Properties

Label 6897.2.a.bn.1.6
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-3,-20,21,-9,3,3,-6,20,-5,0,-21,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} - 26 x^{18} + 81 x^{17} + 273 x^{16} - 901 x^{15} - 1480 x^{14} + 5366 x^{13} + \cdots - 304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.64839\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.64839 q^{2} -1.00000 q^{3} +0.717181 q^{4} +0.941331 q^{5} +1.64839 q^{6} -2.54422 q^{7} +2.11458 q^{8} +1.00000 q^{9} -1.55168 q^{10} -0.717181 q^{12} +0.125773 q^{13} +4.19387 q^{14} -0.941331 q^{15} -4.92001 q^{16} -3.18574 q^{17} -1.64839 q^{18} +1.00000 q^{19} +0.675104 q^{20} +2.54422 q^{21} -6.09645 q^{23} -2.11458 q^{24} -4.11390 q^{25} -0.207323 q^{26} -1.00000 q^{27} -1.82467 q^{28} +10.2638 q^{29} +1.55168 q^{30} +2.96622 q^{31} +3.88092 q^{32} +5.25134 q^{34} -2.39496 q^{35} +0.717181 q^{36} +4.43442 q^{37} -1.64839 q^{38} -0.125773 q^{39} +1.99052 q^{40} +10.9416 q^{41} -4.19387 q^{42} +2.13525 q^{43} +0.941331 q^{45} +10.0493 q^{46} -8.28522 q^{47} +4.92001 q^{48} -0.526924 q^{49} +6.78129 q^{50} +3.18574 q^{51} +0.0902021 q^{52} +11.8706 q^{53} +1.64839 q^{54} -5.37997 q^{56} -1.00000 q^{57} -16.9187 q^{58} -1.12531 q^{59} -0.675104 q^{60} -2.09759 q^{61} -4.88947 q^{62} -2.54422 q^{63} +3.44276 q^{64} +0.118394 q^{65} -13.4724 q^{67} -2.28475 q^{68} +6.09645 q^{69} +3.94782 q^{70} -1.09125 q^{71} +2.11458 q^{72} -13.9196 q^{73} -7.30965 q^{74} +4.11390 q^{75} +0.717181 q^{76} +0.207323 q^{78} +2.21350 q^{79} -4.63136 q^{80} +1.00000 q^{81} -18.0361 q^{82} -10.3345 q^{83} +1.82467 q^{84} -2.99884 q^{85} -3.51971 q^{86} -10.2638 q^{87} -10.9034 q^{89} -1.55168 q^{90} -0.319995 q^{91} -4.37225 q^{92} -2.96622 q^{93} +13.6573 q^{94} +0.941331 q^{95} -3.88092 q^{96} +11.8881 q^{97} +0.868574 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 20 q^{3} + 21 q^{4} - 9 q^{5} + 3 q^{6} + 3 q^{7} - 6 q^{8} + 20 q^{9} - 5 q^{10} - 21 q^{12} - 9 q^{13} - 26 q^{14} + 9 q^{15} + 19 q^{16} + 7 q^{17} - 3 q^{18} + 20 q^{19} - 28 q^{20}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64839 −1.16559 −0.582793 0.812621i \(-0.698040\pi\)
−0.582793 + 0.812621i \(0.698040\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.717181 0.358590
\(5\) 0.941331 0.420976 0.210488 0.977596i \(-0.432495\pi\)
0.210488 + 0.977596i \(0.432495\pi\)
\(6\) 1.64839 0.672951
\(7\) −2.54422 −0.961626 −0.480813 0.876823i \(-0.659658\pi\)
−0.480813 + 0.876823i \(0.659658\pi\)
\(8\) 2.11458 0.747618
\(9\) 1.00000 0.333333
\(10\) −1.55168 −0.490684
\(11\) 0 0
\(12\) −0.717181 −0.207032
\(13\) 0.125773 0.0348832 0.0174416 0.999848i \(-0.494448\pi\)
0.0174416 + 0.999848i \(0.494448\pi\)
\(14\) 4.19387 1.12086
\(15\) −0.941331 −0.243051
\(16\) −4.92001 −1.23000
\(17\) −3.18574 −0.772656 −0.386328 0.922361i \(-0.626257\pi\)
−0.386328 + 0.922361i \(0.626257\pi\)
\(18\) −1.64839 −0.388529
\(19\) 1.00000 0.229416
\(20\) 0.675104 0.150958
\(21\) 2.54422 0.555195
\(22\) 0 0
\(23\) −6.09645 −1.27120 −0.635598 0.772020i \(-0.719247\pi\)
−0.635598 + 0.772020i \(0.719247\pi\)
\(24\) −2.11458 −0.431637
\(25\) −4.11390 −0.822779
\(26\) −0.207323 −0.0406594
\(27\) −1.00000 −0.192450
\(28\) −1.82467 −0.344830
\(29\) 10.2638 1.90594 0.952970 0.303064i \(-0.0980095\pi\)
0.952970 + 0.303064i \(0.0980095\pi\)
\(30\) 1.55168 0.283296
\(31\) 2.96622 0.532748 0.266374 0.963870i \(-0.414174\pi\)
0.266374 + 0.963870i \(0.414174\pi\)
\(32\) 3.88092 0.686056
\(33\) 0 0
\(34\) 5.25134 0.900597
\(35\) −2.39496 −0.404822
\(36\) 0.717181 0.119530
\(37\) 4.43442 0.729015 0.364507 0.931201i \(-0.381237\pi\)
0.364507 + 0.931201i \(0.381237\pi\)
\(38\) −1.64839 −0.267404
\(39\) −0.125773 −0.0201398
\(40\) 1.99052 0.314729
\(41\) 10.9416 1.70880 0.854398 0.519618i \(-0.173926\pi\)
0.854398 + 0.519618i \(0.173926\pi\)
\(42\) −4.19387 −0.647128
\(43\) 2.13525 0.325622 0.162811 0.986657i \(-0.447944\pi\)
0.162811 + 0.986657i \(0.447944\pi\)
\(44\) 0 0
\(45\) 0.941331 0.140325
\(46\) 10.0493 1.48169
\(47\) −8.28522 −1.20852 −0.604262 0.796786i \(-0.706532\pi\)
−0.604262 + 0.796786i \(0.706532\pi\)
\(48\) 4.92001 0.710143
\(49\) −0.526924 −0.0752748
\(50\) 6.78129 0.959020
\(51\) 3.18574 0.446093
\(52\) 0.0902021 0.0125088
\(53\) 11.8706 1.63055 0.815273 0.579076i \(-0.196587\pi\)
0.815273 + 0.579076i \(0.196587\pi\)
\(54\) 1.64839 0.224317
\(55\) 0 0
\(56\) −5.37997 −0.718929
\(57\) −1.00000 −0.132453
\(58\) −16.9187 −2.22154
\(59\) −1.12531 −0.146502 −0.0732511 0.997314i \(-0.523337\pi\)
−0.0732511 + 0.997314i \(0.523337\pi\)
\(60\) −0.675104 −0.0871556
\(61\) −2.09759 −0.268568 −0.134284 0.990943i \(-0.542874\pi\)
−0.134284 + 0.990943i \(0.542874\pi\)
\(62\) −4.88947 −0.620964
\(63\) −2.54422 −0.320542
\(64\) 3.44276 0.430346
\(65\) 0.118394 0.0146850
\(66\) 0 0
\(67\) −13.4724 −1.64592 −0.822958 0.568102i \(-0.807678\pi\)
−0.822958 + 0.568102i \(0.807678\pi\)
\(68\) −2.28475 −0.277067
\(69\) 6.09645 0.733926
\(70\) 3.94782 0.471854
\(71\) −1.09125 −0.129508 −0.0647538 0.997901i \(-0.520626\pi\)
−0.0647538 + 0.997901i \(0.520626\pi\)
\(72\) 2.11458 0.249206
\(73\) −13.9196 −1.62916 −0.814581 0.580049i \(-0.803033\pi\)
−0.814581 + 0.580049i \(0.803033\pi\)
\(74\) −7.30965 −0.849729
\(75\) 4.11390 0.475032
\(76\) 0.717181 0.0822663
\(77\) 0 0
\(78\) 0.207323 0.0234747
\(79\) 2.21350 0.249038 0.124519 0.992217i \(-0.460261\pi\)
0.124519 + 0.992217i \(0.460261\pi\)
\(80\) −4.63136 −0.517802
\(81\) 1.00000 0.111111
\(82\) −18.0361 −1.99175
\(83\) −10.3345 −1.13436 −0.567182 0.823593i \(-0.691966\pi\)
−0.567182 + 0.823593i \(0.691966\pi\)
\(84\) 1.82467 0.199088
\(85\) −2.99884 −0.325270
\(86\) −3.51971 −0.379540
\(87\) −10.2638 −1.10040
\(88\) 0 0
\(89\) −10.9034 −1.15576 −0.577878 0.816123i \(-0.696119\pi\)
−0.577878 + 0.816123i \(0.696119\pi\)
\(90\) −1.55168 −0.163561
\(91\) −0.319995 −0.0335446
\(92\) −4.37225 −0.455839
\(93\) −2.96622 −0.307582
\(94\) 13.6573 1.40864
\(95\) 0.941331 0.0965785
\(96\) −3.88092 −0.396095
\(97\) 11.8881 1.20706 0.603528 0.797342i \(-0.293761\pi\)
0.603528 + 0.797342i \(0.293761\pi\)
\(98\) 0.868574 0.0877392
\(99\) 0 0
\(100\) −2.95041 −0.295041
\(101\) 16.1065 1.60265 0.801326 0.598227i \(-0.204128\pi\)
0.801326 + 0.598227i \(0.204128\pi\)
\(102\) −5.25134 −0.519960
\(103\) 0.801115 0.0789363 0.0394681 0.999221i \(-0.487434\pi\)
0.0394681 + 0.999221i \(0.487434\pi\)
\(104\) 0.265958 0.0260793
\(105\) 2.39496 0.233724
\(106\) −19.5673 −1.90054
\(107\) 1.09532 0.105889 0.0529445 0.998597i \(-0.483139\pi\)
0.0529445 + 0.998597i \(0.483139\pi\)
\(108\) −0.717181 −0.0690108
\(109\) −4.72183 −0.452269 −0.226135 0.974096i \(-0.572609\pi\)
−0.226135 + 0.974096i \(0.572609\pi\)
\(110\) 0 0
\(111\) −4.43442 −0.420897
\(112\) 12.5176 1.18280
\(113\) 13.2746 1.24877 0.624386 0.781116i \(-0.285349\pi\)
0.624386 + 0.781116i \(0.285349\pi\)
\(114\) 1.64839 0.154386
\(115\) −5.73877 −0.535143
\(116\) 7.36100 0.683452
\(117\) 0.125773 0.0116277
\(118\) 1.85494 0.170761
\(119\) 8.10524 0.743006
\(120\) −1.99052 −0.181709
\(121\) 0 0
\(122\) 3.45763 0.313040
\(123\) −10.9416 −0.986574
\(124\) 2.12731 0.191038
\(125\) −8.57919 −0.767346
\(126\) 4.19387 0.373619
\(127\) 14.3743 1.27552 0.637759 0.770236i \(-0.279862\pi\)
0.637759 + 0.770236i \(0.279862\pi\)
\(128\) −13.4369 −1.18766
\(129\) −2.13525 −0.187998
\(130\) −0.195159 −0.0171166
\(131\) −2.76308 −0.241411 −0.120706 0.992688i \(-0.538516\pi\)
−0.120706 + 0.992688i \(0.538516\pi\)
\(132\) 0 0
\(133\) −2.54422 −0.220612
\(134\) 22.2077 1.91846
\(135\) −0.941331 −0.0810168
\(136\) −6.73652 −0.577652
\(137\) −14.6901 −1.25506 −0.627532 0.778591i \(-0.715935\pi\)
−0.627532 + 0.778591i \(0.715935\pi\)
\(138\) −10.0493 −0.855454
\(139\) 14.0710 1.19349 0.596744 0.802432i \(-0.296461\pi\)
0.596744 + 0.802432i \(0.296461\pi\)
\(140\) −1.71762 −0.145165
\(141\) 8.28522 0.697742
\(142\) 1.79880 0.150952
\(143\) 0 0
\(144\) −4.92001 −0.410001
\(145\) 9.66163 0.802355
\(146\) 22.9448 1.89893
\(147\) 0.526924 0.0434599
\(148\) 3.18028 0.261418
\(149\) 20.7385 1.69897 0.849483 0.527617i \(-0.176914\pi\)
0.849483 + 0.527617i \(0.176914\pi\)
\(150\) −6.78129 −0.553690
\(151\) 13.1571 1.07071 0.535353 0.844628i \(-0.320178\pi\)
0.535353 + 0.844628i \(0.320178\pi\)
\(152\) 2.11458 0.171515
\(153\) −3.18574 −0.257552
\(154\) 0 0
\(155\) 2.79219 0.224274
\(156\) −0.0902021 −0.00722195
\(157\) −4.71598 −0.376376 −0.188188 0.982133i \(-0.560261\pi\)
−0.188188 + 0.982133i \(0.560261\pi\)
\(158\) −3.64871 −0.290276
\(159\) −11.8706 −0.941397
\(160\) 3.65323 0.288813
\(161\) 15.5107 1.22242
\(162\) −1.64839 −0.129510
\(163\) 4.17382 0.326919 0.163459 0.986550i \(-0.447735\pi\)
0.163459 + 0.986550i \(0.447735\pi\)
\(164\) 7.84713 0.612758
\(165\) 0 0
\(166\) 17.0353 1.32220
\(167\) −11.3775 −0.880417 −0.440208 0.897896i \(-0.645095\pi\)
−0.440208 + 0.897896i \(0.645095\pi\)
\(168\) 5.37997 0.415074
\(169\) −12.9842 −0.998783
\(170\) 4.94325 0.379130
\(171\) 1.00000 0.0764719
\(172\) 1.53136 0.116765
\(173\) −0.649550 −0.0493844 −0.0246922 0.999695i \(-0.507861\pi\)
−0.0246922 + 0.999695i \(0.507861\pi\)
\(174\) 16.9187 1.28261
\(175\) 10.4667 0.791206
\(176\) 0 0
\(177\) 1.12531 0.0845831
\(178\) 17.9730 1.34713
\(179\) −21.3575 −1.59634 −0.798168 0.602435i \(-0.794197\pi\)
−0.798168 + 0.602435i \(0.794197\pi\)
\(180\) 0.675104 0.0503193
\(181\) 17.7744 1.32116 0.660582 0.750754i \(-0.270310\pi\)
0.660582 + 0.750754i \(0.270310\pi\)
\(182\) 0.527476 0.0390991
\(183\) 2.09759 0.155058
\(184\) −12.8914 −0.950370
\(185\) 4.17426 0.306898
\(186\) 4.88947 0.358514
\(187\) 0 0
\(188\) −5.94200 −0.433365
\(189\) 2.54422 0.185065
\(190\) −1.55168 −0.112571
\(191\) 20.4676 1.48098 0.740492 0.672065i \(-0.234592\pi\)
0.740492 + 0.672065i \(0.234592\pi\)
\(192\) −3.44276 −0.248460
\(193\) 11.0979 0.798841 0.399421 0.916768i \(-0.369211\pi\)
0.399421 + 0.916768i \(0.369211\pi\)
\(194\) −19.5962 −1.40693
\(195\) −0.118394 −0.00847838
\(196\) −0.377899 −0.0269928
\(197\) −9.53633 −0.679435 −0.339718 0.940527i \(-0.610332\pi\)
−0.339718 + 0.940527i \(0.610332\pi\)
\(198\) 0 0
\(199\) −9.10785 −0.645639 −0.322819 0.946461i \(-0.604631\pi\)
−0.322819 + 0.946461i \(0.604631\pi\)
\(200\) −8.69918 −0.615125
\(201\) 13.4724 0.950270
\(202\) −26.5497 −1.86803
\(203\) −26.1134 −1.83280
\(204\) 2.28475 0.159965
\(205\) 10.2997 0.719362
\(206\) −1.32055 −0.0920070
\(207\) −6.09645 −0.423732
\(208\) −0.618806 −0.0429065
\(209\) 0 0
\(210\) −3.94782 −0.272425
\(211\) −10.2129 −0.703086 −0.351543 0.936172i \(-0.614343\pi\)
−0.351543 + 0.936172i \(0.614343\pi\)
\(212\) 8.51334 0.584698
\(213\) 1.09125 0.0747712
\(214\) −1.80552 −0.123423
\(215\) 2.00997 0.137079
\(216\) −2.11458 −0.143879
\(217\) −7.54672 −0.512305
\(218\) 7.78341 0.527159
\(219\) 13.9196 0.940598
\(220\) 0 0
\(221\) −0.400681 −0.0269527
\(222\) 7.30965 0.490591
\(223\) 15.3678 1.02910 0.514550 0.857460i \(-0.327959\pi\)
0.514550 + 0.857460i \(0.327959\pi\)
\(224\) −9.87393 −0.659730
\(225\) −4.11390 −0.274260
\(226\) −21.8817 −1.45555
\(227\) −28.2307 −1.87374 −0.936869 0.349680i \(-0.886290\pi\)
−0.936869 + 0.349680i \(0.886290\pi\)
\(228\) −0.717181 −0.0474965
\(229\) −5.18156 −0.342407 −0.171204 0.985236i \(-0.554766\pi\)
−0.171204 + 0.985236i \(0.554766\pi\)
\(230\) 9.45972 0.623755
\(231\) 0 0
\(232\) 21.7037 1.42492
\(233\) 13.5062 0.884821 0.442411 0.896813i \(-0.354123\pi\)
0.442411 + 0.896813i \(0.354123\pi\)
\(234\) −0.207323 −0.0135531
\(235\) −7.79914 −0.508760
\(236\) −0.807047 −0.0525343
\(237\) −2.21350 −0.143782
\(238\) −13.3606 −0.866038
\(239\) 30.8408 1.99492 0.997462 0.0712028i \(-0.0226837\pi\)
0.997462 + 0.0712028i \(0.0226837\pi\)
\(240\) 4.63136 0.298953
\(241\) −3.01568 −0.194257 −0.0971285 0.995272i \(-0.530966\pi\)
−0.0971285 + 0.995272i \(0.530966\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −1.50435 −0.0963060
\(245\) −0.496009 −0.0316889
\(246\) 18.0361 1.14994
\(247\) 0.125773 0.00800276
\(248\) 6.27231 0.398292
\(249\) 10.3345 0.654925
\(250\) 14.1418 0.894408
\(251\) −30.2264 −1.90787 −0.953937 0.300006i \(-0.903011\pi\)
−0.953937 + 0.300006i \(0.903011\pi\)
\(252\) −1.82467 −0.114943
\(253\) 0 0
\(254\) −23.6945 −1.48672
\(255\) 2.99884 0.187794
\(256\) 15.2636 0.953976
\(257\) −2.94672 −0.183811 −0.0919057 0.995768i \(-0.529296\pi\)
−0.0919057 + 0.995768i \(0.529296\pi\)
\(258\) 3.51971 0.219128
\(259\) −11.2822 −0.701040
\(260\) 0.0849100 0.00526590
\(261\) 10.2638 0.635314
\(262\) 4.55463 0.281386
\(263\) −0.378241 −0.0233234 −0.0116617 0.999932i \(-0.503712\pi\)
−0.0116617 + 0.999932i \(0.503712\pi\)
\(264\) 0 0
\(265\) 11.1741 0.686421
\(266\) 4.19387 0.257142
\(267\) 10.9034 0.667276
\(268\) −9.66215 −0.590210
\(269\) −11.6733 −0.711733 −0.355866 0.934537i \(-0.615814\pi\)
−0.355866 + 0.934537i \(0.615814\pi\)
\(270\) 1.55168 0.0944321
\(271\) −0.617222 −0.0374936 −0.0187468 0.999824i \(-0.505968\pi\)
−0.0187468 + 0.999824i \(0.505968\pi\)
\(272\) 15.6739 0.950369
\(273\) 0.319995 0.0193670
\(274\) 24.2150 1.46288
\(275\) 0 0
\(276\) 4.37225 0.263179
\(277\) 19.8397 1.19205 0.596026 0.802965i \(-0.296746\pi\)
0.596026 + 0.802965i \(0.296746\pi\)
\(278\) −23.1945 −1.39111
\(279\) 2.96622 0.177583
\(280\) −5.06433 −0.302652
\(281\) −18.3244 −1.09314 −0.546572 0.837412i \(-0.684068\pi\)
−0.546572 + 0.837412i \(0.684068\pi\)
\(282\) −13.6573 −0.813278
\(283\) 5.98177 0.355580 0.177790 0.984068i \(-0.443105\pi\)
0.177790 + 0.984068i \(0.443105\pi\)
\(284\) −0.782624 −0.0464402
\(285\) −0.941331 −0.0557596
\(286\) 0 0
\(287\) −27.8380 −1.64322
\(288\) 3.88092 0.228685
\(289\) −6.85104 −0.403003
\(290\) −15.9261 −0.935214
\(291\) −11.8881 −0.696894
\(292\) −9.98285 −0.584202
\(293\) −4.46485 −0.260839 −0.130420 0.991459i \(-0.541632\pi\)
−0.130420 + 0.991459i \(0.541632\pi\)
\(294\) −0.868574 −0.0506563
\(295\) −1.05928 −0.0616739
\(296\) 9.37695 0.545024
\(297\) 0 0
\(298\) −34.1851 −1.98029
\(299\) −0.766770 −0.0443434
\(300\) 2.95041 0.170342
\(301\) −5.43254 −0.313127
\(302\) −21.6879 −1.24800
\(303\) −16.1065 −0.925292
\(304\) −4.92001 −0.282182
\(305\) −1.97452 −0.113061
\(306\) 5.25134 0.300199
\(307\) −2.31765 −0.132275 −0.0661377 0.997811i \(-0.521068\pi\)
−0.0661377 + 0.997811i \(0.521068\pi\)
\(308\) 0 0
\(309\) −0.801115 −0.0455739
\(310\) −4.60261 −0.261411
\(311\) 3.40353 0.192997 0.0964983 0.995333i \(-0.469236\pi\)
0.0964983 + 0.995333i \(0.469236\pi\)
\(312\) −0.265958 −0.0150569
\(313\) 17.3690 0.981754 0.490877 0.871229i \(-0.336676\pi\)
0.490877 + 0.871229i \(0.336676\pi\)
\(314\) 7.77376 0.438699
\(315\) −2.39496 −0.134941
\(316\) 1.58748 0.0893027
\(317\) −13.7335 −0.771351 −0.385675 0.922635i \(-0.626032\pi\)
−0.385675 + 0.922635i \(0.626032\pi\)
\(318\) 19.5673 1.09728
\(319\) 0 0
\(320\) 3.24078 0.181165
\(321\) −1.09532 −0.0611351
\(322\) −25.5677 −1.42483
\(323\) −3.18574 −0.177259
\(324\) 0.717181 0.0398434
\(325\) −0.517418 −0.0287012
\(326\) −6.88007 −0.381052
\(327\) 4.72183 0.261118
\(328\) 23.1370 1.27753
\(329\) 21.0795 1.16215
\(330\) 0 0
\(331\) 10.8390 0.595766 0.297883 0.954602i \(-0.403720\pi\)
0.297883 + 0.954602i \(0.403720\pi\)
\(332\) −7.41174 −0.406772
\(333\) 4.43442 0.243005
\(334\) 18.7545 1.02620
\(335\) −12.6820 −0.692891
\(336\) −12.5176 −0.682892
\(337\) 24.7901 1.35040 0.675200 0.737635i \(-0.264057\pi\)
0.675200 + 0.737635i \(0.264057\pi\)
\(338\) 21.4030 1.16417
\(339\) −13.2746 −0.720979
\(340\) −2.15071 −0.116639
\(341\) 0 0
\(342\) −1.64839 −0.0891346
\(343\) 19.1502 1.03401
\(344\) 4.51515 0.243441
\(345\) 5.73877 0.308965
\(346\) 1.07071 0.0575617
\(347\) −0.165962 −0.00890929 −0.00445464 0.999990i \(-0.501418\pi\)
−0.00445464 + 0.999990i \(0.501418\pi\)
\(348\) −7.36100 −0.394591
\(349\) −29.7310 −1.59146 −0.795731 0.605650i \(-0.792913\pi\)
−0.795731 + 0.605650i \(0.792913\pi\)
\(350\) −17.2531 −0.922219
\(351\) −0.125773 −0.00671328
\(352\) 0 0
\(353\) −15.8172 −0.841862 −0.420931 0.907093i \(-0.638297\pi\)
−0.420931 + 0.907093i \(0.638297\pi\)
\(354\) −1.85494 −0.0985889
\(355\) −1.02723 −0.0545196
\(356\) −7.81969 −0.414443
\(357\) −8.10524 −0.428975
\(358\) 35.2055 1.86067
\(359\) −29.2655 −1.54457 −0.772286 0.635275i \(-0.780887\pi\)
−0.772286 + 0.635275i \(0.780887\pi\)
\(360\) 1.99052 0.104910
\(361\) 1.00000 0.0526316
\(362\) −29.2992 −1.53993
\(363\) 0 0
\(364\) −0.229494 −0.0120288
\(365\) −13.1029 −0.685838
\(366\) −3.45763 −0.180733
\(367\) 33.4588 1.74654 0.873268 0.487240i \(-0.161996\pi\)
0.873268 + 0.487240i \(0.161996\pi\)
\(368\) 29.9946 1.56358
\(369\) 10.9416 0.569599
\(370\) −6.88079 −0.357715
\(371\) −30.2014 −1.56798
\(372\) −2.12731 −0.110296
\(373\) −17.7830 −0.920769 −0.460385 0.887720i \(-0.652289\pi\)
−0.460385 + 0.887720i \(0.652289\pi\)
\(374\) 0 0
\(375\) 8.57919 0.443028
\(376\) −17.5198 −0.903514
\(377\) 1.29091 0.0664853
\(378\) −4.19387 −0.215709
\(379\) −3.58762 −0.184283 −0.0921417 0.995746i \(-0.529371\pi\)
−0.0921417 + 0.995746i \(0.529371\pi\)
\(380\) 0.675104 0.0346321
\(381\) −14.3743 −0.736420
\(382\) −33.7385 −1.72621
\(383\) 1.80333 0.0921459 0.0460729 0.998938i \(-0.485329\pi\)
0.0460729 + 0.998938i \(0.485329\pi\)
\(384\) 13.4369 0.685697
\(385\) 0 0
\(386\) −18.2936 −0.931118
\(387\) 2.13525 0.108541
\(388\) 8.52593 0.432839
\(389\) −30.7081 −1.55696 −0.778481 0.627668i \(-0.784010\pi\)
−0.778481 + 0.627668i \(0.784010\pi\)
\(390\) 0.195159 0.00988228
\(391\) 19.4217 0.982198
\(392\) −1.11422 −0.0562768
\(393\) 2.76308 0.139379
\(394\) 15.7196 0.791940
\(395\) 2.08364 0.104839
\(396\) 0 0
\(397\) 10.9434 0.549232 0.274616 0.961554i \(-0.411449\pi\)
0.274616 + 0.961554i \(0.411449\pi\)
\(398\) 15.0133 0.752547
\(399\) 2.54422 0.127371
\(400\) 20.2404 1.01202
\(401\) −15.6667 −0.782358 −0.391179 0.920315i \(-0.627933\pi\)
−0.391179 + 0.920315i \(0.627933\pi\)
\(402\) −22.2077 −1.10762
\(403\) 0.373071 0.0185840
\(404\) 11.5512 0.574696
\(405\) 0.941331 0.0467751
\(406\) 43.0450 2.13629
\(407\) 0 0
\(408\) 6.73652 0.333507
\(409\) 0.0765291 0.00378412 0.00189206 0.999998i \(-0.499398\pi\)
0.00189206 + 0.999998i \(0.499398\pi\)
\(410\) −16.9779 −0.838479
\(411\) 14.6901 0.724611
\(412\) 0.574545 0.0283058
\(413\) 2.86303 0.140880
\(414\) 10.0493 0.493896
\(415\) −9.72822 −0.477540
\(416\) 0.488116 0.0239319
\(417\) −14.0710 −0.689061
\(418\) 0 0
\(419\) −5.41913 −0.264742 −0.132371 0.991200i \(-0.542259\pi\)
−0.132371 + 0.991200i \(0.542259\pi\)
\(420\) 1.71762 0.0838111
\(421\) −16.7633 −0.816992 −0.408496 0.912760i \(-0.633947\pi\)
−0.408496 + 0.912760i \(0.633947\pi\)
\(422\) 16.8348 0.819507
\(423\) −8.28522 −0.402841
\(424\) 25.1013 1.21903
\(425\) 13.1058 0.635725
\(426\) −1.79880 −0.0871523
\(427\) 5.33673 0.258262
\(428\) 0.785546 0.0379708
\(429\) 0 0
\(430\) −3.31321 −0.159777
\(431\) 4.82831 0.232571 0.116286 0.993216i \(-0.462901\pi\)
0.116286 + 0.993216i \(0.462901\pi\)
\(432\) 4.92001 0.236714
\(433\) −26.5914 −1.27790 −0.638950 0.769248i \(-0.720631\pi\)
−0.638950 + 0.769248i \(0.720631\pi\)
\(434\) 12.4399 0.597135
\(435\) −9.66163 −0.463240
\(436\) −3.38641 −0.162179
\(437\) −6.09645 −0.291633
\(438\) −22.9448 −1.09635
\(439\) 15.7871 0.753479 0.376740 0.926319i \(-0.377045\pi\)
0.376740 + 0.926319i \(0.377045\pi\)
\(440\) 0 0
\(441\) −0.526924 −0.0250916
\(442\) 0.660478 0.0314157
\(443\) −23.9635 −1.13854 −0.569271 0.822150i \(-0.692774\pi\)
−0.569271 + 0.822150i \(0.692774\pi\)
\(444\) −3.18028 −0.150930
\(445\) −10.2637 −0.486545
\(446\) −25.3320 −1.19951
\(447\) −20.7385 −0.980898
\(448\) −8.75916 −0.413832
\(449\) 40.6178 1.91687 0.958437 0.285305i \(-0.0920949\pi\)
0.958437 + 0.285305i \(0.0920949\pi\)
\(450\) 6.78129 0.319673
\(451\) 0 0
\(452\) 9.52031 0.447798
\(453\) −13.1571 −0.618173
\(454\) 46.5352 2.18400
\(455\) −0.301221 −0.0141215
\(456\) −2.11458 −0.0990244
\(457\) −35.9511 −1.68172 −0.840861 0.541252i \(-0.817951\pi\)
−0.840861 + 0.541252i \(0.817951\pi\)
\(458\) 8.54122 0.399105
\(459\) 3.18574 0.148698
\(460\) −4.11574 −0.191897
\(461\) −23.8422 −1.11044 −0.555222 0.831702i \(-0.687367\pi\)
−0.555222 + 0.831702i \(0.687367\pi\)
\(462\) 0 0
\(463\) −4.50998 −0.209597 −0.104798 0.994493i \(-0.533420\pi\)
−0.104798 + 0.994493i \(0.533420\pi\)
\(464\) −50.4981 −2.34431
\(465\) −2.79219 −0.129485
\(466\) −22.2635 −1.03134
\(467\) 4.90185 0.226831 0.113415 0.993548i \(-0.463821\pi\)
0.113415 + 0.993548i \(0.463821\pi\)
\(468\) 0.0902021 0.00416959
\(469\) 34.2768 1.58276
\(470\) 12.8560 0.593003
\(471\) 4.71598 0.217301
\(472\) −2.37955 −0.109528
\(473\) 0 0
\(474\) 3.64871 0.167591
\(475\) −4.11390 −0.188759
\(476\) 5.81292 0.266435
\(477\) 11.8706 0.543516
\(478\) −50.8375 −2.32525
\(479\) −19.2082 −0.877645 −0.438823 0.898574i \(-0.644604\pi\)
−0.438823 + 0.898574i \(0.644604\pi\)
\(480\) −3.65323 −0.166746
\(481\) 0.557732 0.0254304
\(482\) 4.97101 0.226423
\(483\) −15.5107 −0.705762
\(484\) 0 0
\(485\) 11.1907 0.508141
\(486\) 1.64839 0.0747724
\(487\) −5.31822 −0.240992 −0.120496 0.992714i \(-0.538448\pi\)
−0.120496 + 0.992714i \(0.538448\pi\)
\(488\) −4.43552 −0.200787
\(489\) −4.17382 −0.188747
\(490\) 0.817616 0.0369361
\(491\) 31.5619 1.42437 0.712185 0.701992i \(-0.247706\pi\)
0.712185 + 0.701992i \(0.247706\pi\)
\(492\) −7.84713 −0.353776
\(493\) −32.6978 −1.47264
\(494\) −0.207323 −0.00932790
\(495\) 0 0
\(496\) −14.5938 −0.655282
\(497\) 2.77638 0.124538
\(498\) −17.0353 −0.763371
\(499\) −7.25278 −0.324679 −0.162340 0.986735i \(-0.551904\pi\)
−0.162340 + 0.986735i \(0.551904\pi\)
\(500\) −6.15283 −0.275163
\(501\) 11.3775 0.508309
\(502\) 49.8248 2.22379
\(503\) −7.33499 −0.327051 −0.163526 0.986539i \(-0.552287\pi\)
−0.163526 + 0.986539i \(0.552287\pi\)
\(504\) −5.37997 −0.239643
\(505\) 15.1615 0.674678
\(506\) 0 0
\(507\) 12.9842 0.576648
\(508\) 10.3090 0.457388
\(509\) −10.1810 −0.451263 −0.225632 0.974213i \(-0.572445\pi\)
−0.225632 + 0.974213i \(0.572445\pi\)
\(510\) −4.94325 −0.218891
\(511\) 35.4145 1.56665
\(512\) 1.71337 0.0757208
\(513\) −1.00000 −0.0441511
\(514\) 4.85734 0.214248
\(515\) 0.754115 0.0332303
\(516\) −1.53136 −0.0674142
\(517\) 0 0
\(518\) 18.5974 0.817122
\(519\) 0.649550 0.0285121
\(520\) 0.250354 0.0109788
\(521\) 20.8153 0.911935 0.455967 0.889997i \(-0.349293\pi\)
0.455967 + 0.889997i \(0.349293\pi\)
\(522\) −16.9187 −0.740512
\(523\) −18.5921 −0.812975 −0.406487 0.913656i \(-0.633246\pi\)
−0.406487 + 0.913656i \(0.633246\pi\)
\(524\) −1.98163 −0.0865678
\(525\) −10.4667 −0.456803
\(526\) 0.623488 0.0271854
\(527\) −9.44960 −0.411631
\(528\) 0 0
\(529\) 14.1667 0.615942
\(530\) −18.4193 −0.800083
\(531\) −1.12531 −0.0488341
\(532\) −1.82467 −0.0791094
\(533\) 1.37617 0.0596083
\(534\) −17.9730 −0.777767
\(535\) 1.03106 0.0445767
\(536\) −28.4885 −1.23052
\(537\) 21.3575 0.921645
\(538\) 19.2421 0.829586
\(539\) 0 0
\(540\) −0.675104 −0.0290519
\(541\) 4.86690 0.209244 0.104622 0.994512i \(-0.466637\pi\)
0.104622 + 0.994512i \(0.466637\pi\)
\(542\) 1.01742 0.0437020
\(543\) −17.7744 −0.762774
\(544\) −12.3636 −0.530086
\(545\) −4.44480 −0.190395
\(546\) −0.527476 −0.0225739
\(547\) −7.17177 −0.306643 −0.153321 0.988176i \(-0.548997\pi\)
−0.153321 + 0.988176i \(0.548997\pi\)
\(548\) −10.5355 −0.450054
\(549\) −2.09759 −0.0895228
\(550\) 0 0
\(551\) 10.2638 0.437253
\(552\) 12.8914 0.548696
\(553\) −5.63164 −0.239482
\(554\) −32.7035 −1.38944
\(555\) −4.17426 −0.177187
\(556\) 10.0915 0.427973
\(557\) −28.2490 −1.19695 −0.598475 0.801141i \(-0.704227\pi\)
−0.598475 + 0.801141i \(0.704227\pi\)
\(558\) −4.88947 −0.206988
\(559\) 0.268557 0.0113587
\(560\) 11.7832 0.497932
\(561\) 0 0
\(562\) 30.2058 1.27415
\(563\) −29.5922 −1.24716 −0.623581 0.781758i \(-0.714323\pi\)
−0.623581 + 0.781758i \(0.714323\pi\)
\(564\) 5.94200 0.250203
\(565\) 12.4958 0.525703
\(566\) −9.86028 −0.414458
\(567\) −2.54422 −0.106847
\(568\) −2.30754 −0.0968222
\(569\) 3.62193 0.151839 0.0759197 0.997114i \(-0.475811\pi\)
0.0759197 + 0.997114i \(0.475811\pi\)
\(570\) 1.55168 0.0649926
\(571\) 14.2793 0.597571 0.298785 0.954320i \(-0.403418\pi\)
0.298785 + 0.954320i \(0.403418\pi\)
\(572\) 0 0
\(573\) −20.4676 −0.855047
\(574\) 45.8878 1.91532
\(575\) 25.0801 1.04591
\(576\) 3.44276 0.143449
\(577\) −41.6547 −1.73411 −0.867054 0.498214i \(-0.833989\pi\)
−0.867054 + 0.498214i \(0.833989\pi\)
\(578\) 11.2932 0.469734
\(579\) −11.0979 −0.461211
\(580\) 6.92914 0.287717
\(581\) 26.2934 1.09083
\(582\) 19.5962 0.812290
\(583\) 0 0
\(584\) −29.4341 −1.21799
\(585\) 0.118394 0.00489500
\(586\) 7.35980 0.304030
\(587\) −22.9222 −0.946099 −0.473050 0.881036i \(-0.656847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(588\) 0.377899 0.0155843
\(589\) 2.96622 0.122221
\(590\) 1.74611 0.0718863
\(591\) 9.53633 0.392272
\(592\) −21.8174 −0.896690
\(593\) −37.3157 −1.53237 −0.766186 0.642618i \(-0.777848\pi\)
−0.766186 + 0.642618i \(0.777848\pi\)
\(594\) 0 0
\(595\) 7.62971 0.312788
\(596\) 14.8733 0.609233
\(597\) 9.10785 0.372760
\(598\) 1.26393 0.0516861
\(599\) −35.9083 −1.46717 −0.733587 0.679596i \(-0.762155\pi\)
−0.733587 + 0.679596i \(0.762155\pi\)
\(600\) 8.69918 0.355142
\(601\) −18.2093 −0.742774 −0.371387 0.928478i \(-0.621118\pi\)
−0.371387 + 0.928478i \(0.621118\pi\)
\(602\) 8.95494 0.364976
\(603\) −13.4724 −0.548639
\(604\) 9.43599 0.383945
\(605\) 0 0
\(606\) 26.5497 1.07851
\(607\) −3.72610 −0.151238 −0.0756188 0.997137i \(-0.524093\pi\)
−0.0756188 + 0.997137i \(0.524093\pi\)
\(608\) 3.88092 0.157392
\(609\) 26.1134 1.05817
\(610\) 3.25478 0.131782
\(611\) −1.04206 −0.0421572
\(612\) −2.28475 −0.0923557
\(613\) −12.7679 −0.515690 −0.257845 0.966186i \(-0.583012\pi\)
−0.257845 + 0.966186i \(0.583012\pi\)
\(614\) 3.82039 0.154178
\(615\) −10.2997 −0.415324
\(616\) 0 0
\(617\) −0.724060 −0.0291496 −0.0145748 0.999894i \(-0.504639\pi\)
−0.0145748 + 0.999894i \(0.504639\pi\)
\(618\) 1.32055 0.0531203
\(619\) −21.6761 −0.871237 −0.435619 0.900131i \(-0.643470\pi\)
−0.435619 + 0.900131i \(0.643470\pi\)
\(620\) 2.00251 0.0804226
\(621\) 6.09645 0.244642
\(622\) −5.61034 −0.224954
\(623\) 27.7406 1.11141
\(624\) 0.618806 0.0247721
\(625\) 12.4936 0.499745
\(626\) −28.6309 −1.14432
\(627\) 0 0
\(628\) −3.38221 −0.134965
\(629\) −14.1269 −0.563278
\(630\) 3.94782 0.157285
\(631\) −20.0616 −0.798640 −0.399320 0.916812i \(-0.630754\pi\)
−0.399320 + 0.916812i \(0.630754\pi\)
\(632\) 4.68063 0.186185
\(633\) 10.2129 0.405927
\(634\) 22.6381 0.899076
\(635\) 13.5310 0.536962
\(636\) −8.51334 −0.337576
\(637\) −0.0662729 −0.00262583
\(638\) 0 0
\(639\) −1.09125 −0.0431692
\(640\) −12.6485 −0.499977
\(641\) 3.84506 0.151871 0.0759354 0.997113i \(-0.475806\pi\)
0.0759354 + 0.997113i \(0.475806\pi\)
\(642\) 1.80552 0.0712582
\(643\) 32.3902 1.27735 0.638673 0.769478i \(-0.279484\pi\)
0.638673 + 0.769478i \(0.279484\pi\)
\(644\) 11.1240 0.438347
\(645\) −2.00997 −0.0791426
\(646\) 5.25134 0.206611
\(647\) −34.3978 −1.35232 −0.676159 0.736756i \(-0.736357\pi\)
−0.676159 + 0.736756i \(0.736357\pi\)
\(648\) 2.11458 0.0830687
\(649\) 0 0
\(650\) 0.852905 0.0334537
\(651\) 7.54672 0.295779
\(652\) 2.99338 0.117230
\(653\) −22.0629 −0.863387 −0.431694 0.902020i \(-0.642084\pi\)
−0.431694 + 0.902020i \(0.642084\pi\)
\(654\) −7.78341 −0.304355
\(655\) −2.60097 −0.101628
\(656\) −53.8330 −2.10183
\(657\) −13.9196 −0.543054
\(658\) −34.7471 −1.35458
\(659\) −4.38630 −0.170866 −0.0854330 0.996344i \(-0.527227\pi\)
−0.0854330 + 0.996344i \(0.527227\pi\)
\(660\) 0 0
\(661\) 41.4634 1.61274 0.806369 0.591412i \(-0.201429\pi\)
0.806369 + 0.591412i \(0.201429\pi\)
\(662\) −17.8669 −0.694416
\(663\) 0.400681 0.0155612
\(664\) −21.8532 −0.848071
\(665\) −2.39496 −0.0928724
\(666\) −7.30965 −0.283243
\(667\) −62.5727 −2.42283
\(668\) −8.15972 −0.315709
\(669\) −15.3678 −0.594152
\(670\) 20.9048 0.807624
\(671\) 0 0
\(672\) 9.87393 0.380895
\(673\) 12.0297 0.463712 0.231856 0.972750i \(-0.425520\pi\)
0.231856 + 0.972750i \(0.425520\pi\)
\(674\) −40.8636 −1.57401
\(675\) 4.11390 0.158344
\(676\) −9.31200 −0.358154
\(677\) −38.5943 −1.48330 −0.741649 0.670788i \(-0.765956\pi\)
−0.741649 + 0.670788i \(0.765956\pi\)
\(678\) 21.8817 0.840363
\(679\) −30.2460 −1.16074
\(680\) −6.34129 −0.243177
\(681\) 28.2307 1.08180
\(682\) 0 0
\(683\) 14.2530 0.545377 0.272688 0.962102i \(-0.412087\pi\)
0.272688 + 0.962102i \(0.412087\pi\)
\(684\) 0.717181 0.0274221
\(685\) −13.8283 −0.528351
\(686\) −31.5669 −1.20523
\(687\) 5.18156 0.197689
\(688\) −10.5054 −0.400516
\(689\) 1.49300 0.0568787
\(690\) −9.45972 −0.360125
\(691\) −30.4757 −1.15935 −0.579674 0.814848i \(-0.696820\pi\)
−0.579674 + 0.814848i \(0.696820\pi\)
\(692\) −0.465845 −0.0177088
\(693\) 0 0
\(694\) 0.273569 0.0103845
\(695\) 13.2455 0.502430
\(696\) −21.7037 −0.822675
\(697\) −34.8572 −1.32031
\(698\) 49.0082 1.85499
\(699\) −13.5062 −0.510852
\(700\) 7.50650 0.283719
\(701\) −14.6836 −0.554592 −0.277296 0.960784i \(-0.589438\pi\)
−0.277296 + 0.960784i \(0.589438\pi\)
\(702\) 0.207323 0.00782490
\(703\) 4.43442 0.167247
\(704\) 0 0
\(705\) 7.79914 0.293732
\(706\) 26.0728 0.981263
\(707\) −40.9784 −1.54115
\(708\) 0.807047 0.0303307
\(709\) −3.30950 −0.124291 −0.0621454 0.998067i \(-0.519794\pi\)
−0.0621454 + 0.998067i \(0.519794\pi\)
\(710\) 1.69327 0.0635472
\(711\) 2.21350 0.0830128
\(712\) −23.0561 −0.864064
\(713\) −18.0834 −0.677228
\(714\) 13.3606 0.500007
\(715\) 0 0
\(716\) −15.3172 −0.572431
\(717\) −30.8408 −1.15177
\(718\) 48.2408 1.80033
\(719\) −3.35577 −0.125149 −0.0625745 0.998040i \(-0.519931\pi\)
−0.0625745 + 0.998040i \(0.519931\pi\)
\(720\) −4.63136 −0.172601
\(721\) −2.03822 −0.0759072
\(722\) −1.64839 −0.0613466
\(723\) 3.01568 0.112154
\(724\) 12.7475 0.473757
\(725\) −42.2242 −1.56817
\(726\) 0 0
\(727\) −23.1461 −0.858440 −0.429220 0.903200i \(-0.641212\pi\)
−0.429220 + 0.903200i \(0.641212\pi\)
\(728\) −0.676656 −0.0250786
\(729\) 1.00000 0.0370370
\(730\) 21.5987 0.799403
\(731\) −6.80234 −0.251594
\(732\) 1.50435 0.0556023
\(733\) 31.6217 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(734\) −55.1531 −2.03574
\(735\) 0.496009 0.0182956
\(736\) −23.6598 −0.872113
\(737\) 0 0
\(738\) −18.0361 −0.663917
\(739\) 5.09809 0.187536 0.0937681 0.995594i \(-0.470109\pi\)
0.0937681 + 0.995594i \(0.470109\pi\)
\(740\) 2.99370 0.110051
\(741\) −0.125773 −0.00462039
\(742\) 49.7835 1.82761
\(743\) −17.4215 −0.639132 −0.319566 0.947564i \(-0.603537\pi\)
−0.319566 + 0.947564i \(0.603537\pi\)
\(744\) −6.27231 −0.229954
\(745\) 19.5218 0.715223
\(746\) 29.3133 1.07324
\(747\) −10.3345 −0.378121
\(748\) 0 0
\(749\) −2.78675 −0.101826
\(750\) −14.1418 −0.516387
\(751\) −13.3648 −0.487689 −0.243845 0.969814i \(-0.578409\pi\)
−0.243845 + 0.969814i \(0.578409\pi\)
\(752\) 40.7634 1.48649
\(753\) 30.2264 1.10151
\(754\) −2.12792 −0.0774944
\(755\) 12.3851 0.450742
\(756\) 1.82467 0.0663626
\(757\) −7.86710 −0.285935 −0.142967 0.989727i \(-0.545664\pi\)
−0.142967 + 0.989727i \(0.545664\pi\)
\(758\) 5.91378 0.214798
\(759\) 0 0
\(760\) 1.99052 0.0722038
\(761\) −23.0854 −0.836846 −0.418423 0.908252i \(-0.637417\pi\)
−0.418423 + 0.908252i \(0.637417\pi\)
\(762\) 23.6945 0.858361
\(763\) 12.0134 0.434914
\(764\) 14.6790 0.531067
\(765\) −2.99884 −0.108423
\(766\) −2.97259 −0.107404
\(767\) −0.141533 −0.00511047
\(768\) −15.2636 −0.550778
\(769\) −19.8978 −0.717535 −0.358767 0.933427i \(-0.616803\pi\)
−0.358767 + 0.933427i \(0.616803\pi\)
\(770\) 0 0
\(771\) 2.94672 0.106124
\(772\) 7.95917 0.286457
\(773\) 49.8795 1.79404 0.897021 0.441988i \(-0.145727\pi\)
0.897021 + 0.441988i \(0.145727\pi\)
\(774\) −3.51971 −0.126513
\(775\) −12.2027 −0.438334
\(776\) 25.1384 0.902417
\(777\) 11.2822 0.404745
\(778\) 50.6188 1.81477
\(779\) 10.9416 0.392025
\(780\) −0.0849100 −0.00304027
\(781\) 0 0
\(782\) −32.0145 −1.14484
\(783\) −10.2638 −0.366798
\(784\) 2.59247 0.0925883
\(785\) −4.43930 −0.158445
\(786\) −4.55463 −0.162458
\(787\) 2.90418 0.103523 0.0517614 0.998659i \(-0.483516\pi\)
0.0517614 + 0.998659i \(0.483516\pi\)
\(788\) −6.83927 −0.243639
\(789\) 0.378241 0.0134657
\(790\) −3.43464 −0.122199
\(791\) −33.7736 −1.20085
\(792\) 0 0
\(793\) −0.263820 −0.00936853
\(794\) −18.0389 −0.640177
\(795\) −11.1741 −0.396305
\(796\) −6.53198 −0.231520
\(797\) −3.85381 −0.136509 −0.0682545 0.997668i \(-0.521743\pi\)
−0.0682545 + 0.997668i \(0.521743\pi\)
\(798\) −4.19387 −0.148461
\(799\) 26.3946 0.933773
\(800\) −15.9657 −0.564473
\(801\) −10.9034 −0.385252
\(802\) 25.8248 0.911906
\(803\) 0 0
\(804\) 9.66215 0.340758
\(805\) 14.6007 0.514608
\(806\) −0.614965 −0.0216612
\(807\) 11.6733 0.410919
\(808\) 34.0584 1.19817
\(809\) −50.9800 −1.79236 −0.896181 0.443689i \(-0.853670\pi\)
−0.896181 + 0.443689i \(0.853670\pi\)
\(810\) −1.55168 −0.0545204
\(811\) −8.46595 −0.297280 −0.148640 0.988891i \(-0.547490\pi\)
−0.148640 + 0.988891i \(0.547490\pi\)
\(812\) −18.7280 −0.657225
\(813\) 0.617222 0.0216469
\(814\) 0 0
\(815\) 3.92894 0.137625
\(816\) −15.6739 −0.548696
\(817\) 2.13525 0.0747028
\(818\) −0.126150 −0.00441071
\(819\) −0.319995 −0.0111815
\(820\) 7.38675 0.257956
\(821\) −1.44966 −0.0505935 −0.0252967 0.999680i \(-0.508053\pi\)
−0.0252967 + 0.999680i \(0.508053\pi\)
\(822\) −24.2150 −0.844597
\(823\) 21.2941 0.742266 0.371133 0.928580i \(-0.378969\pi\)
0.371133 + 0.928580i \(0.378969\pi\)
\(824\) 1.69403 0.0590142
\(825\) 0 0
\(826\) −4.71938 −0.164208
\(827\) −5.89346 −0.204936 −0.102468 0.994736i \(-0.532674\pi\)
−0.102468 + 0.994736i \(0.532674\pi\)
\(828\) −4.37225 −0.151946
\(829\) 19.2285 0.667832 0.333916 0.942603i \(-0.391630\pi\)
0.333916 + 0.942603i \(0.391630\pi\)
\(830\) 16.0359 0.556613
\(831\) −19.8397 −0.688232
\(832\) 0.433008 0.0150118
\(833\) 1.67864 0.0581615
\(834\) 23.1945 0.803160
\(835\) −10.7100 −0.370634
\(836\) 0 0
\(837\) −2.96622 −0.102527
\(838\) 8.93282 0.308579
\(839\) 3.58138 0.123643 0.0618215 0.998087i \(-0.480309\pi\)
0.0618215 + 0.998087i \(0.480309\pi\)
\(840\) 5.06433 0.174736
\(841\) 76.3457 2.63261
\(842\) 27.6324 0.952274
\(843\) 18.3244 0.631127
\(844\) −7.32451 −0.252120
\(845\) −12.2224 −0.420464
\(846\) 13.6573 0.469546
\(847\) 0 0
\(848\) −58.4033 −2.00558
\(849\) −5.98177 −0.205294
\(850\) −21.6035 −0.740993
\(851\) −27.0342 −0.926721
\(852\) 0.782624 0.0268122
\(853\) −12.7418 −0.436272 −0.218136 0.975918i \(-0.569998\pi\)
−0.218136 + 0.975918i \(0.569998\pi\)
\(854\) −8.79700 −0.301027
\(855\) 0.941331 0.0321928
\(856\) 2.31616 0.0791646
\(857\) 11.0419 0.377186 0.188593 0.982055i \(-0.439607\pi\)
0.188593 + 0.982055i \(0.439607\pi\)
\(858\) 0 0
\(859\) −15.6763 −0.534868 −0.267434 0.963576i \(-0.586176\pi\)
−0.267434 + 0.963576i \(0.586176\pi\)
\(860\) 1.44151 0.0491552
\(861\) 27.8380 0.948716
\(862\) −7.95892 −0.271082
\(863\) 11.1263 0.378743 0.189372 0.981905i \(-0.439355\pi\)
0.189372 + 0.981905i \(0.439355\pi\)
\(864\) −3.88092 −0.132032
\(865\) −0.611441 −0.0207896
\(866\) 43.8329 1.48950
\(867\) 6.85104 0.232674
\(868\) −5.41236 −0.183708
\(869\) 0 0
\(870\) 15.9261 0.539946
\(871\) −1.69447 −0.0574149
\(872\) −9.98470 −0.338125
\(873\) 11.8881 0.402352
\(874\) 10.0493 0.339923
\(875\) 21.8274 0.737900
\(876\) 9.98285 0.337289
\(877\) −26.7468 −0.903174 −0.451587 0.892227i \(-0.649142\pi\)
−0.451587 + 0.892227i \(0.649142\pi\)
\(878\) −26.0233 −0.878245
\(879\) 4.46485 0.150596
\(880\) 0 0
\(881\) 31.8226 1.07213 0.536065 0.844176i \(-0.319910\pi\)
0.536065 + 0.844176i \(0.319910\pi\)
\(882\) 0.868574 0.0292464
\(883\) 0.547415 0.0184220 0.00921099 0.999958i \(-0.497068\pi\)
0.00921099 + 0.999958i \(0.497068\pi\)
\(884\) −0.287361 −0.00966499
\(885\) 1.05928 0.0356075
\(886\) 39.5012 1.32707
\(887\) 37.3178 1.25301 0.626504 0.779418i \(-0.284485\pi\)
0.626504 + 0.779418i \(0.284485\pi\)
\(888\) −9.37695 −0.314670
\(889\) −36.5716 −1.22657
\(890\) 16.9185 0.567110
\(891\) 0 0
\(892\) 11.0215 0.369026
\(893\) −8.28522 −0.277254
\(894\) 34.1851 1.14332
\(895\) −20.1045 −0.672019
\(896\) 34.1864 1.14209
\(897\) 0.766770 0.0256017
\(898\) −66.9539 −2.23428
\(899\) 30.4447 1.01539
\(900\) −2.95041 −0.0983469
\(901\) −37.8165 −1.25985
\(902\) 0 0
\(903\) 5.43254 0.180784
\(904\) 28.0703 0.933604
\(905\) 16.7316 0.556178
\(906\) 21.6879 0.720533
\(907\) 7.59425 0.252163 0.126082 0.992020i \(-0.459760\pi\)
0.126082 + 0.992020i \(0.459760\pi\)
\(908\) −20.2465 −0.671905
\(909\) 16.1065 0.534218
\(910\) 0.496529 0.0164598
\(911\) −18.2790 −0.605610 −0.302805 0.953053i \(-0.597923\pi\)
−0.302805 + 0.953053i \(0.597923\pi\)
\(912\) 4.92001 0.162918
\(913\) 0 0
\(914\) 59.2613 1.96019
\(915\) 1.97452 0.0652757
\(916\) −3.71612 −0.122784
\(917\) 7.02990 0.232148
\(918\) −5.25134 −0.173320
\(919\) −20.6326 −0.680606 −0.340303 0.940316i \(-0.610530\pi\)
−0.340303 + 0.940316i \(0.610530\pi\)
\(920\) −12.1351 −0.400083
\(921\) 2.31765 0.0763693
\(922\) 39.3012 1.29432
\(923\) −0.137250 −0.00451764
\(924\) 0 0
\(925\) −18.2428 −0.599818
\(926\) 7.43420 0.244303
\(927\) 0.801115 0.0263121
\(928\) 39.8330 1.30758
\(929\) 1.53779 0.0504534 0.0252267 0.999682i \(-0.491969\pi\)
0.0252267 + 0.999682i \(0.491969\pi\)
\(930\) 4.60261 0.150926
\(931\) −0.526924 −0.0172692
\(932\) 9.68639 0.317288
\(933\) −3.40353 −0.111427
\(934\) −8.08015 −0.264391
\(935\) 0 0
\(936\) 0.265958 0.00869311
\(937\) −44.0234 −1.43818 −0.719091 0.694916i \(-0.755441\pi\)
−0.719091 + 0.694916i \(0.755441\pi\)
\(938\) −56.5015 −1.84484
\(939\) −17.3690 −0.566816
\(940\) −5.59339 −0.182436
\(941\) 50.7897 1.65570 0.827848 0.560952i \(-0.189565\pi\)
0.827848 + 0.560952i \(0.189565\pi\)
\(942\) −7.77376 −0.253283
\(943\) −66.7051 −2.17222
\(944\) 5.53652 0.180198
\(945\) 2.39496 0.0779079
\(946\) 0 0
\(947\) −43.7790 −1.42263 −0.711313 0.702875i \(-0.751899\pi\)
−0.711313 + 0.702875i \(0.751899\pi\)
\(948\) −1.58748 −0.0515590
\(949\) −1.75071 −0.0568304
\(950\) 6.78129 0.220014
\(951\) 13.7335 0.445340
\(952\) 17.1392 0.555485
\(953\) 0.586780 0.0190077 0.00950384 0.999955i \(-0.496975\pi\)
0.00950384 + 0.999955i \(0.496975\pi\)
\(954\) −19.5673 −0.633514
\(955\) 19.2668 0.623459
\(956\) 22.1184 0.715360
\(957\) 0 0
\(958\) 31.6626 1.02297
\(959\) 37.3750 1.20690
\(960\) −3.24078 −0.104596
\(961\) −22.2016 −0.716179
\(962\) −0.919358 −0.0296413
\(963\) 1.09532 0.0352964
\(964\) −2.16279 −0.0696587
\(965\) 10.4468 0.336293
\(966\) 25.5677 0.822627
\(967\) 24.4395 0.785923 0.392961 0.919555i \(-0.371451\pi\)
0.392961 + 0.919555i \(0.371451\pi\)
\(968\) 0 0
\(969\) 3.18574 0.102341
\(970\) −18.4465 −0.592283
\(971\) −39.3558 −1.26299 −0.631495 0.775380i \(-0.717558\pi\)
−0.631495 + 0.775380i \(0.717558\pi\)
\(972\) −0.717181 −0.0230036
\(973\) −35.7998 −1.14769
\(974\) 8.76649 0.280896
\(975\) 0.517418 0.0165706
\(976\) 10.3202 0.330340
\(977\) 38.0520 1.21739 0.608696 0.793403i \(-0.291693\pi\)
0.608696 + 0.793403i \(0.291693\pi\)
\(978\) 6.88007 0.220000
\(979\) 0 0
\(980\) −0.355728 −0.0113633
\(981\) −4.72183 −0.150756
\(982\) −52.0263 −1.66023
\(983\) −34.7561 −1.10855 −0.554274 0.832334i \(-0.687004\pi\)
−0.554274 + 0.832334i \(0.687004\pi\)
\(984\) −23.1370 −0.737581
\(985\) −8.97684 −0.286026
\(986\) 53.8987 1.71648
\(987\) −21.0795 −0.670967
\(988\) 0.0902021 0.00286971
\(989\) −13.0174 −0.413930
\(990\) 0 0
\(991\) −23.4653 −0.745399 −0.372700 0.927952i \(-0.621568\pi\)
−0.372700 + 0.927952i \(0.621568\pi\)
\(992\) 11.5117 0.365495
\(993\) −10.8390 −0.343965
\(994\) −4.57656 −0.145160
\(995\) −8.57350 −0.271798
\(996\) 7.41174 0.234850
\(997\) 7.10627 0.225058 0.112529 0.993648i \(-0.464105\pi\)
0.112529 + 0.993648i \(0.464105\pi\)
\(998\) 11.9554 0.378441
\(999\) −4.43442 −0.140299
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bn.1.6 20
11.2 odd 10 627.2.j.c.400.3 yes 40
11.6 odd 10 627.2.j.c.58.3 40
11.10 odd 2 6897.2.a.bo.1.15 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.j.c.58.3 40 11.6 odd 10
627.2.j.c.400.3 yes 40 11.2 odd 10
6897.2.a.bn.1.6 20 1.1 even 1 trivial
6897.2.a.bo.1.15 20 11.10 odd 2