Properties

Label 2-6897-1.1-c1-0-240
Degree $2$
Conductor $6897$
Sign $-1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.430·2-s − 3-s − 1.81·4-s + 3.94·5-s − 0.430·6-s − 0.533·7-s − 1.64·8-s + 9-s + 1.69·10-s + 1.81·12-s − 4.86·13-s − 0.229·14-s − 3.94·15-s + 2.92·16-s − 0.271·17-s + 0.430·18-s + 19-s − 7.16·20-s + 0.533·21-s − 8.91·23-s + 1.64·24-s + 10.5·25-s − 2.09·26-s − 27-s + 0.969·28-s + 7.17·29-s − 1.69·30-s + ⋯
L(s)  = 1  + 0.304·2-s − 0.577·3-s − 0.907·4-s + 1.76·5-s − 0.175·6-s − 0.201·7-s − 0.580·8-s + 0.333·9-s + 0.537·10-s + 0.523·12-s − 1.35·13-s − 0.0613·14-s − 1.01·15-s + 0.731·16-s − 0.0658·17-s + 0.101·18-s + 0.229·19-s − 1.60·20-s + 0.116·21-s − 1.85·23-s + 0.334·24-s + 2.11·25-s − 0.410·26-s − 0.192·27-s + 0.183·28-s + 1.33·29-s − 0.310·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.430T + 2T^{2} \)
5 \( 1 - 3.94T + 5T^{2} \)
7 \( 1 + 0.533T + 7T^{2} \)
13 \( 1 + 4.86T + 13T^{2} \)
17 \( 1 + 0.271T + 17T^{2} \)
23 \( 1 + 8.91T + 23T^{2} \)
29 \( 1 - 7.17T + 29T^{2} \)
31 \( 1 - 0.707T + 31T^{2} \)
37 \( 1 - 3.89T + 37T^{2} \)
41 \( 1 - 4.23T + 41T^{2} \)
43 \( 1 - 9.26T + 43T^{2} \)
47 \( 1 + 6.33T + 47T^{2} \)
53 \( 1 + 11.3T + 53T^{2} \)
59 \( 1 + 7.39T + 59T^{2} \)
61 \( 1 - 3.70T + 61T^{2} \)
67 \( 1 + 4.43T + 67T^{2} \)
71 \( 1 + 7.72T + 71T^{2} \)
73 \( 1 - 3.98T + 73T^{2} \)
79 \( 1 + 16.7T + 79T^{2} \)
83 \( 1 - 8.44T + 83T^{2} \)
89 \( 1 - 3.51T + 89T^{2} \)
97 \( 1 + 3.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60204568346563192762872359683, −6.53701656984189329435408675231, −6.06740744994719176616227866554, −5.55125751037032647813657106925, −4.78006402816583459719367848480, −4.36042913011493078061022325435, −3.05338570084854205276662617576, −2.30936239766838494177400140994, −1.28582710166846434804722157050, 0, 1.28582710166846434804722157050, 2.30936239766838494177400140994, 3.05338570084854205276662617576, 4.36042913011493078061022325435, 4.78006402816583459719367848480, 5.55125751037032647813657106925, 6.06740744994719176616227866554, 6.53701656984189329435408675231, 7.60204568346563192762872359683

Graph of the $Z$-function along the critical line