{56} +1.00000 q^{57} +5.87531 q^{58} +0.778211 q^{59} +0.148341 q^{60} -7.55016 q^{61} +13.1648 q^{62} -3.02973 q^{63} +8.88778 q^{64} +0.304174 q^{65} +14.4474 q^{67} -1.23256 q^{68} -8.08948 q^{69} +1.50324 q^{70} +0.118679 q^{71} -3.02941 q^{72} -3.17072 q^{73} -0.838378 q^{74} -4.84799 q^{75} -0.380477 q^{76} -0.992851 q^{78} -3.21242 q^{79} +1.20640 q^{80} +1.00000 q^{81} -9.73871 q^{82} +7.71818 q^{83} +1.15274 q^{84} -1.26303 q^{85} +6.80833 q^{86} +4.61676 q^{87} +4.87723 q^{89} -0.496164 q^{90} +2.36371 q^{91} +3.07786 q^{92} +10.3448 q^{93} +2.19377 q^{94} -0.389881 q^{95} +2.12101 q^{96} +8.68858 q^{97} +2.77333 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + 24 q^{3} + 37 q^{4} + 9 q^{5} + q^{6} + 3 q^{7} + 24 q^{9} - q^{10} + 37 q^{12} + 3 q^{13} - 2 q^{14} + 9 q^{15} + 55 q^{16} - 3 q^{17} + q^{18} + 24 q^{19} + 12 q^{20} + 3 q^{21} + 30 q^{23}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27260 0.899867 0.449934 0.893062i \(-0.351448\pi\)
0.449934 + 0.893062i \(0.351448\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.380477 −0.190239
\(5\) −0.389881 −0.174360 −0.0871800 0.996193i \(-0.527786\pi\)
−0.0871800 + 0.996193i \(0.527786\pi\)
\(6\) 1.27260 0.519539
\(7\) −3.02973 −1.14513 −0.572565 0.819859i \(-0.694052\pi\)
−0.572565 + 0.819859i \(0.694052\pi\)
\(8\) −3.02941 −1.07106
\(9\) 1.00000 0.333333
\(10\) −0.496164 −0.156901
\(11\) 0 0
\(12\) −0.380477 −0.109834
\(13\) −0.780173 −0.216381 −0.108190 0.994130i \(-0.534506\pi\)
−0.108190 + 0.994130i \(0.534506\pi\)
\(14\) −3.85565 −1.03047
\(15\) −0.389881 −0.100667
\(16\) −3.09428 −0.773571
\(17\) 3.23952 0.785700 0.392850 0.919603i \(-0.371489\pi\)
0.392850 + 0.919603i \(0.371489\pi\)
\(18\) 1.27260 0.299956
\(19\) 1.00000 0.229416
\(20\) 0.148341 0.0331700
\(21\) −3.02973 −0.661141
\(22\) 0 0
\(23\) −8.08948 −1.68677 −0.843387 0.537307i \(-0.819442\pi\)
−0.843387 + 0.537307i \(0.819442\pi\)
\(24\) −3.02941 −0.618375
\(25\) −4.84799 −0.969599
\(26\) −0.992851 −0.194714
\(27\) 1.00000 0.192450
\(28\) 1.15274 0.217848
\(29\) 4.61676 0.857311 0.428655 0.903468i \(-0.358987\pi\)
0.428655 + 0.903468i \(0.358987\pi\)
\(30\) −0.496164 −0.0905867
\(31\) 10.3448 1.85797 0.928987 0.370111i \(-0.120680\pi\)
0.928987 + 0.370111i \(0.120680\pi\)
\(32\) 2.12101 0.374946
\(33\) 0 0
\(34\) 4.12263 0.707026
\(35\) 1.18123 0.199665
\(36\) −0.380477 −0.0634129
\(37\) −0.658789 −0.108304 −0.0541521 0.998533i \(-0.517246\pi\)
−0.0541521 + 0.998533i \(0.517246\pi\)
\(38\) 1.27260 0.206444
\(39\) −0.780173 −0.124928
\(40\) 1.18111 0.186749
\(41\) −7.65258 −1.19513 −0.597566 0.801820i \(-0.703865\pi\)
−0.597566 + 0.801820i \(0.703865\pi\)
\(42\) −3.85565 −0.594939
\(43\) 5.34992 0.815855 0.407927 0.913014i \(-0.366252\pi\)
0.407927 + 0.913014i \(0.366252\pi\)
\(44\) 0 0
\(45\) −0.389881 −0.0581200
\(46\) −10.2947 −1.51787
\(47\) 1.72384 0.251448 0.125724 0.992065i \(-0.459875\pi\)
0.125724 + 0.992065i \(0.459875\pi\)
\(48\) −3.09428 −0.446621
\(49\) 2.17926 0.311322
\(50\) −6.16958 −0.872510
\(51\) 3.23952 0.453624
\(52\) 0.296838 0.0411640
\(53\) 7.36492 1.01165 0.505825 0.862636i \(-0.331188\pi\)
0.505825 + 0.862636i \(0.331188\pi\)
\(54\) 1.27260 0.173180
\(55\) 0 0
\(56\) 9.17828 1.22650
\(57\) 1.00000 0.132453
\(58\) 5.87531 0.771466
\(59\) 0.778211 0.101314 0.0506572 0.998716i \(-0.483868\pi\)
0.0506572 + 0.998716i \(0.483868\pi\)
\(60\) 0.148341 0.0191507
\(61\) −7.55016 −0.966699 −0.483349 0.875428i \(-0.660580\pi\)
−0.483349 + 0.875428i \(0.660580\pi\)
\(62\) 13.1648 1.67193
\(63\) −3.02973 −0.381710
\(64\) 8.88778 1.11097
\(65\) 0.304174 0.0377282
\(66\) 0 0
\(67\) 14.4474 1.76503 0.882513 0.470288i \(-0.155850\pi\)
0.882513 + 0.470288i \(0.155850\pi\)
\(68\) −1.23256 −0.149470
\(69\) −8.08948 −0.973859
\(70\) 1.50324 0.179672
\(71\) 0.118679 0.0140846 0.00704232 0.999975i \(-0.497758\pi\)
0.00704232 + 0.999975i \(0.497758\pi\)
\(72\) −3.02941 −0.357019
\(73\) −3.17072 −0.371104 −0.185552 0.982634i \(-0.559407\pi\)
−0.185552 + 0.982634i \(0.559407\pi\)
\(74\) −0.838378 −0.0974595
\(75\) −4.84799 −0.559798
\(76\) −0.380477 −0.0436437
\(77\) 0 0
\(78\) −0.992851 −0.112418
\(79\) −3.21242 −0.361426 −0.180713 0.983536i \(-0.557840\pi\)
−0.180713 + 0.983536i \(0.557840\pi\)
\(80\) 1.20640 0.134880
\(81\) 1.00000 0.111111
\(82\) −9.73871 −1.07546
\(83\) 7.71818 0.847181 0.423590 0.905854i \(-0.360770\pi\)
0.423590 + 0.905854i \(0.360770\pi\)
\(84\) 1.15274 0.125775
\(85\) −1.26303 −0.136995
\(86\) 6.80833 0.734161
\(87\) 4.61676 0.494968
\(88\) 0 0
\(89\) 4.87723 0.516985 0.258492 0.966013i \(-0.416774\pi\)
0.258492 + 0.966013i \(0.416774\pi\)
\(90\) −0.496164 −0.0523003
\(91\) 2.36371 0.247784
\(92\) 3.07786 0.320889
\(93\) 10.3448 1.07270
\(94\) 2.19377 0.226270
\(95\) −0.389881 −0.0400009
\(96\) 2.12101 0.216475
\(97\) 8.68858 0.882192 0.441096 0.897460i \(-0.354590\pi\)
0.441096 + 0.897460i \(0.354590\pi\)
\(98\) 2.77333 0.280149
\(99\) 0 0
\(100\) 1.84455 0.184455
\(101\) 0.371480 0.0369636 0.0184818 0.999829i \(-0.494117\pi\)
0.0184818 + 0.999829i \(0.494117\pi\)
\(102\) 4.12263 0.408201
\(103\) 11.5303 1.13612 0.568059 0.822987i \(-0.307694\pi\)
0.568059 + 0.822987i \(0.307694\pi\)
\(104\) 2.36346 0.231756
\(105\) 1.18123 0.115276
\(106\) 9.37263 0.910350
\(107\) −14.0638 −1.35959 −0.679797 0.733400i \(-0.737932\pi\)
−0.679797 + 0.733400i \(0.737932\pi\)
\(108\) −0.380477 −0.0366114
\(109\) 14.1880 1.35897 0.679484 0.733690i \(-0.262204\pi\)
0.679484 + 0.733690i \(0.262204\pi\)
\(110\) 0 0
\(111\) −0.658789 −0.0625295
\(112\) 9.37484 0.885839
\(113\) 16.2049 1.52443 0.762214 0.647325i \(-0.224112\pi\)
0.762214 + 0.647325i \(0.224112\pi\)
\(114\) 1.27260 0.119190
\(115\) 3.15393 0.294106
\(116\) −1.75657 −0.163094
\(117\) −0.780173 −0.0721270
\(118\) 0.990355 0.0911696
\(119\) −9.81488 −0.899728
\(120\) 1.18111 0.107820
\(121\) 0 0
\(122\) −9.60837 −0.869901
\(123\) −7.65258 −0.690010
\(124\) −3.93595 −0.353458
\(125\) 3.83954 0.343419
\(126\) −3.85565 −0.343488
\(127\) 6.72317 0.596585 0.298292 0.954475i \(-0.403583\pi\)
0.298292 + 0.954475i \(0.403583\pi\)
\(128\) 7.06860 0.624782
\(129\) 5.34992 0.471034
\(130\) 0.387094 0.0339504
\(131\) 12.6273 1.10325 0.551626 0.834092i \(-0.314008\pi\)
0.551626 + 0.834092i \(0.314008\pi\)
\(132\) 0 0
\(133\) −3.02973 −0.262711
\(134\) 18.3858 1.58829
\(135\) −0.389881 −0.0335556
\(136\) −9.81383 −0.841529
\(137\) 11.3911 0.973205 0.486602 0.873624i \(-0.338236\pi\)
0.486602 + 0.873624i \(0.338236\pi\)
\(138\) −10.2947 −0.876344
\(139\) −4.05559 −0.343991 −0.171995 0.985098i \(-0.555021\pi\)
−0.171995 + 0.985098i \(0.555021\pi\)
\(140\) −0.449432 −0.0379839
\(141\) 1.72384 0.145174
\(142\) 0.151032 0.0126743
\(143\) 0 0
\(144\) −3.09428 −0.257857
\(145\) −1.79998 −0.149481
\(146\) −4.03507 −0.333945
\(147\) 2.17926 0.179742
\(148\) 0.250654 0.0206037
\(149\) 18.2465 1.49481 0.747406 0.664368i \(-0.231299\pi\)
0.747406 + 0.664368i \(0.231299\pi\)
\(150\) −6.16958 −0.503744
\(151\) −18.0942 −1.47249 −0.736244 0.676716i \(-0.763403\pi\)
−0.736244 + 0.676716i \(0.763403\pi\)
\(152\) −3.02941 −0.245717
\(153\) 3.23952 0.261900
\(154\) 0 0
\(155\) −4.03322 −0.323956
\(156\) 0.296838 0.0237660
\(157\) 4.93005 0.393461 0.196730 0.980458i \(-0.436968\pi\)
0.196730 + 0.980458i \(0.436968\pi\)
\(158\) −4.08815 −0.325235
\(159\) 7.36492 0.584076
\(160\) −0.826942 −0.0653755
\(161\) 24.5089 1.93157
\(162\) 1.27260 0.0999853
\(163\) −11.9824 −0.938536 −0.469268 0.883056i \(-0.655482\pi\)
−0.469268 + 0.883056i \(0.655482\pi\)
\(164\) 2.91163 0.227360
\(165\) 0 0
\(166\) 9.82220 0.762350
\(167\) −24.5677 −1.90110 −0.950552 0.310564i \(-0.899482\pi\)
−0.950552 + 0.310564i \(0.899482\pi\)
\(168\) 9.17828 0.708120
\(169\) −12.3913 −0.953179
\(170\) −1.60733 −0.123277
\(171\) 1.00000 0.0764719
\(172\) −2.03552 −0.155207
\(173\) 19.4060 1.47541 0.737707 0.675122i \(-0.235909\pi\)
0.737707 + 0.675122i \(0.235909\pi\)
\(174\) 5.87531 0.445406
\(175\) 14.6881 1.11032
\(176\) 0 0
\(177\) 0.778211 0.0584939
\(178\) 6.20678 0.465218
\(179\) −1.15824 −0.0865712 −0.0432856 0.999063i \(-0.513783\pi\)
−0.0432856 + 0.999063i \(0.513783\pi\)
\(180\) 0.148341 0.0110567
\(181\) 8.96032 0.666015 0.333008 0.942924i \(-0.391937\pi\)
0.333008 + 0.942924i \(0.391937\pi\)
\(182\) 3.00807 0.222973
\(183\) −7.55016 −0.558124
\(184\) 24.5063 1.80663
\(185\) 0.256849 0.0188839
\(186\) 13.1648 0.965290
\(187\) 0 0
\(188\) −0.655883 −0.0478352
\(189\) −3.02973 −0.220380
\(190\) −0.496164 −0.0359955
\(191\) 11.9769 0.866619 0.433309 0.901245i \(-0.357346\pi\)
0.433309 + 0.901245i \(0.357346\pi\)
\(192\) 8.88778 0.641420
\(193\) −10.9102 −0.785336 −0.392668 0.919680i \(-0.628448\pi\)
−0.392668 + 0.919680i \(0.628448\pi\)
\(194\) 11.0571 0.793856
\(195\) 0.304174 0.0217824
\(196\) −0.829157 −0.0592255
\(197\) −16.2198 −1.15561 −0.577805 0.816175i \(-0.696090\pi\)
−0.577805 + 0.816175i \(0.696090\pi\)
\(198\) 0 0
\(199\) 16.5439 1.17277 0.586384 0.810033i \(-0.300551\pi\)
0.586384 + 0.810033i \(0.300551\pi\)
\(200\) 14.6865 1.03850
\(201\) 14.4474 1.01904
\(202\) 0.472747 0.0332624
\(203\) −13.9875 −0.981732
\(204\) −1.23256 −0.0862968
\(205\) 2.98359 0.208383
\(206\) 14.6736 1.02236
\(207\) −8.08948 −0.562258
\(208\) 2.41407 0.167386
\(209\) 0 0
\(210\) 1.50324 0.103734
\(211\) −9.68164 −0.666511 −0.333256 0.942837i \(-0.608147\pi\)
−0.333256 + 0.942837i \(0.608147\pi\)
\(212\) −2.80218 −0.192455
\(213\) 0.118679 0.00813177
\(214\) −17.8976 −1.22345
\(215\) −2.08583 −0.142252
\(216\) −3.02941 −0.206125
\(217\) −31.3418 −2.12762
\(218\) 18.0558 1.22289
\(219\) −3.17072 −0.214257
\(220\) 0 0
\(221\) −2.52739 −0.170010
\(222\) −0.838378 −0.0562683
\(223\) −2.69887 −0.180730 −0.0903649 0.995909i \(-0.528803\pi\)
−0.0903649 + 0.995909i \(0.528803\pi\)
\(224\) −6.42610 −0.429362
\(225\) −4.84799 −0.323200
\(226\) 20.6224 1.37178
\(227\) 11.0762 0.735153 0.367577 0.929993i \(-0.380188\pi\)
0.367577 + 0.929993i \(0.380188\pi\)
\(228\) −0.380477 −0.0251977
\(229\) 14.3726 0.949770 0.474885 0.880048i \(-0.342490\pi\)
0.474885 + 0.880048i \(0.342490\pi\)
\(230\) 4.01371 0.264656
\(231\) 0 0
\(232\) −13.9860 −0.918228
\(233\) −12.1148 −0.793666 −0.396833 0.917891i \(-0.629891\pi\)
−0.396833 + 0.917891i \(0.629891\pi\)
\(234\) −0.992851 −0.0649047
\(235\) −0.672093 −0.0438425
\(236\) −0.296092 −0.0192739
\(237\) −3.21242 −0.208669
\(238\) −12.4905 −0.809636
\(239\) 13.1867 0.852976 0.426488 0.904493i \(-0.359751\pi\)
0.426488 + 0.904493i \(0.359751\pi\)
\(240\) 1.20640 0.0778729
\(241\) 12.2879 0.791535 0.395768 0.918351i \(-0.370479\pi\)
0.395768 + 0.918351i \(0.370479\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 2.87266 0.183903
\(245\) −0.849650 −0.0542821
\(246\) −9.73871 −0.620917
\(247\) −0.780173 −0.0496412
\(248\) −31.3385 −1.99000
\(249\) 7.71818 0.489120
\(250\) 4.88622 0.309032
\(251\) −7.52213 −0.474792 −0.237396 0.971413i \(-0.576294\pi\)
−0.237396 + 0.971413i \(0.576294\pi\)
\(252\) 1.15274 0.0726160
\(253\) 0 0
\(254\) 8.55594 0.536847
\(255\) −1.26303 −0.0790938
\(256\) −8.78002 −0.548751
\(257\) −21.3035 −1.32888 −0.664438 0.747343i \(-0.731329\pi\)
−0.664438 + 0.747343i \(0.731329\pi\)
\(258\) 6.80833 0.423868
\(259\) 1.99595 0.124022
\(260\) −0.115731 −0.00717735
\(261\) 4.61676 0.285770
\(262\) 16.0696 0.992781
\(263\) 18.6850 1.15217 0.576084 0.817391i \(-0.304580\pi\)
0.576084 + 0.817391i \(0.304580\pi\)
\(264\) 0 0
\(265\) −2.87144 −0.176391
\(266\) −3.85565 −0.236405
\(267\) 4.87723 0.298481
\(268\) −5.49689 −0.335776
\(269\) 10.4499 0.637141 0.318570 0.947899i \(-0.396797\pi\)
0.318570 + 0.947899i \(0.396797\pi\)
\(270\) −0.496164 −0.0301956
\(271\) 10.8103 0.656677 0.328338 0.944560i \(-0.393511\pi\)
0.328338 + 0.944560i \(0.393511\pi\)
\(272\) −10.0240 −0.607794
\(273\) 2.36371 0.143058
\(274\) 14.4963 0.875755
\(275\) 0 0
\(276\) 3.07786 0.185266
\(277\) 14.0870 0.846407 0.423204 0.906035i \(-0.360905\pi\)
0.423204 + 0.906035i \(0.360905\pi\)
\(278\) −5.16117 −0.309546
\(279\) 10.3448 0.619325
\(280\) −3.57843 −0.213852
\(281\) −28.9479 −1.72689 −0.863444 0.504445i \(-0.831697\pi\)
−0.863444 + 0.504445i \(0.831697\pi\)
\(282\) 2.19377 0.130637
\(283\) 3.46552 0.206004 0.103002 0.994681i \(-0.467155\pi\)
0.103002 + 0.994681i \(0.467155\pi\)
\(284\) −0.0451547 −0.00267944
\(285\) −0.389881 −0.0230945
\(286\) 0 0
\(287\) 23.1852 1.36858
\(288\) 2.12101 0.124982
\(289\) −6.50549 −0.382676
\(290\) −2.29067 −0.134513
\(291\) 8.68858 0.509334
\(292\) 1.20639 0.0705984
\(293\) 11.5329 0.673762 0.336881 0.941547i \(-0.390628\pi\)
0.336881 + 0.941547i \(0.390628\pi\)
\(294\) 2.77333 0.161744
\(295\) −0.303409 −0.0176652
\(296\) 1.99574 0.116000
\(297\) 0 0
\(298\) 23.2206 1.34513
\(299\) 6.31119 0.364986
\(300\) 1.84455 0.106495
\(301\) −16.2088 −0.934260
\(302\) −23.0268 −1.32504
\(303\) 0.371480 0.0213410
\(304\) −3.09428 −0.177469
\(305\) 2.94366 0.168554
\(306\) 4.12263 0.235675
\(307\) −12.0356 −0.686908 −0.343454 0.939169i \(-0.611597\pi\)
−0.343454 + 0.939169i \(0.611597\pi\)
\(308\) 0 0
\(309\) 11.5303 0.655939
\(310\) −5.13270 −0.291518
\(311\) −11.7129 −0.664176 −0.332088 0.943248i \(-0.607753\pi\)
−0.332088 + 0.943248i \(0.607753\pi\)
\(312\) 2.36346 0.133805
\(313\) 27.6594 1.56340 0.781701 0.623654i \(-0.214352\pi\)
0.781701 + 0.623654i \(0.214352\pi\)
\(314\) 6.27400 0.354063
\(315\) 1.18123 0.0665549
\(316\) 1.22225 0.0687571
\(317\) 24.2852 1.36399 0.681996 0.731356i \(-0.261112\pi\)
0.681996 + 0.731356i \(0.261112\pi\)
\(318\) 9.37263 0.525591
\(319\) 0 0
\(320\) −3.46517 −0.193709
\(321\) −14.0638 −0.784962
\(322\) 31.1902 1.73816
\(323\) 3.23952 0.180252
\(324\) −0.380477 −0.0211376
\(325\) 3.78227 0.209803
\(326\) −15.2489 −0.844558
\(327\) 14.1880 0.784600
\(328\) 23.1828 1.28005
\(329\) −5.22278 −0.287941
\(330\) 0 0
\(331\) 32.3549 1.77839 0.889194 0.457531i \(-0.151266\pi\)
0.889194 + 0.457531i \(0.151266\pi\)
\(332\) −2.93659 −0.161166
\(333\) −0.658789 −0.0361014
\(334\) −31.2650 −1.71074
\(335\) −5.63275 −0.307750
\(336\) 9.37484 0.511439
\(337\) −17.3896 −0.947270 −0.473635 0.880721i \(-0.657058\pi\)
−0.473635 + 0.880721i \(0.657058\pi\)
\(338\) −15.7693 −0.857735
\(339\) 16.2049 0.880129
\(340\) 0.480553 0.0260617
\(341\) 0 0
\(342\) 1.27260 0.0688146
\(343\) 14.6055 0.788625
\(344\) −16.2071 −0.873827
\(345\) 3.15393 0.169802
\(346\) 24.6962 1.32768
\(347\) 9.23820 0.495932 0.247966 0.968769i \(-0.420238\pi\)
0.247966 + 0.968769i \(0.420238\pi\)
\(348\) −1.75657 −0.0941621
\(349\) −20.2834 −1.08575 −0.542873 0.839815i \(-0.682664\pi\)
−0.542873 + 0.839815i \(0.682664\pi\)
\(350\) 18.6922 0.999137
\(351\) −0.780173 −0.0416425
\(352\) 0 0
\(353\) 37.1556 1.97759 0.988795 0.149277i \(-0.0476946\pi\)
0.988795 + 0.149277i \(0.0476946\pi\)
\(354\) 0.990355 0.0526368
\(355\) −0.0462707 −0.00245580
\(356\) −1.85567 −0.0983505
\(357\) −9.81488 −0.519458
\(358\) −1.47399 −0.0779026
\(359\) 2.05786 0.108610 0.0543048 0.998524i \(-0.482706\pi\)
0.0543048 + 0.998524i \(0.482706\pi\)
\(360\) 1.18111 0.0622498
\(361\) 1.00000 0.0526316
\(362\) 11.4029 0.599325
\(363\) 0 0
\(364\) −0.899338 −0.0471381
\(365\) 1.23620 0.0647057
\(366\) −9.60837 −0.502237
\(367\) 36.0637 1.88251 0.941256 0.337694i \(-0.109647\pi\)
0.941256 + 0.337694i \(0.109647\pi\)
\(368\) 25.0311 1.30484
\(369\) −7.65258 −0.398377
\(370\) 0.326867 0.0169930
\(371\) −22.3137 −1.15847
\(372\) −3.93595 −0.204069
\(373\) −10.1008 −0.523001 −0.261500 0.965203i \(-0.584217\pi\)
−0.261500 + 0.965203i \(0.584217\pi\)
\(374\) 0 0
\(375\) 3.83954 0.198273
\(376\) −5.22222 −0.269315
\(377\) −3.60187 −0.185506
\(378\) −3.85565 −0.198313
\(379\) 17.8412 0.916439 0.458219 0.888839i \(-0.348487\pi\)
0.458219 + 0.888839i \(0.348487\pi\)
\(380\) 0.148341 0.00760972
\(381\) 6.72317 0.344438
\(382\) 15.2419 0.779842
\(383\) −18.9908 −0.970385 −0.485193 0.874407i \(-0.661250\pi\)
−0.485193 + 0.874407i \(0.661250\pi\)
\(384\) 7.06860 0.360718
\(385\) 0 0
\(386\) −13.8844 −0.706699
\(387\) 5.34992 0.271952
\(388\) −3.30581 −0.167827
\(389\) 29.7741 1.50961 0.754803 0.655951i \(-0.227732\pi\)
0.754803 + 0.655951i \(0.227732\pi\)
\(390\) 0.387094 0.0196012
\(391\) −26.2061 −1.32530
\(392\) −6.60185 −0.333444
\(393\) 12.6273 0.636963
\(394\) −20.6413 −1.03990
\(395\) 1.25246 0.0630182
\(396\) 0 0
\(397\) −29.1609 −1.46354 −0.731772 0.681549i \(-0.761306\pi\)
−0.731772 + 0.681549i \(0.761306\pi\)
\(398\) 21.0539 1.05534
\(399\) −3.02973 −0.151676
\(400\) 15.0011 0.750053
\(401\) −34.9173 −1.74369 −0.871843 0.489786i \(-0.837075\pi\)
−0.871843 + 0.489786i \(0.837075\pi\)
\(402\) 18.3858 0.916999
\(403\) −8.07070 −0.402030
\(404\) −0.141340 −0.00703191
\(405\) −0.389881 −0.0193733
\(406\) −17.8006 −0.883429
\(407\) 0 0
\(408\) −9.81383 −0.485857
\(409\) −34.2886 −1.69546 −0.847730 0.530427i \(-0.822031\pi\)
−0.847730 + 0.530427i \(0.822031\pi\)
\(410\) 3.79693 0.187517
\(411\) 11.3911 0.561880
\(412\) −4.38703 −0.216134
\(413\) −2.35777 −0.116018
\(414\) −10.2947 −0.505957
\(415\) −3.00917 −0.147714
\(416\) −1.65476 −0.0811311
\(417\) −4.05559 −0.198603
\(418\) 0 0
\(419\) −2.16294 −0.105666 −0.0528332 0.998603i \(-0.516825\pi\)
−0.0528332 + 0.998603i \(0.516825\pi\)
\(420\) −0.449432 −0.0219300
\(421\) 15.7171 0.766006 0.383003 0.923747i \(-0.374890\pi\)
0.383003 + 0.923747i \(0.374890\pi\)
\(422\) −12.3209 −0.599772
\(423\) 1.72384 0.0838161
\(424\) −22.3113 −1.08353
\(425\) −15.7052 −0.761813
\(426\) 0.151032 0.00731751
\(427\) 22.8749 1.10700
\(428\) 5.35094 0.258647
\(429\) 0 0
\(430\) −2.65444 −0.128008
\(431\) 24.3019 1.17058 0.585290 0.810824i \(-0.300981\pi\)
0.585290 + 0.810824i \(0.300981\pi\)
\(432\) −3.09428 −0.148874
\(433\) −39.3047 −1.88887 −0.944433 0.328705i \(-0.893388\pi\)
−0.944433 + 0.328705i \(0.893388\pi\)
\(434\) −39.8858 −1.91458
\(435\) −1.79998 −0.0863027
\(436\) −5.39823 −0.258528
\(437\) −8.08948 −0.386972
\(438\) −4.03507 −0.192803
\(439\) −30.3803 −1.44997 −0.724985 0.688764i \(-0.758153\pi\)
−0.724985 + 0.688764i \(0.758153\pi\)
\(440\) 0 0
\(441\) 2.17926 0.103774
\(442\) −3.21637 −0.152987
\(443\) −19.0075 −0.903076 −0.451538 0.892252i \(-0.649124\pi\)
−0.451538 + 0.892252i \(0.649124\pi\)
\(444\) 0.250654 0.0118955
\(445\) −1.90154 −0.0901414
\(446\) −3.43460 −0.162633
\(447\) 18.2465 0.863030
\(448\) −26.9276 −1.27221
\(449\) 0.390034 0.0184069 0.00920343 0.999958i \(-0.497070\pi\)
0.00920343 + 0.999958i \(0.497070\pi\)
\(450\) −6.16958 −0.290837
\(451\) 0 0
\(452\) −6.16559 −0.290005
\(453\) −18.0942 −0.850142
\(454\) 14.0956 0.661541
\(455\) −0.921565 −0.0432037
\(456\) −3.02941 −0.141865
\(457\) −28.7775 −1.34615 −0.673077 0.739572i \(-0.735028\pi\)
−0.673077 + 0.739572i \(0.735028\pi\)
\(458\) 18.2907 0.854667
\(459\) 3.23952 0.151208
\(460\) −1.20000 −0.0559502
\(461\) −28.9897 −1.35018 −0.675092 0.737734i \(-0.735896\pi\)
−0.675092 + 0.737734i \(0.735896\pi\)
\(462\) 0 0
\(463\) −18.3888 −0.854602 −0.427301 0.904109i \(-0.640536\pi\)
−0.427301 + 0.904109i \(0.640536\pi\)
\(464\) −14.2856 −0.663190
\(465\) −4.03322 −0.187036
\(466\) −15.4173 −0.714194
\(467\) −18.6109 −0.861212 −0.430606 0.902540i \(-0.641700\pi\)
−0.430606 + 0.902540i \(0.641700\pi\)
\(468\) 0.296838 0.0137213
\(469\) −43.7716 −2.02118
\(470\) −0.855309 −0.0394525
\(471\) 4.93005 0.227165
\(472\) −2.35752 −0.108514
\(473\) 0 0
\(474\) −4.08815 −0.187775
\(475\) −4.84799 −0.222441
\(476\) 3.73434 0.171163
\(477\) 7.36492 0.337216
\(478\) 16.7814 0.767565
\(479\) 1.22677 0.0560527 0.0280264 0.999607i \(-0.491078\pi\)
0.0280264 + 0.999607i \(0.491078\pi\)
\(480\) −0.826942 −0.0377446
\(481\) 0.513969 0.0234350
\(482\) 15.6377 0.712277
\(483\) 24.5089 1.11520
\(484\) 0 0
\(485\) −3.38751 −0.153819
\(486\) 1.27260 0.0577265
\(487\) 24.6184 1.11557 0.557784 0.829986i \(-0.311652\pi\)
0.557784 + 0.829986i \(0.311652\pi\)
\(488\) 22.8725 1.03539
\(489\) −11.9824 −0.541864
\(490\) −1.08127 −0.0488467
\(491\) −4.14965 −0.187271 −0.0936355 0.995607i \(-0.529849\pi\)
−0.0936355 + 0.995607i \(0.529849\pi\)
\(492\) 2.91163 0.131266
\(493\) 14.9561 0.673589
\(494\) −0.992851 −0.0446705
\(495\) 0 0
\(496\) −32.0096 −1.43727
\(497\) −0.359566 −0.0161287
\(498\) 9.82220 0.440143
\(499\) −0.374054 −0.0167450 −0.00837248 0.999965i \(-0.502665\pi\)
−0.00837248 + 0.999965i \(0.502665\pi\)
\(500\) −1.46086 −0.0653316
\(501\) −24.5677 −1.09760
\(502\) −9.57269 −0.427250
\(503\) 10.2965 0.459097 0.229549 0.973297i \(-0.426275\pi\)
0.229549 + 0.973297i \(0.426275\pi\)
\(504\) 9.17828 0.408833
\(505\) −0.144833 −0.00644498
\(506\) 0 0
\(507\) −12.3913 −0.550318
\(508\) −2.55801 −0.113493
\(509\) −40.6131 −1.80014 −0.900072 0.435742i \(-0.856486\pi\)
−0.900072 + 0.435742i \(0.856486\pi\)
\(510\) −1.60733 −0.0711740
\(511\) 9.60641 0.424963
\(512\) −25.3107 −1.11859
\(513\) 1.00000 0.0441511
\(514\) −27.1110 −1.19581
\(515\) −4.49546 −0.198094
\(516\) −2.03552 −0.0896088
\(517\) 0 0
\(518\) 2.54006 0.111604
\(519\) 19.4060 0.851830
\(520\) −0.921467 −0.0404090
\(521\) −11.6176 −0.508978 −0.254489 0.967076i \(-0.581907\pi\)
−0.254489 + 0.967076i \(0.581907\pi\)
\(522\) 5.87531 0.257155
\(523\) 15.9253 0.696365 0.348183 0.937427i \(-0.386799\pi\)
0.348183 + 0.937427i \(0.386799\pi\)
\(524\) −4.80440 −0.209881
\(525\) 14.6881 0.641041
\(526\) 23.7786 1.03680
\(527\) 33.5121 1.45981
\(528\) 0 0
\(529\) 42.4397 1.84520
\(530\) −3.65421 −0.158729
\(531\) 0.778211 0.0337715
\(532\) 1.15274 0.0499777
\(533\) 5.97033 0.258604
\(534\) 6.20678 0.268594
\(535\) 5.48319 0.237059
\(536\) −43.7669 −1.89044
\(537\) −1.15824 −0.0499819
\(538\) 13.2986 0.573342
\(539\) 0 0
\(540\) 0.148341 0.00638357
\(541\) 11.5567 0.496862 0.248431 0.968650i \(-0.420085\pi\)
0.248431 + 0.968650i \(0.420085\pi\)
\(542\) 13.7572 0.590922
\(543\) 8.96032 0.384524
\(544\) 6.87107 0.294595
\(545\) −5.53164 −0.236950
\(546\) 3.00807 0.128734
\(547\) 0.00782129 0.000334414 0 0.000167207 1.00000i \(-0.499947\pi\)
0.000167207 1.00000i \(0.499947\pi\)
\(548\) −4.33404 −0.185141
\(549\) −7.55016 −0.322233
\(550\) 0 0
\(551\) 4.61676 0.196681
\(552\) 24.5063 1.04306
\(553\) 9.73277 0.413880
\(554\) 17.9272 0.761654
\(555\) 0.256849 0.0109026
\(556\) 1.54306 0.0654404
\(557\) 33.2618 1.40935 0.704674 0.709532i \(-0.251093\pi\)
0.704674 + 0.709532i \(0.251093\pi\)
\(558\) 13.1648 0.557310
\(559\) −4.17386 −0.176535
\(560\) −3.65507 −0.154455
\(561\) 0 0
\(562\) −36.8392 −1.55397
\(563\) −31.8907 −1.34403 −0.672017 0.740536i \(-0.734572\pi\)
−0.672017 + 0.740536i \(0.734572\pi\)
\(564\) −0.655883 −0.0276177
\(565\) −6.31797 −0.265799
\(566\) 4.41024 0.185376
\(567\) −3.02973 −0.127237
\(568\) −0.359528 −0.0150854
\(569\) −16.3590 −0.685804 −0.342902 0.939371i \(-0.611410\pi\)
−0.342902 + 0.939371i \(0.611410\pi\)
\(570\) −0.496164 −0.0207820
\(571\) 21.4345 0.897006 0.448503 0.893781i \(-0.351957\pi\)
0.448503 + 0.893781i \(0.351957\pi\)
\(572\) 0 0
\(573\) 11.9769 0.500342
\(574\) 29.5056 1.23154
\(575\) 39.2177 1.63549
\(576\) 8.88778 0.370324
\(577\) −30.4851 −1.26911 −0.634556 0.772876i \(-0.718817\pi\)
−0.634556 + 0.772876i \(0.718817\pi\)
\(578\) −8.27892 −0.344358
\(579\) −10.9102 −0.453414
\(580\) 0.684853 0.0284370
\(581\) −23.3840 −0.970132
\(582\) 11.0571 0.458333
\(583\) 0 0
\(584\) 9.60539 0.397474
\(585\) 0.304174 0.0125761
\(586\) 14.6769 0.606296
\(587\) −19.0030 −0.784339 −0.392169 0.919893i \(-0.628275\pi\)
−0.392169 + 0.919893i \(0.628275\pi\)
\(588\) −0.829157 −0.0341939
\(589\) 10.3448 0.426249
\(590\) −0.386120 −0.0158963
\(591\) −16.2198 −0.667191
\(592\) 2.03848 0.0837810
\(593\) −7.19833 −0.295600 −0.147800 0.989017i \(-0.547219\pi\)
−0.147800 + 0.989017i \(0.547219\pi\)
\(594\) 0 0
\(595\) 3.82663 0.156877
\(596\) −6.94237 −0.284371
\(597\) 16.5439 0.677098
\(598\) 8.03165 0.328439
\(599\) −1.23101 −0.0502977 −0.0251489 0.999684i \(-0.508006\pi\)
−0.0251489 + 0.999684i \(0.508006\pi\)
\(600\) 14.6865 0.599576
\(601\) 33.3511 1.36042 0.680210 0.733017i \(-0.261889\pi\)
0.680210 + 0.733017i \(0.261889\pi\)
\(602\) −20.6274 −0.840710
\(603\) 14.4474 0.588342
\(604\) 6.88445 0.280124
\(605\) 0 0
\(606\) 0.472747 0.0192040
\(607\) −10.7441 −0.436089 −0.218044 0.975939i \(-0.569968\pi\)
−0.218044 + 0.975939i \(0.569968\pi\)
\(608\) 2.12101 0.0860185
\(609\) −13.9875 −0.566803
\(610\) 3.74612 0.151676
\(611\) −1.34490 −0.0544086
\(612\) −1.23256 −0.0498235
\(613\) −0.804073 −0.0324762 −0.0162381 0.999868i \(-0.505169\pi\)
−0.0162381 + 0.999868i \(0.505169\pi\)
\(614\) −15.3166 −0.618126
\(615\) 2.98359 0.120310
\(616\) 0 0
\(617\) −0.583005 −0.0234709 −0.0117354 0.999931i \(-0.503736\pi\)
−0.0117354 + 0.999931i \(0.503736\pi\)
\(618\) 14.6736 0.590258
\(619\) 8.18216 0.328869 0.164434 0.986388i \(-0.447420\pi\)
0.164434 + 0.986388i \(0.447420\pi\)
\(620\) 1.53455 0.0616290
\(621\) −8.08948 −0.324620
\(622\) −14.9059 −0.597671
\(623\) −14.7767 −0.592015
\(624\) 2.41407 0.0966403
\(625\) 22.7430 0.909720
\(626\) 35.1995 1.40685
\(627\) 0 0
\(628\) −1.87577 −0.0748514
\(629\) −2.13416 −0.0850946
\(630\) 1.50324 0.0598906
\(631\) −7.05581 −0.280887 −0.140444 0.990089i \(-0.544853\pi\)
−0.140444 + 0.990089i \(0.544853\pi\)
\(632\) 9.73174 0.387108
\(633\) −9.68164 −0.384810
\(634\) 30.9054 1.22741
\(635\) −2.62123 −0.104020
\(636\) −2.80218 −0.111114
\(637\) −1.70020 −0.0673642
\(638\) 0 0
\(639\) 0.118679 0.00469488
\(640\) −2.75591 −0.108937
\(641\) 7.55486 0.298399 0.149199 0.988807i \(-0.452330\pi\)
0.149199 + 0.988807i \(0.452330\pi\)
\(642\) −17.8976 −0.706362
\(643\) −5.72776 −0.225881 −0.112940 0.993602i \(-0.536027\pi\)
−0.112940 + 0.993602i \(0.536027\pi\)
\(644\) −9.32509 −0.367460
\(645\) −2.08583 −0.0821295
\(646\) 4.12263 0.162203
\(647\) −25.6313 −1.00767 −0.503835 0.863800i \(-0.668078\pi\)
−0.503835 + 0.863800i \(0.668078\pi\)
\(648\) −3.02941 −0.119006
\(649\) 0 0
\(650\) 4.81334 0.188795
\(651\) −31.3418 −1.22838
\(652\) 4.55904 0.178546
\(653\) 47.6540 1.86484 0.932422 0.361372i \(-0.117692\pi\)
0.932422 + 0.361372i \(0.117692\pi\)
\(654\) 18.0558 0.706036
\(655\) −4.92314 −0.192363
\(656\) 23.6792 0.924519
\(657\) −3.17072 −0.123701
\(658\) −6.64653 −0.259109
\(659\) 1.67437 0.0652243 0.0326122 0.999468i \(-0.489617\pi\)
0.0326122 + 0.999468i \(0.489617\pi\)
\(660\) 0 0
\(661\) −3.97399 −0.154570 −0.0772852 0.997009i \(-0.524625\pi\)
−0.0772852 + 0.997009i \(0.524625\pi\)
\(662\) 41.1750 1.60031
\(663\) −2.52739 −0.0981556
\(664\) −23.3815 −0.907379
\(665\) 1.18123 0.0458062
\(666\) −0.838378 −0.0324865
\(667\) −37.3472 −1.44609
\(668\) 9.34744 0.361663
\(669\) −2.69887 −0.104344
\(670\) −7.16826 −0.276934
\(671\) 0 0
\(672\) −6.42610 −0.247892
\(673\) 27.4802 1.05928 0.529642 0.848221i \(-0.322326\pi\)
0.529642 + 0.848221i \(0.322326\pi\)
\(674\) −22.1300 −0.852417
\(675\) −4.84799 −0.186599
\(676\) 4.71462 0.181331
\(677\) 14.2739 0.548591 0.274295 0.961645i \(-0.411555\pi\)
0.274295 + 0.961645i \(0.411555\pi\)
\(678\) 20.6224 0.791999
\(679\) −26.3241 −1.01022
\(680\) 3.82622 0.146729
\(681\) 11.0762 0.424441
\(682\) 0 0
\(683\) 22.1806 0.848718 0.424359 0.905494i \(-0.360500\pi\)
0.424359 + 0.905494i \(0.360500\pi\)
\(684\) −0.380477 −0.0145479
\(685\) −4.44116 −0.169688
\(686\) 18.5871 0.709658
\(687\) 14.3726 0.548350
\(688\) −16.5542 −0.631121
\(689\) −5.74591 −0.218902
\(690\) 4.01371 0.152799
\(691\) 30.4440 1.15815 0.579073 0.815276i \(-0.303415\pi\)
0.579073 + 0.815276i \(0.303415\pi\)
\(692\) −7.38355 −0.280680
\(693\) 0 0
\(694\) 11.7566 0.446273
\(695\) 1.58120 0.0599782
\(696\) −13.9860 −0.530139
\(697\) −24.7907 −0.939015
\(698\) −25.8128 −0.977028
\(699\) −12.1148 −0.458223
\(700\) −5.58849 −0.211225
\(701\) 24.2419 0.915603 0.457802 0.889054i \(-0.348637\pi\)
0.457802 + 0.889054i \(0.348637\pi\)
\(702\) −0.992851 −0.0374728
\(703\) −0.658789 −0.0248467
\(704\) 0 0
\(705\) −0.672093 −0.0253125
\(706\) 47.2843 1.77957
\(707\) −1.12548 −0.0423282
\(708\) −0.296092 −0.0111278
\(709\) −21.1620 −0.794757 −0.397378 0.917655i \(-0.630080\pi\)
−0.397378 + 0.917655i \(0.630080\pi\)
\(710\) −0.0588844 −0.00220989
\(711\) −3.21242 −0.120475
\(712\) −14.7751 −0.553720
\(713\) −83.6838 −3.13398
\(714\) −12.4905 −0.467444
\(715\) 0 0
\(716\) 0.440685 0.0164692
\(717\) 13.1867 0.492466
\(718\) 2.61884 0.0977342
\(719\) 24.1280 0.899823 0.449911 0.893073i \(-0.351456\pi\)
0.449911 + 0.893073i \(0.351456\pi\)
\(720\) 1.20640 0.0449599
\(721\) −34.9338 −1.30100
\(722\) 1.27260 0.0473614
\(723\) 12.2879 0.456993
\(724\) −3.40920 −0.126702
\(725\) −22.3820 −0.831247
\(726\) 0 0
\(727\) −24.0622 −0.892418 −0.446209 0.894929i \(-0.647226\pi\)
−0.446209 + 0.894929i \(0.647226\pi\)
\(728\) −7.16064 −0.265391
\(729\) 1.00000 0.0370370
\(730\) 1.57320 0.0582266
\(731\) 17.3312 0.641017
\(732\) 2.87266 0.106177
\(733\) 5.11191 0.188813 0.0944063 0.995534i \(-0.469905\pi\)
0.0944063 + 0.995534i \(0.469905\pi\)
\(734\) 45.8949 1.69401
\(735\) −0.849650 −0.0313398
\(736\) −17.1579 −0.632449
\(737\) 0 0
\(738\) −9.73871 −0.358487
\(739\) −23.7086 −0.872137 −0.436068 0.899914i \(-0.643629\pi\)
−0.436068 + 0.899914i \(0.643629\pi\)
\(740\) −0.0977252 −0.00359245
\(741\) −0.780173 −0.0286604
\(742\) −28.3965 −1.04247
\(743\) 0.259004 0.00950193 0.00475096 0.999989i \(-0.498488\pi\)
0.00475096 + 0.999989i \(0.498488\pi\)
\(744\) −31.3385 −1.14893
\(745\) −7.11396 −0.260635
\(746\) −12.8544 −0.470631
\(747\) 7.71818 0.282394
\(748\) 0 0
\(749\) 42.6094 1.55691
\(750\) 4.88622 0.178420
\(751\) 22.0617 0.805044 0.402522 0.915410i \(-0.368134\pi\)
0.402522 + 0.915410i \(0.368134\pi\)
\(752\) −5.33406 −0.194513
\(753\) −7.52213 −0.274122
\(754\) −4.58376 −0.166931
\(755\) 7.05459 0.256743
\(756\) 1.15274 0.0419248
\(757\) 26.7946 0.973867 0.486934 0.873439i \(-0.338115\pi\)
0.486934 + 0.873439i \(0.338115\pi\)
\(758\) 22.7047 0.824674
\(759\) 0 0
\(760\) 1.18111 0.0428433
\(761\) 23.0817 0.836711 0.418356 0.908283i \(-0.362607\pi\)
0.418356 + 0.908283i \(0.362607\pi\)
\(762\) 8.55594 0.309949
\(763\) −42.9859 −1.55619
\(764\) −4.55694 −0.164864
\(765\) −1.26303 −0.0456649
\(766\) −24.1678 −0.873218
\(767\) −0.607139 −0.0219225
\(768\) −8.78002 −0.316822
\(769\) −10.7457 −0.387500 −0.193750 0.981051i \(-0.562065\pi\)
−0.193750 + 0.981051i \(0.562065\pi\)
\(770\) 0 0
\(771\) −21.3035 −0.767227
\(772\) 4.15110 0.149401
\(773\) −19.6228 −0.705781 −0.352891 0.935665i \(-0.614801\pi\)
−0.352891 + 0.935665i \(0.614801\pi\)
\(774\) 6.80833 0.244720
\(775\) −50.1514 −1.80149
\(776\) −26.3213 −0.944878
\(777\) 1.99595 0.0716044
\(778\) 37.8907 1.35845
\(779\) −7.65258 −0.274182
\(780\) −0.115731 −0.00414385
\(781\) 0 0
\(782\) −33.3500 −1.19259
\(783\) 4.61676 0.164989
\(784\) −6.74323 −0.240830
\(785\) −1.92213 −0.0686038
\(786\) 16.0696 0.573182
\(787\) 13.8423 0.493425 0.246713 0.969089i \(-0.420650\pi\)
0.246713 + 0.969089i \(0.420650\pi\)
\(788\) 6.17124 0.219841
\(789\) 18.6850 0.665204
\(790\) 1.59389 0.0567080
\(791\) −49.0964 −1.74567
\(792\) 0 0
\(793\) 5.89043 0.209175
\(794\) −37.1103 −1.31700
\(795\) −2.87144 −0.101839
\(796\) −6.29459 −0.223106
\(797\) 0.166848 0.00591006 0.00295503 0.999996i \(-0.499059\pi\)
0.00295503 + 0.999996i \(0.499059\pi\)
\(798\) −3.85565 −0.136488
\(799\) 5.58443 0.197563
\(800\) −10.2827 −0.363547
\(801\) 4.87723 0.172328
\(802\) −44.4359 −1.56909
\(803\) 0 0
\(804\) −5.49689 −0.193860
\(805\) −9.55556 −0.336789
\(806\) −10.2708 −0.361774
\(807\) 10.4499 0.367853
\(808\) −1.12536 −0.0395902
\(809\) 5.95252 0.209280 0.104640 0.994510i \(-0.466631\pi\)
0.104640 + 0.994510i \(0.466631\pi\)
\(810\) −0.496164 −0.0174334
\(811\) 56.2039 1.97359 0.986793 0.161984i \(-0.0517893\pi\)
0.986793 + 0.161984i \(0.0517893\pi\)
\(812\) 5.32193 0.186763
\(813\) 10.8103 0.379132
\(814\) 0 0
\(815\) 4.67172 0.163643
\(816\) −10.0240 −0.350910
\(817\) 5.34992 0.187170
\(818\) −43.6358 −1.52569
\(819\) 2.36371 0.0825948
\(820\) −1.13519 −0.0396425
\(821\) −32.6126 −1.13819 −0.569094 0.822273i \(-0.692706\pi\)
−0.569094 + 0.822273i \(0.692706\pi\)
\(822\) 14.4963 0.505617
\(823\) −39.9071 −1.39107 −0.695537 0.718490i \(-0.744833\pi\)
−0.695537 + 0.718490i \(0.744833\pi\)
\(824\) −34.9301 −1.21685
\(825\) 0 0
\(826\) −3.00051 −0.104401
\(827\) 33.4075 1.16169 0.580846 0.814014i \(-0.302722\pi\)
0.580846 + 0.814014i \(0.302722\pi\)
\(828\) 3.07786 0.106963
\(829\) 34.7158 1.20573 0.602864 0.797844i \(-0.294026\pi\)
0.602864 + 0.797844i \(0.294026\pi\)
\(830\) −3.82948 −0.132923
\(831\) 14.0870 0.488674
\(832\) −6.93400 −0.240393
\(833\) 7.05975 0.244606
\(834\) −5.16117 −0.178717
\(835\) 9.57847 0.331477
\(836\) 0 0
\(837\) 10.3448 0.357567
\(838\) −2.75256 −0.0950857
\(839\) −12.0360 −0.415530 −0.207765 0.978179i \(-0.566619\pi\)
−0.207765 + 0.978179i \(0.566619\pi\)
\(840\) −3.57843 −0.123468
\(841\) −7.68554 −0.265019
\(842\) 20.0017 0.689304
\(843\) −28.9479 −0.997019
\(844\) 3.68364 0.126796
\(845\) 4.83114 0.166196
\(846\) 2.19377 0.0754234
\(847\) 0 0
\(848\) −22.7891 −0.782582
\(849\) 3.46552 0.118936
\(850\) −19.9865 −0.685531
\(851\) 5.32926 0.182685
\(852\) −0.0451547 −0.00154698
\(853\) 47.5442 1.62788 0.813940 0.580948i \(-0.197318\pi\)
0.813940 + 0.580948i \(0.197318\pi\)
\(854\) 29.1107 0.996149
\(855\) −0.389881 −0.0133336
\(856\) 42.6048 1.45620
\(857\) −42.0106 −1.43505 −0.717527 0.696531i \(-0.754726\pi\)
−0.717527 + 0.696531i \(0.754726\pi\)
\(858\) 0 0
\(859\) 1.02089 0.0348324 0.0174162 0.999848i \(-0.494456\pi\)
0.0174162 + 0.999848i \(0.494456\pi\)
\(860\) 0.793610 0.0270619
\(861\) 23.1852 0.790151
\(862\) 30.9267 1.05337
\(863\) −29.4599 −1.00283 −0.501414 0.865208i \(-0.667187\pi\)
−0.501414 + 0.865208i \(0.667187\pi\)
\(864\) 2.12101 0.0721584
\(865\) −7.56603 −0.257253
\(866\) −50.0194 −1.69973
\(867\) −6.50549 −0.220938
\(868\) 11.9249 0.404756
\(869\) 0 0
\(870\) −2.29067 −0.0776610
\(871\) −11.2714 −0.381918
\(872\) −42.9813 −1.45553
\(873\) 8.68858 0.294064
\(874\) −10.2947 −0.348224
\(875\) −11.6328 −0.393259
\(876\) 1.20639 0.0407600
\(877\) −10.0319 −0.338753 −0.169376 0.985551i \(-0.554175\pi\)
−0.169376 + 0.985551i \(0.554175\pi\)
\(878\) −38.6621 −1.30478
\(879\) 11.5329 0.388997
\(880\) 0 0
\(881\) 4.15852 0.140104 0.0700521 0.997543i \(-0.477683\pi\)
0.0700521 + 0.997543i \(0.477683\pi\)
\(882\) 2.77333 0.0933829
\(883\) 40.4459 1.36111 0.680557 0.732695i \(-0.261738\pi\)
0.680557 + 0.732695i \(0.261738\pi\)
\(884\) 0.961613 0.0323426
\(885\) −0.303409 −0.0101990
\(886\) −24.1891 −0.812648
\(887\) −0.418438 −0.0140498 −0.00702489 0.999975i \(-0.502236\pi\)
−0.00702489 + 0.999975i \(0.502236\pi\)
\(888\) 1.99574 0.0669727
\(889\) −20.3694 −0.683167
\(890\) −2.41990 −0.0811153
\(891\) 0 0
\(892\) 1.02686 0.0343818
\(893\) 1.72384 0.0576862
\(894\) 23.2206 0.776612
\(895\) 0.451577 0.0150945
\(896\) −21.4159 −0.715456
\(897\) 6.31119 0.210725
\(898\) 0.496359 0.0165637
\(899\) 47.7593 1.59286
\(900\) 1.84455 0.0614850
\(901\) 23.8588 0.794853
\(902\) 0 0
\(903\) −16.2088 −0.539395
\(904\) −49.0912 −1.63275
\(905\) −3.49345 −0.116126
\(906\) −23.0268 −0.765015
\(907\) 41.8633 1.39005 0.695024 0.718987i \(-0.255394\pi\)
0.695024 + 0.718987i \(0.255394\pi\)
\(908\) −4.21424 −0.139855
\(909\) 0.371480 0.0123212
\(910\) −1.17279 −0.0388776
\(911\) −19.9497 −0.660964 −0.330482 0.943812i \(-0.607211\pi\)
−0.330482 + 0.943812i \(0.607211\pi\)
\(912\) −3.09428 −0.102462
\(913\) 0 0
\(914\) −36.6224 −1.21136
\(915\) 2.94366 0.0973144
\(916\) −5.46846 −0.180683
\(917\) −38.2573 −1.26337
\(918\) 4.12263 0.136067
\(919\) 15.3347 0.505845 0.252923 0.967486i \(-0.418608\pi\)
0.252923 + 0.967486i \(0.418608\pi\)
\(920\) −9.55454 −0.315004
\(921\) −12.0356 −0.396587
\(922\) −36.8924 −1.21499
\(923\) −0.0925903 −0.00304765
\(924\) 0 0
\(925\) 3.19381 0.105012
\(926\) −23.4017 −0.769028
\(927\) 11.5303 0.378706
\(928\) 9.79221 0.321445
\(929\) −27.3688 −0.897941 −0.448971 0.893546i \(-0.648209\pi\)
−0.448971 + 0.893546i \(0.648209\pi\)
\(930\) −5.13270 −0.168308
\(931\) 2.17926 0.0714222
\(932\) 4.60940 0.150986
\(933\) −11.7129 −0.383462
\(934\) −23.6844 −0.774976
\(935\) 0 0
\(936\) 2.36346 0.0772521
\(937\) −35.3896 −1.15613 −0.578064 0.815991i \(-0.696192\pi\)
−0.578064 + 0.815991i \(0.696192\pi\)
\(938\) −55.7039 −1.81880
\(939\) 27.6594 0.902630
\(940\) 0.255716 0.00834054
\(941\) 17.6662 0.575902 0.287951 0.957645i \(-0.407026\pi\)
0.287951 + 0.957645i \(0.407026\pi\)
\(942\) 6.27400 0.204418
\(943\) 61.9054 2.01592
\(944\) −2.40801 −0.0783739
\(945\) 1.18123 0.0384255
\(946\) 0 0
\(947\) 42.1818 1.37072 0.685362 0.728202i \(-0.259644\pi\)
0.685362 + 0.728202i \(0.259644\pi\)
\(948\) 1.22225 0.0396970
\(949\) 2.47371 0.0802999
\(950\) −6.16958 −0.200168
\(951\) 24.2852 0.787501
\(952\) 29.7333 0.963660
\(953\) −3.75469 −0.121626 −0.0608131 0.998149i \(-0.519369\pi\)
−0.0608131 + 0.998149i \(0.519369\pi\)
\(954\) 9.37263 0.303450
\(955\) −4.66956 −0.151104
\(956\) −5.01723 −0.162269
\(957\) 0 0
\(958\) 1.56120 0.0504400
\(959\) −34.5118 −1.11445
\(960\) −3.46517 −0.111838
\(961\) 76.0142 2.45207
\(962\) 0.654080 0.0210884
\(963\) −14.0638 −0.453198
\(964\) −4.67528 −0.150581
\(965\) 4.25369 0.136931
\(966\) 31.1902 1.00353
\(967\) −20.2051 −0.649753 −0.324877 0.945756i \(-0.605323\pi\)
−0.324877 + 0.945756i \(0.605323\pi\)
\(968\) 0 0
\(969\) 3.23952 0.104068
\(970\) −4.31096 −0.138417
\(971\) 25.3697 0.814152 0.407076 0.913394i \(-0.366548\pi\)
0.407076 + 0.913394i \(0.366548\pi\)
\(972\) −0.380477 −0.0122038
\(973\) 12.2873 0.393914
\(974\) 31.3295 1.00386
\(975\) 3.78227 0.121130
\(976\) 23.3623 0.747810
\(977\) 28.9196 0.925221 0.462611 0.886562i \(-0.346913\pi\)
0.462611 + 0.886562i \(0.346913\pi\)
\(978\) −15.2489 −0.487606
\(979\) 0 0
\(980\) 0.323272 0.0103266
\(981\) 14.1880 0.452989
\(982\) −5.28086 −0.168519
\(983\) 20.0642 0.639948 0.319974 0.947426i \(-0.396326\pi\)
0.319974 + 0.947426i \(0.396326\pi\)
\(984\) 23.1828 0.739040
\(985\) 6.32377 0.201492
\(986\) 19.0332 0.606141
\(987\) −5.22278 −0.166243
\(988\) 0.296838 0.00944367
\(989\) −43.2781 −1.37616
\(990\) 0 0
\(991\) 8.64344 0.274568 0.137284 0.990532i \(-0.456163\pi\)
0.137284 + 0.990532i \(0.456163\pi\)
\(992\) 21.9414 0.696640
\(993\) 32.3549 1.02675
\(994\) −0.457585 −0.0145137
\(995\) −6.45016 −0.204484
\(996\) −2.93659 −0.0930495
\(997\) −35.7350 −1.13174 −0.565870 0.824495i \(-0.691460\pi\)
−0.565870 + 0.824495i \(0.691460\pi\)
\(998\) −0.476023 −0.0150682
\(999\) −0.658789 −0.0208432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bq.1.15 24
11.7 odd 10 627.2.j.d.115.5 48
11.8 odd 10 627.2.j.d.229.5 yes 48
11.10 odd 2 6897.2.a.bp.1.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.j.d.115.5 48 11.7 odd 10
627.2.j.d.229.5 yes 48 11.8 odd 10
6897.2.a.bp.1.10 24 11.10 odd 2
6897.2.a.bq.1.15 24 1.1 even 1 trivial