Properties

Label 6800.2.a.cg.1.2
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,0,0,1,0,6,0,6,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1981136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 10x^{2} + 18x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3400)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.50269\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.50269 q^{3} -4.25913 q^{7} -0.741913 q^{9} +5.60408 q^{11} -5.09704 q^{13} +1.00000 q^{17} +3.67930 q^{19} +6.40016 q^{21} -2.08252 q^{23} +5.62295 q^{27} -5.88207 q^{29} +8.50808 q^{31} -8.42121 q^{33} -2.48191 q^{37} +7.65929 q^{39} -10.5633 q^{41} -10.0848 q^{43} +1.28105 q^{47} +11.1402 q^{49} -1.50269 q^{51} -1.32070 q^{53} -5.52886 q^{57} -11.7607 q^{59} -12.0814 q^{61} +3.15990 q^{63} -4.52695 q^{67} +3.12939 q^{69} +0.0273119 q^{71} -7.67930 q^{73} -23.8685 q^{77} -7.94712 q^{79} -6.22383 q^{81} +12.8840 q^{83} +8.83895 q^{87} +12.3228 q^{89} +21.7089 q^{91} -12.7850 q^{93} +5.70487 q^{97} -4.15774 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} + q^{7} + 6 q^{9} + 6 q^{11} - 3 q^{13} + 5 q^{17} + 6 q^{19} + 7 q^{21} + 10 q^{23} + 15 q^{27} + 6 q^{29} + 11 q^{31} - 20 q^{33} - 2 q^{37} - 9 q^{39} + 4 q^{41} + 8 q^{43} + 10 q^{47}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50269 −0.867580 −0.433790 0.901014i \(-0.642824\pi\)
−0.433790 + 0.901014i \(0.642824\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.25913 −1.60980 −0.804899 0.593411i \(-0.797781\pi\)
−0.804899 + 0.593411i \(0.797781\pi\)
\(8\) 0 0
\(9\) −0.741913 −0.247304
\(10\) 0 0
\(11\) 5.60408 1.68969 0.844847 0.535008i \(-0.179691\pi\)
0.844847 + 0.535008i \(0.179691\pi\)
\(12\) 0 0
\(13\) −5.09704 −1.41366 −0.706832 0.707381i \(-0.749876\pi\)
−0.706832 + 0.707381i \(0.749876\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 3.67930 0.844089 0.422045 0.906575i \(-0.361313\pi\)
0.422045 + 0.906575i \(0.361313\pi\)
\(20\) 0 0
\(21\) 6.40016 1.39663
\(22\) 0 0
\(23\) −2.08252 −0.434235 −0.217118 0.976145i \(-0.569666\pi\)
−0.217118 + 0.976145i \(0.569666\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.62295 1.08214
\(28\) 0 0
\(29\) −5.88207 −1.09227 −0.546137 0.837696i \(-0.683902\pi\)
−0.546137 + 0.837696i \(0.683902\pi\)
\(30\) 0 0
\(31\) 8.50808 1.52810 0.764048 0.645159i \(-0.223209\pi\)
0.764048 + 0.645159i \(0.223209\pi\)
\(32\) 0 0
\(33\) −8.42121 −1.46595
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.48191 −0.408024 −0.204012 0.978968i \(-0.565398\pi\)
−0.204012 + 0.978968i \(0.565398\pi\)
\(38\) 0 0
\(39\) 7.65929 1.22647
\(40\) 0 0
\(41\) −10.5633 −1.64971 −0.824854 0.565346i \(-0.808743\pi\)
−0.824854 + 0.565346i \(0.808743\pi\)
\(42\) 0 0
\(43\) −10.0848 −1.53792 −0.768962 0.639294i \(-0.779227\pi\)
−0.768962 + 0.639294i \(0.779227\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.28105 0.186861 0.0934303 0.995626i \(-0.470217\pi\)
0.0934303 + 0.995626i \(0.470217\pi\)
\(48\) 0 0
\(49\) 11.1402 1.59145
\(50\) 0 0
\(51\) −1.50269 −0.210419
\(52\) 0 0
\(53\) −1.32070 −0.181412 −0.0907060 0.995878i \(-0.528912\pi\)
−0.0907060 + 0.995878i \(0.528912\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.52886 −0.732315
\(58\) 0 0
\(59\) −11.7607 −1.53111 −0.765555 0.643371i \(-0.777535\pi\)
−0.765555 + 0.643371i \(0.777535\pi\)
\(60\) 0 0
\(61\) −12.0814 −1.54686 −0.773431 0.633881i \(-0.781461\pi\)
−0.773431 + 0.633881i \(0.781461\pi\)
\(62\) 0 0
\(63\) 3.15990 0.398110
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.52695 −0.553055 −0.276527 0.961006i \(-0.589184\pi\)
−0.276527 + 0.961006i \(0.589184\pi\)
\(68\) 0 0
\(69\) 3.12939 0.376734
\(70\) 0 0
\(71\) 0.0273119 0.00324132 0.00162066 0.999999i \(-0.499484\pi\)
0.00162066 + 0.999999i \(0.499484\pi\)
\(72\) 0 0
\(73\) −7.67930 −0.898794 −0.449397 0.893332i \(-0.648361\pi\)
−0.449397 + 0.893332i \(0.648361\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −23.8685 −2.72007
\(78\) 0 0
\(79\) −7.94712 −0.894121 −0.447060 0.894504i \(-0.647529\pi\)
−0.447060 + 0.894504i \(0.647529\pi\)
\(80\) 0 0
\(81\) −6.22383 −0.691536
\(82\) 0 0
\(83\) 12.8840 1.41420 0.707101 0.707113i \(-0.250003\pi\)
0.707101 + 0.707113i \(0.250003\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.83895 0.947635
\(88\) 0 0
\(89\) 12.3228 1.30621 0.653106 0.757267i \(-0.273466\pi\)
0.653106 + 0.757267i \(0.273466\pi\)
\(90\) 0 0
\(91\) 21.7089 2.27572
\(92\) 0 0
\(93\) −12.7850 −1.32575
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.70487 0.579242 0.289621 0.957141i \(-0.406471\pi\)
0.289621 + 0.957141i \(0.406471\pi\)
\(98\) 0 0
\(99\) −4.15774 −0.417869
\(100\) 0 0
\(101\) 5.06800 0.504285 0.252142 0.967690i \(-0.418865\pi\)
0.252142 + 0.967690i \(0.418865\pi\)
\(102\) 0 0
\(103\) −5.35860 −0.527999 −0.263999 0.964523i \(-0.585042\pi\)
−0.263999 + 0.964523i \(0.585042\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.2955 1.76869 0.884345 0.466834i \(-0.154606\pi\)
0.884345 + 0.466834i \(0.154606\pi\)
\(108\) 0 0
\(109\) −10.4090 −0.997003 −0.498502 0.866889i \(-0.666116\pi\)
−0.498502 + 0.866889i \(0.666116\pi\)
\(110\) 0 0
\(111\) 3.72955 0.353994
\(112\) 0 0
\(113\) 13.7555 1.29400 0.647002 0.762488i \(-0.276022\pi\)
0.647002 + 0.762488i \(0.276022\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.78156 0.349605
\(118\) 0 0
\(119\) −4.25913 −0.390434
\(120\) 0 0
\(121\) 20.4057 1.85506
\(122\) 0 0
\(123\) 15.8734 1.43125
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.2014 −0.905226 −0.452613 0.891707i \(-0.649508\pi\)
−0.452613 + 0.891707i \(0.649508\pi\)
\(128\) 0 0
\(129\) 15.1544 1.33427
\(130\) 0 0
\(131\) −9.30955 −0.813379 −0.406689 0.913566i \(-0.633317\pi\)
−0.406689 + 0.913566i \(0.633317\pi\)
\(132\) 0 0
\(133\) −15.6706 −1.35881
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.49181 0.298326 0.149163 0.988813i \(-0.452342\pi\)
0.149163 + 0.988813i \(0.452342\pi\)
\(138\) 0 0
\(139\) −12.0244 −1.01990 −0.509949 0.860205i \(-0.670336\pi\)
−0.509949 + 0.860205i \(0.670336\pi\)
\(140\) 0 0
\(141\) −1.92503 −0.162117
\(142\) 0 0
\(143\) −28.5642 −2.38866
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −16.7402 −1.38071
\(148\) 0 0
\(149\) −9.01077 −0.738191 −0.369096 0.929391i \(-0.620333\pi\)
−0.369096 + 0.929391i \(0.620333\pi\)
\(150\) 0 0
\(151\) −7.60293 −0.618718 −0.309359 0.950945i \(-0.600114\pi\)
−0.309359 + 0.950945i \(0.600114\pi\)
\(152\) 0 0
\(153\) −0.741913 −0.0599801
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.0989 1.28483 0.642417 0.766355i \(-0.277932\pi\)
0.642417 + 0.766355i \(0.277932\pi\)
\(158\) 0 0
\(159\) 1.98461 0.157390
\(160\) 0 0
\(161\) 8.86972 0.699031
\(162\) 0 0
\(163\) 13.0190 1.01973 0.509865 0.860255i \(-0.329695\pi\)
0.509865 + 0.860255i \(0.329695\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.8272 1.68904 0.844520 0.535524i \(-0.179886\pi\)
0.844520 + 0.535524i \(0.179886\pi\)
\(168\) 0 0
\(169\) 12.9798 0.998448
\(170\) 0 0
\(171\) −2.72972 −0.208747
\(172\) 0 0
\(173\) 12.7245 0.967426 0.483713 0.875227i \(-0.339288\pi\)
0.483713 + 0.875227i \(0.339288\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 17.6727 1.32836
\(178\) 0 0
\(179\) 15.1085 1.12926 0.564631 0.825343i \(-0.309018\pi\)
0.564631 + 0.825343i \(0.309018\pi\)
\(180\) 0 0
\(181\) 25.6085 1.90346 0.951732 0.306930i \(-0.0993019\pi\)
0.951732 + 0.306930i \(0.0993019\pi\)
\(182\) 0 0
\(183\) 18.1546 1.34203
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.60408 0.409811
\(188\) 0 0
\(189\) −23.9488 −1.74202
\(190\) 0 0
\(191\) 13.0708 0.945768 0.472884 0.881125i \(-0.343213\pi\)
0.472884 + 0.881125i \(0.343213\pi\)
\(192\) 0 0
\(193\) −3.24242 −0.233395 −0.116697 0.993168i \(-0.537231\pi\)
−0.116697 + 0.993168i \(0.537231\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.32956 −0.379715 −0.189858 0.981812i \(-0.560803\pi\)
−0.189858 + 0.981812i \(0.560803\pi\)
\(198\) 0 0
\(199\) −23.8505 −1.69072 −0.845358 0.534200i \(-0.820613\pi\)
−0.845358 + 0.534200i \(0.820613\pi\)
\(200\) 0 0
\(201\) 6.80261 0.479819
\(202\) 0 0
\(203\) 25.0525 1.75834
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.54505 0.107388
\(208\) 0 0
\(209\) 20.6191 1.42625
\(210\) 0 0
\(211\) 24.6612 1.69775 0.848874 0.528596i \(-0.177281\pi\)
0.848874 + 0.528596i \(0.177281\pi\)
\(212\) 0 0
\(213\) −0.0410414 −0.00281211
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −36.2370 −2.45993
\(218\) 0 0
\(219\) 11.5396 0.779776
\(220\) 0 0
\(221\) −5.09704 −0.342864
\(222\) 0 0
\(223\) 3.05389 0.204504 0.102252 0.994759i \(-0.467395\pi\)
0.102252 + 0.994759i \(0.467395\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.46614 −0.495545 −0.247773 0.968818i \(-0.579699\pi\)
−0.247773 + 0.968818i \(0.579699\pi\)
\(228\) 0 0
\(229\) 14.7096 0.972035 0.486018 0.873949i \(-0.338449\pi\)
0.486018 + 0.873949i \(0.338449\pi\)
\(230\) 0 0
\(231\) 35.8670 2.35988
\(232\) 0 0
\(233\) −15.1718 −0.993939 −0.496969 0.867768i \(-0.665554\pi\)
−0.496969 + 0.867768i \(0.665554\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 11.9421 0.775722
\(238\) 0 0
\(239\) 7.88068 0.509759 0.254879 0.966973i \(-0.417964\pi\)
0.254879 + 0.966973i \(0.417964\pi\)
\(240\) 0 0
\(241\) −25.9292 −1.67025 −0.835123 0.550063i \(-0.814604\pi\)
−0.835123 + 0.550063i \(0.814604\pi\)
\(242\) 0 0
\(243\) −7.51634 −0.482173
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −18.7535 −1.19326
\(248\) 0 0
\(249\) −19.3607 −1.22693
\(250\) 0 0
\(251\) 26.3969 1.66615 0.833077 0.553157i \(-0.186577\pi\)
0.833077 + 0.553157i \(0.186577\pi\)
\(252\) 0 0
\(253\) −11.6706 −0.733725
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.58765 −0.473304 −0.236652 0.971594i \(-0.576050\pi\)
−0.236652 + 0.971594i \(0.576050\pi\)
\(258\) 0 0
\(259\) 10.5708 0.656836
\(260\) 0 0
\(261\) 4.36399 0.270124
\(262\) 0 0
\(263\) 12.7210 0.784412 0.392206 0.919877i \(-0.371712\pi\)
0.392206 + 0.919877i \(0.371712\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −18.5174 −1.13324
\(268\) 0 0
\(269\) 4.20764 0.256544 0.128272 0.991739i \(-0.459057\pi\)
0.128272 + 0.991739i \(0.459057\pi\)
\(270\) 0 0
\(271\) −18.4090 −1.11827 −0.559134 0.829077i \(-0.688866\pi\)
−0.559134 + 0.829077i \(0.688866\pi\)
\(272\) 0 0
\(273\) −32.6219 −1.97437
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.7386 1.42631 0.713157 0.701005i \(-0.247265\pi\)
0.713157 + 0.701005i \(0.247265\pi\)
\(278\) 0 0
\(279\) −6.31225 −0.377905
\(280\) 0 0
\(281\) 5.92784 0.353625 0.176813 0.984245i \(-0.443421\pi\)
0.176813 + 0.984245i \(0.443421\pi\)
\(282\) 0 0
\(283\) 11.2070 0.666188 0.333094 0.942894i \(-0.391907\pi\)
0.333094 + 0.942894i \(0.391907\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 44.9904 2.65570
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −8.57267 −0.502539
\(292\) 0 0
\(293\) −13.0722 −0.763684 −0.381842 0.924228i \(-0.624710\pi\)
−0.381842 + 0.924228i \(0.624710\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 31.5114 1.82848
\(298\) 0 0
\(299\) 10.6147 0.613863
\(300\) 0 0
\(301\) 42.9526 2.47575
\(302\) 0 0
\(303\) −7.61565 −0.437508
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −17.0804 −0.974828 −0.487414 0.873171i \(-0.662060\pi\)
−0.487414 + 0.873171i \(0.662060\pi\)
\(308\) 0 0
\(309\) 8.05233 0.458081
\(310\) 0 0
\(311\) 10.2710 0.582418 0.291209 0.956660i \(-0.405943\pi\)
0.291209 + 0.956660i \(0.405943\pi\)
\(312\) 0 0
\(313\) −4.09096 −0.231235 −0.115617 0.993294i \(-0.536885\pi\)
−0.115617 + 0.993294i \(0.536885\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.82279 −0.327041 −0.163520 0.986540i \(-0.552285\pi\)
−0.163520 + 0.986540i \(0.552285\pi\)
\(318\) 0 0
\(319\) −32.9636 −1.84561
\(320\) 0 0
\(321\) −27.4925 −1.53448
\(322\) 0 0
\(323\) 3.67930 0.204722
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.6416 0.864981
\(328\) 0 0
\(329\) −5.45616 −0.300808
\(330\) 0 0
\(331\) 21.9561 1.20682 0.603410 0.797431i \(-0.293808\pi\)
0.603410 + 0.797431i \(0.293808\pi\)
\(332\) 0 0
\(333\) 1.84136 0.100906
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.15965 0.390011 0.195006 0.980802i \(-0.437528\pi\)
0.195006 + 0.980802i \(0.437528\pi\)
\(338\) 0 0
\(339\) −20.6702 −1.12265
\(340\) 0 0
\(341\) 47.6800 2.58201
\(342\) 0 0
\(343\) −17.6335 −0.952118
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.3561 1.09277 0.546387 0.837533i \(-0.316003\pi\)
0.546387 + 0.837533i \(0.316003\pi\)
\(348\) 0 0
\(349\) −18.7735 −1.00492 −0.502462 0.864599i \(-0.667572\pi\)
−0.502462 + 0.864599i \(0.667572\pi\)
\(350\) 0 0
\(351\) −28.6604 −1.52978
\(352\) 0 0
\(353\) −31.7716 −1.69103 −0.845516 0.533950i \(-0.820707\pi\)
−0.845516 + 0.533950i \(0.820707\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.40016 0.338732
\(358\) 0 0
\(359\) 6.52347 0.344296 0.172148 0.985071i \(-0.444929\pi\)
0.172148 + 0.985071i \(0.444929\pi\)
\(360\) 0 0
\(361\) −5.46275 −0.287513
\(362\) 0 0
\(363\) −30.6635 −1.60942
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.3578 0.906070 0.453035 0.891493i \(-0.350341\pi\)
0.453035 + 0.891493i \(0.350341\pi\)
\(368\) 0 0
\(369\) 7.83704 0.407980
\(370\) 0 0
\(371\) 5.62503 0.292037
\(372\) 0 0
\(373\) −7.63878 −0.395521 −0.197761 0.980250i \(-0.563367\pi\)
−0.197761 + 0.980250i \(0.563367\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 29.9812 1.54411
\(378\) 0 0
\(379\) 22.0927 1.13483 0.567413 0.823434i \(-0.307944\pi\)
0.567413 + 0.823434i \(0.307944\pi\)
\(380\) 0 0
\(381\) 15.3295 0.785356
\(382\) 0 0
\(383\) 12.9203 0.660198 0.330099 0.943946i \(-0.392918\pi\)
0.330099 + 0.943946i \(0.392918\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.48208 0.380335
\(388\) 0 0
\(389\) 1.35513 0.0687077 0.0343538 0.999410i \(-0.489063\pi\)
0.0343538 + 0.999410i \(0.489063\pi\)
\(390\) 0 0
\(391\) −2.08252 −0.105318
\(392\) 0 0
\(393\) 13.9894 0.705672
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −4.68991 −0.235380 −0.117690 0.993050i \(-0.537549\pi\)
−0.117690 + 0.993050i \(0.537549\pi\)
\(398\) 0 0
\(399\) 23.5481 1.17888
\(400\) 0 0
\(401\) 18.6534 0.931504 0.465752 0.884915i \(-0.345784\pi\)
0.465752 + 0.884915i \(0.345784\pi\)
\(402\) 0 0
\(403\) −43.3660 −2.16022
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.9088 −0.689436
\(408\) 0 0
\(409\) 21.0675 1.04172 0.520859 0.853642i \(-0.325612\pi\)
0.520859 + 0.853642i \(0.325612\pi\)
\(410\) 0 0
\(411\) −5.24713 −0.258822
\(412\) 0 0
\(413\) 50.0902 2.46478
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.0690 0.884843
\(418\) 0 0
\(419\) 33.9507 1.65860 0.829300 0.558804i \(-0.188740\pi\)
0.829300 + 0.558804i \(0.188740\pi\)
\(420\) 0 0
\(421\) −20.6895 −1.00835 −0.504173 0.863603i \(-0.668203\pi\)
−0.504173 + 0.863603i \(0.668203\pi\)
\(422\) 0 0
\(423\) −0.950429 −0.0462115
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 51.4561 2.49014
\(428\) 0 0
\(429\) 42.9233 2.07235
\(430\) 0 0
\(431\) 21.2599 1.02405 0.512027 0.858970i \(-0.328895\pi\)
0.512027 + 0.858970i \(0.328895\pi\)
\(432\) 0 0
\(433\) 22.7709 1.09430 0.547151 0.837034i \(-0.315713\pi\)
0.547151 + 0.837034i \(0.315713\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.66222 −0.366533
\(438\) 0 0
\(439\) −24.6182 −1.17496 −0.587482 0.809237i \(-0.699881\pi\)
−0.587482 + 0.809237i \(0.699881\pi\)
\(440\) 0 0
\(441\) −8.26503 −0.393573
\(442\) 0 0
\(443\) −9.80661 −0.465926 −0.232963 0.972486i \(-0.574842\pi\)
−0.232963 + 0.972486i \(0.574842\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.5404 0.640440
\(448\) 0 0
\(449\) 7.96832 0.376048 0.188024 0.982164i \(-0.439792\pi\)
0.188024 + 0.982164i \(0.439792\pi\)
\(450\) 0 0
\(451\) −59.1975 −2.78750
\(452\) 0 0
\(453\) 11.4249 0.536788
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.6640 −1.06018 −0.530088 0.847943i \(-0.677841\pi\)
−0.530088 + 0.847943i \(0.677841\pi\)
\(458\) 0 0
\(459\) 5.62295 0.262457
\(460\) 0 0
\(461\) −7.03235 −0.327529 −0.163765 0.986499i \(-0.552364\pi\)
−0.163765 + 0.986499i \(0.552364\pi\)
\(462\) 0 0
\(463\) −15.3351 −0.712683 −0.356342 0.934356i \(-0.615976\pi\)
−0.356342 + 0.934356i \(0.615976\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.0414 −0.510934 −0.255467 0.966818i \(-0.582229\pi\)
−0.255467 + 0.966818i \(0.582229\pi\)
\(468\) 0 0
\(469\) 19.2808 0.890307
\(470\) 0 0
\(471\) −24.1918 −1.11470
\(472\) 0 0
\(473\) −56.5163 −2.59862
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.979844 0.0448640
\(478\) 0 0
\(479\) −1.02113 −0.0466566 −0.0233283 0.999728i \(-0.507426\pi\)
−0.0233283 + 0.999728i \(0.507426\pi\)
\(480\) 0 0
\(481\) 12.6504 0.576809
\(482\) 0 0
\(483\) −13.3285 −0.606466
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −25.2759 −1.14536 −0.572680 0.819779i \(-0.694096\pi\)
−0.572680 + 0.819779i \(0.694096\pi\)
\(488\) 0 0
\(489\) −19.5636 −0.884697
\(490\) 0 0
\(491\) −4.07984 −0.184121 −0.0920603 0.995753i \(-0.529345\pi\)
−0.0920603 + 0.995753i \(0.529345\pi\)
\(492\) 0 0
\(493\) −5.88207 −0.264915
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.116325 −0.00521788
\(498\) 0 0
\(499\) 16.8340 0.753593 0.376797 0.926296i \(-0.377026\pi\)
0.376797 + 0.926296i \(0.377026\pi\)
\(500\) 0 0
\(501\) −32.7996 −1.46538
\(502\) 0 0
\(503\) 23.1652 1.03289 0.516444 0.856321i \(-0.327256\pi\)
0.516444 + 0.856321i \(0.327256\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −19.5047 −0.866234
\(508\) 0 0
\(509\) 1.05059 0.0465665 0.0232832 0.999729i \(-0.492588\pi\)
0.0232832 + 0.999729i \(0.492588\pi\)
\(510\) 0 0
\(511\) 32.7071 1.44688
\(512\) 0 0
\(513\) 20.6885 0.913420
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.17912 0.315737
\(518\) 0 0
\(519\) −19.1210 −0.839320
\(520\) 0 0
\(521\) −14.9831 −0.656421 −0.328210 0.944605i \(-0.606445\pi\)
−0.328210 + 0.944605i \(0.606445\pi\)
\(522\) 0 0
\(523\) 2.71233 0.118602 0.0593010 0.998240i \(-0.481113\pi\)
0.0593010 + 0.998240i \(0.481113\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.50808 0.370618
\(528\) 0 0
\(529\) −18.6631 −0.811440
\(530\) 0 0
\(531\) 8.72540 0.378650
\(532\) 0 0
\(533\) 53.8415 2.33213
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −22.7034 −0.979726
\(538\) 0 0
\(539\) 62.4304 2.68907
\(540\) 0 0
\(541\) 28.7748 1.23712 0.618562 0.785736i \(-0.287716\pi\)
0.618562 + 0.785736i \(0.287716\pi\)
\(542\) 0 0
\(543\) −38.4817 −1.65141
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −18.0706 −0.772643 −0.386322 0.922364i \(-0.626254\pi\)
−0.386322 + 0.922364i \(0.626254\pi\)
\(548\) 0 0
\(549\) 8.96333 0.382546
\(550\) 0 0
\(551\) −21.6419 −0.921977
\(552\) 0 0
\(553\) 33.8478 1.43935
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.3000 −0.478797 −0.239399 0.970921i \(-0.576950\pi\)
−0.239399 + 0.970921i \(0.576950\pi\)
\(558\) 0 0
\(559\) 51.4029 2.17411
\(560\) 0 0
\(561\) −8.42121 −0.355544
\(562\) 0 0
\(563\) −32.8640 −1.38505 −0.692525 0.721394i \(-0.743502\pi\)
−0.692525 + 0.721394i \(0.743502\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 26.5081 1.11323
\(568\) 0 0
\(569\) 23.5100 0.985592 0.492796 0.870145i \(-0.335975\pi\)
0.492796 + 0.870145i \(0.335975\pi\)
\(570\) 0 0
\(571\) −22.3428 −0.935018 −0.467509 0.883988i \(-0.654849\pi\)
−0.467509 + 0.883988i \(0.654849\pi\)
\(572\) 0 0
\(573\) −19.6414 −0.820529
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 26.1662 1.08931 0.544657 0.838659i \(-0.316660\pi\)
0.544657 + 0.838659i \(0.316660\pi\)
\(578\) 0 0
\(579\) 4.87236 0.202489
\(580\) 0 0
\(581\) −54.8745 −2.27658
\(582\) 0 0
\(583\) −7.40131 −0.306531
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.67859 0.110557 0.0552785 0.998471i \(-0.482395\pi\)
0.0552785 + 0.998471i \(0.482395\pi\)
\(588\) 0 0
\(589\) 31.3038 1.28985
\(590\) 0 0
\(591\) 8.00869 0.329434
\(592\) 0 0
\(593\) 26.8528 1.10271 0.551357 0.834270i \(-0.314110\pi\)
0.551357 + 0.834270i \(0.314110\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 35.8400 1.46683
\(598\) 0 0
\(599\) −33.0060 −1.34859 −0.674295 0.738462i \(-0.735552\pi\)
−0.674295 + 0.738462i \(0.735552\pi\)
\(600\) 0 0
\(601\) −17.1268 −0.698616 −0.349308 0.937008i \(-0.613583\pi\)
−0.349308 + 0.937008i \(0.613583\pi\)
\(602\) 0 0
\(603\) 3.35860 0.136773
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 41.3785 1.67950 0.839750 0.542973i \(-0.182702\pi\)
0.839750 + 0.542973i \(0.182702\pi\)
\(608\) 0 0
\(609\) −37.6462 −1.52550
\(610\) 0 0
\(611\) −6.52957 −0.264158
\(612\) 0 0
\(613\) 30.1547 1.21794 0.608969 0.793194i \(-0.291583\pi\)
0.608969 + 0.793194i \(0.291583\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.8901 1.28385 0.641923 0.766769i \(-0.278137\pi\)
0.641923 + 0.766769i \(0.278137\pi\)
\(618\) 0 0
\(619\) 14.8764 0.597935 0.298967 0.954263i \(-0.403358\pi\)
0.298967 + 0.954263i \(0.403358\pi\)
\(620\) 0 0
\(621\) −11.7099 −0.469902
\(622\) 0 0
\(623\) −52.4843 −2.10274
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −30.9842 −1.23739
\(628\) 0 0
\(629\) −2.48191 −0.0989604
\(630\) 0 0
\(631\) 9.33949 0.371799 0.185900 0.982569i \(-0.440480\pi\)
0.185900 + 0.982569i \(0.440480\pi\)
\(632\) 0 0
\(633\) −37.0582 −1.47293
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −56.7818 −2.24978
\(638\) 0 0
\(639\) −0.0202630 −0.000801593 0
\(640\) 0 0
\(641\) −3.28606 −0.129792 −0.0648958 0.997892i \(-0.520672\pi\)
−0.0648958 + 0.997892i \(0.520672\pi\)
\(642\) 0 0
\(643\) 1.78820 0.0705196 0.0352598 0.999378i \(-0.488774\pi\)
0.0352598 + 0.999378i \(0.488774\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.04558 0.0804200 0.0402100 0.999191i \(-0.487197\pi\)
0.0402100 + 0.999191i \(0.487197\pi\)
\(648\) 0 0
\(649\) −65.9078 −2.58711
\(650\) 0 0
\(651\) 54.4531 2.13418
\(652\) 0 0
\(653\) 2.36051 0.0923740 0.0461870 0.998933i \(-0.485293\pi\)
0.0461870 + 0.998933i \(0.485293\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.69737 0.222276
\(658\) 0 0
\(659\) −3.25145 −0.126658 −0.0633292 0.997993i \(-0.520172\pi\)
−0.0633292 + 0.997993i \(0.520172\pi\)
\(660\) 0 0
\(661\) −2.78242 −0.108223 −0.0541117 0.998535i \(-0.517233\pi\)
−0.0541117 + 0.998535i \(0.517233\pi\)
\(662\) 0 0
\(663\) 7.65929 0.297462
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.2495 0.474304
\(668\) 0 0
\(669\) −4.58907 −0.177424
\(670\) 0 0
\(671\) −67.7050 −2.61372
\(672\) 0 0
\(673\) −17.4485 −0.672589 −0.336294 0.941757i \(-0.609174\pi\)
−0.336294 + 0.941757i \(0.609174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.57095 0.214109 0.107054 0.994253i \(-0.465858\pi\)
0.107054 + 0.994253i \(0.465858\pi\)
\(678\) 0 0
\(679\) −24.2978 −0.932462
\(680\) 0 0
\(681\) 11.2193 0.429925
\(682\) 0 0
\(683\) 32.0094 1.22480 0.612402 0.790546i \(-0.290203\pi\)
0.612402 + 0.790546i \(0.290203\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −22.1040 −0.843319
\(688\) 0 0
\(689\) 6.73166 0.256456
\(690\) 0 0
\(691\) 30.0817 1.14436 0.572181 0.820127i \(-0.306097\pi\)
0.572181 + 0.820127i \(0.306097\pi\)
\(692\) 0 0
\(693\) 17.7083 0.672684
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.5633 −0.400113
\(698\) 0 0
\(699\) 22.7986 0.862322
\(700\) 0 0
\(701\) 8.62366 0.325711 0.162856 0.986650i \(-0.447930\pi\)
0.162856 + 0.986650i \(0.447930\pi\)
\(702\) 0 0
\(703\) −9.13170 −0.344409
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.5853 −0.811797
\(708\) 0 0
\(709\) −11.9495 −0.448774 −0.224387 0.974500i \(-0.572038\pi\)
−0.224387 + 0.974500i \(0.572038\pi\)
\(710\) 0 0
\(711\) 5.89607 0.221120
\(712\) 0 0
\(713\) −17.7182 −0.663553
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −11.8422 −0.442257
\(718\) 0 0
\(719\) −0.453808 −0.0169242 −0.00846209 0.999964i \(-0.502694\pi\)
−0.00846209 + 0.999964i \(0.502694\pi\)
\(720\) 0 0
\(721\) 22.8230 0.849971
\(722\) 0 0
\(723\) 38.9636 1.44907
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −33.8668 −1.25605 −0.628024 0.778194i \(-0.716136\pi\)
−0.628024 + 0.778194i \(0.716136\pi\)
\(728\) 0 0
\(729\) 29.9662 1.10986
\(730\) 0 0
\(731\) −10.0848 −0.373002
\(732\) 0 0
\(733\) −12.1335 −0.448162 −0.224081 0.974571i \(-0.571938\pi\)
−0.224081 + 0.974571i \(0.571938\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.3694 −0.934493
\(738\) 0 0
\(739\) 22.0480 0.811049 0.405525 0.914084i \(-0.367089\pi\)
0.405525 + 0.914084i \(0.367089\pi\)
\(740\) 0 0
\(741\) 28.1808 1.03525
\(742\) 0 0
\(743\) 53.5023 1.96281 0.981404 0.191954i \(-0.0614823\pi\)
0.981404 + 0.191954i \(0.0614823\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9.55880 −0.349738
\(748\) 0 0
\(749\) −77.9227 −2.84723
\(750\) 0 0
\(751\) 27.4545 1.00183 0.500914 0.865497i \(-0.332997\pi\)
0.500914 + 0.865497i \(0.332997\pi\)
\(752\) 0 0
\(753\) −39.6664 −1.44552
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.2758 1.28212 0.641061 0.767490i \(-0.278495\pi\)
0.641061 + 0.767490i \(0.278495\pi\)
\(758\) 0 0
\(759\) 17.5373 0.636565
\(760\) 0 0
\(761\) 29.2373 1.05985 0.529926 0.848044i \(-0.322220\pi\)
0.529926 + 0.848044i \(0.322220\pi\)
\(762\) 0 0
\(763\) 44.3333 1.60497
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 59.9446 2.16448
\(768\) 0 0
\(769\) −22.0766 −0.796104 −0.398052 0.917363i \(-0.630314\pi\)
−0.398052 + 0.917363i \(0.630314\pi\)
\(770\) 0 0
\(771\) 11.4019 0.410630
\(772\) 0 0
\(773\) 29.2667 1.05265 0.526326 0.850283i \(-0.323569\pi\)
0.526326 + 0.850283i \(0.323569\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −15.8846 −0.569858
\(778\) 0 0
\(779\) −38.8655 −1.39250
\(780\) 0 0
\(781\) 0.153058 0.00547684
\(782\) 0 0
\(783\) −33.0746 −1.18199
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.40215 −0.263858 −0.131929 0.991259i \(-0.542117\pi\)
−0.131929 + 0.991259i \(0.542117\pi\)
\(788\) 0 0
\(789\) −19.1158 −0.680541
\(790\) 0 0
\(791\) −58.5862 −2.08309
\(792\) 0 0
\(793\) 61.5793 2.18674
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 51.5831 1.82717 0.913583 0.406652i \(-0.133304\pi\)
0.913583 + 0.406652i \(0.133304\pi\)
\(798\) 0 0
\(799\) 1.28105 0.0453204
\(800\) 0 0
\(801\) −9.14243 −0.323032
\(802\) 0 0
\(803\) −43.0354 −1.51869
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.32279 −0.222573
\(808\) 0 0
\(809\) −30.8840 −1.08582 −0.542912 0.839790i \(-0.682678\pi\)
−0.542912 + 0.839790i \(0.682678\pi\)
\(810\) 0 0
\(811\) −1.66218 −0.0583670 −0.0291835 0.999574i \(-0.509291\pi\)
−0.0291835 + 0.999574i \(0.509291\pi\)
\(812\) 0 0
\(813\) 27.6631 0.970188
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −37.1052 −1.29815
\(818\) 0 0
\(819\) −16.1061 −0.562794
\(820\) 0 0
\(821\) 39.9351 1.39374 0.696872 0.717195i \(-0.254574\pi\)
0.696872 + 0.717195i \(0.254574\pi\)
\(822\) 0 0
\(823\) 2.20540 0.0768754 0.0384377 0.999261i \(-0.487762\pi\)
0.0384377 + 0.999261i \(0.487762\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.1644 −0.492546 −0.246273 0.969201i \(-0.579206\pi\)
−0.246273 + 0.969201i \(0.579206\pi\)
\(828\) 0 0
\(829\) 34.9292 1.21314 0.606570 0.795030i \(-0.292545\pi\)
0.606570 + 0.795030i \(0.292545\pi\)
\(830\) 0 0
\(831\) −35.6718 −1.23744
\(832\) 0 0
\(833\) 11.1402 0.385984
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 47.8405 1.65361
\(838\) 0 0
\(839\) 10.6389 0.367294 0.183647 0.982992i \(-0.441210\pi\)
0.183647 + 0.982992i \(0.441210\pi\)
\(840\) 0 0
\(841\) 5.59880 0.193062
\(842\) 0 0
\(843\) −8.90772 −0.306798
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −86.9105 −2.98628
\(848\) 0 0
\(849\) −16.8407 −0.577972
\(850\) 0 0
\(851\) 5.16863 0.177178
\(852\) 0 0
\(853\) 4.53305 0.155209 0.0776043 0.996984i \(-0.475273\pi\)
0.0776043 + 0.996984i \(0.475273\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.8119 0.915878 0.457939 0.888983i \(-0.348588\pi\)
0.457939 + 0.888983i \(0.348588\pi\)
\(858\) 0 0
\(859\) −2.54555 −0.0868530 −0.0434265 0.999057i \(-0.513827\pi\)
−0.0434265 + 0.999057i \(0.513827\pi\)
\(860\) 0 0
\(861\) −67.6067 −2.30403
\(862\) 0 0
\(863\) −21.3673 −0.727351 −0.363676 0.931526i \(-0.618478\pi\)
−0.363676 + 0.931526i \(0.618478\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.50269 −0.0510341
\(868\) 0 0
\(869\) −44.5363 −1.51079
\(870\) 0 0
\(871\) 23.0740 0.781834
\(872\) 0 0
\(873\) −4.23252 −0.143249
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −19.1228 −0.645730 −0.322865 0.946445i \(-0.604646\pi\)
−0.322865 + 0.946445i \(0.604646\pi\)
\(878\) 0 0
\(879\) 19.6434 0.662557
\(880\) 0 0
\(881\) 33.8416 1.14015 0.570075 0.821592i \(-0.306914\pi\)
0.570075 + 0.821592i \(0.306914\pi\)
\(882\) 0 0
\(883\) 22.7756 0.766461 0.383231 0.923653i \(-0.374811\pi\)
0.383231 + 0.923653i \(0.374811\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.7568 0.529062 0.264531 0.964377i \(-0.414783\pi\)
0.264531 + 0.964377i \(0.414783\pi\)
\(888\) 0 0
\(889\) 43.4490 1.45723
\(890\) 0 0
\(891\) −34.8788 −1.16848
\(892\) 0 0
\(893\) 4.71338 0.157727
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −15.9506 −0.532576
\(898\) 0 0
\(899\) −50.0452 −1.66910
\(900\) 0 0
\(901\) −1.32070 −0.0439989
\(902\) 0 0
\(903\) −64.5447 −2.14791
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −28.3574 −0.941593 −0.470796 0.882242i \(-0.656033\pi\)
−0.470796 + 0.882242i \(0.656033\pi\)
\(908\) 0 0
\(909\) −3.76001 −0.124712
\(910\) 0 0
\(911\) −4.46190 −0.147829 −0.0739147 0.997265i \(-0.523549\pi\)
−0.0739147 + 0.997265i \(0.523549\pi\)
\(912\) 0 0
\(913\) 72.2029 2.38957
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 39.6505 1.30938
\(918\) 0 0
\(919\) −12.2144 −0.402917 −0.201459 0.979497i \(-0.564568\pi\)
−0.201459 + 0.979497i \(0.564568\pi\)
\(920\) 0 0
\(921\) 25.6665 0.845741
\(922\) 0 0
\(923\) −0.139210 −0.00458214
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.97562 0.130576
\(928\) 0 0
\(929\) −24.0052 −0.787586 −0.393793 0.919199i \(-0.628837\pi\)
−0.393793 + 0.919199i \(0.628837\pi\)
\(930\) 0 0
\(931\) 40.9880 1.34333
\(932\) 0 0
\(933\) −15.4342 −0.505294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −46.3819 −1.51523 −0.757615 0.652702i \(-0.773635\pi\)
−0.757615 + 0.652702i \(0.773635\pi\)
\(938\) 0 0
\(939\) 6.14746 0.200615
\(940\) 0 0
\(941\) 0.530210 0.0172843 0.00864217 0.999963i \(-0.497249\pi\)
0.00864217 + 0.999963i \(0.497249\pi\)
\(942\) 0 0
\(943\) 21.9983 0.716362
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.3865 0.889942 0.444971 0.895545i \(-0.353214\pi\)
0.444971 + 0.895545i \(0.353214\pi\)
\(948\) 0 0
\(949\) 39.1417 1.27059
\(950\) 0 0
\(951\) 8.74987 0.283734
\(952\) 0 0
\(953\) −39.8826 −1.29192 −0.645962 0.763370i \(-0.723543\pi\)
−0.645962 + 0.763370i \(0.723543\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 49.5342 1.60121
\(958\) 0 0
\(959\) −14.8721 −0.480245
\(960\) 0 0
\(961\) 41.3874 1.33508
\(962\) 0 0
\(963\) −13.5736 −0.437405
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −33.1843 −1.06714 −0.533568 0.845757i \(-0.679149\pi\)
−0.533568 + 0.845757i \(0.679149\pi\)
\(968\) 0 0
\(969\) −5.52886 −0.177613
\(970\) 0 0
\(971\) −1.88467 −0.0604818 −0.0302409 0.999543i \(-0.509627\pi\)
−0.0302409 + 0.999543i \(0.509627\pi\)
\(972\) 0 0
\(973\) 51.2135 1.64183
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53.8166 −1.72175 −0.860874 0.508819i \(-0.830082\pi\)
−0.860874 + 0.508819i \(0.830082\pi\)
\(978\) 0 0
\(979\) 69.0578 2.20710
\(980\) 0 0
\(981\) 7.72259 0.246563
\(982\) 0 0
\(983\) −41.8680 −1.33538 −0.667690 0.744439i \(-0.732717\pi\)
−0.667690 + 0.744439i \(0.732717\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.19894 0.260975
\(988\) 0 0
\(989\) 21.0019 0.667821
\(990\) 0 0
\(991\) −29.6430 −0.941642 −0.470821 0.882229i \(-0.656042\pi\)
−0.470821 + 0.882229i \(0.656042\pi\)
\(992\) 0 0
\(993\) −32.9934 −1.04701
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28.3132 −0.896688 −0.448344 0.893861i \(-0.647986\pi\)
−0.448344 + 0.893861i \(0.647986\pi\)
\(998\) 0 0
\(999\) −13.9557 −0.441538
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.cg.1.2 5
4.3 odd 2 3400.2.a.r.1.4 5
5.4 even 2 6800.2.a.bx.1.4 5
20.3 even 4 3400.2.e.n.2449.7 10
20.7 even 4 3400.2.e.n.2449.4 10
20.19 odd 2 3400.2.a.w.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3400.2.a.r.1.4 5 4.3 odd 2
3400.2.a.w.1.2 yes 5 20.19 odd 2
3400.2.e.n.2449.4 10 20.7 even 4
3400.2.e.n.2449.7 10 20.3 even 4
6800.2.a.bx.1.4 5 5.4 even 2
6800.2.a.cg.1.2 5 1.1 even 1 trivial