Properties

Label 680.2.z.d.89.3
Level $680$
Weight $2$
Character 680.89
Analytic conductor $5.430$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.3
Character \(\chi\) \(=\) 680.89
Dual form 680.2.z.d.489.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69850 - 1.69850i) q^{3} +(-2.23426 + 0.0897794i) q^{5} +(-2.68873 + 2.68873i) q^{7} +2.76980i q^{9} +(1.62009 + 1.62009i) q^{11} -4.79916i q^{13} +(3.94739 + 3.64241i) q^{15} +(2.73163 + 3.08839i) q^{17} -0.473120i q^{19} +9.13362 q^{21} +(-0.747433 + 0.747433i) q^{23} +(4.98388 - 0.401182i) q^{25} +(-0.390993 + 0.390993i) q^{27} +(6.84907 - 6.84907i) q^{29} +(-3.38541 + 3.38541i) q^{31} -5.50346i q^{33} +(5.76595 - 6.24873i) q^{35} +(2.83711 + 2.83711i) q^{37} +(-8.15137 + 8.15137i) q^{39} +(1.76410 + 1.76410i) q^{41} +11.0431 q^{43} +(-0.248671 - 6.18847i) q^{45} -12.1034i q^{47} -7.45856i q^{49} +(0.605956 - 9.88531i) q^{51} -2.14408 q^{53} +(-3.76517 - 3.47427i) q^{55} +(-0.803594 + 0.803594i) q^{57} +6.46475i q^{59} +(-0.354589 - 0.354589i) q^{61} +(-7.44725 - 7.44725i) q^{63} +(0.430866 + 10.7226i) q^{65} +13.9447i q^{67} +2.53903 q^{69} +(4.21624 - 4.21624i) q^{71} +(11.2518 + 11.2518i) q^{73} +(-9.14652 - 7.78371i) q^{75} -8.71200 q^{77} +(5.88159 + 5.88159i) q^{79} +9.63761 q^{81} -2.59966 q^{83} +(-6.38047 - 6.65504i) q^{85} -23.2663 q^{87} -9.11592 q^{89} +(12.9037 + 12.9037i) q^{91} +11.5002 q^{93} +(0.0424764 + 1.05708i) q^{95} +(6.39444 + 6.39444i) q^{97} +(-4.48734 + 4.48734i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{11} - 2 q^{15} + 2 q^{17} - 12 q^{21} - 2 q^{23} + 10 q^{25} + 20 q^{27} + 10 q^{29} - 10 q^{31} + 22 q^{35} - 6 q^{37} + 8 q^{39} - 10 q^{41} + 32 q^{43} + 28 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69850 1.69850i −0.980629 0.980629i 0.0191868 0.999816i \(-0.493892\pi\)
−0.999816 + 0.0191868i \(0.993892\pi\)
\(4\) 0 0
\(5\) −2.23426 + 0.0897794i −0.999194 + 0.0401506i
\(6\) 0 0
\(7\) −2.68873 + 2.68873i −1.01625 + 1.01625i −0.0163793 + 0.999866i \(0.505214\pi\)
−0.999866 + 0.0163793i \(0.994786\pi\)
\(8\) 0 0
\(9\) 2.76980i 0.923267i
\(10\) 0 0
\(11\) 1.62009 + 1.62009i 0.488477 + 0.488477i 0.907825 0.419349i \(-0.137741\pi\)
−0.419349 + 0.907825i \(0.637741\pi\)
\(12\) 0 0
\(13\) 4.79916i 1.33105i −0.746377 0.665524i \(-0.768208\pi\)
0.746377 0.665524i \(-0.231792\pi\)
\(14\) 0 0
\(15\) 3.94739 + 3.64241i 1.01921 + 0.940466i
\(16\) 0 0
\(17\) 2.73163 + 3.08839i 0.662519 + 0.749045i
\(18\) 0 0
\(19\) 0.473120i 0.108541i −0.998526 0.0542706i \(-0.982717\pi\)
0.998526 0.0542706i \(-0.0172834\pi\)
\(20\) 0 0
\(21\) 9.13362 1.99312
\(22\) 0 0
\(23\) −0.747433 + 0.747433i −0.155850 + 0.155850i −0.780725 0.624875i \(-0.785150\pi\)
0.624875 + 0.780725i \(0.285150\pi\)
\(24\) 0 0
\(25\) 4.98388 0.401182i 0.996776 0.0802364i
\(26\) 0 0
\(27\) −0.390993 + 0.390993i −0.0752467 + 0.0752467i
\(28\) 0 0
\(29\) 6.84907 6.84907i 1.27184 1.27184i 0.326719 0.945122i \(-0.394057\pi\)
0.945122 0.326719i \(-0.105943\pi\)
\(30\) 0 0
\(31\) −3.38541 + 3.38541i −0.608038 + 0.608038i −0.942433 0.334395i \(-0.891468\pi\)
0.334395 + 0.942433i \(0.391468\pi\)
\(32\) 0 0
\(33\) 5.50346i 0.958029i
\(34\) 0 0
\(35\) 5.76595 6.24873i 0.974623 1.05623i
\(36\) 0 0
\(37\) 2.83711 + 2.83711i 0.466419 + 0.466419i 0.900752 0.434333i \(-0.143016\pi\)
−0.434333 + 0.900752i \(0.643016\pi\)
\(38\) 0 0
\(39\) −8.15137 + 8.15137i −1.30526 + 1.30526i
\(40\) 0 0
\(41\) 1.76410 + 1.76410i 0.275506 + 0.275506i 0.831312 0.555806i \(-0.187590\pi\)
−0.555806 + 0.831312i \(0.687590\pi\)
\(42\) 0 0
\(43\) 11.0431 1.68405 0.842025 0.539438i \(-0.181363\pi\)
0.842025 + 0.539438i \(0.181363\pi\)
\(44\) 0 0
\(45\) −0.248671 6.18847i −0.0370697 0.922522i
\(46\) 0 0
\(47\) 12.1034i 1.76546i −0.469885 0.882728i \(-0.655705\pi\)
0.469885 0.882728i \(-0.344295\pi\)
\(48\) 0 0
\(49\) 7.45856i 1.06551i
\(50\) 0 0
\(51\) 0.605956 9.88531i 0.0848507 1.38422i
\(52\) 0 0
\(53\) −2.14408 −0.294512 −0.147256 0.989098i \(-0.547044\pi\)
−0.147256 + 0.989098i \(0.547044\pi\)
\(54\) 0 0
\(55\) −3.76517 3.47427i −0.507695 0.468470i
\(56\) 0 0
\(57\) −0.803594 + 0.803594i −0.106439 + 0.106439i
\(58\) 0 0
\(59\) 6.46475i 0.841639i 0.907144 + 0.420820i \(0.138257\pi\)
−0.907144 + 0.420820i \(0.861743\pi\)
\(60\) 0 0
\(61\) −0.354589 0.354589i −0.0454005 0.0454005i 0.684042 0.729443i \(-0.260220\pi\)
−0.729443 + 0.684042i \(0.760220\pi\)
\(62\) 0 0
\(63\) −7.44725 7.44725i −0.938266 0.938266i
\(64\) 0 0
\(65\) 0.430866 + 10.7226i 0.0534423 + 1.32997i
\(66\) 0 0
\(67\) 13.9447i 1.70361i 0.523858 + 0.851806i \(0.324492\pi\)
−0.523858 + 0.851806i \(0.675508\pi\)
\(68\) 0 0
\(69\) 2.53903 0.305663
\(70\) 0 0
\(71\) 4.21624 4.21624i 0.500376 0.500376i −0.411179 0.911555i \(-0.634883\pi\)
0.911555 + 0.411179i \(0.134883\pi\)
\(72\) 0 0
\(73\) 11.2518 + 11.2518i 1.31692 + 1.31692i 0.916198 + 0.400725i \(0.131242\pi\)
0.400725 + 0.916198i \(0.368758\pi\)
\(74\) 0 0
\(75\) −9.14652 7.78371i −1.05615 0.898785i
\(76\) 0 0
\(77\) −8.71200 −0.992824
\(78\) 0 0
\(79\) 5.88159 + 5.88159i 0.661731 + 0.661731i 0.955788 0.294057i \(-0.0950056\pi\)
−0.294057 + 0.955788i \(0.595006\pi\)
\(80\) 0 0
\(81\) 9.63761 1.07085
\(82\) 0 0
\(83\) −2.59966 −0.285350 −0.142675 0.989770i \(-0.545570\pi\)
−0.142675 + 0.989770i \(0.545570\pi\)
\(84\) 0 0
\(85\) −6.38047 6.65504i −0.692059 0.721841i
\(86\) 0 0
\(87\) −23.2663 −2.49441
\(88\) 0 0
\(89\) −9.11592 −0.966286 −0.483143 0.875541i \(-0.660505\pi\)
−0.483143 + 0.875541i \(0.660505\pi\)
\(90\) 0 0
\(91\) 12.9037 + 12.9037i 1.35267 + 1.35267i
\(92\) 0 0
\(93\) 11.5002 1.19252
\(94\) 0 0
\(95\) 0.0424764 + 1.05708i 0.00435799 + 0.108454i
\(96\) 0 0
\(97\) 6.39444 + 6.39444i 0.649257 + 0.649257i 0.952813 0.303556i \(-0.0981741\pi\)
−0.303556 + 0.952813i \(0.598174\pi\)
\(98\) 0 0
\(99\) −4.48734 + 4.48734i −0.450994 + 0.450994i
\(100\) 0 0
\(101\) 6.01342 0.598358 0.299179 0.954197i \(-0.403287\pi\)
0.299179 + 0.954197i \(0.403287\pi\)
\(102\) 0 0
\(103\) 6.70413i 0.660578i 0.943880 + 0.330289i \(0.107146\pi\)
−0.943880 + 0.330289i \(0.892854\pi\)
\(104\) 0 0
\(105\) −20.4069 + 0.820011i −1.99151 + 0.0800249i
\(106\) 0 0
\(107\) −3.08520 3.08520i −0.298257 0.298257i 0.542074 0.840331i \(-0.317639\pi\)
−0.840331 + 0.542074i \(0.817639\pi\)
\(108\) 0 0
\(109\) 2.62204 + 2.62204i 0.251146 + 0.251146i 0.821440 0.570294i \(-0.193171\pi\)
−0.570294 + 0.821440i \(0.693171\pi\)
\(110\) 0 0
\(111\) 9.63768i 0.914768i
\(112\) 0 0
\(113\) −11.4021 + 11.4021i −1.07262 + 1.07262i −0.0754726 + 0.997148i \(0.524047\pi\)
−0.997148 + 0.0754726i \(0.975953\pi\)
\(114\) 0 0
\(115\) 1.60286 1.73707i 0.149467 0.161982i
\(116\) 0 0
\(117\) 13.2927 1.22891
\(118\) 0 0
\(119\) −15.6485 0.959230i −1.43450 0.0879325i
\(120\) 0 0
\(121\) 5.75059i 0.522781i
\(122\) 0 0
\(123\) 5.99264i 0.540338i
\(124\) 0 0
\(125\) −11.0993 + 1.34380i −0.992751 + 0.120193i
\(126\) 0 0
\(127\) 0.786344 0.0697767 0.0348884 0.999391i \(-0.488892\pi\)
0.0348884 + 0.999391i \(0.488892\pi\)
\(128\) 0 0
\(129\) −18.7566 18.7566i −1.65143 1.65143i
\(130\) 0 0
\(131\) 13.1428 13.1428i 1.14830 1.14830i 0.161407 0.986888i \(-0.448397\pi\)
0.986888 0.161407i \(-0.0516032\pi\)
\(132\) 0 0
\(133\) 1.27209 + 1.27209i 0.110304 + 0.110304i
\(134\) 0 0
\(135\) 0.838480 0.908686i 0.0721648 0.0782072i
\(136\) 0 0
\(137\) 5.81223i 0.496572i 0.968687 + 0.248286i \(0.0798673\pi\)
−0.968687 + 0.248286i \(0.920133\pi\)
\(138\) 0 0
\(139\) −8.22497 + 8.22497i −0.697633 + 0.697633i −0.963899 0.266267i \(-0.914210\pi\)
0.266267 + 0.963899i \(0.414210\pi\)
\(140\) 0 0
\(141\) −20.5575 + 20.5575i −1.73126 + 1.73126i
\(142\) 0 0
\(143\) 7.77509 7.77509i 0.650186 0.650186i
\(144\) 0 0
\(145\) −14.6877 + 15.9175i −1.21975 + 1.32188i
\(146\) 0 0
\(147\) −12.6684 + 12.6684i −1.04487 + 1.04487i
\(148\) 0 0
\(149\) 21.7798 1.78427 0.892135 0.451768i \(-0.149207\pi\)
0.892135 + 0.451768i \(0.149207\pi\)
\(150\) 0 0
\(151\) 1.97928i 0.161071i −0.996752 0.0805356i \(-0.974337\pi\)
0.996752 0.0805356i \(-0.0256631\pi\)
\(152\) 0 0
\(153\) −8.55423 + 7.56608i −0.691569 + 0.611682i
\(154\) 0 0
\(155\) 7.25997 7.86785i 0.583135 0.631961i
\(156\) 0 0
\(157\) 0.671587i 0.0535985i 0.999641 + 0.0267992i \(0.00853149\pi\)
−0.999641 + 0.0267992i \(0.991469\pi\)
\(158\) 0 0
\(159\) 3.64171 + 3.64171i 0.288807 + 0.288807i
\(160\) 0 0
\(161\) 4.01929i 0.316765i
\(162\) 0 0
\(163\) 1.75163 1.75163i 0.137198 0.137198i −0.635172 0.772370i \(-0.719071\pi\)
0.772370 + 0.635172i \(0.219071\pi\)
\(164\) 0 0
\(165\) 0.494097 + 12.2962i 0.0384654 + 0.957256i
\(166\) 0 0
\(167\) −0.630460 0.630460i −0.0487864 0.0487864i 0.682293 0.731079i \(-0.260983\pi\)
−0.731079 + 0.682293i \(0.760983\pi\)
\(168\) 0 0
\(169\) −10.0319 −0.771687
\(170\) 0 0
\(171\) 1.31045 0.100213
\(172\) 0 0
\(173\) −8.30526 8.30526i −0.631438 0.631438i 0.316991 0.948429i \(-0.397327\pi\)
−0.948429 + 0.316991i \(0.897327\pi\)
\(174\) 0 0
\(175\) −12.3216 + 14.4790i −0.931429 + 1.09451i
\(176\) 0 0
\(177\) 10.9804 10.9804i 0.825336 0.825336i
\(178\) 0 0
\(179\) 8.65388i 0.646821i −0.946259 0.323411i \(-0.895170\pi\)
0.946259 0.323411i \(-0.104830\pi\)
\(180\) 0 0
\(181\) −12.9479 12.9479i −0.962412 0.962412i 0.0369072 0.999319i \(-0.488249\pi\)
−0.999319 + 0.0369072i \(0.988249\pi\)
\(182\) 0 0
\(183\) 1.20454i 0.0890421i
\(184\) 0 0
\(185\) −6.59358 6.08415i −0.484770 0.447316i
\(186\) 0 0
\(187\) −0.577984 + 9.42899i −0.0422663 + 0.689516i
\(188\) 0 0
\(189\) 2.10255i 0.152938i
\(190\) 0 0
\(191\) 1.80616 0.130689 0.0653445 0.997863i \(-0.479185\pi\)
0.0653445 + 0.997863i \(0.479185\pi\)
\(192\) 0 0
\(193\) −12.4874 + 12.4874i −0.898865 + 0.898865i −0.995336 0.0964710i \(-0.969245\pi\)
0.0964710 + 0.995336i \(0.469245\pi\)
\(194\) 0 0
\(195\) 17.4805 18.9441i 1.25180 1.35662i
\(196\) 0 0
\(197\) 15.5201 15.5201i 1.10576 1.10576i 0.112056 0.993702i \(-0.464256\pi\)
0.993702 0.112056i \(-0.0357436\pi\)
\(198\) 0 0
\(199\) −6.53983 + 6.53983i −0.463597 + 0.463597i −0.899832 0.436236i \(-0.856311\pi\)
0.436236 + 0.899832i \(0.356311\pi\)
\(200\) 0 0
\(201\) 23.6850 23.6850i 1.67061 1.67061i
\(202\) 0 0
\(203\) 36.8306i 2.58500i
\(204\) 0 0
\(205\) −4.09984 3.78308i −0.286346 0.264222i
\(206\) 0 0
\(207\) −2.07024 2.07024i −0.143892 0.143892i
\(208\) 0 0
\(209\) 0.766499 0.766499i 0.0530198 0.0530198i
\(210\) 0 0
\(211\) 10.4115 + 10.4115i 0.716755 + 0.716755i 0.967939 0.251184i \(-0.0808200\pi\)
−0.251184 + 0.967939i \(0.580820\pi\)
\(212\) 0 0
\(213\) −14.3226 −0.981366
\(214\) 0 0
\(215\) −24.6731 + 0.991439i −1.68269 + 0.0676156i
\(216\) 0 0
\(217\) 18.2049i 1.23583i
\(218\) 0 0
\(219\) 38.2224i 2.58283i
\(220\) 0 0
\(221\) 14.8217 13.1095i 0.997015 0.881844i
\(222\) 0 0
\(223\) 11.3700 0.761394 0.380697 0.924700i \(-0.375684\pi\)
0.380697 + 0.924700i \(0.375684\pi\)
\(224\) 0 0
\(225\) 1.11119 + 13.8044i 0.0740796 + 0.920290i
\(226\) 0 0
\(227\) 20.5002 20.5002i 1.36064 1.36064i 0.487549 0.873095i \(-0.337891\pi\)
0.873095 0.487549i \(-0.162109\pi\)
\(228\) 0 0
\(229\) 2.12357i 0.140329i −0.997535 0.0701646i \(-0.977648\pi\)
0.997535 0.0701646i \(-0.0223525\pi\)
\(230\) 0 0
\(231\) 14.7973 + 14.7973i 0.973592 + 0.973592i
\(232\) 0 0
\(233\) −3.24570 3.24570i −0.212633 0.212633i 0.592752 0.805385i \(-0.298041\pi\)
−0.805385 + 0.592752i \(0.798041\pi\)
\(234\) 0 0
\(235\) 1.08663 + 27.0421i 0.0708840 + 1.76403i
\(236\) 0 0
\(237\) 19.9798i 1.29782i
\(238\) 0 0
\(239\) −4.39931 −0.284568 −0.142284 0.989826i \(-0.545445\pi\)
−0.142284 + 0.989826i \(0.545445\pi\)
\(240\) 0 0
\(241\) 2.67058 2.67058i 0.172027 0.172027i −0.615842 0.787870i \(-0.711184\pi\)
0.787870 + 0.615842i \(0.211184\pi\)
\(242\) 0 0
\(243\) −15.1965 15.1965i −0.974855 0.974855i
\(244\) 0 0
\(245\) 0.669625 + 16.6644i 0.0427808 + 1.06465i
\(246\) 0 0
\(247\) −2.27058 −0.144473
\(248\) 0 0
\(249\) 4.41552 + 4.41552i 0.279822 + 0.279822i
\(250\) 0 0
\(251\) −15.6626 −0.988614 −0.494307 0.869288i \(-0.664578\pi\)
−0.494307 + 0.869288i \(0.664578\pi\)
\(252\) 0 0
\(253\) −2.42182 −0.152259
\(254\) 0 0
\(255\) −0.466368 + 22.1408i −0.0292051 + 1.38651i
\(256\) 0 0
\(257\) 14.9841 0.934683 0.467342 0.884077i \(-0.345212\pi\)
0.467342 + 0.884077i \(0.345212\pi\)
\(258\) 0 0
\(259\) −15.2565 −0.947992
\(260\) 0 0
\(261\) 18.9706 + 18.9706i 1.17425 + 1.17425i
\(262\) 0 0
\(263\) 15.2651 0.941286 0.470643 0.882324i \(-0.344022\pi\)
0.470643 + 0.882324i \(0.344022\pi\)
\(264\) 0 0
\(265\) 4.79044 0.192494i 0.294274 0.0118248i
\(266\) 0 0
\(267\) 15.4834 + 15.4834i 0.947568 + 0.947568i
\(268\) 0 0
\(269\) −19.1451 + 19.1451i −1.16730 + 1.16730i −0.184456 + 0.982841i \(0.559052\pi\)
−0.982841 + 0.184456i \(0.940948\pi\)
\(270\) 0 0
\(271\) 21.8029 1.32443 0.662217 0.749312i \(-0.269616\pi\)
0.662217 + 0.749312i \(0.269616\pi\)
\(272\) 0 0
\(273\) 43.8337i 2.65294i
\(274\) 0 0
\(275\) 8.72430 + 7.42440i 0.526095 + 0.447708i
\(276\) 0 0
\(277\) 1.62425 + 1.62425i 0.0975919 + 0.0975919i 0.754217 0.656625i \(-0.228017\pi\)
−0.656625 + 0.754217i \(0.728017\pi\)
\(278\) 0 0
\(279\) −9.37692 9.37692i −0.561381 0.561381i
\(280\) 0 0
\(281\) 1.55801i 0.0929434i −0.998920 0.0464717i \(-0.985202\pi\)
0.998920 0.0464717i \(-0.0147977\pi\)
\(282\) 0 0
\(283\) −2.69991 + 2.69991i −0.160493 + 0.160493i −0.782785 0.622292i \(-0.786202\pi\)
0.622292 + 0.782785i \(0.286202\pi\)
\(284\) 0 0
\(285\) 1.72330 1.86759i 0.102079 0.110626i
\(286\) 0 0
\(287\) −9.48638 −0.559963
\(288\) 0 0
\(289\) −2.07635 + 16.8727i −0.122138 + 0.992513i
\(290\) 0 0
\(291\) 21.7219i 1.27336i
\(292\) 0 0
\(293\) 13.1831i 0.770166i 0.922882 + 0.385083i \(0.125827\pi\)
−0.922882 + 0.385083i \(0.874173\pi\)
\(294\) 0 0
\(295\) −0.580402 14.4440i −0.0337923 0.840961i
\(296\) 0 0
\(297\) −1.26689 −0.0735125
\(298\) 0 0
\(299\) 3.58705 + 3.58705i 0.207444 + 0.207444i
\(300\) 0 0
\(301\) −29.6918 + 29.6918i −1.71141 + 1.71141i
\(302\) 0 0
\(303\) −10.2138 10.2138i −0.586767 0.586767i
\(304\) 0 0
\(305\) 0.824081 + 0.760411i 0.0471867 + 0.0435410i
\(306\) 0 0
\(307\) 33.8928i 1.93436i −0.254086 0.967182i \(-0.581775\pi\)
0.254086 0.967182i \(-0.418225\pi\)
\(308\) 0 0
\(309\) 11.3870 11.3870i 0.647782 0.647782i
\(310\) 0 0
\(311\) −13.3236 + 13.3236i −0.755510 + 0.755510i −0.975502 0.219992i \(-0.929397\pi\)
0.219992 + 0.975502i \(0.429397\pi\)
\(312\) 0 0
\(313\) 19.4611 19.4611i 1.10001 1.10001i 0.105597 0.994409i \(-0.466325\pi\)
0.994409 0.105597i \(-0.0336755\pi\)
\(314\) 0 0
\(315\) 17.3077 + 15.9705i 0.975181 + 0.899837i
\(316\) 0 0
\(317\) 0.210031 0.210031i 0.0117965 0.0117965i −0.701184 0.712980i \(-0.747345\pi\)
0.712980 + 0.701184i \(0.247345\pi\)
\(318\) 0 0
\(319\) 22.1923 1.24253
\(320\) 0 0
\(321\) 10.4804i 0.584960i
\(322\) 0 0
\(323\) 1.46118 1.29239i 0.0813023 0.0719106i
\(324\) 0 0
\(325\) −1.92534 23.9184i −0.106798 1.32676i
\(326\) 0 0
\(327\) 8.90708i 0.492563i
\(328\) 0 0
\(329\) 32.5427 + 32.5427i 1.79414 + 1.79414i
\(330\) 0 0
\(331\) 0.364298i 0.0200236i −0.999950 0.0100118i \(-0.996813\pi\)
0.999950 0.0100118i \(-0.00318691\pi\)
\(332\) 0 0
\(333\) −7.85824 + 7.85824i −0.430629 + 0.430629i
\(334\) 0 0
\(335\) −1.25194 31.1561i −0.0684010 1.70224i
\(336\) 0 0
\(337\) −0.532640 0.532640i −0.0290148 0.0290148i 0.692451 0.721465i \(-0.256531\pi\)
−0.721465 + 0.692451i \(0.756531\pi\)
\(338\) 0 0
\(339\) 38.7330 2.10369
\(340\) 0 0
\(341\) −10.9694 −0.594025
\(342\) 0 0
\(343\) 1.23294 + 1.23294i 0.0665726 + 0.0665726i
\(344\) 0 0
\(345\) −5.67286 + 0.227952i −0.305417 + 0.0122725i
\(346\) 0 0
\(347\) 9.48106 9.48106i 0.508970 0.508970i −0.405240 0.914210i \(-0.632812\pi\)
0.914210 + 0.405240i \(0.132812\pi\)
\(348\) 0 0
\(349\) 35.1919i 1.88378i 0.335923 + 0.941889i \(0.390952\pi\)
−0.335923 + 0.941889i \(0.609048\pi\)
\(350\) 0 0
\(351\) 1.87644 + 1.87644i 0.100157 + 0.100157i
\(352\) 0 0
\(353\) 3.91738i 0.208501i 0.994551 + 0.104250i \(0.0332444\pi\)
−0.994551 + 0.104250i \(0.966756\pi\)
\(354\) 0 0
\(355\) −9.04167 + 9.79873i −0.479882 + 0.520063i
\(356\) 0 0
\(357\) 24.9497 + 28.2082i 1.32048 + 1.49294i
\(358\) 0 0
\(359\) 20.3757i 1.07539i 0.843141 + 0.537693i \(0.180704\pi\)
−0.843141 + 0.537693i \(0.819296\pi\)
\(360\) 0 0
\(361\) 18.7762 0.988219
\(362\) 0 0
\(363\) −9.76738 + 9.76738i −0.512654 + 0.512654i
\(364\) 0 0
\(365\) −26.1497 24.1293i −1.36874 1.26299i
\(366\) 0 0
\(367\) −9.99474 + 9.99474i −0.521721 + 0.521721i −0.918091 0.396370i \(-0.870270\pi\)
0.396370 + 0.918091i \(0.370270\pi\)
\(368\) 0 0
\(369\) −4.88620 + 4.88620i −0.254366 + 0.254366i
\(370\) 0 0
\(371\) 5.76485 5.76485i 0.299296 0.299296i
\(372\) 0 0
\(373\) 14.1787i 0.734143i 0.930193 + 0.367072i \(0.119640\pi\)
−0.930193 + 0.367072i \(0.880360\pi\)
\(374\) 0 0
\(375\) 21.1346 + 16.5697i 1.09138 + 0.855656i
\(376\) 0 0
\(377\) −32.8698 32.8698i −1.69288 1.69288i
\(378\) 0 0
\(379\) 10.6162 10.6162i 0.545318 0.545318i −0.379765 0.925083i \(-0.623995\pi\)
0.925083 + 0.379765i \(0.123995\pi\)
\(380\) 0 0
\(381\) −1.33560 1.33560i −0.0684251 0.0684251i
\(382\) 0 0
\(383\) 15.8958 0.812238 0.406119 0.913820i \(-0.366882\pi\)
0.406119 + 0.913820i \(0.366882\pi\)
\(384\) 0 0
\(385\) 19.4649 0.782158i 0.992024 0.0398624i
\(386\) 0 0
\(387\) 30.5871i 1.55483i
\(388\) 0 0
\(389\) 12.0045i 0.608651i −0.952568 0.304326i \(-0.901569\pi\)
0.952568 0.304326i \(-0.0984311\pi\)
\(390\) 0 0
\(391\) −4.35008 0.266654i −0.219993 0.0134852i
\(392\) 0 0
\(393\) −44.6462 −2.25210
\(394\) 0 0
\(395\) −13.6691 12.6130i −0.687766 0.634628i
\(396\) 0 0
\(397\) −17.5677 + 17.5677i −0.881699 + 0.881699i −0.993707 0.112008i \(-0.964272\pi\)
0.112008 + 0.993707i \(0.464272\pi\)
\(398\) 0 0
\(399\) 4.32130i 0.216336i
\(400\) 0 0
\(401\) −5.35680 5.35680i −0.267506 0.267506i 0.560589 0.828094i \(-0.310575\pi\)
−0.828094 + 0.560589i \(0.810575\pi\)
\(402\) 0 0
\(403\) 16.2471 + 16.2471i 0.809327 + 0.809327i
\(404\) 0 0
\(405\) −21.5330 + 0.865258i −1.06998 + 0.0429950i
\(406\) 0 0
\(407\) 9.19279i 0.455669i
\(408\) 0 0
\(409\) −24.1481 −1.19405 −0.597024 0.802223i \(-0.703650\pi\)
−0.597024 + 0.802223i \(0.703650\pi\)
\(410\) 0 0
\(411\) 9.87207 9.87207i 0.486953 0.486953i
\(412\) 0 0
\(413\) −17.3820 17.3820i −0.855312 0.855312i
\(414\) 0 0
\(415\) 5.80832 0.233396i 0.285119 0.0114569i
\(416\) 0 0
\(417\) 27.9402 1.36824
\(418\) 0 0
\(419\) 12.8619 + 12.8619i 0.628343 + 0.628343i 0.947651 0.319308i \(-0.103450\pi\)
−0.319308 + 0.947651i \(0.603450\pi\)
\(420\) 0 0
\(421\) −21.9746 −1.07098 −0.535488 0.844543i \(-0.679872\pi\)
−0.535488 + 0.844543i \(0.679872\pi\)
\(422\) 0 0
\(423\) 33.5239 1.62999
\(424\) 0 0
\(425\) 14.8531 + 14.2963i 0.720483 + 0.693472i
\(426\) 0 0
\(427\) 1.90679 0.0922760
\(428\) 0 0
\(429\) −26.4120 −1.27518
\(430\) 0 0
\(431\) 15.5597 + 15.5597i 0.749486 + 0.749486i 0.974383 0.224897i \(-0.0722044\pi\)
−0.224897 + 0.974383i \(0.572204\pi\)
\(432\) 0 0
\(433\) 38.5005 1.85021 0.925107 0.379706i \(-0.123975\pi\)
0.925107 + 0.379706i \(0.123975\pi\)
\(434\) 0 0
\(435\) 51.9830 2.08883i 2.49240 0.100152i
\(436\) 0 0
\(437\) 0.353625 + 0.353625i 0.0169162 + 0.0169162i
\(438\) 0 0
\(439\) 26.3114 26.3114i 1.25578 1.25578i 0.302686 0.953090i \(-0.402117\pi\)
0.953090 0.302686i \(-0.0978832\pi\)
\(440\) 0 0
\(441\) 20.6587 0.983749
\(442\) 0 0
\(443\) 14.1092i 0.670349i −0.942156 0.335175i \(-0.891205\pi\)
0.942156 0.335175i \(-0.108795\pi\)
\(444\) 0 0
\(445\) 20.3674 0.818422i 0.965507 0.0387969i
\(446\) 0 0
\(447\) −36.9930 36.9930i −1.74971 1.74971i
\(448\) 0 0
\(449\) −16.5479 16.5479i −0.780941 0.780941i 0.199048 0.979990i \(-0.436215\pi\)
−0.979990 + 0.199048i \(0.936215\pi\)
\(450\) 0 0
\(451\) 5.71601i 0.269156i
\(452\) 0 0
\(453\) −3.36180 + 3.36180i −0.157951 + 0.157951i
\(454\) 0 0
\(455\) −29.9887 27.6717i −1.40589 1.29727i
\(456\) 0 0
\(457\) 26.8190 1.25454 0.627271 0.778801i \(-0.284172\pi\)
0.627271 + 0.778801i \(0.284172\pi\)
\(458\) 0 0
\(459\) −2.27559 0.139491i −0.106216 0.00651086i
\(460\) 0 0
\(461\) 5.74080i 0.267376i 0.991023 + 0.133688i \(0.0426819\pi\)
−0.991023 + 0.133688i \(0.957318\pi\)
\(462\) 0 0
\(463\) 14.5005i 0.673893i −0.941524 0.336947i \(-0.890606\pi\)
0.941524 0.336947i \(-0.109394\pi\)
\(464\) 0 0
\(465\) −25.6946 + 1.03248i −1.19156 + 0.0478803i
\(466\) 0 0
\(467\) −18.2661 −0.845254 −0.422627 0.906304i \(-0.638892\pi\)
−0.422627 + 0.906304i \(0.638892\pi\)
\(468\) 0 0
\(469\) −37.4935 37.4935i −1.73129 1.73129i
\(470\) 0 0
\(471\) 1.14069 1.14069i 0.0525602 0.0525602i
\(472\) 0 0
\(473\) 17.8908 + 17.8908i 0.822619 + 0.822619i
\(474\) 0 0
\(475\) −0.189807 2.35797i −0.00870895 0.108191i
\(476\) 0 0
\(477\) 5.93867i 0.271913i
\(478\) 0 0
\(479\) −8.88340 + 8.88340i −0.405893 + 0.405893i −0.880304 0.474411i \(-0.842661\pi\)
0.474411 + 0.880304i \(0.342661\pi\)
\(480\) 0 0
\(481\) 13.6158 13.6158i 0.620826 0.620826i
\(482\) 0 0
\(483\) −6.82676 + 6.82676i −0.310629 + 0.310629i
\(484\) 0 0
\(485\) −14.8610 13.7128i −0.674802 0.622666i
\(486\) 0 0
\(487\) −9.77900 + 9.77900i −0.443129 + 0.443129i −0.893062 0.449933i \(-0.851448\pi\)
0.449933 + 0.893062i \(0.351448\pi\)
\(488\) 0 0
\(489\) −5.95028 −0.269081
\(490\) 0 0
\(491\) 30.9519i 1.39684i −0.715689 0.698419i \(-0.753887\pi\)
0.715689 0.698419i \(-0.246113\pi\)
\(492\) 0 0
\(493\) 39.8618 + 2.44347i 1.79528 + 0.110048i
\(494\) 0 0
\(495\) 9.62303 10.4288i 0.432523 0.468738i
\(496\) 0 0
\(497\) 22.6727i 1.01701i
\(498\) 0 0
\(499\) −5.46055 5.46055i −0.244448 0.244448i 0.574239 0.818687i \(-0.305298\pi\)
−0.818687 + 0.574239i \(0.805298\pi\)
\(500\) 0 0
\(501\) 2.14167i 0.0956828i
\(502\) 0 0
\(503\) 21.0635 21.0635i 0.939174 0.939174i −0.0590792 0.998253i \(-0.518816\pi\)
0.998253 + 0.0590792i \(0.0188165\pi\)
\(504\) 0 0
\(505\) −13.4356 + 0.539881i −0.597875 + 0.0240244i
\(506\) 0 0
\(507\) 17.0392 + 17.0392i 0.756739 + 0.756739i
\(508\) 0 0
\(509\) 35.6036 1.57810 0.789052 0.614326i \(-0.210572\pi\)
0.789052 + 0.614326i \(0.210572\pi\)
\(510\) 0 0
\(511\) −60.5062 −2.67663
\(512\) 0 0
\(513\) 0.184987 + 0.184987i 0.00816737 + 0.00816737i
\(514\) 0 0
\(515\) −0.601893 14.9788i −0.0265226 0.660045i
\(516\) 0 0
\(517\) 19.6086 19.6086i 0.862384 0.862384i
\(518\) 0 0
\(519\) 28.2130i 1.23841i
\(520\) 0 0
\(521\) −6.84403 6.84403i −0.299842 0.299842i 0.541110 0.840952i \(-0.318004\pi\)
−0.840952 + 0.541110i \(0.818004\pi\)
\(522\) 0 0
\(523\) 0.0431523i 0.00188692i −1.00000 0.000943460i \(-0.999700\pi\)
1.00000 0.000943460i \(-0.000300313\pi\)
\(524\) 0 0
\(525\) 45.5209 3.66424i 1.98669 0.159921i
\(526\) 0 0
\(527\) −19.7032 1.20778i −0.858285 0.0526116i
\(528\) 0 0
\(529\) 21.8827i 0.951421i
\(530\) 0 0
\(531\) −17.9061 −0.777058
\(532\) 0 0
\(533\) 8.46619 8.46619i 0.366711 0.366711i
\(534\) 0 0
\(535\) 7.17014 + 6.61617i 0.309992 + 0.286042i
\(536\) 0 0
\(537\) −14.6986 + 14.6986i −0.634292 + 0.634292i
\(538\) 0 0
\(539\) 12.0836 12.0836i 0.520476 0.520476i
\(540\) 0 0
\(541\) −23.0154 + 23.0154i −0.989510 + 0.989510i −0.999946 0.0104358i \(-0.996678\pi\)
0.0104358 + 0.999946i \(0.496678\pi\)
\(542\) 0 0
\(543\) 43.9841i 1.88754i
\(544\) 0 0
\(545\) −6.09375 5.62293i −0.261027 0.240860i
\(546\) 0 0
\(547\) −0.782615 0.782615i −0.0334622 0.0334622i 0.690178 0.723640i \(-0.257532\pi\)
−0.723640 + 0.690178i \(0.757532\pi\)
\(548\) 0 0
\(549\) 0.982141 0.982141i 0.0419168 0.0419168i
\(550\) 0 0
\(551\) −3.24043 3.24043i −0.138047 0.138047i
\(552\) 0 0
\(553\) −31.6280 −1.34496
\(554\) 0 0
\(555\) 0.865265 + 21.5331i 0.0367284 + 0.914030i
\(556\) 0 0
\(557\) 34.7140i 1.47088i 0.677591 + 0.735439i \(0.263024\pi\)
−0.677591 + 0.735439i \(0.736976\pi\)
\(558\) 0 0
\(559\) 52.9974i 2.24155i
\(560\) 0 0
\(561\) 16.9968 15.0334i 0.717607 0.634712i
\(562\) 0 0
\(563\) 12.9543 0.545960 0.272980 0.962020i \(-0.411991\pi\)
0.272980 + 0.962020i \(0.411991\pi\)
\(564\) 0 0
\(565\) 24.4517 26.4990i 1.02869 1.11482i
\(566\) 0 0
\(567\) −25.9129 + 25.9129i −1.08824 + 1.08824i
\(568\) 0 0
\(569\) 26.9552i 1.13002i 0.825083 + 0.565011i \(0.191128\pi\)
−0.825083 + 0.565011i \(0.808872\pi\)
\(570\) 0 0
\(571\) −3.02208 3.02208i −0.126470 0.126470i 0.641039 0.767509i \(-0.278504\pi\)
−0.767509 + 0.641039i \(0.778504\pi\)
\(572\) 0 0
\(573\) −3.06776 3.06776i −0.128157 0.128157i
\(574\) 0 0
\(575\) −3.42526 + 4.02497i −0.142843 + 0.167853i
\(576\) 0 0
\(577\) 20.7612i 0.864302i −0.901801 0.432151i \(-0.857755\pi\)
0.901801 0.432151i \(-0.142245\pi\)
\(578\) 0 0
\(579\) 42.4198 1.76291
\(580\) 0 0
\(581\) 6.98978 6.98978i 0.289985 0.289985i
\(582\) 0 0
\(583\) −3.47361 3.47361i −0.143862 0.143862i
\(584\) 0 0
\(585\) −29.6994 + 1.19341i −1.22792 + 0.0493415i
\(586\) 0 0
\(587\) −40.6389 −1.67735 −0.838674 0.544634i \(-0.816669\pi\)
−0.838674 + 0.544634i \(0.816669\pi\)
\(588\) 0 0
\(589\) 1.60171 + 1.60171i 0.0659972 + 0.0659972i
\(590\) 0 0
\(591\) −52.7216 −2.16868
\(592\) 0 0
\(593\) 12.4818 0.512567 0.256284 0.966602i \(-0.417502\pi\)
0.256284 + 0.966602i \(0.417502\pi\)
\(594\) 0 0
\(595\) 35.0490 + 0.738262i 1.43687 + 0.0302658i
\(596\) 0 0
\(597\) 22.2158 0.909233
\(598\) 0 0
\(599\) −37.9426 −1.55029 −0.775147 0.631781i \(-0.782324\pi\)
−0.775147 + 0.631781i \(0.782324\pi\)
\(600\) 0 0
\(601\) 4.36278 + 4.36278i 0.177962 + 0.177962i 0.790467 0.612505i \(-0.209838\pi\)
−0.612505 + 0.790467i \(0.709838\pi\)
\(602\) 0 0
\(603\) −38.6239 −1.57289
\(604\) 0 0
\(605\) 0.516285 + 12.8483i 0.0209900 + 0.522360i
\(606\) 0 0
\(607\) 17.2199 + 17.2199i 0.698936 + 0.698936i 0.964181 0.265245i \(-0.0854529\pi\)
−0.265245 + 0.964181i \(0.585453\pi\)
\(608\) 0 0
\(609\) 62.5568 62.5568i 2.53493 2.53493i
\(610\) 0 0
\(611\) −58.0859 −2.34990
\(612\) 0 0
\(613\) 39.7179i 1.60419i 0.597196 + 0.802095i \(0.296281\pi\)
−0.597196 + 0.802095i \(0.703719\pi\)
\(614\) 0 0
\(615\) 0.538016 + 13.3891i 0.0216949 + 0.539903i
\(616\) 0 0
\(617\) 10.2837 + 10.2837i 0.414005 + 0.414005i 0.883131 0.469126i \(-0.155431\pi\)
−0.469126 + 0.883131i \(0.655431\pi\)
\(618\) 0 0
\(619\) −20.8463 20.8463i −0.837884 0.837884i 0.150696 0.988580i \(-0.451849\pi\)
−0.988580 + 0.150696i \(0.951849\pi\)
\(620\) 0 0
\(621\) 0.584482i 0.0234545i
\(622\) 0 0
\(623\) 24.5103 24.5103i 0.981983 0.981983i
\(624\) 0 0
\(625\) 24.6781 3.99888i 0.987124 0.159955i
\(626\) 0 0
\(627\) −2.60380 −0.103986
\(628\) 0 0
\(629\) −1.01217 + 16.5121i −0.0403577 + 0.658380i
\(630\) 0 0
\(631\) 38.0577i 1.51505i 0.652805 + 0.757526i \(0.273592\pi\)
−0.652805 + 0.757526i \(0.726408\pi\)
\(632\) 0 0
\(633\) 35.3677i 1.40574i
\(634\) 0 0
\(635\) −1.75690 + 0.0705974i −0.0697204 + 0.00280157i
\(636\) 0 0
\(637\) −35.7948 −1.41824
\(638\) 0 0
\(639\) 11.6782 + 11.6782i 0.461981 + 0.461981i
\(640\) 0 0
\(641\) 15.0374 15.0374i 0.593940 0.593940i −0.344753 0.938693i \(-0.612037\pi\)
0.938693 + 0.344753i \(0.112037\pi\)
\(642\) 0 0
\(643\) −19.0963 19.0963i −0.753083 0.753083i 0.221970 0.975053i \(-0.428751\pi\)
−0.975053 + 0.221970i \(0.928751\pi\)
\(644\) 0 0
\(645\) 43.5912 + 40.2233i 1.71640 + 1.58379i
\(646\) 0 0
\(647\) 11.0358i 0.433862i 0.976187 + 0.216931i \(0.0696047\pi\)
−0.976187 + 0.216931i \(0.930395\pi\)
\(648\) 0 0
\(649\) −10.4735 + 10.4735i −0.411121 + 0.411121i
\(650\) 0 0
\(651\) −30.9211 + 30.9211i −1.21189 + 1.21189i
\(652\) 0 0
\(653\) −20.3581 + 20.3581i −0.796673 + 0.796673i −0.982569 0.185897i \(-0.940481\pi\)
0.185897 + 0.982569i \(0.440481\pi\)
\(654\) 0 0
\(655\) −28.1846 + 30.5445i −1.10126 + 1.19347i
\(656\) 0 0
\(657\) −31.1652 + 31.1652i −1.21587 + 1.21587i
\(658\) 0 0
\(659\) −20.5022 −0.798653 −0.399327 0.916809i \(-0.630756\pi\)
−0.399327 + 0.916809i \(0.630756\pi\)
\(660\) 0 0
\(661\) 8.50686i 0.330879i 0.986220 + 0.165439i \(0.0529042\pi\)
−0.986220 + 0.165439i \(0.947096\pi\)
\(662\) 0 0
\(663\) −47.4412 2.90808i −1.84246 0.112940i
\(664\) 0 0
\(665\) −2.95640 2.72799i −0.114644 0.105787i
\(666\) 0 0
\(667\) 10.2384i 0.396434i
\(668\) 0 0
\(669\) −19.3120 19.3120i −0.746645 0.746645i
\(670\) 0 0
\(671\) 1.14894i 0.0443542i
\(672\) 0 0
\(673\) −14.9441 + 14.9441i −0.576054 + 0.576054i −0.933814 0.357760i \(-0.883541\pi\)
0.357760 + 0.933814i \(0.383541\pi\)
\(674\) 0 0
\(675\) −1.79180 + 2.10552i −0.0689666 + 0.0810416i
\(676\) 0 0
\(677\) −31.1078 31.1078i −1.19557 1.19557i −0.975479 0.220092i \(-0.929364\pi\)
−0.220092 0.975479i \(-0.570636\pi\)
\(678\) 0 0
\(679\) −34.3859 −1.31961
\(680\) 0 0
\(681\) −69.6391 −2.66858
\(682\) 0 0
\(683\) −6.45703 6.45703i −0.247071 0.247071i 0.572696 0.819768i \(-0.305897\pi\)
−0.819768 + 0.572696i \(0.805897\pi\)
\(684\) 0 0
\(685\) −0.521818 12.9861i −0.0199377 0.496172i
\(686\) 0 0
\(687\) −3.60688 + 3.60688i −0.137611 + 0.137611i
\(688\) 0 0
\(689\) 10.2898i 0.392009i
\(690\) 0 0
\(691\) 22.7756 + 22.7756i 0.866424 + 0.866424i 0.992075 0.125650i \(-0.0401017\pi\)
−0.125650 + 0.992075i \(0.540102\pi\)
\(692\) 0 0
\(693\) 24.1305i 0.916642i
\(694\) 0 0
\(695\) 17.6383 19.1152i 0.669060 0.725081i
\(696\) 0 0
\(697\) −0.629359 + 10.2671i −0.0238387 + 0.388894i
\(698\) 0 0
\(699\) 11.0256i 0.417028i
\(700\) 0 0
\(701\) −8.81649 −0.332994 −0.166497 0.986042i \(-0.553246\pi\)
−0.166497 + 0.986042i \(0.553246\pi\)
\(702\) 0 0
\(703\) 1.34230 1.34230i 0.0506257 0.0506257i
\(704\) 0 0
\(705\) 44.0853 47.7766i 1.66035 1.79937i
\(706\) 0 0
\(707\) −16.1685 + 16.1685i −0.608078 + 0.608078i
\(708\) 0 0
\(709\) 0.882611 0.882611i 0.0331472 0.0331472i −0.690339 0.723486i \(-0.742539\pi\)
0.723486 + 0.690339i \(0.242539\pi\)
\(710\) 0 0
\(711\) −16.2908 + 16.2908i −0.610954 + 0.610954i
\(712\) 0 0
\(713\) 5.06073i 0.189526i
\(714\) 0 0
\(715\) −16.6736 + 18.0697i −0.623556 + 0.675767i
\(716\) 0 0
\(717\) 7.47222 + 7.47222i 0.279055 + 0.279055i
\(718\) 0 0
\(719\) 18.3862 18.3862i 0.685690 0.685690i −0.275586 0.961276i \(-0.588872\pi\)
0.961276 + 0.275586i \(0.0888720\pi\)
\(720\) 0 0
\(721\) −18.0256 18.0256i −0.671309 0.671309i
\(722\) 0 0
\(723\) −9.07197 −0.337390
\(724\) 0 0
\(725\) 31.3872 36.8827i 1.16569 1.36979i
\(726\) 0 0
\(727\) 41.1201i 1.52506i 0.646953 + 0.762530i \(0.276043\pi\)
−0.646953 + 0.762530i \(0.723957\pi\)
\(728\) 0 0
\(729\) 22.7096i 0.841098i
\(730\) 0 0
\(731\) 30.1656 + 34.1053i 1.11571 + 1.26143i
\(732\) 0 0
\(733\) −28.3930 −1.04872 −0.524360 0.851497i \(-0.675695\pi\)
−0.524360 + 0.851497i \(0.675695\pi\)
\(734\) 0 0
\(735\) 27.1671 29.4418i 1.00207 1.08598i
\(736\) 0 0
\(737\) −22.5917 + 22.5917i −0.832174 + 0.832174i
\(738\) 0 0
\(739\) 40.0186i 1.47211i 0.676923 + 0.736053i \(0.263313\pi\)
−0.676923 + 0.736053i \(0.736687\pi\)
\(740\) 0 0
\(741\) 3.85658 + 3.85658i 0.141675 + 0.141675i
\(742\) 0 0
\(743\) −25.2900 25.2900i −0.927800 0.927800i 0.0697638 0.997564i \(-0.477775\pi\)
−0.997564 + 0.0697638i \(0.977775\pi\)
\(744\) 0 0
\(745\) −48.6618 + 1.95538i −1.78283 + 0.0716395i
\(746\) 0 0
\(747\) 7.20053i 0.263454i
\(748\) 0 0
\(749\) 16.5905 0.606205
\(750\) 0 0
\(751\) −4.74161 + 4.74161i −0.173024 + 0.173024i −0.788306 0.615283i \(-0.789042\pi\)
0.615283 + 0.788306i \(0.289042\pi\)
\(752\) 0 0
\(753\) 26.6029 + 26.6029i 0.969463 + 0.969463i
\(754\) 0 0
\(755\) 0.177698 + 4.42223i 0.00646710 + 0.160941i
\(756\) 0 0
\(757\) −7.39432 −0.268751 −0.134376 0.990930i \(-0.542903\pi\)
−0.134376 + 0.990930i \(0.542903\pi\)
\(758\) 0 0
\(759\) 4.11346 + 4.11346i 0.149309 + 0.149309i
\(760\) 0 0
\(761\) −20.5436 −0.744704 −0.372352 0.928092i \(-0.621449\pi\)
−0.372352 + 0.928092i \(0.621449\pi\)
\(762\) 0 0
\(763\) −14.0999 −0.510452
\(764\) 0 0
\(765\) 18.4331 17.6726i 0.666452 0.638955i
\(766\) 0 0
\(767\) 31.0254 1.12026
\(768\) 0 0
\(769\) 10.4379 0.376399 0.188200 0.982131i \(-0.439735\pi\)
0.188200 + 0.982131i \(0.439735\pi\)
\(770\) 0 0
\(771\) −25.4505 25.4505i −0.916577 0.916577i
\(772\) 0 0
\(773\) 38.8806 1.39844 0.699220 0.714907i \(-0.253531\pi\)
0.699220 + 0.714907i \(0.253531\pi\)
\(774\) 0 0
\(775\) −15.5143 + 18.2307i −0.557291 + 0.654864i
\(776\) 0 0
\(777\) 25.9131 + 25.9131i 0.929628 + 0.929628i
\(778\) 0 0
\(779\) 0.834631 0.834631i 0.0299038 0.0299038i
\(780\) 0 0
\(781\) 13.6614 0.488844
\(782\) 0 0
\(783\) 5.35588i 0.191404i
\(784\) 0 0
\(785\) −0.0602947 1.50050i −0.00215201 0.0535553i
\(786\) 0 0
\(787\) −33.6600 33.6600i −1.19985 1.19985i −0.974211 0.225637i \(-0.927554\pi\)
−0.225637 0.974211i \(-0.572446\pi\)
\(788\) 0 0
\(789\) −25.9277 25.9277i −0.923052 0.923052i
\(790\) 0 0
\(791\) 61.3144i 2.18009i
\(792\) 0 0
\(793\) −1.70173 + 1.70173i −0.0604302 + 0.0604302i
\(794\) 0 0
\(795\) −8.46350 7.80960i −0.300170 0.276978i
\(796\) 0 0
\(797\) 23.0211 0.815448 0.407724 0.913105i \(-0.366323\pi\)
0.407724 + 0.913105i \(0.366323\pi\)
\(798\) 0 0
\(799\) 37.3799 33.0619i 1.32241 1.16965i
\(800\) 0 0
\(801\) 25.2493i 0.892140i
\(802\) 0 0
\(803\) 36.4579i 1.28657i
\(804\) 0 0
\(805\) 0.360850 + 8.98016i 0.0127183 + 0.316509i
\(806\) 0 0
\(807\) 65.0358 2.28937
\(808\) 0 0
\(809\) −6.65071 6.65071i −0.233826 0.233826i 0.580461 0.814288i \(-0.302872\pi\)
−0.814288 + 0.580461i \(0.802872\pi\)
\(810\) 0 0
\(811\) −6.08751 + 6.08751i −0.213761 + 0.213761i −0.805863 0.592102i \(-0.798298\pi\)
0.592102 + 0.805863i \(0.298298\pi\)
\(812\) 0 0
\(813\) −37.0323 37.0323i −1.29878 1.29878i
\(814\) 0 0
\(815\) −3.75634 + 4.07086i −0.131579 + 0.142596i
\(816\) 0 0
\(817\) 5.22469i 0.182789i
\(818\) 0 0
\(819\) −35.7406 + 35.7406i −1.24888 + 1.24888i
\(820\) 0 0
\(821\) −14.4519 + 14.4519i −0.504374 + 0.504374i −0.912794 0.408420i \(-0.866080\pi\)
0.408420 + 0.912794i \(0.366080\pi\)
\(822\) 0 0
\(823\) −10.0576 + 10.0576i −0.350587 + 0.350587i −0.860328 0.509741i \(-0.829741\pi\)
0.509741 + 0.860328i \(0.329741\pi\)
\(824\) 0 0
\(825\) −2.20789 27.4286i −0.0768688 0.954940i
\(826\) 0 0
\(827\) 20.4402 20.4402i 0.710776 0.710776i −0.255922 0.966698i \(-0.582379\pi\)
0.966698 + 0.255922i \(0.0823789\pi\)
\(828\) 0 0
\(829\) 34.0549 1.18277 0.591387 0.806388i \(-0.298581\pi\)
0.591387 + 0.806388i \(0.298581\pi\)
\(830\) 0 0
\(831\) 5.51758i 0.191403i
\(832\) 0 0
\(833\) 23.0350 20.3741i 0.798114 0.705919i
\(834\) 0 0
\(835\) 1.46522 + 1.35201i 0.0507059 + 0.0467883i
\(836\) 0 0
\(837\) 2.64735i 0.0915057i
\(838\) 0 0
\(839\) 34.4736 + 34.4736i 1.19016 + 1.19016i 0.977022 + 0.213140i \(0.0683691\pi\)
0.213140 + 0.977022i \(0.431631\pi\)
\(840\) 0 0
\(841\) 64.8195i 2.23516i
\(842\) 0 0
\(843\) −2.64629 + 2.64629i −0.0911430 + 0.0911430i
\(844\) 0 0
\(845\) 22.4140 0.900661i 0.771065 0.0309837i
\(846\) 0 0
\(847\) 15.4618 + 15.4618i 0.531274 + 0.531274i
\(848\) 0 0
\(849\) 9.17158 0.314768
\(850\) 0 0
\(851\) −4.24110 −0.145383
\(852\) 0 0
\(853\) 34.2445 + 34.2445i 1.17251 + 1.17251i 0.981610 + 0.190898i \(0.0611400\pi\)
0.190898 + 0.981610i \(0.438860\pi\)
\(854\) 0 0
\(855\) −2.92789 + 0.117651i −0.100132 + 0.00402359i
\(856\) 0 0
\(857\) 34.3909 34.3909i 1.17477 1.17477i 0.193712 0.981059i \(-0.437947\pi\)
0.981059 0.193712i \(-0.0620526\pi\)
\(858\) 0 0
\(859\) 38.8535i 1.32566i −0.748768 0.662832i \(-0.769354\pi\)
0.748768 0.662832i \(-0.230646\pi\)
\(860\) 0 0
\(861\) 16.1126 + 16.1126i 0.549116 + 0.549116i
\(862\) 0 0
\(863\) 18.6253i 0.634013i −0.948423 0.317006i \(-0.897322\pi\)
0.948423 0.317006i \(-0.102678\pi\)
\(864\) 0 0
\(865\) 19.3018 + 17.8105i 0.656281 + 0.605576i
\(866\) 0 0
\(867\) 32.1850 25.1316i 1.09306 0.853515i
\(868\) 0 0
\(869\) 19.0575i 0.646480i
\(870\) 0 0
\(871\) 66.9226 2.26759
\(872\) 0 0
\(873\) −17.7113 + 17.7113i −0.599438 + 0.599438i
\(874\) 0 0
\(875\) 26.2299 33.4561i 0.886733 1.13102i
\(876\) 0 0
\(877\) 24.8828 24.8828i 0.840232 0.840232i −0.148657 0.988889i \(-0.547495\pi\)
0.988889 + 0.148657i \(0.0474950\pi\)
\(878\) 0 0
\(879\) 22.3915 22.3915i 0.755247 0.755247i
\(880\) 0 0
\(881\) −11.8409 + 11.8409i −0.398928 + 0.398928i −0.877855 0.478927i \(-0.841026\pi\)
0.478927 + 0.877855i \(0.341026\pi\)
\(882\) 0 0
\(883\) 40.6118i 1.36670i −0.730092 0.683349i \(-0.760523\pi\)
0.730092 0.683349i \(-0.239477\pi\)
\(884\) 0 0
\(885\) −23.5473 + 25.5189i −0.791533 + 0.857808i
\(886\) 0 0
\(887\) −18.2255 18.2255i −0.611952 0.611952i 0.331502 0.943454i \(-0.392445\pi\)
−0.943454 + 0.331502i \(0.892445\pi\)
\(888\) 0 0
\(889\) −2.11427 + 2.11427i −0.0709102 + 0.0709102i
\(890\) 0 0
\(891\) 15.6138 + 15.6138i 0.523083 + 0.523083i
\(892\) 0 0
\(893\) −5.72634 −0.191625
\(894\) 0 0
\(895\) 0.776940 + 19.3351i 0.0259702 + 0.646300i
\(896\) 0 0
\(897\) 12.1852i 0.406852i
\(898\) 0 0
\(899\) 46.3739i 1.54665i
\(900\) 0 0
\(901\) −5.85683 6.62175i −0.195119 0.220603i
\(902\) 0 0
\(903\) 100.863 3.35651
\(904\) 0 0
\(905\) 30.0915 + 27.7666i 1.00028 + 0.922994i
\(906\) 0 0
\(907\) 8.72237 8.72237i 0.289621 0.289621i −0.547309 0.836931i \(-0.684348\pi\)
0.836931 + 0.547309i \(0.184348\pi\)
\(908\) 0 0
\(909\) 16.6560i 0.552444i
\(910\) 0 0
\(911\) 2.80241 + 2.80241i 0.0928479 + 0.0928479i 0.752005 0.659157i \(-0.229087\pi\)
−0.659157 + 0.752005i \(0.729087\pi\)
\(912\) 0 0
\(913\) −4.21169 4.21169i −0.139387 0.139387i
\(914\) 0 0
\(915\) −0.108143 2.69126i −0.00357509 0.0889703i
\(916\) 0 0
\(917\) 70.6751i 2.33390i
\(918\) 0 0
\(919\) 2.63743 0.0870007 0.0435004 0.999053i \(-0.486149\pi\)
0.0435004 + 0.999053i \(0.486149\pi\)
\(920\) 0 0
\(921\) −57.5669 + 57.5669i −1.89689 + 1.89689i
\(922\) 0 0
\(923\) −20.2344 20.2344i −0.666024 0.666024i
\(924\) 0 0
\(925\) 15.2780 + 13.0016i 0.502339 + 0.427491i
\(926\) 0 0
\(927\) −18.5691 −0.609890
\(928\) 0 0
\(929\) 36.9557 + 36.9557i 1.21248 + 1.21248i 0.970209 + 0.242268i \(0.0778915\pi\)
0.242268 + 0.970209i \(0.422109\pi\)
\(930\) 0 0
\(931\) −3.52879 −0.115652
\(932\) 0 0
\(933\) 45.2601 1.48175
\(934\) 0 0
\(935\) 0.444839 21.1188i 0.0145478 0.690657i
\(936\) 0 0
\(937\) 23.6381 0.772224 0.386112 0.922452i \(-0.373818\pi\)
0.386112 + 0.922452i \(0.373818\pi\)
\(938\) 0 0
\(939\) −66.1093 −2.15740
\(940\) 0 0
\(941\) −32.4847 32.4847i −1.05897 1.05897i −0.998149 0.0608209i \(-0.980628\pi\)
−0.0608209 0.998149i \(-0.519372\pi\)
\(942\) 0 0
\(943\) −2.63709 −0.0858755
\(944\) 0 0
\(945\) 0.188766 + 4.69766i 0.00614055 + 0.152815i
\(946\) 0 0
\(947\) 7.83973 + 7.83973i 0.254757 + 0.254757i 0.822918 0.568161i \(-0.192345\pi\)
−0.568161 + 0.822918i \(0.692345\pi\)
\(948\) 0 0
\(949\) 53.9992 53.9992i 1.75289 1.75289i
\(950\) 0 0
\(951\) −0.713475 −0.0231360
\(952\) 0 0
\(953\) 46.1104i 1.49366i 0.665013 + 0.746832i \(0.268426\pi\)
−0.665013 + 0.746832i \(0.731574\pi\)
\(954\) 0 0
\(955\) −4.03543 + 0.162156i −0.130584 + 0.00524723i
\(956\) 0 0
\(957\) −37.6936 37.6936i −1.21846 1.21846i
\(958\) 0 0
\(959\) −15.6275 15.6275i −0.504639 0.504639i
\(960\) 0 0
\(961\) 8.07796i 0.260580i
\(962\) 0 0
\(963\) 8.54539 8.54539i 0.275371 0.275371i
\(964\) 0 0
\(965\) 26.7791 29.0213i 0.862050 0.934230i
\(966\) 0 0
\(967\) −45.1573 −1.45216 −0.726080 0.687610i \(-0.758660\pi\)
−0.726080 + 0.687610i \(0.758660\pi\)
\(968\) 0 0
\(969\) −4.67694 0.286690i −0.150245 0.00920980i
\(970\) 0 0
\(971\) 1.04631i 0.0335776i 0.999859 + 0.0167888i \(0.00534429\pi\)
−0.999859 + 0.0167888i \(0.994656\pi\)
\(972\) 0 0
\(973\) 44.2295i 1.41793i
\(974\) 0 0
\(975\) −37.3553 + 43.8956i −1.19633 + 1.40579i
\(976\) 0 0
\(977\) −38.9405 −1.24582 −0.622909 0.782294i \(-0.714049\pi\)
−0.622909 + 0.782294i \(0.714049\pi\)
\(978\) 0 0
\(979\) −14.7686 14.7686i −0.472008 0.472008i
\(980\) 0 0
\(981\) −7.26254 + 7.26254i −0.231875 + 0.231875i
\(982\) 0 0
\(983\) 26.4018 + 26.4018i 0.842087 + 0.842087i 0.989130 0.147043i \(-0.0469756\pi\)
−0.147043 + 0.989130i \(0.546976\pi\)
\(984\) 0 0
\(985\) −33.2825 + 36.0693i −1.06047 + 1.14926i
\(986\) 0 0
\(987\) 110.547i 3.51876i
\(988\) 0 0
\(989\) −8.25394 + 8.25394i −0.262460 + 0.262460i
\(990\) 0 0
\(991\) 10.1211 10.1211i 0.321509 0.321509i −0.527837 0.849346i \(-0.676997\pi\)
0.849346 + 0.527837i \(0.176997\pi\)
\(992\) 0 0
\(993\) −0.618760 + 0.618760i −0.0196358 + 0.0196358i
\(994\) 0 0
\(995\) 14.0246 15.1989i 0.444609 0.481836i
\(996\) 0 0
\(997\) 23.2456 23.2456i 0.736196 0.736196i −0.235644 0.971840i \(-0.575720\pi\)
0.971840 + 0.235644i \(0.0757198\pi\)
\(998\) 0 0
\(999\) −2.21859 −0.0701930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.d.89.3 yes 26
5.4 even 2 680.2.z.c.89.11 26
17.13 even 4 680.2.z.c.489.11 yes 26
85.64 even 4 inner 680.2.z.d.489.3 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.c.89.11 26 5.4 even 2
680.2.z.c.489.11 yes 26 17.13 even 4
680.2.z.d.89.3 yes 26 1.1 even 1 trivial
680.2.z.d.489.3 yes 26 85.64 even 4 inner