Properties

Label 3400.2.e
Level $3400$
Weight $2$
Character orbit 3400.e
Rep. character $\chi_{3400}(2449,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $15$
Sturm bound $1080$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(1080\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3400, [\chi])\).

Total New Old
Modular forms 564 72 492
Cusp forms 516 72 444
Eisenstein series 48 0 48

Trace form

\( 72 q - 64 q^{9} - 20 q^{11} + 8 q^{19} + 16 q^{21} - 36 q^{29} + 8 q^{31} - 16 q^{39} + 32 q^{41} - 48 q^{49} - 12 q^{51} - 12 q^{61} + 40 q^{69} + 16 q^{71} - 8 q^{79} - 8 q^{81} - 40 q^{89} - 96 q^{91}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3400.2.e.a 3400.e 5.b $2$ $27.149$ \(\Q(\sqrt{-1}) \) None 136.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-2 i q^{7}-q^{9}-6 q^{11}+\cdots\)
3400.2.e.b 3400.e 5.b $2$ $27.149$ \(\Q(\sqrt{-1}) \) None 680.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-2 i q^{7}-q^{9}-2 q^{11}+\cdots\)
3400.2.e.c 3400.e 5.b $2$ $27.149$ \(\Q(\sqrt{-1}) \) None 136.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-q^{9}+2 q^{11}-6 i q^{13}+\cdots\)
3400.2.e.d 3400.e 5.b $2$ $27.149$ \(\Q(\sqrt{-1}) \) None 680.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{7}+2 q^{9}+4 q^{11}+\cdots\)
3400.2.e.e 3400.e 5.b $2$ $27.149$ \(\Q(\sqrt{-1}) \) None 680.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 q^{9}-2 i q^{13}-i q^{17}+4 q^{19}+\cdots\)
3400.2.e.f 3400.e 5.b $4$ $27.149$ \(\Q(i, \sqrt{5})\) None 136.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{3}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\)
3400.2.e.g 3400.e 5.b $4$ $27.149$ \(\Q(\zeta_{12})\) None 680.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{3}+(-\beta_{2}-3\beta_1)q^{7}+\cdots\)
3400.2.e.h 3400.e 5.b $4$ $27.149$ \(\Q(\zeta_{8})\) None 680.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{3}+\beta_{2} q^{7}+q^{9}+(3\beta_{3}-2)q^{11}+\cdots\)
3400.2.e.i 3400.e 5.b $6$ $27.149$ 6.0.3534400.1 None 680.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{4}+\beta _{5})q^{3}+(-\beta _{2}-\beta _{4})q^{7}+(-3+\cdots)q^{9}+\cdots\)
3400.2.e.j 3400.e 5.b $6$ $27.149$ 6.0.16516096.2 None 680.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-2\beta _{3}-\beta _{5})q^{7}+(-1-\beta _{2}+\cdots)q^{9}+\cdots\)
3400.2.e.k 3400.e 5.b $6$ $27.149$ 6.0.3356224.1 None 680.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(\beta _{4}-\beta _{5})q^{7}+(-1-\beta _{2}+\cdots)q^{9}+\cdots\)
3400.2.e.l 3400.e 5.b $6$ $27.149$ 6.0.5089536.1 None 3400.2.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(\beta _{2}+\beta _{4}-\beta _{5})q^{7}+(-1+\cdots)q^{9}+\cdots\)
3400.2.e.m 3400.e 5.b $6$ $27.149$ 6.0.350464.1 None 3400.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(-\beta _{3}+\beta _{5})q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
3400.2.e.n 3400.e 5.b $10$ $27.149$ 10.0.\(\cdots\).1 None 3400.2.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+\beta _{9})q^{3}+(\beta _{2}+\beta _{4}-\beta _{5}-\beta _{9})q^{7}+\cdots\)
3400.2.e.o 3400.e 5.b $10$ $27.149$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 3400.2.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{4}-\beta _{8})q^{7}+(-2-\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3400, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1700, [\chi])\)\(^{\oplus 2}\)