Properties

Label 6800.2.a.cg
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,0,0,1,0,6,0,6,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1981136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 8x^{3} + 10x^{2} + 18x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3400)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{7} + (\beta_{2} - \beta_1 + 2) q^{9} + ( - \beta_{3} + \beta_1 + 1) q^{11} + (\beta_{4} + \beta_{2}) q^{13} + q^{17} + ( - \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \cdots + 1) q^{19}+ \cdots + (\beta_{4} - 2 \beta_{3} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} + q^{7} + 6 q^{9} + 6 q^{11} - 3 q^{13} + 5 q^{17} + 6 q^{19} + 7 q^{21} + 10 q^{23} + 15 q^{27} + 6 q^{29} + 11 q^{31} - 20 q^{33} - 2 q^{37} - 9 q^{39} + 4 q^{41} + 8 q^{43} + 10 q^{47}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 8x^{3} + 10x^{2} + 18x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 6\nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 6\beta_{2} + 9\beta _1 + 23 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.77780
2.50269
0.105466
−1.32094
−2.06502
0 −1.77780 0 0 0 3.30243 0 0.160589 0
1.2 0 −1.50269 0 0 0 −4.25913 0 −0.741913 0
1.3 0 0.894534 0 0 0 1.04880 0 −2.19981 0
1.4 0 2.32094 0 0 0 −3.69585 0 2.38676 0
1.5 0 3.06502 0 0 0 4.60374 0 6.39437 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.cg 5
4.b odd 2 1 3400.2.a.r 5
5.b even 2 1 6800.2.a.bx 5
20.d odd 2 1 3400.2.a.w yes 5
20.e even 4 2 3400.2.e.n 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3400.2.a.r 5 4.b odd 2 1
3400.2.a.w yes 5 20.d odd 2 1
3400.2.e.n 10 20.e even 4 2
6800.2.a.bx 5 5.b even 2 1
6800.2.a.cg 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3}^{5} - 3T_{3}^{4} - 6T_{3}^{3} + 16T_{3}^{2} + 11T_{3} - 17 \) Copy content Toggle raw display
\( T_{7}^{5} - T_{7}^{4} - 32T_{7}^{3} + 30T_{7}^{2} + 243T_{7} - 251 \) Copy content Toggle raw display
\( T_{11}^{5} - 6T_{11}^{4} - 10T_{11}^{3} + 84T_{11}^{2} - 92T_{11} + 28 \) Copy content Toggle raw display
\( T_{13}^{5} + 3T_{13}^{4} - 46T_{13}^{3} - 186T_{13}^{2} + 141T_{13} + 875 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} + \cdots - 17 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - T^{4} + \cdots - 251 \) Copy content Toggle raw display
$11$ \( T^{5} - 6 T^{4} + \cdots + 28 \) Copy content Toggle raw display
$13$ \( T^{5} + 3 T^{4} + \cdots + 875 \) Copy content Toggle raw display
$17$ \( (T - 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots + 80 \) Copy content Toggle raw display
$23$ \( T^{5} - 10 T^{4} + \cdots - 1412 \) Copy content Toggle raw display
$29$ \( T^{5} - 6 T^{4} + \cdots - 400 \) Copy content Toggle raw display
$31$ \( T^{5} - 11 T^{4} + \cdots - 1609 \) Copy content Toggle raw display
$37$ \( T^{5} + 2 T^{4} + \cdots + 11504 \) Copy content Toggle raw display
$41$ \( T^{5} - 4 T^{4} + \cdots - 656 \) Copy content Toggle raw display
$43$ \( T^{5} - 8 T^{4} + \cdots - 19600 \) Copy content Toggle raw display
$47$ \( T^{5} - 10 T^{4} + \cdots + 4960 \) Copy content Toggle raw display
$53$ \( T^{5} + 19 T^{4} + \cdots - 625 \) Copy content Toggle raw display
$59$ \( T^{5} - 228 T^{3} + \cdots - 19696 \) Copy content Toggle raw display
$61$ \( T^{5} + 14 T^{4} + \cdots + 167008 \) Copy content Toggle raw display
$67$ \( T^{5} - 80 T^{3} + \cdots + 640 \) Copy content Toggle raw display
$71$ \( T^{5} - 5 T^{4} + \cdots - 79 \) Copy content Toggle raw display
$73$ \( T^{5} + 26 T^{4} + \cdots - 5648 \) Copy content Toggle raw display
$79$ \( T^{5} + 27 T^{4} + \cdots - 37325 \) Copy content Toggle raw display
$83$ \( T^{5} - 20 T^{4} + \cdots - 8384 \) Copy content Toggle raw display
$89$ \( T^{5} - 10 T^{4} + \cdots - 8720 \) Copy content Toggle raw display
$97$ \( T^{5} - 24 T^{4} + \cdots + 99776 \) Copy content Toggle raw display
show more
show less