Properties

Label 6897.2.a.bn
Level $6897$
Weight $2$
Character orbit 6897.a
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-3,-20,21,-9,3,3,-6,20,-5,0,-21,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} - 26 x^{18} + 81 x^{17} + 273 x^{16} - 901 x^{15} - 1480 x^{14} + 5366 x^{13} + \cdots - 304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} - \beta_{7} q^{5} + \beta_1 q^{6} - \beta_{16} q^{7} + ( - \beta_{14} - \beta_{13} + \beta_{10} + \cdots - 1) q^{8} + q^{9} + ( - \beta_{17} - \beta_{15} + \beta_{14} + \cdots + 1) q^{10}+ \cdots + ( - \beta_{19} + 2 \beta_{18} + \cdots + \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 20 q^{3} + 21 q^{4} - 9 q^{5} + 3 q^{6} + 3 q^{7} - 6 q^{8} + 20 q^{9} - 5 q^{10} - 21 q^{12} - 9 q^{13} - 26 q^{14} + 9 q^{15} + 19 q^{16} + 7 q^{17} - 3 q^{18} + 20 q^{19} - 28 q^{20}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 3 x^{19} - 26 x^{18} + 81 x^{17} + 273 x^{16} - 901 x^{15} - 1480 x^{14} + 5366 x^{13} + \cdots - 304 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 423497524 \nu^{19} + 3266642890 \nu^{18} + 5790771544 \nu^{17} - 83894721727 \nu^{16} + \cdots + 492160582228 ) / 130282473450 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 1005767612 \nu^{19} - 1170163925 \nu^{18} - 36224821187 \nu^{17} + 53323527236 \nu^{16} + \cdots + 3063752066416 ) / 260564946900 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 911433107 \nu^{19} + 4807581805 \nu^{18} - 33440887092 \nu^{17} - 143947264289 \nu^{16} + \cdots - 4641936363704 ) / 173709964600 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2530894069 \nu^{19} - 7204561705 \nu^{18} - 67086759384 \nu^{17} + 192304334717 \nu^{16} + \cdots + 4418760453472 ) / 173709964600 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9506645341 \nu^{19} - 8211818425 \nu^{18} - 303282472216 \nu^{17} + 250581619573 \nu^{16} + \cdots + 1781009620088 ) / 521129893800 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 11184631 \nu^{19} + 21220669 \nu^{18} + 320406838 \nu^{17} - 581582761 \nu^{16} + \cdots - 5543772272 ) / 478100820 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 6603161 \nu^{19} + 11866643 \nu^{18} + 194576795 \nu^{17} - 327260909 \nu^{16} + \cdots - 5344660096 ) / 239050410 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 18236093 \nu^{19} - 43523648 \nu^{18} - 495359087 \nu^{17} + 1156716695 \nu^{16} + \cdots + 6046399132 ) / 478100820 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 20209164563 \nu^{19} - 70443993875 \nu^{18} - 512966072588 \nu^{17} + 1888325975639 \nu^{16} + \cdots + 14962867353184 ) / 521129893800 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 4952028385 \nu^{19} + 13632097957 \nu^{18} + 134472896896 \nu^{17} - 376062079969 \nu^{16} + \cdots - 4920395997632 ) / 104225978760 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 11774531 \nu^{19} + 26220511 \nu^{18} + 328917554 \nu^{17} - 707384315 \nu^{16} + \cdots - 4426747024 ) / 159366940 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 42375055 \nu^{19} - 100964512 \nu^{18} - 1161704911 \nu^{17} + 2697286879 \nu^{16} + \cdots + 13304767112 ) / 478100820 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 53413231663 \nu^{19} - 114087222685 \nu^{18} - 1516653583918 \nu^{17} + 3136945784959 \nu^{16} + \cdots + 31009596069344 ) / 521129893800 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 3853515217 \nu^{19} - 10158822691 \nu^{18} - 105285358650 \nu^{17} + 277052639393 \nu^{16} + \cdots + 3103862166792 ) / 34741992920 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 36297628586 \nu^{19} + 100723321805 \nu^{18} + 972310057151 \nu^{17} + \cdots - 22866359732728 ) / 260564946900 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 7273316599 \nu^{19} + 17997162178 \nu^{18} + 197447498503 \nu^{17} - 482782498093 \nu^{16} + \cdots - 4207274875640 ) / 52112989380 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 44826264101 \nu^{19} + 112601169725 \nu^{18} + 1214186790476 \nu^{17} + \cdots - 28781422579468 ) / 260564946900 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{14} + \beta_{13} - \beta_{10} - \beta_{8} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{19} - \beta_{18} - \beta_{17} - \beta_{15} - \beta_{14} + \beta_{10} - \beta_{9} + \beta_{8} + \cdots + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 2 \beta_{17} - \beta_{15} + 8 \beta_{14} + 8 \beta_{13} + 2 \beta_{12} - \beta_{11} - 11 \beta_{10} + \cdots + 11 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 10 \beta_{19} - 10 \beta_{18} - 10 \beta_{17} - \beta_{16} - 11 \beta_{15} - 10 \beta_{14} + \beta_{13} + \cdots + 64 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{19} + \beta_{18} - 25 \beta_{17} + 2 \beta_{16} - 14 \beta_{15} + 57 \beta_{14} + 56 \beta_{13} + \cdots + 92 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 79 \beta_{19} - 80 \beta_{18} - 78 \beta_{17} - 15 \beta_{16} - 96 \beta_{15} - 77 \beta_{14} + \cdots + 344 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 13 \beta_{19} + 18 \beta_{18} - 231 \beta_{17} + 32 \beta_{16} - 137 \beta_{15} + 400 \beta_{14} + \cdots + 711 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 587 \beta_{19} - 604 \beta_{18} - 567 \beta_{17} - 157 \beta_{16} - 774 \beta_{15} - 551 \beta_{14} + \cdots + 1978 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 118 \beta_{19} + 211 \beta_{18} - 1915 \beta_{17} + 343 \beta_{16} - 1168 \beta_{15} + 2818 \beta_{14} + \cdots + 5344 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 4287 \beta_{19} - 4482 \beta_{18} - 4028 \beta_{17} - 1415 \beta_{16} - 6008 \beta_{15} - 3864 \beta_{14} + \cdots + 11982 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 931 \beta_{19} + 2062 \beta_{18} - 15089 \beta_{17} + 3119 \beta_{16} - 9310 \beta_{15} + 19998 \beta_{14} + \cdots + 39716 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 31190 \beta_{19} - 33084 \beta_{18} - 28429 \beta_{17} - 11791 \beta_{16} - 45647 \beta_{15} + \cdots + 75557 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 6859 \beta_{19} + 18294 \beta_{18} - 115663 \beta_{17} + 26079 \beta_{16} - 71516 \beta_{15} + \cdots + 293526 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 226950 \beta_{19} - 243763 \beta_{18} - 200584 \beta_{17} - 93877 \beta_{16} - 342209 \beta_{15} + \cdots + 491360 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 48686 \beta_{19} + 153211 \beta_{18} - 872118 \beta_{17} + 207935 \beta_{16} - 537506 \beta_{15} + \cdots + 2161810 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 1652875 \beta_{19} - 1794142 \beta_{18} - 1418036 \beta_{17} - 726781 \beta_{16} - 2542822 \beta_{15} + \cdots + 3271412 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 338154 \beta_{19} + 1236598 \beta_{18} - 6506717 \beta_{17} + 1611049 \beta_{16} - 3985742 \beta_{15} + \cdots + 15880366 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.69319
2.68761
2.24972
2.16908
1.89014
1.64839
1.29472
0.898242
0.717677
0.495394
0.414444
−0.430104
−0.647095
−0.983433
−1.50892
−1.60139
−1.80169
−2.10369
−2.37753
−2.70475
−2.69319 −1.00000 5.25328 −0.486629 2.69319 2.49782 −8.76171 1.00000 1.31059
1.2 −2.68761 −1.00000 5.22325 −3.78906 2.68761 3.38908 −8.66284 1.00000 10.1835
1.3 −2.24972 −1.00000 3.06124 2.43671 2.24972 4.40799 −2.38750 1.00000 −5.48193
1.4 −2.16908 −1.00000 2.70492 0.270542 2.16908 −3.04129 −1.52903 1.00000 −0.586828
1.5 −1.89014 −1.00000 1.57264 0.892902 1.89014 2.76785 0.807768 1.00000 −1.68771
1.6 −1.64839 −1.00000 0.717181 0.941331 1.64839 −2.54422 2.11458 1.00000 −1.55168
1.7 −1.29472 −1.00000 −0.323702 −2.21563 1.29472 −0.848670 3.00854 1.00000 2.86861
1.8 −0.898242 −1.00000 −1.19316 2.38103 0.898242 −1.17240 2.86823 1.00000 −2.13874
1.9 −0.717677 −1.00000 −1.48494 −2.61938 0.717677 1.81905 2.50106 1.00000 1.87987
1.10 −0.495394 −1.00000 −1.75458 −2.74216 0.495394 4.80343 1.86000 1.00000 1.35845
1.11 −0.414444 −1.00000 −1.82824 −1.59002 0.414444 −4.26239 1.58659 1.00000 0.658974
1.12 0.430104 −1.00000 −1.81501 3.94826 −0.430104 −0.533954 −1.64085 1.00000 1.69816
1.13 0.647095 −1.00000 −1.58127 1.50920 −0.647095 −1.48159 −2.31742 1.00000 0.976598
1.14 0.983433 −1.00000 −1.03286 −3.73944 −0.983433 −3.08350 −2.98261 1.00000 −3.67749
1.15 1.50892 −1.00000 0.276838 3.14626 −1.50892 2.92143 −2.60011 1.00000 4.74745
1.16 1.60139 −1.00000 0.564462 −4.14025 −1.60139 −1.59113 −2.29886 1.00000 −6.63017
1.17 1.80169 −1.00000 1.24610 0.711705 −1.80169 3.18787 −1.35829 1.00000 1.28227
1.18 2.10369 −1.00000 2.42552 −1.56098 −2.10369 −0.929014 0.895153 1.00000 −3.28382
1.19 2.37753 −1.00000 3.65266 1.70548 −2.37753 −4.50539 3.92925 1.00000 4.05484
1.20 2.70475 −1.00000 5.31567 −4.05988 −2.70475 1.19905 8.96805 1.00000 −10.9810
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.20
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6897.2.a.bn 20
11.b odd 2 1 6897.2.a.bo 20
11.d odd 10 2 627.2.j.c 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.j.c 40 11.d odd 10 2
6897.2.a.bn 20 1.a even 1 1 trivial
6897.2.a.bo 20 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):

\( T_{2}^{20} + 3 T_{2}^{19} - 26 T_{2}^{18} - 81 T_{2}^{17} + 273 T_{2}^{16} + 901 T_{2}^{15} - 1480 T_{2}^{14} + \cdots - 304 \) Copy content Toggle raw display
\( T_{5}^{20} + 9 T_{5}^{19} - 25 T_{5}^{18} - 411 T_{5}^{17} - 104 T_{5}^{16} + 7516 T_{5}^{15} + \cdots + 137439 \) Copy content Toggle raw display
\( T_{7}^{20} - 3 T_{7}^{19} - 77 T_{7}^{18} + 212 T_{7}^{17} + 2466 T_{7}^{16} - 6028 T_{7}^{15} + \cdots - 5372525 \) Copy content Toggle raw display
\( T_{13}^{20} + 9 T_{13}^{19} - 118 T_{13}^{18} - 1286 T_{13}^{17} + 4505 T_{13}^{16} + 72607 T_{13}^{15} + \cdots - 1321663744 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + 3 T^{19} + \cdots - 304 \) Copy content Toggle raw display
$3$ \( (T + 1)^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + 9 T^{19} + \cdots + 137439 \) Copy content Toggle raw display
$7$ \( T^{20} - 3 T^{19} + \cdots - 5372525 \) Copy content Toggle raw display
$11$ \( T^{20} \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots - 1321663744 \) Copy content Toggle raw display
$17$ \( T^{20} - 7 T^{19} + \cdots - 76576509 \) Copy content Toggle raw display
$19$ \( (T - 1)^{20} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots - 40609248811 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 91183890242304 \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots - 78190222336 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 178501747297280 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots - 35\!\cdots\!80 \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots - 17\!\cdots\!95 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots - 2663592921 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 911322907335680 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 19\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots - 30393031612581 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots - 616349384672256 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 10\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots - 9979063682256 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots - 503868586436864 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots - 24\!\cdots\!69 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 25\!\cdots\!96 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 127136531162880 \) Copy content Toggle raw display
show more
show less