Properties

Label 3400.2.e.n.2449.7
Level $3400$
Weight $2$
Character 3400.2449
Analytic conductor $27.149$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3400,2,Mod(2449,3400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3400.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,-12,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.1491366872\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.251193590431744.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} + 8x^{8} - 2x^{7} + 12x^{6} - 50x^{5} + 106x^{4} - 20x^{3} + 4x^{2} - 28x + 98 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.7
Root \(-0.670303 + 0.670303i\) of defining polynomial
Character \(\chi\) \(=\) 3400.2449
Dual form 3400.2.e.n.2449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50269i q^{3} -4.25913i q^{7} +0.741913 q^{9} -5.60408 q^{11} -5.09704i q^{13} -1.00000i q^{17} +3.67930 q^{19} +6.40016 q^{21} +2.08252i q^{23} +5.62295i q^{27} +5.88207 q^{29} -8.50808 q^{31} -8.42121i q^{33} +2.48191i q^{37} +7.65929 q^{39} -10.5633 q^{41} +10.0848i q^{43} +1.28105i q^{47} -11.1402 q^{49} +1.50269 q^{51} -1.32070i q^{53} +5.52886i q^{57} -11.7607 q^{59} -12.0814 q^{61} -3.15990i q^{63} -4.52695i q^{67} -3.12939 q^{69} -0.0273119 q^{71} -7.67930i q^{73} +23.8685i q^{77} -7.94712 q^{79} -6.22383 q^{81} -12.8840i q^{83} +8.83895i q^{87} -12.3228 q^{89} -21.7089 q^{91} -12.7850i q^{93} -5.70487i q^{97} -4.15774 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{9} - 12 q^{11} + 12 q^{19} + 14 q^{21} - 12 q^{29} - 22 q^{31} - 18 q^{39} + 8 q^{41} - 60 q^{49} - 6 q^{51} - 28 q^{61} - 64 q^{69} - 10 q^{71} - 54 q^{79} - 22 q^{81} - 20 q^{89} - 126 q^{91}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3400\mathbb{Z}\right)^\times\).

\(n\) \(1601\) \(1701\) \(2177\) \(2551\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50269i 0.867580i 0.901014 + 0.433790i \(0.142824\pi\)
−0.901014 + 0.433790i \(0.857176\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.25913i − 1.60980i −0.593411 0.804899i \(-0.702219\pi\)
0.593411 0.804899i \(-0.297781\pi\)
\(8\) 0 0
\(9\) 0.741913 0.247304
\(10\) 0 0
\(11\) −5.60408 −1.68969 −0.844847 0.535008i \(-0.820309\pi\)
−0.844847 + 0.535008i \(0.820309\pi\)
\(12\) 0 0
\(13\) − 5.09704i − 1.41366i −0.707381 0.706832i \(-0.750124\pi\)
0.707381 0.706832i \(-0.249876\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.00000i − 0.242536i
\(18\) 0 0
\(19\) 3.67930 0.844089 0.422045 0.906575i \(-0.361313\pi\)
0.422045 + 0.906575i \(0.361313\pi\)
\(20\) 0 0
\(21\) 6.40016 1.39663
\(22\) 0 0
\(23\) 2.08252i 0.434235i 0.976145 + 0.217118i \(0.0696655\pi\)
−0.976145 + 0.217118i \(0.930334\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.62295i 1.08214i
\(28\) 0 0
\(29\) 5.88207 1.09227 0.546137 0.837696i \(-0.316098\pi\)
0.546137 + 0.837696i \(0.316098\pi\)
\(30\) 0 0
\(31\) −8.50808 −1.52810 −0.764048 0.645159i \(-0.776791\pi\)
−0.764048 + 0.645159i \(0.776791\pi\)
\(32\) 0 0
\(33\) − 8.42121i − 1.46595i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.48191i 0.408024i 0.978968 + 0.204012i \(0.0653982\pi\)
−0.978968 + 0.204012i \(0.934602\pi\)
\(38\) 0 0
\(39\) 7.65929 1.22647
\(40\) 0 0
\(41\) −10.5633 −1.64971 −0.824854 0.565346i \(-0.808743\pi\)
−0.824854 + 0.565346i \(0.808743\pi\)
\(42\) 0 0
\(43\) 10.0848i 1.53792i 0.639294 + 0.768962i \(0.279227\pi\)
−0.639294 + 0.768962i \(0.720773\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.28105i 0.186861i 0.995626 + 0.0934303i \(0.0297832\pi\)
−0.995626 + 0.0934303i \(0.970217\pi\)
\(48\) 0 0
\(49\) −11.1402 −1.59145
\(50\) 0 0
\(51\) 1.50269 0.210419
\(52\) 0 0
\(53\) − 1.32070i − 0.181412i −0.995878 0.0907060i \(-0.971088\pi\)
0.995878 0.0907060i \(-0.0289124\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.52886i 0.732315i
\(58\) 0 0
\(59\) −11.7607 −1.53111 −0.765555 0.643371i \(-0.777535\pi\)
−0.765555 + 0.643371i \(0.777535\pi\)
\(60\) 0 0
\(61\) −12.0814 −1.54686 −0.773431 0.633881i \(-0.781461\pi\)
−0.773431 + 0.633881i \(0.781461\pi\)
\(62\) 0 0
\(63\) − 3.15990i − 0.398110i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.52695i − 0.553055i −0.961006 0.276527i \(-0.910816\pi\)
0.961006 0.276527i \(-0.0891836\pi\)
\(68\) 0 0
\(69\) −3.12939 −0.376734
\(70\) 0 0
\(71\) −0.0273119 −0.00324132 −0.00162066 0.999999i \(-0.500516\pi\)
−0.00162066 + 0.999999i \(0.500516\pi\)
\(72\) 0 0
\(73\) − 7.67930i − 0.898794i −0.893332 0.449397i \(-0.851639\pi\)
0.893332 0.449397i \(-0.148361\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 23.8685i 2.72007i
\(78\) 0 0
\(79\) −7.94712 −0.894121 −0.447060 0.894504i \(-0.647529\pi\)
−0.447060 + 0.894504i \(0.647529\pi\)
\(80\) 0 0
\(81\) −6.22383 −0.691536
\(82\) 0 0
\(83\) − 12.8840i − 1.41420i −0.707113 0.707101i \(-0.750003\pi\)
0.707113 0.707101i \(-0.249997\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.83895i 0.947635i
\(88\) 0 0
\(89\) −12.3228 −1.30621 −0.653106 0.757267i \(-0.726534\pi\)
−0.653106 + 0.757267i \(0.726534\pi\)
\(90\) 0 0
\(91\) −21.7089 −2.27572
\(92\) 0 0
\(93\) − 12.7850i − 1.32575i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 5.70487i − 0.579242i −0.957141 0.289621i \(-0.906471\pi\)
0.957141 0.289621i \(-0.0935292\pi\)
\(98\) 0 0
\(99\) −4.15774 −0.417869
\(100\) 0 0
\(101\) 5.06800 0.504285 0.252142 0.967690i \(-0.418865\pi\)
0.252142 + 0.967690i \(0.418865\pi\)
\(102\) 0 0
\(103\) 5.35860i 0.527999i 0.964523 + 0.263999i \(0.0850417\pi\)
−0.964523 + 0.263999i \(0.914958\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.2955i 1.76869i 0.466834 + 0.884345i \(0.345394\pi\)
−0.466834 + 0.884345i \(0.654606\pi\)
\(108\) 0 0
\(109\) 10.4090 0.997003 0.498502 0.866889i \(-0.333884\pi\)
0.498502 + 0.866889i \(0.333884\pi\)
\(110\) 0 0
\(111\) −3.72955 −0.353994
\(112\) 0 0
\(113\) 13.7555i 1.29400i 0.762488 + 0.647002i \(0.223978\pi\)
−0.762488 + 0.647002i \(0.776022\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3.78156i − 0.349605i
\(118\) 0 0
\(119\) −4.25913 −0.390434
\(120\) 0 0
\(121\) 20.4057 1.85506
\(122\) 0 0
\(123\) − 15.8734i − 1.43125i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 10.2014i − 0.905226i −0.891707 0.452613i \(-0.850492\pi\)
0.891707 0.452613i \(-0.149508\pi\)
\(128\) 0 0
\(129\) −15.1544 −1.33427
\(130\) 0 0
\(131\) 9.30955 0.813379 0.406689 0.913566i \(-0.366683\pi\)
0.406689 + 0.913566i \(0.366683\pi\)
\(132\) 0 0
\(133\) − 15.6706i − 1.35881i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.49181i − 0.298326i −0.988813 0.149163i \(-0.952342\pi\)
0.988813 0.149163i \(-0.0476579\pi\)
\(138\) 0 0
\(139\) −12.0244 −1.01990 −0.509949 0.860205i \(-0.670336\pi\)
−0.509949 + 0.860205i \(0.670336\pi\)
\(140\) 0 0
\(141\) −1.92503 −0.162117
\(142\) 0 0
\(143\) 28.5642i 2.38866i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 16.7402i − 1.38071i
\(148\) 0 0
\(149\) 9.01077 0.738191 0.369096 0.929391i \(-0.379667\pi\)
0.369096 + 0.929391i \(0.379667\pi\)
\(150\) 0 0
\(151\) 7.60293 0.618718 0.309359 0.950945i \(-0.399886\pi\)
0.309359 + 0.950945i \(0.399886\pi\)
\(152\) 0 0
\(153\) − 0.741913i − 0.0599801i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 16.0989i − 1.28483i −0.766355 0.642417i \(-0.777932\pi\)
0.766355 0.642417i \(-0.222068\pi\)
\(158\) 0 0
\(159\) 1.98461 0.157390
\(160\) 0 0
\(161\) 8.86972 0.699031
\(162\) 0 0
\(163\) − 13.0190i − 1.01973i −0.860255 0.509865i \(-0.829695\pi\)
0.860255 0.509865i \(-0.170305\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.8272i 1.68904i 0.535524 + 0.844520i \(0.320114\pi\)
−0.535524 + 0.844520i \(0.679886\pi\)
\(168\) 0 0
\(169\) −12.9798 −0.998448
\(170\) 0 0
\(171\) 2.72972 0.208747
\(172\) 0 0
\(173\) 12.7245i 0.967426i 0.875227 + 0.483713i \(0.160712\pi\)
−0.875227 + 0.483713i \(0.839288\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 17.6727i − 1.32836i
\(178\) 0 0
\(179\) 15.1085 1.12926 0.564631 0.825343i \(-0.309018\pi\)
0.564631 + 0.825343i \(0.309018\pi\)
\(180\) 0 0
\(181\) 25.6085 1.90346 0.951732 0.306930i \(-0.0993019\pi\)
0.951732 + 0.306930i \(0.0993019\pi\)
\(182\) 0 0
\(183\) − 18.1546i − 1.34203i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.60408i 0.409811i
\(188\) 0 0
\(189\) 23.9488 1.74202
\(190\) 0 0
\(191\) −13.0708 −0.945768 −0.472884 0.881125i \(-0.656787\pi\)
−0.472884 + 0.881125i \(0.656787\pi\)
\(192\) 0 0
\(193\) − 3.24242i − 0.233395i −0.993168 0.116697i \(-0.962769\pi\)
0.993168 0.116697i \(-0.0372307\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.32956i 0.379715i 0.981812 + 0.189858i \(0.0608027\pi\)
−0.981812 + 0.189858i \(0.939197\pi\)
\(198\) 0 0
\(199\) −23.8505 −1.69072 −0.845358 0.534200i \(-0.820613\pi\)
−0.845358 + 0.534200i \(0.820613\pi\)
\(200\) 0 0
\(201\) 6.80261 0.479819
\(202\) 0 0
\(203\) − 25.0525i − 1.75834i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.54505i 0.107388i
\(208\) 0 0
\(209\) −20.6191 −1.42625
\(210\) 0 0
\(211\) −24.6612 −1.69775 −0.848874 0.528596i \(-0.822719\pi\)
−0.848874 + 0.528596i \(0.822719\pi\)
\(212\) 0 0
\(213\) − 0.0410414i − 0.00281211i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 36.2370i 2.45993i
\(218\) 0 0
\(219\) 11.5396 0.779776
\(220\) 0 0
\(221\) −5.09704 −0.342864
\(222\) 0 0
\(223\) − 3.05389i − 0.204504i −0.994759 0.102252i \(-0.967395\pi\)
0.994759 0.102252i \(-0.0326048\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 7.46614i − 0.495545i −0.968818 0.247773i \(-0.920301\pi\)
0.968818 0.247773i \(-0.0796986\pi\)
\(228\) 0 0
\(229\) −14.7096 −0.972035 −0.486018 0.873949i \(-0.661551\pi\)
−0.486018 + 0.873949i \(0.661551\pi\)
\(230\) 0 0
\(231\) −35.8670 −2.35988
\(232\) 0 0
\(233\) − 15.1718i − 0.993939i −0.867768 0.496969i \(-0.834446\pi\)
0.867768 0.496969i \(-0.165554\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 11.9421i − 0.775722i
\(238\) 0 0
\(239\) 7.88068 0.509759 0.254879 0.966973i \(-0.417964\pi\)
0.254879 + 0.966973i \(0.417964\pi\)
\(240\) 0 0
\(241\) −25.9292 −1.67025 −0.835123 0.550063i \(-0.814604\pi\)
−0.835123 + 0.550063i \(0.814604\pi\)
\(242\) 0 0
\(243\) 7.51634i 0.482173i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 18.7535i − 1.19326i
\(248\) 0 0
\(249\) 19.3607 1.22693
\(250\) 0 0
\(251\) −26.3969 −1.66615 −0.833077 0.553157i \(-0.813423\pi\)
−0.833077 + 0.553157i \(0.813423\pi\)
\(252\) 0 0
\(253\) − 11.6706i − 0.733725i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.58765i 0.473304i 0.971594 + 0.236652i \(0.0760502\pi\)
−0.971594 + 0.236652i \(0.923950\pi\)
\(258\) 0 0
\(259\) 10.5708 0.656836
\(260\) 0 0
\(261\) 4.36399 0.270124
\(262\) 0 0
\(263\) − 12.7210i − 0.784412i −0.919877 0.392206i \(-0.871712\pi\)
0.919877 0.392206i \(-0.128288\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 18.5174i − 1.13324i
\(268\) 0 0
\(269\) −4.20764 −0.256544 −0.128272 0.991739i \(-0.540943\pi\)
−0.128272 + 0.991739i \(0.540943\pi\)
\(270\) 0 0
\(271\) 18.4090 1.11827 0.559134 0.829077i \(-0.311134\pi\)
0.559134 + 0.829077i \(0.311134\pi\)
\(272\) 0 0
\(273\) − 32.6219i − 1.97437i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 23.7386i − 1.42631i −0.701005 0.713157i \(-0.747265\pi\)
0.701005 0.713157i \(-0.252735\pi\)
\(278\) 0 0
\(279\) −6.31225 −0.377905
\(280\) 0 0
\(281\) 5.92784 0.353625 0.176813 0.984245i \(-0.443421\pi\)
0.176813 + 0.984245i \(0.443421\pi\)
\(282\) 0 0
\(283\) − 11.2070i − 0.666188i −0.942894 0.333094i \(-0.891907\pi\)
0.942894 0.333094i \(-0.108093\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 44.9904i 2.65570i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 8.57267 0.502539
\(292\) 0 0
\(293\) − 13.0722i − 0.763684i −0.924228 0.381842i \(-0.875290\pi\)
0.924228 0.381842i \(-0.124710\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 31.5114i − 1.82848i
\(298\) 0 0
\(299\) 10.6147 0.613863
\(300\) 0 0
\(301\) 42.9526 2.47575
\(302\) 0 0
\(303\) 7.61565i 0.437508i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 17.0804i − 0.974828i −0.873171 0.487414i \(-0.837940\pi\)
0.873171 0.487414i \(-0.162060\pi\)
\(308\) 0 0
\(309\) −8.05233 −0.458081
\(310\) 0 0
\(311\) −10.2710 −0.582418 −0.291209 0.956660i \(-0.594057\pi\)
−0.291209 + 0.956660i \(0.594057\pi\)
\(312\) 0 0
\(313\) − 4.09096i − 0.231235i −0.993294 0.115617i \(-0.963115\pi\)
0.993294 0.115617i \(-0.0368847\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.82279i 0.327041i 0.986540 + 0.163520i \(0.0522849\pi\)
−0.986540 + 0.163520i \(0.947715\pi\)
\(318\) 0 0
\(319\) −32.9636 −1.84561
\(320\) 0 0
\(321\) −27.4925 −1.53448
\(322\) 0 0
\(323\) − 3.67930i − 0.204722i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.6416i 0.864981i
\(328\) 0 0
\(329\) 5.45616 0.300808
\(330\) 0 0
\(331\) −21.9561 −1.20682 −0.603410 0.797431i \(-0.706192\pi\)
−0.603410 + 0.797431i \(0.706192\pi\)
\(332\) 0 0
\(333\) 1.84136i 0.100906i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 7.15965i − 0.390011i −0.980802 0.195006i \(-0.937528\pi\)
0.980802 0.195006i \(-0.0624725\pi\)
\(338\) 0 0
\(339\) −20.6702 −1.12265
\(340\) 0 0
\(341\) 47.6800 2.58201
\(342\) 0 0
\(343\) 17.6335i 0.952118i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.3561i 1.09277i 0.837533 + 0.546387i \(0.183997\pi\)
−0.837533 + 0.546387i \(0.816003\pi\)
\(348\) 0 0
\(349\) 18.7735 1.00492 0.502462 0.864599i \(-0.332428\pi\)
0.502462 + 0.864599i \(0.332428\pi\)
\(350\) 0 0
\(351\) 28.6604 1.52978
\(352\) 0 0
\(353\) − 31.7716i − 1.69103i −0.533950 0.845516i \(-0.679293\pi\)
0.533950 0.845516i \(-0.320707\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 6.40016i − 0.338732i
\(358\) 0 0
\(359\) 6.52347 0.344296 0.172148 0.985071i \(-0.444929\pi\)
0.172148 + 0.985071i \(0.444929\pi\)
\(360\) 0 0
\(361\) −5.46275 −0.287513
\(362\) 0 0
\(363\) 30.6635i 1.60942i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.3578i 0.906070i 0.891493 + 0.453035i \(0.149659\pi\)
−0.891493 + 0.453035i \(0.850341\pi\)
\(368\) 0 0
\(369\) −7.83704 −0.407980
\(370\) 0 0
\(371\) −5.62503 −0.292037
\(372\) 0 0
\(373\) − 7.63878i − 0.395521i −0.980250 0.197761i \(-0.936633\pi\)
0.980250 0.197761i \(-0.0633669\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 29.9812i − 1.54411i
\(378\) 0 0
\(379\) 22.0927 1.13483 0.567413 0.823434i \(-0.307944\pi\)
0.567413 + 0.823434i \(0.307944\pi\)
\(380\) 0 0
\(381\) 15.3295 0.785356
\(382\) 0 0
\(383\) − 12.9203i − 0.660198i −0.943946 0.330099i \(-0.892918\pi\)
0.943946 0.330099i \(-0.107082\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.48208i 0.380335i
\(388\) 0 0
\(389\) −1.35513 −0.0687077 −0.0343538 0.999410i \(-0.510937\pi\)
−0.0343538 + 0.999410i \(0.510937\pi\)
\(390\) 0 0
\(391\) 2.08252 0.105318
\(392\) 0 0
\(393\) 13.9894i 0.705672i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.68991i 0.235380i 0.993050 + 0.117690i \(0.0375489\pi\)
−0.993050 + 0.117690i \(0.962451\pi\)
\(398\) 0 0
\(399\) 23.5481 1.17888
\(400\) 0 0
\(401\) 18.6534 0.931504 0.465752 0.884915i \(-0.345784\pi\)
0.465752 + 0.884915i \(0.345784\pi\)
\(402\) 0 0
\(403\) 43.3660i 2.16022i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 13.9088i − 0.689436i
\(408\) 0 0
\(409\) −21.0675 −1.04172 −0.520859 0.853642i \(-0.674388\pi\)
−0.520859 + 0.853642i \(0.674388\pi\)
\(410\) 0 0
\(411\) 5.24713 0.258822
\(412\) 0 0
\(413\) 50.0902i 2.46478i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 18.0690i − 0.884843i
\(418\) 0 0
\(419\) 33.9507 1.65860 0.829300 0.558804i \(-0.188740\pi\)
0.829300 + 0.558804i \(0.188740\pi\)
\(420\) 0 0
\(421\) −20.6895 −1.00835 −0.504173 0.863603i \(-0.668203\pi\)
−0.504173 + 0.863603i \(0.668203\pi\)
\(422\) 0 0
\(423\) 0.950429i 0.0462115i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 51.4561i 2.49014i
\(428\) 0 0
\(429\) −42.9233 −2.07235
\(430\) 0 0
\(431\) −21.2599 −1.02405 −0.512027 0.858970i \(-0.671105\pi\)
−0.512027 + 0.858970i \(0.671105\pi\)
\(432\) 0 0
\(433\) 22.7709i 1.09430i 0.837034 + 0.547151i \(0.184287\pi\)
−0.837034 + 0.547151i \(0.815713\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.66222i 0.366533i
\(438\) 0 0
\(439\) −24.6182 −1.17496 −0.587482 0.809237i \(-0.699881\pi\)
−0.587482 + 0.809237i \(0.699881\pi\)
\(440\) 0 0
\(441\) −8.26503 −0.393573
\(442\) 0 0
\(443\) 9.80661i 0.465926i 0.972486 + 0.232963i \(0.0748421\pi\)
−0.972486 + 0.232963i \(0.925158\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.5404i 0.640440i
\(448\) 0 0
\(449\) −7.96832 −0.376048 −0.188024 0.982164i \(-0.560208\pi\)
−0.188024 + 0.982164i \(0.560208\pi\)
\(450\) 0 0
\(451\) 59.1975 2.78750
\(452\) 0 0
\(453\) 11.4249i 0.536788i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.6640i 1.06018i 0.847943 + 0.530088i \(0.177841\pi\)
−0.847943 + 0.530088i \(0.822159\pi\)
\(458\) 0 0
\(459\) 5.62295 0.262457
\(460\) 0 0
\(461\) −7.03235 −0.327529 −0.163765 0.986499i \(-0.552364\pi\)
−0.163765 + 0.986499i \(0.552364\pi\)
\(462\) 0 0
\(463\) 15.3351i 0.712683i 0.934356 + 0.356342i \(0.115976\pi\)
−0.934356 + 0.356342i \(0.884024\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 11.0414i − 0.510934i −0.966818 0.255467i \(-0.917771\pi\)
0.966818 0.255467i \(-0.0822292\pi\)
\(468\) 0 0
\(469\) −19.2808 −0.890307
\(470\) 0 0
\(471\) 24.1918 1.11470
\(472\) 0 0
\(473\) − 56.5163i − 2.59862i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.979844i − 0.0448640i
\(478\) 0 0
\(479\) −1.02113 −0.0466566 −0.0233283 0.999728i \(-0.507426\pi\)
−0.0233283 + 0.999728i \(0.507426\pi\)
\(480\) 0 0
\(481\) 12.6504 0.576809
\(482\) 0 0
\(483\) 13.3285i 0.606466i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 25.2759i − 1.14536i −0.819779 0.572680i \(-0.805904\pi\)
0.819779 0.572680i \(-0.194096\pi\)
\(488\) 0 0
\(489\) 19.5636 0.884697
\(490\) 0 0
\(491\) 4.07984 0.184121 0.0920603 0.995753i \(-0.470655\pi\)
0.0920603 + 0.995753i \(0.470655\pi\)
\(492\) 0 0
\(493\) − 5.88207i − 0.264915i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.116325i 0.00521788i
\(498\) 0 0
\(499\) 16.8340 0.753593 0.376797 0.926296i \(-0.377026\pi\)
0.376797 + 0.926296i \(0.377026\pi\)
\(500\) 0 0
\(501\) −32.7996 −1.46538
\(502\) 0 0
\(503\) − 23.1652i − 1.03289i −0.856321 0.516444i \(-0.827256\pi\)
0.856321 0.516444i \(-0.172744\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 19.5047i − 0.866234i
\(508\) 0 0
\(509\) −1.05059 −0.0465665 −0.0232832 0.999729i \(-0.507412\pi\)
−0.0232832 + 0.999729i \(0.507412\pi\)
\(510\) 0 0
\(511\) −32.7071 −1.44688
\(512\) 0 0
\(513\) 20.6885i 0.913420i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 7.17912i − 0.315737i
\(518\) 0 0
\(519\) −19.1210 −0.839320
\(520\) 0 0
\(521\) −14.9831 −0.656421 −0.328210 0.944605i \(-0.606445\pi\)
−0.328210 + 0.944605i \(0.606445\pi\)
\(522\) 0 0
\(523\) − 2.71233i − 0.118602i −0.998240 0.0593010i \(-0.981113\pi\)
0.998240 0.0593010i \(-0.0188872\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.50808i 0.370618i
\(528\) 0 0
\(529\) 18.6631 0.811440
\(530\) 0 0
\(531\) −8.72540 −0.378650
\(532\) 0 0
\(533\) 53.8415i 2.33213i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 22.7034i 0.979726i
\(538\) 0 0
\(539\) 62.4304 2.68907
\(540\) 0 0
\(541\) 28.7748 1.23712 0.618562 0.785736i \(-0.287716\pi\)
0.618562 + 0.785736i \(0.287716\pi\)
\(542\) 0 0
\(543\) 38.4817i 1.65141i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 18.0706i − 0.772643i −0.922364 0.386322i \(-0.873746\pi\)
0.922364 0.386322i \(-0.126254\pi\)
\(548\) 0 0
\(549\) −8.96333 −0.382546
\(550\) 0 0
\(551\) 21.6419 0.921977
\(552\) 0 0
\(553\) 33.8478i 1.43935i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.3000i 0.478797i 0.970921 + 0.239399i \(0.0769503\pi\)
−0.970921 + 0.239399i \(0.923050\pi\)
\(558\) 0 0
\(559\) 51.4029 2.17411
\(560\) 0 0
\(561\) −8.42121 −0.355544
\(562\) 0 0
\(563\) 32.8640i 1.38505i 0.721394 + 0.692525i \(0.243502\pi\)
−0.721394 + 0.692525i \(0.756498\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 26.5081i 1.11323i
\(568\) 0 0
\(569\) −23.5100 −0.985592 −0.492796 0.870145i \(-0.664025\pi\)
−0.492796 + 0.870145i \(0.664025\pi\)
\(570\) 0 0
\(571\) 22.3428 0.935018 0.467509 0.883988i \(-0.345151\pi\)
0.467509 + 0.883988i \(0.345151\pi\)
\(572\) 0 0
\(573\) − 19.6414i − 0.820529i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 26.1662i − 1.08931i −0.838659 0.544657i \(-0.816660\pi\)
0.838659 0.544657i \(-0.183340\pi\)
\(578\) 0 0
\(579\) 4.87236 0.202489
\(580\) 0 0
\(581\) −54.8745 −2.27658
\(582\) 0 0
\(583\) 7.40131i 0.306531i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.67859i 0.110557i 0.998471 + 0.0552785i \(0.0176047\pi\)
−0.998471 + 0.0552785i \(0.982395\pi\)
\(588\) 0 0
\(589\) −31.3038 −1.28985
\(590\) 0 0
\(591\) −8.00869 −0.329434
\(592\) 0 0
\(593\) 26.8528i 1.10271i 0.834270 + 0.551357i \(0.185890\pi\)
−0.834270 + 0.551357i \(0.814110\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 35.8400i − 1.46683i
\(598\) 0 0
\(599\) −33.0060 −1.34859 −0.674295 0.738462i \(-0.735552\pi\)
−0.674295 + 0.738462i \(0.735552\pi\)
\(600\) 0 0
\(601\) −17.1268 −0.698616 −0.349308 0.937008i \(-0.613583\pi\)
−0.349308 + 0.937008i \(0.613583\pi\)
\(602\) 0 0
\(603\) − 3.35860i − 0.136773i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 41.3785i 1.67950i 0.542973 + 0.839750i \(0.317298\pi\)
−0.542973 + 0.839750i \(0.682702\pi\)
\(608\) 0 0
\(609\) 37.6462 1.52550
\(610\) 0 0
\(611\) 6.52957 0.264158
\(612\) 0 0
\(613\) 30.1547i 1.21794i 0.793194 + 0.608969i \(0.208417\pi\)
−0.793194 + 0.608969i \(0.791583\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 31.8901i − 1.28385i −0.766769 0.641923i \(-0.778137\pi\)
0.766769 0.641923i \(-0.221863\pi\)
\(618\) 0 0
\(619\) 14.8764 0.597935 0.298967 0.954263i \(-0.403358\pi\)
0.298967 + 0.954263i \(0.403358\pi\)
\(620\) 0 0
\(621\) −11.7099 −0.469902
\(622\) 0 0
\(623\) 52.4843i 2.10274i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 30.9842i − 1.23739i
\(628\) 0 0
\(629\) 2.48191 0.0989604
\(630\) 0 0
\(631\) −9.33949 −0.371799 −0.185900 0.982569i \(-0.559520\pi\)
−0.185900 + 0.982569i \(0.559520\pi\)
\(632\) 0 0
\(633\) − 37.0582i − 1.47293i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 56.7818i 2.24978i
\(638\) 0 0
\(639\) −0.0202630 −0.000801593 0
\(640\) 0 0
\(641\) −3.28606 −0.129792 −0.0648958 0.997892i \(-0.520672\pi\)
−0.0648958 + 0.997892i \(0.520672\pi\)
\(642\) 0 0
\(643\) − 1.78820i − 0.0705196i −0.999378 0.0352598i \(-0.988774\pi\)
0.999378 0.0352598i \(-0.0112259\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.04558i 0.0804200i 0.999191 + 0.0402100i \(0.0128027\pi\)
−0.999191 + 0.0402100i \(0.987197\pi\)
\(648\) 0 0
\(649\) 65.9078 2.58711
\(650\) 0 0
\(651\) −54.4531 −2.13418
\(652\) 0 0
\(653\) 2.36051i 0.0923740i 0.998933 + 0.0461870i \(0.0147070\pi\)
−0.998933 + 0.0461870i \(0.985293\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 5.69737i − 0.222276i
\(658\) 0 0
\(659\) −3.25145 −0.126658 −0.0633292 0.997993i \(-0.520172\pi\)
−0.0633292 + 0.997993i \(0.520172\pi\)
\(660\) 0 0
\(661\) −2.78242 −0.108223 −0.0541117 0.998535i \(-0.517233\pi\)
−0.0541117 + 0.998535i \(0.517233\pi\)
\(662\) 0 0
\(663\) − 7.65929i − 0.297462i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.2495i 0.474304i
\(668\) 0 0
\(669\) 4.58907 0.177424
\(670\) 0 0
\(671\) 67.7050 2.61372
\(672\) 0 0
\(673\) − 17.4485i − 0.672589i −0.941757 0.336294i \(-0.890826\pi\)
0.941757 0.336294i \(-0.109174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 5.57095i − 0.214109i −0.994253 0.107054i \(-0.965858\pi\)
0.994253 0.107054i \(-0.0341419\pi\)
\(678\) 0 0
\(679\) −24.2978 −0.932462
\(680\) 0 0
\(681\) 11.2193 0.429925
\(682\) 0 0
\(683\) − 32.0094i − 1.22480i −0.790546 0.612402i \(-0.790203\pi\)
0.790546 0.612402i \(-0.209797\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 22.1040i − 0.843319i
\(688\) 0 0
\(689\) −6.73166 −0.256456
\(690\) 0 0
\(691\) −30.0817 −1.14436 −0.572181 0.820127i \(-0.693903\pi\)
−0.572181 + 0.820127i \(0.693903\pi\)
\(692\) 0 0
\(693\) 17.7083i 0.672684i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.5633i 0.400113i
\(698\) 0 0
\(699\) 22.7986 0.862322
\(700\) 0 0
\(701\) 8.62366 0.325711 0.162856 0.986650i \(-0.447930\pi\)
0.162856 + 0.986650i \(0.447930\pi\)
\(702\) 0 0
\(703\) 9.13170i 0.344409i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 21.5853i − 0.811797i
\(708\) 0 0
\(709\) 11.9495 0.448774 0.224387 0.974500i \(-0.427962\pi\)
0.224387 + 0.974500i \(0.427962\pi\)
\(710\) 0 0
\(711\) −5.89607 −0.221120
\(712\) 0 0
\(713\) − 17.7182i − 0.663553i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.8422i 0.442257i
\(718\) 0 0
\(719\) −0.453808 −0.0169242 −0.00846209 0.999964i \(-0.502694\pi\)
−0.00846209 + 0.999964i \(0.502694\pi\)
\(720\) 0 0
\(721\) 22.8230 0.849971
\(722\) 0 0
\(723\) − 38.9636i − 1.44907i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 33.8668i − 1.25605i −0.778194 0.628024i \(-0.783864\pi\)
0.778194 0.628024i \(-0.216136\pi\)
\(728\) 0 0
\(729\) −29.9662 −1.10986
\(730\) 0 0
\(731\) 10.0848 0.373002
\(732\) 0 0
\(733\) − 12.1335i − 0.448162i −0.974571 0.224081i \(-0.928062\pi\)
0.974571 0.224081i \(-0.0719380\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.3694i 0.934493i
\(738\) 0 0
\(739\) 22.0480 0.811049 0.405525 0.914084i \(-0.367089\pi\)
0.405525 + 0.914084i \(0.367089\pi\)
\(740\) 0 0
\(741\) 28.1808 1.03525
\(742\) 0 0
\(743\) − 53.5023i − 1.96281i −0.191954 0.981404i \(-0.561482\pi\)
0.191954 0.981404i \(-0.438518\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 9.55880i − 0.349738i
\(748\) 0 0
\(749\) 77.9227 2.84723
\(750\) 0 0
\(751\) −27.4545 −1.00183 −0.500914 0.865497i \(-0.667003\pi\)
−0.500914 + 0.865497i \(0.667003\pi\)
\(752\) 0 0
\(753\) − 39.6664i − 1.44552i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 35.2758i − 1.28212i −0.767490 0.641061i \(-0.778495\pi\)
0.767490 0.641061i \(-0.221505\pi\)
\(758\) 0 0
\(759\) 17.5373 0.636565
\(760\) 0 0
\(761\) 29.2373 1.05985 0.529926 0.848044i \(-0.322220\pi\)
0.529926 + 0.848044i \(0.322220\pi\)
\(762\) 0 0
\(763\) − 44.3333i − 1.60497i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 59.9446i 2.16448i
\(768\) 0 0
\(769\) 22.0766 0.796104 0.398052 0.917363i \(-0.369686\pi\)
0.398052 + 0.917363i \(0.369686\pi\)
\(770\) 0 0
\(771\) −11.4019 −0.410630
\(772\) 0 0
\(773\) 29.2667i 1.05265i 0.850283 + 0.526326i \(0.176431\pi\)
−0.850283 + 0.526326i \(0.823569\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 15.8846i 0.569858i
\(778\) 0 0
\(779\) −38.8655 −1.39250
\(780\) 0 0
\(781\) 0.153058 0.00547684
\(782\) 0 0
\(783\) 33.0746i 1.18199i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 7.40215i − 0.263858i −0.991259 0.131929i \(-0.957883\pi\)
0.991259 0.131929i \(-0.0421171\pi\)
\(788\) 0 0
\(789\) 19.1158 0.680541
\(790\) 0 0
\(791\) 58.5862 2.08309
\(792\) 0 0
\(793\) 61.5793i 2.18674i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 51.5831i − 1.82717i −0.406652 0.913583i \(-0.633304\pi\)
0.406652 0.913583i \(-0.366696\pi\)
\(798\) 0 0
\(799\) 1.28105 0.0453204
\(800\) 0 0
\(801\) −9.14243 −0.323032
\(802\) 0 0
\(803\) 43.0354i 1.51869i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 6.32279i − 0.222573i
\(808\) 0 0
\(809\) 30.8840 1.08582 0.542912 0.839790i \(-0.317322\pi\)
0.542912 + 0.839790i \(0.317322\pi\)
\(810\) 0 0
\(811\) 1.66218 0.0583670 0.0291835 0.999574i \(-0.490709\pi\)
0.0291835 + 0.999574i \(0.490709\pi\)
\(812\) 0 0
\(813\) 27.6631i 0.970188i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 37.1052i 1.29815i
\(818\) 0 0
\(819\) −16.1061 −0.562794
\(820\) 0 0
\(821\) 39.9351 1.39374 0.696872 0.717195i \(-0.254574\pi\)
0.696872 + 0.717195i \(0.254574\pi\)
\(822\) 0 0
\(823\) − 2.20540i − 0.0768754i −0.999261 0.0384377i \(-0.987762\pi\)
0.999261 0.0384377i \(-0.0122381\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 14.1644i − 0.492546i −0.969201 0.246273i \(-0.920794\pi\)
0.969201 0.246273i \(-0.0792059\pi\)
\(828\) 0 0
\(829\) −34.9292 −1.21314 −0.606570 0.795030i \(-0.707455\pi\)
−0.606570 + 0.795030i \(0.707455\pi\)
\(830\) 0 0
\(831\) 35.6718 1.23744
\(832\) 0 0
\(833\) 11.1402i 0.385984i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 47.8405i − 1.65361i
\(838\) 0 0
\(839\) 10.6389 0.367294 0.183647 0.982992i \(-0.441210\pi\)
0.183647 + 0.982992i \(0.441210\pi\)
\(840\) 0 0
\(841\) 5.59880 0.193062
\(842\) 0 0
\(843\) 8.90772i 0.306798i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 86.9105i − 2.98628i
\(848\) 0 0
\(849\) 16.8407 0.577972
\(850\) 0 0
\(851\) −5.16863 −0.177178
\(852\) 0 0
\(853\) 4.53305i 0.155209i 0.996984 + 0.0776043i \(0.0247271\pi\)
−0.996984 + 0.0776043i \(0.975273\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 26.8119i − 0.915878i −0.888983 0.457939i \(-0.848588\pi\)
0.888983 0.457939i \(-0.151412\pi\)
\(858\) 0 0
\(859\) −2.54555 −0.0868530 −0.0434265 0.999057i \(-0.513827\pi\)
−0.0434265 + 0.999057i \(0.513827\pi\)
\(860\) 0 0
\(861\) −67.6067 −2.30403
\(862\) 0 0
\(863\) 21.3673i 0.727351i 0.931526 + 0.363676i \(0.118478\pi\)
−0.931526 + 0.363676i \(0.881522\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.50269i − 0.0510341i
\(868\) 0 0
\(869\) 44.5363 1.51079
\(870\) 0 0
\(871\) −23.0740 −0.781834
\(872\) 0 0
\(873\) − 4.23252i − 0.143249i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.1228i 0.645730i 0.946445 + 0.322865i \(0.104646\pi\)
−0.946445 + 0.322865i \(0.895354\pi\)
\(878\) 0 0
\(879\) 19.6434 0.662557
\(880\) 0 0
\(881\) 33.8416 1.14015 0.570075 0.821592i \(-0.306914\pi\)
0.570075 + 0.821592i \(0.306914\pi\)
\(882\) 0 0
\(883\) − 22.7756i − 0.766461i −0.923653 0.383231i \(-0.874811\pi\)
0.923653 0.383231i \(-0.125189\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 15.7568i 0.529062i 0.964377 + 0.264531i \(0.0852171\pi\)
−0.964377 + 0.264531i \(0.914783\pi\)
\(888\) 0 0
\(889\) −43.4490 −1.45723
\(890\) 0 0
\(891\) 34.8788 1.16848
\(892\) 0 0
\(893\) 4.71338i 0.157727i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 15.9506i 0.532576i
\(898\) 0 0
\(899\) −50.0452 −1.66910
\(900\) 0 0
\(901\) −1.32070 −0.0439989
\(902\) 0 0
\(903\) 64.5447i 2.14791i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 28.3574i − 0.941593i −0.882242 0.470796i \(-0.843967\pi\)
0.882242 0.470796i \(-0.156033\pi\)
\(908\) 0 0
\(909\) 3.76001 0.124712
\(910\) 0 0
\(911\) 4.46190 0.147829 0.0739147 0.997265i \(-0.476451\pi\)
0.0739147 + 0.997265i \(0.476451\pi\)
\(912\) 0 0
\(913\) 72.2029i 2.38957i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 39.6505i − 1.30938i
\(918\) 0 0
\(919\) −12.2144 −0.402917 −0.201459 0.979497i \(-0.564568\pi\)
−0.201459 + 0.979497i \(0.564568\pi\)
\(920\) 0 0
\(921\) 25.6665 0.845741
\(922\) 0 0
\(923\) 0.139210i 0.00458214i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.97562i 0.130576i
\(928\) 0 0
\(929\) 24.0052 0.787586 0.393793 0.919199i \(-0.371163\pi\)
0.393793 + 0.919199i \(0.371163\pi\)
\(930\) 0 0
\(931\) −40.9880 −1.34333
\(932\) 0 0
\(933\) − 15.4342i − 0.505294i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 46.3819i 1.51523i 0.652702 + 0.757615i \(0.273635\pi\)
−0.652702 + 0.757615i \(0.726365\pi\)
\(938\) 0 0
\(939\) 6.14746 0.200615
\(940\) 0 0
\(941\) 0.530210 0.0172843 0.00864217 0.999963i \(-0.497249\pi\)
0.00864217 + 0.999963i \(0.497249\pi\)
\(942\) 0 0
\(943\) − 21.9983i − 0.716362i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.3865i 0.889942i 0.895545 + 0.444971i \(0.146786\pi\)
−0.895545 + 0.444971i \(0.853214\pi\)
\(948\) 0 0
\(949\) −39.1417 −1.27059
\(950\) 0 0
\(951\) −8.74987 −0.283734
\(952\) 0 0
\(953\) − 39.8826i − 1.29192i −0.763370 0.645962i \(-0.776457\pi\)
0.763370 0.645962i \(-0.223543\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 49.5342i − 1.60121i
\(958\) 0 0
\(959\) −14.8721 −0.480245
\(960\) 0 0
\(961\) 41.3874 1.33508
\(962\) 0 0
\(963\) 13.5736i 0.437405i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 33.1843i − 1.06714i −0.845757 0.533568i \(-0.820851\pi\)
0.845757 0.533568i \(-0.179149\pi\)
\(968\) 0 0
\(969\) 5.52886 0.177613
\(970\) 0 0
\(971\) 1.88467 0.0604818 0.0302409 0.999543i \(-0.490373\pi\)
0.0302409 + 0.999543i \(0.490373\pi\)
\(972\) 0 0
\(973\) 51.2135i 1.64183i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 53.8166i 1.72175i 0.508819 + 0.860874i \(0.330082\pi\)
−0.508819 + 0.860874i \(0.669918\pi\)
\(978\) 0 0
\(979\) 69.0578 2.20710
\(980\) 0 0
\(981\) 7.72259 0.246563
\(982\) 0 0
\(983\) 41.8680i 1.33538i 0.744439 + 0.667690i \(0.232717\pi\)
−0.744439 + 0.667690i \(0.767283\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.19894i 0.260975i
\(988\) 0 0
\(989\) −21.0019 −0.667821
\(990\) 0 0
\(991\) 29.6430 0.941642 0.470821 0.882229i \(-0.343958\pi\)
0.470821 + 0.882229i \(0.343958\pi\)
\(992\) 0 0
\(993\) − 32.9934i − 1.04701i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28.3132i 0.896688i 0.893861 + 0.448344i \(0.147986\pi\)
−0.893861 + 0.448344i \(0.852014\pi\)
\(998\) 0 0
\(999\) −13.9557 −0.441538
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3400.2.e.n.2449.7 10
5.2 odd 4 3400.2.a.r.1.4 5
5.3 odd 4 3400.2.a.w.1.2 yes 5
5.4 even 2 inner 3400.2.e.n.2449.4 10
20.3 even 4 6800.2.a.bx.1.4 5
20.7 even 4 6800.2.a.cg.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3400.2.a.r.1.4 5 5.2 odd 4
3400.2.a.w.1.2 yes 5 5.3 odd 4
3400.2.e.n.2449.4 10 5.4 even 2 inner
3400.2.e.n.2449.7 10 1.1 even 1 trivial
6800.2.a.bx.1.4 5 20.3 even 4
6800.2.a.cg.1.2 5 20.7 even 4