Properties

Label 6845.2.a.k.1.3
Level $6845$
Weight $2$
Character 6845.1
Self dual yes
Analytic conductor $54.658$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,2,8,-7,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 11x^{5} - x^{4} + 35x^{3} + 7x^{2} - 27x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.12084\) of defining polynomial
Character \(\chi\) \(=\) 6845.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.12084 q^{2} +3.33999 q^{3} -0.743718 q^{4} -1.00000 q^{5} -3.74360 q^{6} +1.22417 q^{7} +3.07527 q^{8} +8.15556 q^{9} +1.12084 q^{10} -3.59983 q^{11} -2.48401 q^{12} -0.699609 q^{13} -1.37210 q^{14} -3.33999 q^{15} -1.95945 q^{16} -0.578769 q^{17} -9.14107 q^{18} -7.75609 q^{19} +0.743718 q^{20} +4.08873 q^{21} +4.03484 q^{22} +4.47887 q^{23} +10.2714 q^{24} +1.00000 q^{25} +0.784150 q^{26} +17.2195 q^{27} -0.910439 q^{28} -3.04867 q^{29} +3.74360 q^{30} -7.98457 q^{31} -3.95431 q^{32} -12.0234 q^{33} +0.648708 q^{34} -1.22417 q^{35} -6.06543 q^{36} +8.69333 q^{38} -2.33669 q^{39} -3.07527 q^{40} +5.58669 q^{41} -4.58281 q^{42} -4.02235 q^{43} +2.67726 q^{44} -8.15556 q^{45} -5.02010 q^{46} -8.09571 q^{47} -6.54454 q^{48} -5.50140 q^{49} -1.12084 q^{50} -1.93309 q^{51} +0.520312 q^{52} -9.93959 q^{53} -19.3003 q^{54} +3.59983 q^{55} +3.76466 q^{56} -25.9053 q^{57} +3.41707 q^{58} -0.485356 q^{59} +2.48401 q^{60} +0.919473 q^{61} +8.94942 q^{62} +9.98382 q^{63} +8.35104 q^{64} +0.699609 q^{65} +13.4763 q^{66} +11.2569 q^{67} +0.430441 q^{68} +14.9594 q^{69} +1.37210 q^{70} -0.507354 q^{71} +25.0805 q^{72} -3.55519 q^{73} +3.33999 q^{75} +5.76834 q^{76} -4.40682 q^{77} +2.61906 q^{78} +3.81414 q^{79} +1.95945 q^{80} +33.0464 q^{81} -6.26179 q^{82} -11.6109 q^{83} -3.04086 q^{84} +0.578769 q^{85} +4.50841 q^{86} -10.1825 q^{87} -11.0705 q^{88} -14.3837 q^{89} +9.14107 q^{90} -0.856443 q^{91} -3.33102 q^{92} -26.6684 q^{93} +9.07400 q^{94} +7.75609 q^{95} -13.2074 q^{96} +10.2579 q^{97} +6.16619 q^{98} -29.3586 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{3} + 8 q^{4} - 7 q^{5} + 2 q^{6} - 3 q^{8} + 13 q^{9} - q^{11} - 6 q^{12} + 4 q^{13} - 10 q^{14} - 2 q^{15} - 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} - q^{21} + 7 q^{22} + 15 q^{24}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12084 −0.792554 −0.396277 0.918131i \(-0.629698\pi\)
−0.396277 + 0.918131i \(0.629698\pi\)
\(3\) 3.33999 1.92835 0.964173 0.265274i \(-0.0854624\pi\)
0.964173 + 0.265274i \(0.0854624\pi\)
\(4\) −0.743718 −0.371859
\(5\) −1.00000 −0.447214
\(6\) −3.74360 −1.52832
\(7\) 1.22417 0.462694 0.231347 0.972871i \(-0.425687\pi\)
0.231347 + 0.972871i \(0.425687\pi\)
\(8\) 3.07527 1.08727
\(9\) 8.15556 2.71852
\(10\) 1.12084 0.354441
\(11\) −3.59983 −1.08539 −0.542695 0.839930i \(-0.682596\pi\)
−0.542695 + 0.839930i \(0.682596\pi\)
\(12\) −2.48401 −0.717073
\(13\) −0.699609 −0.194037 −0.0970183 0.995283i \(-0.530931\pi\)
−0.0970183 + 0.995283i \(0.530931\pi\)
\(14\) −1.37210 −0.366710
\(15\) −3.33999 −0.862383
\(16\) −1.95945 −0.489862
\(17\) −0.578769 −0.140372 −0.0701861 0.997534i \(-0.522359\pi\)
−0.0701861 + 0.997534i \(0.522359\pi\)
\(18\) −9.14107 −2.15457
\(19\) −7.75609 −1.77937 −0.889684 0.456577i \(-0.849075\pi\)
−0.889684 + 0.456577i \(0.849075\pi\)
\(20\) 0.743718 0.166300
\(21\) 4.08873 0.892234
\(22\) 4.03484 0.860230
\(23\) 4.47887 0.933910 0.466955 0.884281i \(-0.345351\pi\)
0.466955 + 0.884281i \(0.345351\pi\)
\(24\) 10.2714 2.09664
\(25\) 1.00000 0.200000
\(26\) 0.784150 0.153784
\(27\) 17.2195 3.31390
\(28\) −0.910439 −0.172057
\(29\) −3.04867 −0.566123 −0.283062 0.959102i \(-0.591350\pi\)
−0.283062 + 0.959102i \(0.591350\pi\)
\(30\) 3.74360 0.683484
\(31\) −7.98457 −1.43407 −0.717035 0.697037i \(-0.754501\pi\)
−0.717035 + 0.697037i \(0.754501\pi\)
\(32\) −3.95431 −0.699030
\(33\) −12.0234 −2.09301
\(34\) 0.648708 0.111252
\(35\) −1.22417 −0.206923
\(36\) −6.06543 −1.01091
\(37\) 0 0
\(38\) 8.69333 1.41024
\(39\) −2.33669 −0.374170
\(40\) −3.07527 −0.486243
\(41\) 5.58669 0.872495 0.436247 0.899827i \(-0.356307\pi\)
0.436247 + 0.899827i \(0.356307\pi\)
\(42\) −4.58281 −0.707143
\(43\) −4.02235 −0.613403 −0.306701 0.951806i \(-0.599225\pi\)
−0.306701 + 0.951806i \(0.599225\pi\)
\(44\) 2.67726 0.403612
\(45\) −8.15556 −1.21576
\(46\) −5.02010 −0.740173
\(47\) −8.09571 −1.18088 −0.590440 0.807081i \(-0.701046\pi\)
−0.590440 + 0.807081i \(0.701046\pi\)
\(48\) −6.54454 −0.944624
\(49\) −5.50140 −0.785914
\(50\) −1.12084 −0.158511
\(51\) −1.93309 −0.270686
\(52\) 0.520312 0.0721543
\(53\) −9.93959 −1.36531 −0.682654 0.730742i \(-0.739174\pi\)
−0.682654 + 0.730742i \(0.739174\pi\)
\(54\) −19.3003 −2.62644
\(55\) 3.59983 0.485401
\(56\) 3.76466 0.503074
\(57\) −25.9053 −3.43124
\(58\) 3.41707 0.448683
\(59\) −0.485356 −0.0631879 −0.0315940 0.999501i \(-0.510058\pi\)
−0.0315940 + 0.999501i \(0.510058\pi\)
\(60\) 2.48401 0.320685
\(61\) 0.919473 0.117726 0.0588632 0.998266i \(-0.481252\pi\)
0.0588632 + 0.998266i \(0.481252\pi\)
\(62\) 8.94942 1.13658
\(63\) 9.98382 1.25784
\(64\) 8.35104 1.04388
\(65\) 0.699609 0.0867758
\(66\) 13.4763 1.65882
\(67\) 11.2569 1.37525 0.687624 0.726067i \(-0.258654\pi\)
0.687624 + 0.726067i \(0.258654\pi\)
\(68\) 0.430441 0.0521986
\(69\) 14.9594 1.80090
\(70\) 1.37210 0.163998
\(71\) −0.507354 −0.0602118 −0.0301059 0.999547i \(-0.509584\pi\)
−0.0301059 + 0.999547i \(0.509584\pi\)
\(72\) 25.0805 2.95577
\(73\) −3.55519 −0.416104 −0.208052 0.978118i \(-0.566712\pi\)
−0.208052 + 0.978118i \(0.566712\pi\)
\(74\) 0 0
\(75\) 3.33999 0.385669
\(76\) 5.76834 0.661674
\(77\) −4.40682 −0.502204
\(78\) 2.61906 0.296550
\(79\) 3.81414 0.429125 0.214562 0.976710i \(-0.431167\pi\)
0.214562 + 0.976710i \(0.431167\pi\)
\(80\) 1.95945 0.219073
\(81\) 33.0464 3.67183
\(82\) −6.26179 −0.691499
\(83\) −11.6109 −1.27446 −0.637230 0.770674i \(-0.719920\pi\)
−0.637230 + 0.770674i \(0.719920\pi\)
\(84\) −3.04086 −0.331785
\(85\) 0.578769 0.0627763
\(86\) 4.50841 0.486154
\(87\) −10.1825 −1.09168
\(88\) −11.0705 −1.18011
\(89\) −14.3837 −1.52467 −0.762333 0.647185i \(-0.775946\pi\)
−0.762333 + 0.647185i \(0.775946\pi\)
\(90\) 9.14107 0.963554
\(91\) −0.856443 −0.0897796
\(92\) −3.33102 −0.347283
\(93\) −26.6684 −2.76538
\(94\) 9.07400 0.935911
\(95\) 7.75609 0.795758
\(96\) −13.2074 −1.34797
\(97\) 10.2579 1.04154 0.520768 0.853698i \(-0.325646\pi\)
0.520768 + 0.853698i \(0.325646\pi\)
\(98\) 6.16619 0.622879
\(99\) −29.3586 −2.95065
\(100\) −0.743718 −0.0743718
\(101\) −5.50183 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(102\) 2.16668 0.214533
\(103\) −6.24169 −0.615012 −0.307506 0.951546i \(-0.599494\pi\)
−0.307506 + 0.951546i \(0.599494\pi\)
\(104\) −2.15149 −0.210971
\(105\) −4.08873 −0.399019
\(106\) 11.1407 1.08208
\(107\) −0.370138 −0.0357826 −0.0178913 0.999840i \(-0.505695\pi\)
−0.0178913 + 0.999840i \(0.505695\pi\)
\(108\) −12.8065 −1.23230
\(109\) −3.11081 −0.297962 −0.148981 0.988840i \(-0.547599\pi\)
−0.148981 + 0.988840i \(0.547599\pi\)
\(110\) −4.03484 −0.384707
\(111\) 0 0
\(112\) −2.39870 −0.226656
\(113\) −11.6924 −1.09992 −0.549962 0.835190i \(-0.685358\pi\)
−0.549962 + 0.835190i \(0.685358\pi\)
\(114\) 29.0357 2.71944
\(115\) −4.47887 −0.417657
\(116\) 2.26735 0.210518
\(117\) −5.70570 −0.527492
\(118\) 0.544006 0.0500798
\(119\) −0.708514 −0.0649494
\(120\) −10.2714 −0.937644
\(121\) 1.95880 0.178072
\(122\) −1.03058 −0.0933045
\(123\) 18.6595 1.68247
\(124\) 5.93827 0.533272
\(125\) −1.00000 −0.0894427
\(126\) −11.1903 −0.996908
\(127\) 17.7496 1.57503 0.787513 0.616298i \(-0.211368\pi\)
0.787513 + 0.616298i \(0.211368\pi\)
\(128\) −1.45157 −0.128302
\(129\) −13.4346 −1.18285
\(130\) −0.784150 −0.0687745
\(131\) 1.15066 0.100533 0.0502667 0.998736i \(-0.483993\pi\)
0.0502667 + 0.998736i \(0.483993\pi\)
\(132\) 8.94203 0.778304
\(133\) −9.49479 −0.823303
\(134\) −12.6172 −1.08996
\(135\) −17.2195 −1.48202
\(136\) −1.77987 −0.152623
\(137\) 1.91138 0.163301 0.0816503 0.996661i \(-0.473981\pi\)
0.0816503 + 0.996661i \(0.473981\pi\)
\(138\) −16.7671 −1.42731
\(139\) −3.78003 −0.320618 −0.160309 0.987067i \(-0.551249\pi\)
−0.160309 + 0.987067i \(0.551249\pi\)
\(140\) 0.910439 0.0769462
\(141\) −27.0396 −2.27715
\(142\) 0.568663 0.0477211
\(143\) 2.51848 0.210606
\(144\) −15.9804 −1.33170
\(145\) 3.04867 0.253178
\(146\) 3.98480 0.329784
\(147\) −18.3746 −1.51551
\(148\) 0 0
\(149\) −0.552510 −0.0452633 −0.0226317 0.999744i \(-0.507205\pi\)
−0.0226317 + 0.999744i \(0.507205\pi\)
\(150\) −3.74360 −0.305664
\(151\) 9.15814 0.745279 0.372639 0.927976i \(-0.378453\pi\)
0.372639 + 0.927976i \(0.378453\pi\)
\(152\) −23.8520 −1.93466
\(153\) −4.72019 −0.381604
\(154\) 4.93934 0.398023
\(155\) 7.98457 0.641336
\(156\) 1.73784 0.139138
\(157\) −2.74164 −0.218807 −0.109403 0.993997i \(-0.534894\pi\)
−0.109403 + 0.993997i \(0.534894\pi\)
\(158\) −4.27504 −0.340104
\(159\) −33.1982 −2.63279
\(160\) 3.95431 0.312616
\(161\) 5.48292 0.432114
\(162\) −37.0398 −2.91012
\(163\) −21.0689 −1.65025 −0.825123 0.564954i \(-0.808894\pi\)
−0.825123 + 0.564954i \(0.808894\pi\)
\(164\) −4.15492 −0.324445
\(165\) 12.0234 0.936022
\(166\) 13.0139 1.01008
\(167\) 10.0289 0.776063 0.388031 0.921646i \(-0.373155\pi\)
0.388031 + 0.921646i \(0.373155\pi\)
\(168\) 12.5739 0.970101
\(169\) −12.5105 −0.962350
\(170\) −0.648708 −0.0497536
\(171\) −63.2552 −4.83725
\(172\) 2.99149 0.228099
\(173\) −13.3032 −1.01143 −0.505714 0.862701i \(-0.668771\pi\)
−0.505714 + 0.862701i \(0.668771\pi\)
\(174\) 11.4130 0.865216
\(175\) 1.22417 0.0925388
\(176\) 7.05369 0.531692
\(177\) −1.62109 −0.121848
\(178\) 16.1218 1.20838
\(179\) −9.15637 −0.684379 −0.342190 0.939631i \(-0.611168\pi\)
−0.342190 + 0.939631i \(0.611168\pi\)
\(180\) 6.06543 0.452091
\(181\) 21.1056 1.56876 0.784382 0.620278i \(-0.212980\pi\)
0.784382 + 0.620278i \(0.212980\pi\)
\(182\) 0.959935 0.0711551
\(183\) 3.07103 0.227017
\(184\) 13.7737 1.01541
\(185\) 0 0
\(186\) 29.8910 2.19172
\(187\) 2.08347 0.152359
\(188\) 6.02092 0.439121
\(189\) 21.0797 1.53332
\(190\) −8.69333 −0.630680
\(191\) 7.51240 0.543578 0.271789 0.962357i \(-0.412385\pi\)
0.271789 + 0.962357i \(0.412385\pi\)
\(192\) 27.8924 2.01296
\(193\) −16.5435 −1.19083 −0.595415 0.803418i \(-0.703012\pi\)
−0.595415 + 0.803418i \(0.703012\pi\)
\(194\) −11.4975 −0.825473
\(195\) 2.33669 0.167334
\(196\) 4.09149 0.292249
\(197\) 1.74676 0.124452 0.0622259 0.998062i \(-0.480180\pi\)
0.0622259 + 0.998062i \(0.480180\pi\)
\(198\) 32.9063 2.33855
\(199\) 14.8223 1.05073 0.525364 0.850878i \(-0.323929\pi\)
0.525364 + 0.850878i \(0.323929\pi\)
\(200\) 3.07527 0.217454
\(201\) 37.5980 2.65196
\(202\) 6.16667 0.433885
\(203\) −3.73210 −0.261942
\(204\) 1.43767 0.100657
\(205\) −5.58669 −0.390192
\(206\) 6.99594 0.487430
\(207\) 36.5277 2.53885
\(208\) 1.37085 0.0950512
\(209\) 27.9206 1.93131
\(210\) 4.58281 0.316244
\(211\) −18.1359 −1.24853 −0.624264 0.781214i \(-0.714601\pi\)
−0.624264 + 0.781214i \(0.714601\pi\)
\(212\) 7.39225 0.507702
\(213\) −1.69456 −0.116109
\(214\) 0.414866 0.0283596
\(215\) 4.02235 0.274322
\(216\) 52.9547 3.60311
\(217\) −9.77450 −0.663536
\(218\) 3.48673 0.236151
\(219\) −11.8743 −0.802392
\(220\) −2.67726 −0.180501
\(221\) 0.404912 0.0272373
\(222\) 0 0
\(223\) −3.84578 −0.257532 −0.128766 0.991675i \(-0.541102\pi\)
−0.128766 + 0.991675i \(0.541102\pi\)
\(224\) −4.84076 −0.323437
\(225\) 8.15556 0.543704
\(226\) 13.1053 0.871749
\(227\) 13.8135 0.916835 0.458418 0.888737i \(-0.348416\pi\)
0.458418 + 0.888737i \(0.348416\pi\)
\(228\) 19.2662 1.27594
\(229\) 0.602997 0.0398472 0.0199236 0.999802i \(-0.493658\pi\)
0.0199236 + 0.999802i \(0.493658\pi\)
\(230\) 5.02010 0.331016
\(231\) −14.7187 −0.968423
\(232\) −9.37547 −0.615530
\(233\) 23.3424 1.52921 0.764605 0.644499i \(-0.222934\pi\)
0.764605 + 0.644499i \(0.222934\pi\)
\(234\) 6.39518 0.418066
\(235\) 8.09571 0.528106
\(236\) 0.360968 0.0234970
\(237\) 12.7392 0.827501
\(238\) 0.794131 0.0514758
\(239\) 28.0935 1.81722 0.908610 0.417645i \(-0.137145\pi\)
0.908610 + 0.417645i \(0.137145\pi\)
\(240\) 6.54454 0.422449
\(241\) −0.0364043 −0.00234501 −0.00117250 0.999999i \(-0.500373\pi\)
−0.00117250 + 0.999999i \(0.500373\pi\)
\(242\) −2.19550 −0.141132
\(243\) 58.7163 3.76665
\(244\) −0.683828 −0.0437776
\(245\) 5.50140 0.351472
\(246\) −20.9143 −1.33345
\(247\) 5.42623 0.345263
\(248\) −24.5547 −1.55922
\(249\) −38.7803 −2.45760
\(250\) 1.12084 0.0708881
\(251\) 21.4173 1.35185 0.675924 0.736971i \(-0.263745\pi\)
0.675924 + 0.736971i \(0.263745\pi\)
\(252\) −7.42514 −0.467740
\(253\) −16.1232 −1.01366
\(254\) −19.8945 −1.24829
\(255\) 1.93309 0.121055
\(256\) −15.0751 −0.942195
\(257\) 0.807757 0.0503865 0.0251933 0.999683i \(-0.491980\pi\)
0.0251933 + 0.999683i \(0.491980\pi\)
\(258\) 15.0581 0.937474
\(259\) 0 0
\(260\) −0.520312 −0.0322684
\(261\) −24.8636 −1.53902
\(262\) −1.28970 −0.0796780
\(263\) 2.43866 0.150374 0.0751871 0.997169i \(-0.476045\pi\)
0.0751871 + 0.997169i \(0.476045\pi\)
\(264\) −36.9752 −2.27567
\(265\) 9.93959 0.610584
\(266\) 10.6421 0.652512
\(267\) −48.0414 −2.94008
\(268\) −8.37195 −0.511398
\(269\) 12.1567 0.741208 0.370604 0.928791i \(-0.379151\pi\)
0.370604 + 0.928791i \(0.379151\pi\)
\(270\) 19.3003 1.17458
\(271\) −31.3028 −1.90151 −0.950755 0.309945i \(-0.899690\pi\)
−0.950755 + 0.309945i \(0.899690\pi\)
\(272\) 1.13407 0.0687630
\(273\) −2.86051 −0.173126
\(274\) −2.14236 −0.129424
\(275\) −3.59983 −0.217078
\(276\) −11.1256 −0.669681
\(277\) −23.1919 −1.39346 −0.696732 0.717331i \(-0.745363\pi\)
−0.696732 + 0.717331i \(0.745363\pi\)
\(278\) 4.23681 0.254107
\(279\) −65.1186 −3.89855
\(280\) −3.76466 −0.224982
\(281\) 21.4228 1.27798 0.638988 0.769217i \(-0.279353\pi\)
0.638988 + 0.769217i \(0.279353\pi\)
\(282\) 30.3071 1.80476
\(283\) 13.8157 0.821257 0.410628 0.911803i \(-0.365309\pi\)
0.410628 + 0.911803i \(0.365309\pi\)
\(284\) 0.377328 0.0223903
\(285\) 25.9053 1.53450
\(286\) −2.82281 −0.166916
\(287\) 6.83908 0.403698
\(288\) −32.2496 −1.90033
\(289\) −16.6650 −0.980296
\(290\) −3.41707 −0.200657
\(291\) 34.2615 2.00844
\(292\) 2.64406 0.154732
\(293\) −7.10739 −0.415218 −0.207609 0.978212i \(-0.566568\pi\)
−0.207609 + 0.978212i \(0.566568\pi\)
\(294\) 20.5950 1.20113
\(295\) 0.485356 0.0282585
\(296\) 0 0
\(297\) −61.9874 −3.59687
\(298\) 0.619275 0.0358736
\(299\) −3.13346 −0.181213
\(300\) −2.48401 −0.143415
\(301\) −4.92405 −0.283818
\(302\) −10.2648 −0.590673
\(303\) −18.3761 −1.05568
\(304\) 15.1976 0.871645
\(305\) −0.919473 −0.0526489
\(306\) 5.29057 0.302442
\(307\) −23.6385 −1.34912 −0.674560 0.738220i \(-0.735667\pi\)
−0.674560 + 0.738220i \(0.735667\pi\)
\(308\) 3.27743 0.186749
\(309\) −20.8472 −1.18596
\(310\) −8.94942 −0.508293
\(311\) 19.3609 1.09785 0.548927 0.835870i \(-0.315037\pi\)
0.548927 + 0.835870i \(0.315037\pi\)
\(312\) −7.18595 −0.406824
\(313\) −6.11046 −0.345384 −0.172692 0.984976i \(-0.555246\pi\)
−0.172692 + 0.984976i \(0.555246\pi\)
\(314\) 3.07294 0.173416
\(315\) −9.98382 −0.562524
\(316\) −2.83665 −0.159574
\(317\) −33.2406 −1.86698 −0.933490 0.358603i \(-0.883253\pi\)
−0.933490 + 0.358603i \(0.883253\pi\)
\(318\) 37.2098 2.08662
\(319\) 10.9747 0.614465
\(320\) −8.35104 −0.466838
\(321\) −1.23626 −0.0690012
\(322\) −6.14547 −0.342474
\(323\) 4.48898 0.249774
\(324\) −24.5772 −1.36540
\(325\) −0.699609 −0.0388073
\(326\) 23.6149 1.30791
\(327\) −10.3901 −0.574574
\(328\) 17.1806 0.948639
\(329\) −9.91055 −0.546387
\(330\) −13.4763 −0.741847
\(331\) −1.38735 −0.0762557 −0.0381278 0.999273i \(-0.512139\pi\)
−0.0381278 + 0.999273i \(0.512139\pi\)
\(332\) 8.63522 0.473919
\(333\) 0 0
\(334\) −11.2408 −0.615071
\(335\) −11.2569 −0.615030
\(336\) −8.01166 −0.437072
\(337\) 15.3098 0.833977 0.416989 0.908912i \(-0.363086\pi\)
0.416989 + 0.908912i \(0.363086\pi\)
\(338\) 14.0223 0.762714
\(339\) −39.0524 −2.12103
\(340\) −0.430441 −0.0233439
\(341\) 28.7431 1.55653
\(342\) 70.8989 3.83378
\(343\) −15.3039 −0.826332
\(344\) −12.3698 −0.666935
\(345\) −14.9594 −0.805387
\(346\) 14.9108 0.801610
\(347\) −27.0099 −1.44997 −0.724983 0.688767i \(-0.758152\pi\)
−0.724983 + 0.688767i \(0.758152\pi\)
\(348\) 7.57293 0.405951
\(349\) −20.3183 −1.08761 −0.543806 0.839211i \(-0.683017\pi\)
−0.543806 + 0.839211i \(0.683017\pi\)
\(350\) −1.37210 −0.0733420
\(351\) −12.0469 −0.643018
\(352\) 14.2349 0.758720
\(353\) 4.47020 0.237925 0.118962 0.992899i \(-0.462043\pi\)
0.118962 + 0.992899i \(0.462043\pi\)
\(354\) 1.81698 0.0965713
\(355\) 0.507354 0.0269275
\(356\) 10.6974 0.566960
\(357\) −2.36643 −0.125245
\(358\) 10.2628 0.542407
\(359\) −31.2742 −1.65059 −0.825295 0.564702i \(-0.808991\pi\)
−0.825295 + 0.564702i \(0.808991\pi\)
\(360\) −25.0805 −1.32186
\(361\) 41.1569 2.16615
\(362\) −23.6560 −1.24333
\(363\) 6.54236 0.343385
\(364\) 0.636952 0.0333853
\(365\) 3.55519 0.186087
\(366\) −3.44214 −0.179923
\(367\) −16.1265 −0.841796 −0.420898 0.907108i \(-0.638285\pi\)
−0.420898 + 0.907108i \(0.638285\pi\)
\(368\) −8.77612 −0.457487
\(369\) 45.5626 2.37189
\(370\) 0 0
\(371\) −12.1678 −0.631720
\(372\) 19.8338 1.02833
\(373\) −10.2403 −0.530224 −0.265112 0.964218i \(-0.585409\pi\)
−0.265112 + 0.964218i \(0.585409\pi\)
\(374\) −2.33524 −0.120752
\(375\) −3.33999 −0.172477
\(376\) −24.8965 −1.28394
\(377\) 2.13288 0.109849
\(378\) −23.6270 −1.21524
\(379\) 16.5621 0.850740 0.425370 0.905019i \(-0.360144\pi\)
0.425370 + 0.905019i \(0.360144\pi\)
\(380\) −5.76834 −0.295910
\(381\) 59.2837 3.03720
\(382\) −8.42020 −0.430815
\(383\) −18.3014 −0.935157 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(384\) −4.84822 −0.247410
\(385\) 4.40682 0.224592
\(386\) 18.5427 0.943796
\(387\) −32.8045 −1.66755
\(388\) −7.62901 −0.387304
\(389\) 14.6722 0.743908 0.371954 0.928251i \(-0.378688\pi\)
0.371954 + 0.928251i \(0.378688\pi\)
\(390\) −2.61906 −0.132621
\(391\) −2.59223 −0.131095
\(392\) −16.9183 −0.854502
\(393\) 3.84319 0.193863
\(394\) −1.95784 −0.0986346
\(395\) −3.81414 −0.191910
\(396\) 21.8345 1.09723
\(397\) −2.00229 −0.100492 −0.0502460 0.998737i \(-0.516001\pi\)
−0.0502460 + 0.998737i \(0.516001\pi\)
\(398\) −16.6135 −0.832757
\(399\) −31.7125 −1.58761
\(400\) −1.95945 −0.0979724
\(401\) 22.8854 1.14284 0.571422 0.820656i \(-0.306392\pi\)
0.571422 + 0.820656i \(0.306392\pi\)
\(402\) −42.1413 −2.10182
\(403\) 5.58608 0.278262
\(404\) 4.09181 0.203575
\(405\) −33.0464 −1.64209
\(406\) 4.18308 0.207603
\(407\) 0 0
\(408\) −5.94476 −0.294309
\(409\) −9.11629 −0.450771 −0.225386 0.974270i \(-0.572364\pi\)
−0.225386 + 0.974270i \(0.572364\pi\)
\(410\) 6.26179 0.309248
\(411\) 6.38401 0.314900
\(412\) 4.64206 0.228698
\(413\) −0.594160 −0.0292367
\(414\) −40.9417 −2.01218
\(415\) 11.6109 0.569956
\(416\) 2.76647 0.135637
\(417\) −12.6253 −0.618263
\(418\) −31.2945 −1.53067
\(419\) −8.51059 −0.415770 −0.207885 0.978153i \(-0.566658\pi\)
−0.207885 + 0.978153i \(0.566658\pi\)
\(420\) 3.04086 0.148379
\(421\) 8.83588 0.430635 0.215317 0.976544i \(-0.430921\pi\)
0.215317 + 0.976544i \(0.430921\pi\)
\(422\) 20.3274 0.989525
\(423\) −66.0250 −3.21025
\(424\) −30.5669 −1.48446
\(425\) −0.578769 −0.0280744
\(426\) 1.89933 0.0920228
\(427\) 1.12559 0.0544713
\(428\) 0.275278 0.0133061
\(429\) 8.41169 0.406120
\(430\) −4.50841 −0.217415
\(431\) −1.51065 −0.0727656 −0.0363828 0.999338i \(-0.511584\pi\)
−0.0363828 + 0.999338i \(0.511584\pi\)
\(432\) −33.7408 −1.62335
\(433\) 6.85824 0.329586 0.164793 0.986328i \(-0.447304\pi\)
0.164793 + 0.986328i \(0.447304\pi\)
\(434\) 10.9556 0.525888
\(435\) 10.1825 0.488215
\(436\) 2.31357 0.110800
\(437\) −34.7385 −1.66177
\(438\) 13.3092 0.635938
\(439\) −19.1378 −0.913398 −0.456699 0.889621i \(-0.650968\pi\)
−0.456699 + 0.889621i \(0.650968\pi\)
\(440\) 11.0705 0.527763
\(441\) −44.8670 −2.13652
\(442\) −0.453842 −0.0215871
\(443\) −2.25690 −0.107229 −0.0536144 0.998562i \(-0.517074\pi\)
−0.0536144 + 0.998562i \(0.517074\pi\)
\(444\) 0 0
\(445\) 14.3837 0.681851
\(446\) 4.31050 0.204108
\(447\) −1.84538 −0.0872834
\(448\) 10.2231 0.482997
\(449\) 24.3779 1.15046 0.575232 0.817991i \(-0.304912\pi\)
0.575232 + 0.817991i \(0.304912\pi\)
\(450\) −9.14107 −0.430914
\(451\) −20.1112 −0.946998
\(452\) 8.69581 0.409017
\(453\) 30.5881 1.43716
\(454\) −15.4827 −0.726641
\(455\) 0.856443 0.0401507
\(456\) −79.6657 −3.73069
\(457\) 14.0526 0.657352 0.328676 0.944443i \(-0.393398\pi\)
0.328676 + 0.944443i \(0.393398\pi\)
\(458\) −0.675864 −0.0315810
\(459\) −9.96613 −0.465179
\(460\) 3.33102 0.155309
\(461\) 26.4176 1.23039 0.615195 0.788375i \(-0.289077\pi\)
0.615195 + 0.788375i \(0.289077\pi\)
\(462\) 16.4974 0.767527
\(463\) −25.1424 −1.16847 −0.584233 0.811586i \(-0.698604\pi\)
−0.584233 + 0.811586i \(0.698604\pi\)
\(464\) 5.97370 0.277322
\(465\) 26.6684 1.23672
\(466\) −26.1631 −1.21198
\(467\) 14.0309 0.649271 0.324635 0.945839i \(-0.394758\pi\)
0.324635 + 0.945839i \(0.394758\pi\)
\(468\) 4.24343 0.196153
\(469\) 13.7804 0.636319
\(470\) −9.07400 −0.418552
\(471\) −9.15705 −0.421935
\(472\) −1.49260 −0.0687025
\(473\) 14.4798 0.665781
\(474\) −14.2786 −0.655839
\(475\) −7.75609 −0.355874
\(476\) 0.526934 0.0241520
\(477\) −81.0629 −3.71161
\(478\) −31.4884 −1.44024
\(479\) 6.68212 0.305314 0.152657 0.988279i \(-0.451217\pi\)
0.152657 + 0.988279i \(0.451217\pi\)
\(480\) 13.2074 0.602831
\(481\) 0 0
\(482\) 0.0408034 0.00185854
\(483\) 18.3129 0.833266
\(484\) −1.45679 −0.0662178
\(485\) −10.2579 −0.465789
\(486\) −65.8116 −2.98527
\(487\) 7.26544 0.329229 0.164614 0.986358i \(-0.447362\pi\)
0.164614 + 0.986358i \(0.447362\pi\)
\(488\) 2.82763 0.128001
\(489\) −70.3701 −3.18224
\(490\) −6.16619 −0.278560
\(491\) 0.446623 0.0201558 0.0100779 0.999949i \(-0.496792\pi\)
0.0100779 + 0.999949i \(0.496792\pi\)
\(492\) −13.8774 −0.625642
\(493\) 1.76447 0.0794679
\(494\) −6.08193 −0.273639
\(495\) 29.3586 1.31957
\(496\) 15.6453 0.702497
\(497\) −0.621089 −0.0278597
\(498\) 43.4665 1.94778
\(499\) 10.6045 0.474722 0.237361 0.971421i \(-0.423718\pi\)
0.237361 + 0.971421i \(0.423718\pi\)
\(500\) 0.743718 0.0332601
\(501\) 33.4966 1.49652
\(502\) −24.0054 −1.07141
\(503\) −13.9696 −0.622872 −0.311436 0.950267i \(-0.600810\pi\)
−0.311436 + 0.950267i \(0.600810\pi\)
\(504\) 30.7029 1.36762
\(505\) 5.50183 0.244828
\(506\) 18.0715 0.803377
\(507\) −41.7851 −1.85574
\(508\) −13.2007 −0.585687
\(509\) 39.6334 1.75672 0.878360 0.478000i \(-0.158638\pi\)
0.878360 + 0.478000i \(0.158638\pi\)
\(510\) −2.16668 −0.0959422
\(511\) −4.35217 −0.192529
\(512\) 19.7999 0.875041
\(513\) −133.556 −5.89665
\(514\) −0.905366 −0.0399340
\(515\) 6.24169 0.275042
\(516\) 9.99157 0.439854
\(517\) 29.1432 1.28172
\(518\) 0 0
\(519\) −44.4328 −1.95038
\(520\) 2.15149 0.0943489
\(521\) −31.4296 −1.37695 −0.688477 0.725258i \(-0.741720\pi\)
−0.688477 + 0.725258i \(0.741720\pi\)
\(522\) 27.8681 1.21975
\(523\) −14.3494 −0.627458 −0.313729 0.949513i \(-0.601578\pi\)
−0.313729 + 0.949513i \(0.601578\pi\)
\(524\) −0.855764 −0.0373842
\(525\) 4.08873 0.178447
\(526\) −2.73335 −0.119180
\(527\) 4.62122 0.201304
\(528\) 23.5593 1.02529
\(529\) −2.93969 −0.127813
\(530\) −11.1407 −0.483921
\(531\) −3.95835 −0.171778
\(532\) 7.06145 0.306153
\(533\) −3.90850 −0.169296
\(534\) 53.8467 2.33017
\(535\) 0.370138 0.0160025
\(536\) 34.6180 1.49527
\(537\) −30.5822 −1.31972
\(538\) −13.6257 −0.587447
\(539\) 19.8041 0.853024
\(540\) 12.8065 0.551103
\(541\) −14.4219 −0.620046 −0.310023 0.950729i \(-0.600337\pi\)
−0.310023 + 0.950729i \(0.600337\pi\)
\(542\) 35.0854 1.50705
\(543\) 70.4924 3.02512
\(544\) 2.28863 0.0981243
\(545\) 3.11081 0.133253
\(546\) 3.20618 0.137212
\(547\) −4.85582 −0.207620 −0.103810 0.994597i \(-0.533103\pi\)
−0.103810 + 0.994597i \(0.533103\pi\)
\(548\) −1.42153 −0.0607247
\(549\) 7.49881 0.320041
\(550\) 4.03484 0.172046
\(551\) 23.6457 1.00734
\(552\) 46.0042 1.95807
\(553\) 4.66917 0.198553
\(554\) 25.9944 1.10439
\(555\) 0 0
\(556\) 2.81128 0.119225
\(557\) 4.74819 0.201187 0.100594 0.994928i \(-0.467926\pi\)
0.100594 + 0.994928i \(0.467926\pi\)
\(558\) 72.9875 3.08981
\(559\) 2.81407 0.119023
\(560\) 2.39870 0.101364
\(561\) 6.95878 0.293800
\(562\) −24.0115 −1.01286
\(563\) −12.4349 −0.524069 −0.262035 0.965058i \(-0.584393\pi\)
−0.262035 + 0.965058i \(0.584393\pi\)
\(564\) 20.1098 0.846777
\(565\) 11.6924 0.491901
\(566\) −15.4852 −0.650890
\(567\) 40.4546 1.69893
\(568\) −1.56025 −0.0654666
\(569\) −11.9189 −0.499666 −0.249833 0.968289i \(-0.580376\pi\)
−0.249833 + 0.968289i \(0.580376\pi\)
\(570\) −29.0357 −1.21617
\(571\) −27.4093 −1.14704 −0.573522 0.819190i \(-0.694423\pi\)
−0.573522 + 0.819190i \(0.694423\pi\)
\(572\) −1.87304 −0.0783155
\(573\) 25.0914 1.04821
\(574\) −7.66552 −0.319952
\(575\) 4.47887 0.186782
\(576\) 68.1074 2.83781
\(577\) 6.47915 0.269731 0.134865 0.990864i \(-0.456940\pi\)
0.134865 + 0.990864i \(0.456940\pi\)
\(578\) 18.6788 0.776937
\(579\) −55.2553 −2.29633
\(580\) −2.26735 −0.0941465
\(581\) −14.2137 −0.589685
\(582\) −38.4016 −1.59180
\(583\) 35.7809 1.48189
\(584\) −10.9332 −0.452418
\(585\) 5.70570 0.235902
\(586\) 7.96625 0.329083
\(587\) −38.8629 −1.60404 −0.802022 0.597295i \(-0.796242\pi\)
−0.802022 + 0.597295i \(0.796242\pi\)
\(588\) 13.6655 0.563558
\(589\) 61.9290 2.55174
\(590\) −0.544006 −0.0223964
\(591\) 5.83418 0.239986
\(592\) 0 0
\(593\) 35.6076 1.46223 0.731115 0.682254i \(-0.239000\pi\)
0.731115 + 0.682254i \(0.239000\pi\)
\(594\) 69.4780 2.85072
\(595\) 0.708514 0.0290462
\(596\) 0.410911 0.0168316
\(597\) 49.5065 2.02617
\(598\) 3.51211 0.143621
\(599\) 16.9233 0.691469 0.345735 0.938332i \(-0.387630\pi\)
0.345735 + 0.938332i \(0.387630\pi\)
\(600\) 10.2714 0.419327
\(601\) −13.2569 −0.540760 −0.270380 0.962754i \(-0.587149\pi\)
−0.270380 + 0.962754i \(0.587149\pi\)
\(602\) 5.51908 0.224941
\(603\) 91.8062 3.73864
\(604\) −6.81107 −0.277139
\(605\) −1.95880 −0.0796364
\(606\) 20.5966 0.836681
\(607\) 5.76173 0.233861 0.116931 0.993140i \(-0.462694\pi\)
0.116931 + 0.993140i \(0.462694\pi\)
\(608\) 30.6700 1.24383
\(609\) −12.4652 −0.505114
\(610\) 1.03058 0.0417270
\(611\) 5.66383 0.229134
\(612\) 3.51049 0.141903
\(613\) −33.3853 −1.34842 −0.674210 0.738540i \(-0.735516\pi\)
−0.674210 + 0.738540i \(0.735516\pi\)
\(614\) 26.4950 1.06925
\(615\) −18.6595 −0.752424
\(616\) −13.5522 −0.546032
\(617\) −33.6754 −1.35572 −0.677860 0.735191i \(-0.737092\pi\)
−0.677860 + 0.735191i \(0.737092\pi\)
\(618\) 23.3664 0.939934
\(619\) 28.0530 1.12755 0.563774 0.825929i \(-0.309349\pi\)
0.563774 + 0.825929i \(0.309349\pi\)
\(620\) −5.93827 −0.238486
\(621\) 77.1241 3.09488
\(622\) −21.7004 −0.870108
\(623\) −17.6081 −0.705454
\(624\) 4.57862 0.183292
\(625\) 1.00000 0.0400000
\(626\) 6.84885 0.273735
\(627\) 93.2547 3.72423
\(628\) 2.03900 0.0813652
\(629\) 0 0
\(630\) 11.1903 0.445831
\(631\) −31.6599 −1.26036 −0.630181 0.776448i \(-0.717019\pi\)
−0.630181 + 0.776448i \(0.717019\pi\)
\(632\) 11.7295 0.466575
\(633\) −60.5738 −2.40759
\(634\) 37.2574 1.47968
\(635\) −17.7496 −0.704373
\(636\) 24.6901 0.979025
\(637\) 3.84883 0.152496
\(638\) −12.3009 −0.486996
\(639\) −4.13775 −0.163687
\(640\) 1.45157 0.0573782
\(641\) −2.08696 −0.0824299 −0.0412149 0.999150i \(-0.513123\pi\)
−0.0412149 + 0.999150i \(0.513123\pi\)
\(642\) 1.38565 0.0546872
\(643\) −1.07099 −0.0422359 −0.0211179 0.999777i \(-0.506723\pi\)
−0.0211179 + 0.999777i \(0.506723\pi\)
\(644\) −4.07774 −0.160686
\(645\) 13.4346 0.528988
\(646\) −5.03143 −0.197959
\(647\) 34.8927 1.37177 0.685886 0.727709i \(-0.259415\pi\)
0.685886 + 0.727709i \(0.259415\pi\)
\(648\) 101.627 3.99227
\(649\) 1.74720 0.0685836
\(650\) 0.784150 0.0307569
\(651\) −32.6468 −1.27953
\(652\) 15.6693 0.613658
\(653\) 1.96349 0.0768372 0.0384186 0.999262i \(-0.487768\pi\)
0.0384186 + 0.999262i \(0.487768\pi\)
\(654\) 11.6456 0.455381
\(655\) −1.15066 −0.0449599
\(656\) −10.9468 −0.427402
\(657\) −28.9946 −1.13119
\(658\) 11.1081 0.433041
\(659\) 19.5562 0.761802 0.380901 0.924616i \(-0.375614\pi\)
0.380901 + 0.924616i \(0.375614\pi\)
\(660\) −8.94203 −0.348068
\(661\) −1.97420 −0.0767873 −0.0383937 0.999263i \(-0.512224\pi\)
−0.0383937 + 0.999263i \(0.512224\pi\)
\(662\) 1.55500 0.0604367
\(663\) 1.35240 0.0525230
\(664\) −35.7066 −1.38568
\(665\) 9.49479 0.368192
\(666\) 0 0
\(667\) −13.6546 −0.528708
\(668\) −7.45870 −0.288586
\(669\) −12.8449 −0.496611
\(670\) 12.6172 0.487444
\(671\) −3.30995 −0.127779
\(672\) −16.1681 −0.623698
\(673\) 20.6652 0.796583 0.398292 0.917259i \(-0.369603\pi\)
0.398292 + 0.917259i \(0.369603\pi\)
\(674\) −17.1598 −0.660971
\(675\) 17.2195 0.662780
\(676\) 9.30432 0.357858
\(677\) −10.7458 −0.412994 −0.206497 0.978447i \(-0.566206\pi\)
−0.206497 + 0.978447i \(0.566206\pi\)
\(678\) 43.7715 1.68103
\(679\) 12.5575 0.481913
\(680\) 1.77987 0.0682549
\(681\) 46.1371 1.76798
\(682\) −32.2164 −1.23363
\(683\) −12.0523 −0.461170 −0.230585 0.973052i \(-0.574064\pi\)
−0.230585 + 0.973052i \(0.574064\pi\)
\(684\) 47.0440 1.79877
\(685\) −1.91138 −0.0730302
\(686\) 17.1532 0.654912
\(687\) 2.01401 0.0768392
\(688\) 7.88159 0.300483
\(689\) 6.95383 0.264920
\(690\) 16.7671 0.638313
\(691\) 10.3135 0.392344 0.196172 0.980570i \(-0.437149\pi\)
0.196172 + 0.980570i \(0.437149\pi\)
\(692\) 9.89386 0.376108
\(693\) −35.9401 −1.36525
\(694\) 30.2737 1.14917
\(695\) 3.78003 0.143385
\(696\) −31.3140 −1.18695
\(697\) −3.23341 −0.122474
\(698\) 22.7735 0.861991
\(699\) 77.9634 2.94885
\(700\) −0.910439 −0.0344114
\(701\) −35.5154 −1.34140 −0.670699 0.741729i \(-0.734006\pi\)
−0.670699 + 0.741729i \(0.734006\pi\)
\(702\) 13.5027 0.509626
\(703\) 0 0
\(704\) −30.0624 −1.13302
\(705\) 27.0396 1.01837
\(706\) −5.01038 −0.188568
\(707\) −6.73519 −0.253303
\(708\) 1.20563 0.0453104
\(709\) 32.6695 1.22693 0.613465 0.789722i \(-0.289775\pi\)
0.613465 + 0.789722i \(0.289775\pi\)
\(710\) −0.568663 −0.0213415
\(711\) 31.1065 1.16658
\(712\) −44.2336 −1.65773
\(713\) −35.7619 −1.33929
\(714\) 2.65239 0.0992632
\(715\) −2.51848 −0.0941857
\(716\) 6.80975 0.254492
\(717\) 93.8323 3.50423
\(718\) 35.0534 1.30818
\(719\) 32.6486 1.21759 0.608794 0.793328i \(-0.291653\pi\)
0.608794 + 0.793328i \(0.291653\pi\)
\(720\) 15.9804 0.595554
\(721\) −7.64092 −0.284563
\(722\) −46.1302 −1.71679
\(723\) −0.121590 −0.00452198
\(724\) −15.6966 −0.583359
\(725\) −3.04867 −0.113225
\(726\) −7.33294 −0.272151
\(727\) 14.1820 0.525980 0.262990 0.964799i \(-0.415291\pi\)
0.262990 + 0.964799i \(0.415291\pi\)
\(728\) −2.63379 −0.0976148
\(729\) 96.9728 3.59158
\(730\) −3.98480 −0.147484
\(731\) 2.32801 0.0861046
\(732\) −2.28398 −0.0844184
\(733\) 19.4533 0.718526 0.359263 0.933236i \(-0.383028\pi\)
0.359263 + 0.933236i \(0.383028\pi\)
\(734\) 18.0752 0.667168
\(735\) 18.3746 0.677759
\(736\) −17.7108 −0.652831
\(737\) −40.5229 −1.49268
\(738\) −51.0684 −1.87985
\(739\) −52.1774 −1.91938 −0.959689 0.281063i \(-0.909313\pi\)
−0.959689 + 0.281063i \(0.909313\pi\)
\(740\) 0 0
\(741\) 18.1236 0.665786
\(742\) 13.6381 0.500672
\(743\) 13.3673 0.490397 0.245198 0.969473i \(-0.421147\pi\)
0.245198 + 0.969473i \(0.421147\pi\)
\(744\) −82.0125 −3.00672
\(745\) 0.552510 0.0202424
\(746\) 11.4778 0.420231
\(747\) −94.6932 −3.46464
\(748\) −1.54952 −0.0566559
\(749\) −0.453113 −0.0165564
\(750\) 3.74360 0.136697
\(751\) 16.7410 0.610887 0.305443 0.952210i \(-0.401195\pi\)
0.305443 + 0.952210i \(0.401195\pi\)
\(752\) 15.8631 0.578469
\(753\) 71.5337 2.60683
\(754\) −2.39061 −0.0870609
\(755\) −9.15814 −0.333299
\(756\) −15.6773 −0.570179
\(757\) 11.2787 0.409932 0.204966 0.978769i \(-0.434292\pi\)
0.204966 + 0.978769i \(0.434292\pi\)
\(758\) −18.5635 −0.674257
\(759\) −53.8514 −1.95468
\(760\) 23.8520 0.865205
\(761\) −46.7462 −1.69455 −0.847275 0.531155i \(-0.821758\pi\)
−0.847275 + 0.531155i \(0.821758\pi\)
\(762\) −66.4475 −2.40714
\(763\) −3.80818 −0.137865
\(764\) −5.58711 −0.202134
\(765\) 4.72019 0.170659
\(766\) 20.5129 0.741162
\(767\) 0.339559 0.0122608
\(768\) −50.3508 −1.81688
\(769\) −37.8487 −1.36486 −0.682430 0.730951i \(-0.739077\pi\)
−0.682430 + 0.730951i \(0.739077\pi\)
\(770\) −4.93934 −0.178001
\(771\) 2.69790 0.0971626
\(772\) 12.3037 0.442821
\(773\) −4.14880 −0.149222 −0.0746110 0.997213i \(-0.523772\pi\)
−0.0746110 + 0.997213i \(0.523772\pi\)
\(774\) 36.7686 1.32162
\(775\) −7.98457 −0.286814
\(776\) 31.5459 1.13243
\(777\) 0 0
\(778\) −16.4451 −0.589587
\(779\) −43.3309 −1.55249
\(780\) −1.73784 −0.0622246
\(781\) 1.82639 0.0653533
\(782\) 2.90548 0.103900
\(783\) −52.4966 −1.87608
\(784\) 10.7797 0.384990
\(785\) 2.74164 0.0978533
\(786\) −4.30760 −0.153647
\(787\) −42.8205 −1.52639 −0.763193 0.646170i \(-0.776370\pi\)
−0.763193 + 0.646170i \(0.776370\pi\)
\(788\) −1.29910 −0.0462785
\(789\) 8.14511 0.289974
\(790\) 4.27504 0.152099
\(791\) −14.3135 −0.508928
\(792\) −90.2857 −3.20816
\(793\) −0.643271 −0.0228432
\(794\) 2.24424 0.0796452
\(795\) 33.1982 1.17742
\(796\) −11.0236 −0.390722
\(797\) 37.6312 1.33296 0.666482 0.745521i \(-0.267799\pi\)
0.666482 + 0.745521i \(0.267799\pi\)
\(798\) 35.5447 1.25827
\(799\) 4.68555 0.165763
\(800\) −3.95431 −0.139806
\(801\) −117.307 −4.14483
\(802\) −25.6509 −0.905765
\(803\) 12.7981 0.451635
\(804\) −27.9623 −0.986153
\(805\) −5.48292 −0.193247
\(806\) −6.26110 −0.220538
\(807\) 40.6033 1.42931
\(808\) −16.9196 −0.595230
\(809\) 23.5674 0.828585 0.414292 0.910144i \(-0.364029\pi\)
0.414292 + 0.910144i \(0.364029\pi\)
\(810\) 37.0398 1.30144
\(811\) −49.4319 −1.73579 −0.867894 0.496749i \(-0.834527\pi\)
−0.867894 + 0.496749i \(0.834527\pi\)
\(812\) 2.77563 0.0974054
\(813\) −104.551 −3.66677
\(814\) 0 0
\(815\) 21.0689 0.738012
\(816\) 3.78778 0.132599
\(817\) 31.1977 1.09147
\(818\) 10.2179 0.357261
\(819\) −6.98477 −0.244068
\(820\) 4.15492 0.145096
\(821\) 25.3706 0.885442 0.442721 0.896659i \(-0.354013\pi\)
0.442721 + 0.896659i \(0.354013\pi\)
\(822\) −7.15545 −0.249575
\(823\) −8.17024 −0.284797 −0.142398 0.989809i \(-0.545481\pi\)
−0.142398 + 0.989809i \(0.545481\pi\)
\(824\) −19.1949 −0.668686
\(825\) −12.0234 −0.418602
\(826\) 0.665958 0.0231716
\(827\) 0.990119 0.0344298 0.0172149 0.999852i \(-0.494520\pi\)
0.0172149 + 0.999852i \(0.494520\pi\)
\(828\) −27.1663 −0.944094
\(829\) 26.1236 0.907309 0.453654 0.891178i \(-0.350120\pi\)
0.453654 + 0.891178i \(0.350120\pi\)
\(830\) −13.0139 −0.451721
\(831\) −77.4607 −2.68708
\(832\) −5.84247 −0.202551
\(833\) 3.18404 0.110320
\(834\) 14.1509 0.490006
\(835\) −10.0289 −0.347066
\(836\) −20.7651 −0.718174
\(837\) −137.490 −4.75237
\(838\) 9.53901 0.329520
\(839\) −40.1247 −1.38526 −0.692629 0.721294i \(-0.743548\pi\)
−0.692629 + 0.721294i \(0.743548\pi\)
\(840\) −12.5739 −0.433842
\(841\) −19.7056 −0.679505
\(842\) −9.90361 −0.341301
\(843\) 71.5519 2.46438
\(844\) 13.4880 0.464276
\(845\) 12.5105 0.430376
\(846\) 74.0035 2.54429
\(847\) 2.39791 0.0823930
\(848\) 19.4761 0.668812
\(849\) 46.1443 1.58367
\(850\) 0.648708 0.0222505
\(851\) 0 0
\(852\) 1.26027 0.0431763
\(853\) 32.6763 1.11882 0.559408 0.828892i \(-0.311029\pi\)
0.559408 + 0.828892i \(0.311029\pi\)
\(854\) −1.26161 −0.0431714
\(855\) 63.2552 2.16328
\(856\) −1.13827 −0.0389054
\(857\) 9.95029 0.339896 0.169948 0.985453i \(-0.445640\pi\)
0.169948 + 0.985453i \(0.445640\pi\)
\(858\) −9.42816 −0.321872
\(859\) −4.53739 −0.154814 −0.0774068 0.997000i \(-0.524664\pi\)
−0.0774068 + 0.997000i \(0.524664\pi\)
\(860\) −2.99149 −0.102009
\(861\) 22.8425 0.778470
\(862\) 1.69320 0.0576706
\(863\) 3.45484 0.117604 0.0588020 0.998270i \(-0.481272\pi\)
0.0588020 + 0.998270i \(0.481272\pi\)
\(864\) −68.0913 −2.31651
\(865\) 13.3032 0.452324
\(866\) −7.68698 −0.261214
\(867\) −55.6611 −1.89035
\(868\) 7.26947 0.246742
\(869\) −13.7303 −0.465768
\(870\) −11.4130 −0.386936
\(871\) −7.87543 −0.266849
\(872\) −9.56659 −0.323966
\(873\) 83.6592 2.83144
\(874\) 38.9363 1.31704
\(875\) −1.22417 −0.0413846
\(876\) 8.83114 0.298377
\(877\) −23.2726 −0.785861 −0.392931 0.919568i \(-0.628539\pi\)
−0.392931 + 0.919568i \(0.628539\pi\)
\(878\) 21.4504 0.723917
\(879\) −23.7386 −0.800684
\(880\) −7.05369 −0.237780
\(881\) 12.3245 0.415224 0.207612 0.978211i \(-0.433431\pi\)
0.207612 + 0.978211i \(0.433431\pi\)
\(882\) 50.2887 1.69331
\(883\) −17.6556 −0.594157 −0.297078 0.954853i \(-0.596012\pi\)
−0.297078 + 0.954853i \(0.596012\pi\)
\(884\) −0.301140 −0.0101284
\(885\) 1.62109 0.0544922
\(886\) 2.52963 0.0849845
\(887\) 40.8268 1.37083 0.685415 0.728153i \(-0.259621\pi\)
0.685415 + 0.728153i \(0.259621\pi\)
\(888\) 0 0
\(889\) 21.7286 0.728755
\(890\) −16.1218 −0.540404
\(891\) −118.962 −3.98537
\(892\) 2.86017 0.0957657
\(893\) 62.7910 2.10122
\(894\) 2.06837 0.0691768
\(895\) 9.15637 0.306064
\(896\) −1.77697 −0.0593644
\(897\) −10.4657 −0.349441
\(898\) −27.3237 −0.911804
\(899\) 24.3423 0.811861
\(900\) −6.06543 −0.202181
\(901\) 5.75273 0.191651
\(902\) 22.5414 0.750546
\(903\) −16.4463 −0.547299
\(904\) −35.9571 −1.19592
\(905\) −21.1056 −0.701573
\(906\) −34.2844 −1.13902
\(907\) 57.3101 1.90295 0.951475 0.307725i \(-0.0995677\pi\)
0.951475 + 0.307725i \(0.0995677\pi\)
\(908\) −10.2734 −0.340933
\(909\) −44.8705 −1.48826
\(910\) −0.959935 −0.0318215
\(911\) 21.6237 0.716426 0.358213 0.933640i \(-0.383386\pi\)
0.358213 + 0.933640i \(0.383386\pi\)
\(912\) 50.7600 1.68083
\(913\) 41.7972 1.38329
\(914\) −15.7507 −0.520986
\(915\) −3.07103 −0.101525
\(916\) −0.448460 −0.0148175
\(917\) 1.40860 0.0465162
\(918\) 11.1704 0.368679
\(919\) −30.6901 −1.01237 −0.506186 0.862424i \(-0.668945\pi\)
−0.506186 + 0.862424i \(0.668945\pi\)
\(920\) −13.7737 −0.454107
\(921\) −78.9524 −2.60157
\(922\) −29.6099 −0.975149
\(923\) 0.354949 0.0116833
\(924\) 10.9466 0.360117
\(925\) 0 0
\(926\) 28.1806 0.926071
\(927\) −50.9045 −1.67192
\(928\) 12.0554 0.395737
\(929\) −8.88293 −0.291439 −0.145720 0.989326i \(-0.546550\pi\)
−0.145720 + 0.989326i \(0.546550\pi\)
\(930\) −29.8910 −0.980165
\(931\) 42.6693 1.39843
\(932\) −17.3601 −0.568650
\(933\) 64.6652 2.11704
\(934\) −15.7263 −0.514582
\(935\) −2.08347 −0.0681368
\(936\) −17.5466 −0.573527
\(937\) 0.612588 0.0200124 0.0100062 0.999950i \(-0.496815\pi\)
0.0100062 + 0.999950i \(0.496815\pi\)
\(938\) −15.4456 −0.504317
\(939\) −20.4089 −0.666019
\(940\) −6.02092 −0.196381
\(941\) 33.3892 1.08846 0.544229 0.838937i \(-0.316822\pi\)
0.544229 + 0.838937i \(0.316822\pi\)
\(942\) 10.2636 0.334406
\(943\) 25.0221 0.814831
\(944\) 0.951030 0.0309534
\(945\) −21.0797 −0.685722
\(946\) −16.2295 −0.527667
\(947\) 10.3642 0.336791 0.168396 0.985720i \(-0.446141\pi\)
0.168396 + 0.985720i \(0.446141\pi\)
\(948\) −9.47438 −0.307714
\(949\) 2.48724 0.0807394
\(950\) 8.69333 0.282049
\(951\) −111.024 −3.60018
\(952\) −2.17887 −0.0706176
\(953\) 14.8894 0.482316 0.241158 0.970486i \(-0.422473\pi\)
0.241158 + 0.970486i \(0.422473\pi\)
\(954\) 90.8585 2.94165
\(955\) −7.51240 −0.243096
\(956\) −20.8937 −0.675749
\(957\) 36.6554 1.18490
\(958\) −7.48959 −0.241978
\(959\) 2.33986 0.0755582
\(960\) −27.8924 −0.900224
\(961\) 32.7533 1.05656
\(962\) 0 0
\(963\) −3.01868 −0.0972757
\(964\) 0.0270745 0.000872012 0
\(965\) 16.5435 0.532555
\(966\) −20.5258 −0.660408
\(967\) −43.3076 −1.39268 −0.696339 0.717713i \(-0.745189\pi\)
−0.696339 + 0.717713i \(0.745189\pi\)
\(968\) 6.02382 0.193613
\(969\) 14.9932 0.481650
\(970\) 11.4975 0.369163
\(971\) 8.91383 0.286058 0.143029 0.989718i \(-0.454316\pi\)
0.143029 + 0.989718i \(0.454316\pi\)
\(972\) −43.6684 −1.40066
\(973\) −4.62741 −0.148348
\(974\) −8.14340 −0.260931
\(975\) −2.33669 −0.0748340
\(976\) −1.80166 −0.0576697
\(977\) −13.3726 −0.427829 −0.213914 0.976852i \(-0.568621\pi\)
−0.213914 + 0.976852i \(0.568621\pi\)
\(978\) 78.8736 2.52210
\(979\) 51.7788 1.65486
\(980\) −4.09149 −0.130698
\(981\) −25.3704 −0.810015
\(982\) −0.500593 −0.0159746
\(983\) −23.1318 −0.737789 −0.368894 0.929471i \(-0.620264\pi\)
−0.368894 + 0.929471i \(0.620264\pi\)
\(984\) 57.3830 1.82930
\(985\) −1.74676 −0.0556565
\(986\) −1.97769 −0.0629826
\(987\) −33.1012 −1.05362
\(988\) −4.03558 −0.128389
\(989\) −18.0156 −0.572863
\(990\) −32.9063 −1.04583
\(991\) −14.4144 −0.457887 −0.228944 0.973440i \(-0.573527\pi\)
−0.228944 + 0.973440i \(0.573527\pi\)
\(992\) 31.5735 1.00246
\(993\) −4.63374 −0.147047
\(994\) 0.696142 0.0220803
\(995\) −14.8223 −0.469899
\(996\) 28.8416 0.913880
\(997\) 1.01895 0.0322706 0.0161353 0.999870i \(-0.494864\pi\)
0.0161353 + 0.999870i \(0.494864\pi\)
\(998\) −11.8859 −0.376243
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6845.2.a.k.1.3 7
37.11 even 6 185.2.e.a.121.3 yes 14
37.27 even 6 185.2.e.a.26.3 14
37.36 even 2 6845.2.a.l.1.5 7
185.27 odd 12 925.2.o.b.174.10 28
185.48 odd 12 925.2.o.b.824.10 28
185.64 even 6 925.2.e.c.26.5 14
185.122 odd 12 925.2.o.b.824.5 28
185.138 odd 12 925.2.o.b.174.5 28
185.159 even 6 925.2.e.c.676.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.3 14 37.27 even 6
185.2.e.a.121.3 yes 14 37.11 even 6
925.2.e.c.26.5 14 185.64 even 6
925.2.e.c.676.5 14 185.159 even 6
925.2.o.b.174.5 28 185.138 odd 12
925.2.o.b.174.10 28 185.27 odd 12
925.2.o.b.824.5 28 185.122 odd 12
925.2.o.b.824.10 28 185.48 odd 12
6845.2.a.k.1.3 7 1.1 even 1 trivial
6845.2.a.l.1.5 7 37.36 even 2