Properties

Label 680.2.z.c.489.11
Level $680$
Weight $2$
Character 680.489
Analytic conductor $5.430$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 489.11
Character \(\chi\) \(=\) 680.489
Dual form 680.2.z.c.89.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.69850 - 1.69850i) q^{3} +(-0.0897794 - 2.23426i) q^{5} +(2.68873 + 2.68873i) q^{7} -2.76980i q^{9} +(1.62009 - 1.62009i) q^{11} -4.79916i q^{13} +(-3.94739 - 3.64241i) q^{15} +(-2.73163 + 3.08839i) q^{17} +0.473120i q^{19} +9.13362 q^{21} +(0.747433 + 0.747433i) q^{23} +(-4.98388 + 0.401182i) q^{25} +(0.390993 + 0.390993i) q^{27} +(6.84907 + 6.84907i) q^{29} +(-3.38541 - 3.38541i) q^{31} -5.50346i q^{33} +(5.76595 - 6.24873i) q^{35} +(-2.83711 + 2.83711i) q^{37} +(-8.15137 - 8.15137i) q^{39} +(1.76410 - 1.76410i) q^{41} -11.0431 q^{43} +(-6.18847 + 0.248671i) q^{45} -12.1034i q^{47} +7.45856i q^{49} +(0.605956 + 9.88531i) q^{51} +2.14408 q^{53} +(-3.76517 - 3.47427i) q^{55} +(0.803594 + 0.803594i) q^{57} -6.46475i q^{59} +(-0.354589 + 0.354589i) q^{61} +(7.44725 - 7.44725i) q^{63} +(-10.7226 + 0.430866i) q^{65} +13.9447i q^{67} +2.53903 q^{69} +(4.21624 + 4.21624i) q^{71} +(-11.2518 + 11.2518i) q^{73} +(-7.78371 + 9.14652i) q^{75} +8.71200 q^{77} +(5.88159 - 5.88159i) q^{79} +9.63761 q^{81} +2.59966 q^{83} +(7.14553 + 5.82592i) q^{85} +23.2663 q^{87} -9.11592 q^{89} +(12.9037 - 12.9037i) q^{91} -11.5002 q^{93} +(1.05708 - 0.0424764i) q^{95} +(-6.39444 + 6.39444i) q^{97} +(-4.48734 - 4.48734i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q - 2 q^{3} + 8 q^{5} - 2 q^{7} + 2 q^{11} + 2 q^{15} - 2 q^{17} - 12 q^{21} + 2 q^{23} - 10 q^{25} - 20 q^{27} + 10 q^{29} - 10 q^{31} + 22 q^{35} + 6 q^{37} + 8 q^{39} - 10 q^{41} - 32 q^{43} - 10 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69850 1.69850i 0.980629 0.980629i −0.0191868 0.999816i \(-0.506108\pi\)
0.999816 + 0.0191868i \(0.00610772\pi\)
\(4\) 0 0
\(5\) −0.0897794 2.23426i −0.0401506 0.999194i
\(6\) 0 0
\(7\) 2.68873 + 2.68873i 1.01625 + 1.01625i 0.999866 + 0.0163793i \(0.00521393\pi\)
0.0163793 + 0.999866i \(0.494786\pi\)
\(8\) 0 0
\(9\) 2.76980i 0.923267i
\(10\) 0 0
\(11\) 1.62009 1.62009i 0.488477 0.488477i −0.419349 0.907825i \(-0.637741\pi\)
0.907825 + 0.419349i \(0.137741\pi\)
\(12\) 0 0
\(13\) 4.79916i 1.33105i −0.746377 0.665524i \(-0.768208\pi\)
0.746377 0.665524i \(-0.231792\pi\)
\(14\) 0 0
\(15\) −3.94739 3.64241i −1.01921 0.940466i
\(16\) 0 0
\(17\) −2.73163 + 3.08839i −0.662519 + 0.749045i
\(18\) 0 0
\(19\) 0.473120i 0.108541i 0.998526 + 0.0542706i \(0.0172834\pi\)
−0.998526 + 0.0542706i \(0.982717\pi\)
\(20\) 0 0
\(21\) 9.13362 1.99312
\(22\) 0 0
\(23\) 0.747433 + 0.747433i 0.155850 + 0.155850i 0.780725 0.624875i \(-0.214850\pi\)
−0.624875 + 0.780725i \(0.714850\pi\)
\(24\) 0 0
\(25\) −4.98388 + 0.401182i −0.996776 + 0.0802364i
\(26\) 0 0
\(27\) 0.390993 + 0.390993i 0.0752467 + 0.0752467i
\(28\) 0 0
\(29\) 6.84907 + 6.84907i 1.27184 + 1.27184i 0.945122 + 0.326719i \(0.105943\pi\)
0.326719 + 0.945122i \(0.394057\pi\)
\(30\) 0 0
\(31\) −3.38541 3.38541i −0.608038 0.608038i 0.334395 0.942433i \(-0.391468\pi\)
−0.942433 + 0.334395i \(0.891468\pi\)
\(32\) 0 0
\(33\) 5.50346i 0.958029i
\(34\) 0 0
\(35\) 5.76595 6.24873i 0.974623 1.05623i
\(36\) 0 0
\(37\) −2.83711 + 2.83711i −0.466419 + 0.466419i −0.900752 0.434333i \(-0.856984\pi\)
0.434333 + 0.900752i \(0.356984\pi\)
\(38\) 0 0
\(39\) −8.15137 8.15137i −1.30526 1.30526i
\(40\) 0 0
\(41\) 1.76410 1.76410i 0.275506 0.275506i −0.555806 0.831312i \(-0.687590\pi\)
0.831312 + 0.555806i \(0.187590\pi\)
\(42\) 0 0
\(43\) −11.0431 −1.68405 −0.842025 0.539438i \(-0.818637\pi\)
−0.842025 + 0.539438i \(0.818637\pi\)
\(44\) 0 0
\(45\) −6.18847 + 0.248671i −0.922522 + 0.0370697i
\(46\) 0 0
\(47\) 12.1034i 1.76546i −0.469885 0.882728i \(-0.655705\pi\)
0.469885 0.882728i \(-0.344295\pi\)
\(48\) 0 0
\(49\) 7.45856i 1.06551i
\(50\) 0 0
\(51\) 0.605956 + 9.88531i 0.0848507 + 1.38422i
\(52\) 0 0
\(53\) 2.14408 0.294512 0.147256 0.989098i \(-0.452956\pi\)
0.147256 + 0.989098i \(0.452956\pi\)
\(54\) 0 0
\(55\) −3.76517 3.47427i −0.507695 0.468470i
\(56\) 0 0
\(57\) 0.803594 + 0.803594i 0.106439 + 0.106439i
\(58\) 0 0
\(59\) 6.46475i 0.841639i −0.907144 0.420820i \(-0.861743\pi\)
0.907144 0.420820i \(-0.138257\pi\)
\(60\) 0 0
\(61\) −0.354589 + 0.354589i −0.0454005 + 0.0454005i −0.729443 0.684042i \(-0.760220\pi\)
0.684042 + 0.729443i \(0.260220\pi\)
\(62\) 0 0
\(63\) 7.44725 7.44725i 0.938266 0.938266i
\(64\) 0 0
\(65\) −10.7226 + 0.430866i −1.32997 + 0.0534423i
\(66\) 0 0
\(67\) 13.9447i 1.70361i 0.523858 + 0.851806i \(0.324492\pi\)
−0.523858 + 0.851806i \(0.675508\pi\)
\(68\) 0 0
\(69\) 2.53903 0.305663
\(70\) 0 0
\(71\) 4.21624 + 4.21624i 0.500376 + 0.500376i 0.911555 0.411179i \(-0.134883\pi\)
−0.411179 + 0.911555i \(0.634883\pi\)
\(72\) 0 0
\(73\) −11.2518 + 11.2518i −1.31692 + 1.31692i −0.400725 + 0.916198i \(0.631242\pi\)
−0.916198 + 0.400725i \(0.868758\pi\)
\(74\) 0 0
\(75\) −7.78371 + 9.14652i −0.898785 + 1.05615i
\(76\) 0 0
\(77\) 8.71200 0.992824
\(78\) 0 0
\(79\) 5.88159 5.88159i 0.661731 0.661731i −0.294057 0.955788i \(-0.595006\pi\)
0.955788 + 0.294057i \(0.0950056\pi\)
\(80\) 0 0
\(81\) 9.63761 1.07085
\(82\) 0 0
\(83\) 2.59966 0.285350 0.142675 0.989770i \(-0.454430\pi\)
0.142675 + 0.989770i \(0.454430\pi\)
\(84\) 0 0
\(85\) 7.14553 + 5.82592i 0.775042 + 0.631910i
\(86\) 0 0
\(87\) 23.2663 2.49441
\(88\) 0 0
\(89\) −9.11592 −0.966286 −0.483143 0.875541i \(-0.660505\pi\)
−0.483143 + 0.875541i \(0.660505\pi\)
\(90\) 0 0
\(91\) 12.9037 12.9037i 1.35267 1.35267i
\(92\) 0 0
\(93\) −11.5002 −1.19252
\(94\) 0 0
\(95\) 1.05708 0.0424764i 0.108454 0.00435799i
\(96\) 0 0
\(97\) −6.39444 + 6.39444i −0.649257 + 0.649257i −0.952813 0.303556i \(-0.901826\pi\)
0.303556 + 0.952813i \(0.401826\pi\)
\(98\) 0 0
\(99\) −4.48734 4.48734i −0.450994 0.450994i
\(100\) 0 0
\(101\) 6.01342 0.598358 0.299179 0.954197i \(-0.403287\pi\)
0.299179 + 0.954197i \(0.403287\pi\)
\(102\) 0 0
\(103\) 6.70413i 0.660578i 0.943880 + 0.330289i \(0.107146\pi\)
−0.943880 + 0.330289i \(0.892854\pi\)
\(104\) 0 0
\(105\) −0.820011 20.4069i −0.0800249 1.99151i
\(106\) 0 0
\(107\) 3.08520 3.08520i 0.298257 0.298257i −0.542074 0.840331i \(-0.682361\pi\)
0.840331 + 0.542074i \(0.182361\pi\)
\(108\) 0 0
\(109\) 2.62204 2.62204i 0.251146 0.251146i −0.570294 0.821440i \(-0.693171\pi\)
0.821440 + 0.570294i \(0.193171\pi\)
\(110\) 0 0
\(111\) 9.63768i 0.914768i
\(112\) 0 0
\(113\) 11.4021 + 11.4021i 1.07262 + 1.07262i 0.997148 + 0.0754726i \(0.0240465\pi\)
0.0754726 + 0.997148i \(0.475953\pi\)
\(114\) 0 0
\(115\) 1.60286 1.73707i 0.149467 0.161982i
\(116\) 0 0
\(117\) −13.2927 −1.22891
\(118\) 0 0
\(119\) −15.6485 + 0.959230i −1.43450 + 0.0879325i
\(120\) 0 0
\(121\) 5.75059i 0.522781i
\(122\) 0 0
\(123\) 5.99264i 0.540338i
\(124\) 0 0
\(125\) 1.34380 + 11.0993i 0.120193 + 0.992751i
\(126\) 0 0
\(127\) −0.786344 −0.0697767 −0.0348884 0.999391i \(-0.511108\pi\)
−0.0348884 + 0.999391i \(0.511108\pi\)
\(128\) 0 0
\(129\) −18.7566 + 18.7566i −1.65143 + 1.65143i
\(130\) 0 0
\(131\) 13.1428 + 13.1428i 1.14830 + 1.14830i 0.986888 + 0.161407i \(0.0516032\pi\)
0.161407 + 0.986888i \(0.448397\pi\)
\(132\) 0 0
\(133\) −1.27209 + 1.27209i −0.110304 + 0.110304i
\(134\) 0 0
\(135\) 0.838480 0.908686i 0.0721648 0.0782072i
\(136\) 0 0
\(137\) 5.81223i 0.496572i 0.968687 + 0.248286i \(0.0798673\pi\)
−0.968687 + 0.248286i \(0.920133\pi\)
\(138\) 0 0
\(139\) −8.22497 8.22497i −0.697633 0.697633i 0.266267 0.963899i \(-0.414210\pi\)
−0.963899 + 0.266267i \(0.914210\pi\)
\(140\) 0 0
\(141\) −20.5575 20.5575i −1.73126 1.73126i
\(142\) 0 0
\(143\) −7.77509 7.77509i −0.650186 0.650186i
\(144\) 0 0
\(145\) 14.6877 15.9175i 1.21975 1.32188i
\(146\) 0 0
\(147\) 12.6684 + 12.6684i 1.04487 + 1.04487i
\(148\) 0 0
\(149\) 21.7798 1.78427 0.892135 0.451768i \(-0.149207\pi\)
0.892135 + 0.451768i \(0.149207\pi\)
\(150\) 0 0
\(151\) 1.97928i 0.161071i 0.996752 + 0.0805356i \(0.0256631\pi\)
−0.996752 + 0.0805356i \(0.974337\pi\)
\(152\) 0 0
\(153\) 8.55423 + 7.56608i 0.691569 + 0.611682i
\(154\) 0 0
\(155\) −7.25997 + 7.86785i −0.583135 + 0.631961i
\(156\) 0 0
\(157\) 0.671587i 0.0535985i 0.999641 + 0.0267992i \(0.00853149\pi\)
−0.999641 + 0.0267992i \(0.991469\pi\)
\(158\) 0 0
\(159\) 3.64171 3.64171i 0.288807 0.288807i
\(160\) 0 0
\(161\) 4.01929i 0.316765i
\(162\) 0 0
\(163\) −1.75163 1.75163i −0.137198 0.137198i 0.635172 0.772370i \(-0.280929\pi\)
−0.772370 + 0.635172i \(0.780929\pi\)
\(164\) 0 0
\(165\) −12.2962 + 0.494097i −0.957256 + 0.0384654i
\(166\) 0 0
\(167\) 0.630460 0.630460i 0.0487864 0.0487864i −0.682293 0.731079i \(-0.739017\pi\)
0.731079 + 0.682293i \(0.239017\pi\)
\(168\) 0 0
\(169\) −10.0319 −0.771687
\(170\) 0 0
\(171\) 1.31045 0.100213
\(172\) 0 0
\(173\) 8.30526 8.30526i 0.631438 0.631438i −0.316991 0.948429i \(-0.602673\pi\)
0.948429 + 0.316991i \(0.102673\pi\)
\(174\) 0 0
\(175\) −14.4790 12.3216i −1.09451 0.931429i
\(176\) 0 0
\(177\) −10.9804 10.9804i −0.825336 0.825336i
\(178\) 0 0
\(179\) 8.65388i 0.646821i 0.946259 + 0.323411i \(0.104830\pi\)
−0.946259 + 0.323411i \(0.895170\pi\)
\(180\) 0 0
\(181\) −12.9479 + 12.9479i −0.962412 + 0.962412i −0.999319 0.0369072i \(-0.988249\pi\)
0.0369072 + 0.999319i \(0.488249\pi\)
\(182\) 0 0
\(183\) 1.20454i 0.0890421i
\(184\) 0 0
\(185\) 6.59358 + 6.08415i 0.484770 + 0.447316i
\(186\) 0 0
\(187\) 0.577984 + 9.42899i 0.0422663 + 0.689516i
\(188\) 0 0
\(189\) 2.10255i 0.152938i
\(190\) 0 0
\(191\) 1.80616 0.130689 0.0653445 0.997863i \(-0.479185\pi\)
0.0653445 + 0.997863i \(0.479185\pi\)
\(192\) 0 0
\(193\) 12.4874 + 12.4874i 0.898865 + 0.898865i 0.995336 0.0964710i \(-0.0307555\pi\)
−0.0964710 + 0.995336i \(0.530755\pi\)
\(194\) 0 0
\(195\) −17.4805 + 18.9441i −1.25180 + 1.35662i
\(196\) 0 0
\(197\) −15.5201 15.5201i −1.10576 1.10576i −0.993702 0.112056i \(-0.964256\pi\)
−0.112056 0.993702i \(-0.535744\pi\)
\(198\) 0 0
\(199\) −6.53983 6.53983i −0.463597 0.463597i 0.436236 0.899832i \(-0.356311\pi\)
−0.899832 + 0.436236i \(0.856311\pi\)
\(200\) 0 0
\(201\) 23.6850 + 23.6850i 1.67061 + 1.67061i
\(202\) 0 0
\(203\) 36.8306i 2.58500i
\(204\) 0 0
\(205\) −4.09984 3.78308i −0.286346 0.264222i
\(206\) 0 0
\(207\) 2.07024 2.07024i 0.143892 0.143892i
\(208\) 0 0
\(209\) 0.766499 + 0.766499i 0.0530198 + 0.0530198i
\(210\) 0 0
\(211\) 10.4115 10.4115i 0.716755 0.716755i −0.251184 0.967939i \(-0.580820\pi\)
0.967939 + 0.251184i \(0.0808200\pi\)
\(212\) 0 0
\(213\) 14.3226 0.981366
\(214\) 0 0
\(215\) 0.991439 + 24.6731i 0.0676156 + 1.68269i
\(216\) 0 0
\(217\) 18.2049i 1.23583i
\(218\) 0 0
\(219\) 38.2224i 2.58283i
\(220\) 0 0
\(221\) 14.8217 + 13.1095i 0.997015 + 0.881844i
\(222\) 0 0
\(223\) −11.3700 −0.761394 −0.380697 0.924700i \(-0.624316\pi\)
−0.380697 + 0.924700i \(0.624316\pi\)
\(224\) 0 0
\(225\) 1.11119 + 13.8044i 0.0740796 + 0.920290i
\(226\) 0 0
\(227\) −20.5002 20.5002i −1.36064 1.36064i −0.873095 0.487549i \(-0.837891\pi\)
−0.487549 0.873095i \(-0.662109\pi\)
\(228\) 0 0
\(229\) 2.12357i 0.140329i 0.997535 + 0.0701646i \(0.0223525\pi\)
−0.997535 + 0.0701646i \(0.977648\pi\)
\(230\) 0 0
\(231\) 14.7973 14.7973i 0.973592 0.973592i
\(232\) 0 0
\(233\) 3.24570 3.24570i 0.212633 0.212633i −0.592752 0.805385i \(-0.701959\pi\)
0.805385 + 0.592752i \(0.201959\pi\)
\(234\) 0 0
\(235\) −27.0421 + 1.08663i −1.76403 + 0.0708840i
\(236\) 0 0
\(237\) 19.9798i 1.29782i
\(238\) 0 0
\(239\) −4.39931 −0.284568 −0.142284 0.989826i \(-0.545445\pi\)
−0.142284 + 0.989826i \(0.545445\pi\)
\(240\) 0 0
\(241\) 2.67058 + 2.67058i 0.172027 + 0.172027i 0.787870 0.615842i \(-0.211184\pi\)
−0.615842 + 0.787870i \(0.711184\pi\)
\(242\) 0 0
\(243\) 15.1965 15.1965i 0.974855 0.974855i
\(244\) 0 0
\(245\) 16.6644 0.669625i 1.06465 0.0427808i
\(246\) 0 0
\(247\) 2.27058 0.144473
\(248\) 0 0
\(249\) 4.41552 4.41552i 0.279822 0.279822i
\(250\) 0 0
\(251\) −15.6626 −0.988614 −0.494307 0.869288i \(-0.664578\pi\)
−0.494307 + 0.869288i \(0.664578\pi\)
\(252\) 0 0
\(253\) 2.42182 0.152259
\(254\) 0 0
\(255\) 22.0320 2.24136i 1.37970 0.140360i
\(256\) 0 0
\(257\) −14.9841 −0.934683 −0.467342 0.884077i \(-0.654788\pi\)
−0.467342 + 0.884077i \(0.654788\pi\)
\(258\) 0 0
\(259\) −15.2565 −0.947992
\(260\) 0 0
\(261\) 18.9706 18.9706i 1.17425 1.17425i
\(262\) 0 0
\(263\) −15.2651 −0.941286 −0.470643 0.882324i \(-0.655978\pi\)
−0.470643 + 0.882324i \(0.655978\pi\)
\(264\) 0 0
\(265\) −0.192494 4.79044i −0.0118248 0.294274i
\(266\) 0 0
\(267\) −15.4834 + 15.4834i −0.947568 + 0.947568i
\(268\) 0 0
\(269\) −19.1451 19.1451i −1.16730 1.16730i −0.982841 0.184456i \(-0.940948\pi\)
−0.184456 0.982841i \(-0.559052\pi\)
\(270\) 0 0
\(271\) 21.8029 1.32443 0.662217 0.749312i \(-0.269616\pi\)
0.662217 + 0.749312i \(0.269616\pi\)
\(272\) 0 0
\(273\) 43.8337i 2.65294i
\(274\) 0 0
\(275\) −7.42440 + 8.72430i −0.447708 + 0.526095i
\(276\) 0 0
\(277\) −1.62425 + 1.62425i −0.0975919 + 0.0975919i −0.754217 0.656625i \(-0.771983\pi\)
0.656625 + 0.754217i \(0.271983\pi\)
\(278\) 0 0
\(279\) −9.37692 + 9.37692i −0.561381 + 0.561381i
\(280\) 0 0
\(281\) 1.55801i 0.0929434i 0.998920 + 0.0464717i \(0.0147977\pi\)
−0.998920 + 0.0464717i \(0.985202\pi\)
\(282\) 0 0
\(283\) 2.69991 + 2.69991i 0.160493 + 0.160493i 0.782785 0.622292i \(-0.213798\pi\)
−0.622292 + 0.782785i \(0.713798\pi\)
\(284\) 0 0
\(285\) 1.72330 1.86759i 0.102079 0.110626i
\(286\) 0 0
\(287\) 9.48638 0.559963
\(288\) 0 0
\(289\) −2.07635 16.8727i −0.122138 0.992513i
\(290\) 0 0
\(291\) 21.7219i 1.27336i
\(292\) 0 0
\(293\) 13.1831i 0.770166i 0.922882 + 0.385083i \(0.125827\pi\)
−0.922882 + 0.385083i \(0.874173\pi\)
\(294\) 0 0
\(295\) −14.4440 + 0.580402i −0.840961 + 0.0337923i
\(296\) 0 0
\(297\) 1.26689 0.0735125
\(298\) 0 0
\(299\) 3.58705 3.58705i 0.207444 0.207444i
\(300\) 0 0
\(301\) −29.6918 29.6918i −1.71141 1.71141i
\(302\) 0 0
\(303\) 10.2138 10.2138i 0.586767 0.586767i
\(304\) 0 0
\(305\) 0.824081 + 0.760411i 0.0471867 + 0.0435410i
\(306\) 0 0
\(307\) 33.8928i 1.93436i −0.254086 0.967182i \(-0.581775\pi\)
0.254086 0.967182i \(-0.418225\pi\)
\(308\) 0 0
\(309\) 11.3870 + 11.3870i 0.647782 + 0.647782i
\(310\) 0 0
\(311\) −13.3236 13.3236i −0.755510 0.755510i 0.219992 0.975502i \(-0.429397\pi\)
−0.975502 + 0.219992i \(0.929397\pi\)
\(312\) 0 0
\(313\) −19.4611 19.4611i −1.10001 1.10001i −0.994409 0.105597i \(-0.966325\pi\)
−0.105597 0.994409i \(-0.533675\pi\)
\(314\) 0 0
\(315\) −17.3077 15.9705i −0.975181 0.899837i
\(316\) 0 0
\(317\) −0.210031 0.210031i −0.0117965 0.0117965i 0.701184 0.712980i \(-0.252655\pi\)
−0.712980 + 0.701184i \(0.752655\pi\)
\(318\) 0 0
\(319\) 22.1923 1.24253
\(320\) 0 0
\(321\) 10.4804i 0.584960i
\(322\) 0 0
\(323\) −1.46118 1.29239i −0.0813023 0.0719106i
\(324\) 0 0
\(325\) 1.92534 + 23.9184i 0.106798 + 1.32676i
\(326\) 0 0
\(327\) 8.90708i 0.492563i
\(328\) 0 0
\(329\) 32.5427 32.5427i 1.79414 1.79414i
\(330\) 0 0
\(331\) 0.364298i 0.0200236i 0.999950 + 0.0100118i \(0.00318691\pi\)
−0.999950 + 0.0100118i \(0.996813\pi\)
\(332\) 0 0
\(333\) 7.85824 + 7.85824i 0.430629 + 0.430629i
\(334\) 0 0
\(335\) 31.1561 1.25194i 1.70224 0.0684010i
\(336\) 0 0
\(337\) 0.532640 0.532640i 0.0290148 0.0290148i −0.692451 0.721465i \(-0.743469\pi\)
0.721465 + 0.692451i \(0.243469\pi\)
\(338\) 0 0
\(339\) 38.7330 2.10369
\(340\) 0 0
\(341\) −10.9694 −0.594025
\(342\) 0 0
\(343\) −1.23294 + 1.23294i −0.0665726 + 0.0665726i
\(344\) 0 0
\(345\) −0.227952 5.67286i −0.0122725 0.305417i
\(346\) 0 0
\(347\) −9.48106 9.48106i −0.508970 0.508970i 0.405240 0.914210i \(-0.367188\pi\)
−0.914210 + 0.405240i \(0.867188\pi\)
\(348\) 0 0
\(349\) 35.1919i 1.88378i −0.335923 0.941889i \(-0.609048\pi\)
0.335923 0.941889i \(-0.390952\pi\)
\(350\) 0 0
\(351\) 1.87644 1.87644i 0.100157 0.100157i
\(352\) 0 0
\(353\) 3.91738i 0.208501i 0.994551 + 0.104250i \(0.0332444\pi\)
−0.994551 + 0.104250i \(0.966756\pi\)
\(354\) 0 0
\(355\) 9.04167 9.79873i 0.479882 0.520063i
\(356\) 0 0
\(357\) −24.9497 + 28.2082i −1.32048 + 1.49294i
\(358\) 0 0
\(359\) 20.3757i 1.07539i −0.843141 0.537693i \(-0.819296\pi\)
0.843141 0.537693i \(-0.180704\pi\)
\(360\) 0 0
\(361\) 18.7762 0.988219
\(362\) 0 0
\(363\) 9.76738 + 9.76738i 0.512654 + 0.512654i
\(364\) 0 0
\(365\) 26.1497 + 24.1293i 1.36874 + 1.26299i
\(366\) 0 0
\(367\) 9.99474 + 9.99474i 0.521721 + 0.521721i 0.918091 0.396370i \(-0.129730\pi\)
−0.396370 + 0.918091i \(0.629730\pi\)
\(368\) 0 0
\(369\) −4.88620 4.88620i −0.254366 0.254366i
\(370\) 0 0
\(371\) 5.76485 + 5.76485i 0.299296 + 0.299296i
\(372\) 0 0
\(373\) 14.1787i 0.734143i 0.930193 + 0.367072i \(0.119640\pi\)
−0.930193 + 0.367072i \(0.880360\pi\)
\(374\) 0 0
\(375\) 21.1346 + 16.5697i 1.09138 + 0.855656i
\(376\) 0 0
\(377\) 32.8698 32.8698i 1.69288 1.69288i
\(378\) 0 0
\(379\) 10.6162 + 10.6162i 0.545318 + 0.545318i 0.925083 0.379765i \(-0.123995\pi\)
−0.379765 + 0.925083i \(0.623995\pi\)
\(380\) 0 0
\(381\) −1.33560 + 1.33560i −0.0684251 + 0.0684251i
\(382\) 0 0
\(383\) −15.8958 −0.812238 −0.406119 0.913820i \(-0.633118\pi\)
−0.406119 + 0.913820i \(0.633118\pi\)
\(384\) 0 0
\(385\) −0.782158 19.4649i −0.0398624 0.992024i
\(386\) 0 0
\(387\) 30.5871i 1.55483i
\(388\) 0 0
\(389\) 12.0045i 0.608651i 0.952568 + 0.304326i \(0.0984311\pi\)
−0.952568 + 0.304326i \(0.901569\pi\)
\(390\) 0 0
\(391\) −4.35008 + 0.266654i −0.219993 + 0.0134852i
\(392\) 0 0
\(393\) 44.6462 2.25210
\(394\) 0 0
\(395\) −13.6691 12.6130i −0.687766 0.634628i
\(396\) 0 0
\(397\) 17.5677 + 17.5677i 0.881699 + 0.881699i 0.993707 0.112008i \(-0.0357283\pi\)
−0.112008 + 0.993707i \(0.535728\pi\)
\(398\) 0 0
\(399\) 4.32130i 0.216336i
\(400\) 0 0
\(401\) −5.35680 + 5.35680i −0.267506 + 0.267506i −0.828094 0.560589i \(-0.810575\pi\)
0.560589 + 0.828094i \(0.310575\pi\)
\(402\) 0 0
\(403\) −16.2471 + 16.2471i −0.809327 + 0.809327i
\(404\) 0 0
\(405\) −0.865258 21.5330i −0.0429950 1.06998i
\(406\) 0 0
\(407\) 9.19279i 0.455669i
\(408\) 0 0
\(409\) −24.1481 −1.19405 −0.597024 0.802223i \(-0.703650\pi\)
−0.597024 + 0.802223i \(0.703650\pi\)
\(410\) 0 0
\(411\) 9.87207 + 9.87207i 0.486953 + 0.486953i
\(412\) 0 0
\(413\) 17.3820 17.3820i 0.855312 0.855312i
\(414\) 0 0
\(415\) −0.233396 5.80832i −0.0114569 0.285119i
\(416\) 0 0
\(417\) −27.9402 −1.36824
\(418\) 0 0
\(419\) 12.8619 12.8619i 0.628343 0.628343i −0.319308 0.947651i \(-0.603450\pi\)
0.947651 + 0.319308i \(0.103450\pi\)
\(420\) 0 0
\(421\) −21.9746 −1.07098 −0.535488 0.844543i \(-0.679872\pi\)
−0.535488 + 0.844543i \(0.679872\pi\)
\(422\) 0 0
\(423\) −33.5239 −1.62999
\(424\) 0 0
\(425\) 12.3751 16.4881i 0.600282 0.799789i
\(426\) 0 0
\(427\) −1.90679 −0.0922760
\(428\) 0 0
\(429\) −26.4120 −1.27518
\(430\) 0 0
\(431\) 15.5597 15.5597i 0.749486 0.749486i −0.224897 0.974383i \(-0.572204\pi\)
0.974383 + 0.224897i \(0.0722044\pi\)
\(432\) 0 0
\(433\) −38.5005 −1.85021 −0.925107 0.379706i \(-0.876025\pi\)
−0.925107 + 0.379706i \(0.876025\pi\)
\(434\) 0 0
\(435\) −2.08883 51.9830i −0.100152 2.49240i
\(436\) 0 0
\(437\) −0.353625 + 0.353625i −0.0169162 + 0.0169162i
\(438\) 0 0
\(439\) 26.3114 + 26.3114i 1.25578 + 1.25578i 0.953090 + 0.302686i \(0.0978832\pi\)
0.302686 + 0.953090i \(0.402117\pi\)
\(440\) 0 0
\(441\) 20.6587 0.983749
\(442\) 0 0
\(443\) 14.1092i 0.670349i −0.942156 0.335175i \(-0.891205\pi\)
0.942156 0.335175i \(-0.108795\pi\)
\(444\) 0 0
\(445\) 0.818422 + 20.3674i 0.0387969 + 0.965507i
\(446\) 0 0
\(447\) 36.9930 36.9930i 1.74971 1.74971i
\(448\) 0 0
\(449\) −16.5479 + 16.5479i −0.780941 + 0.780941i −0.979990 0.199048i \(-0.936215\pi\)
0.199048 + 0.979990i \(0.436215\pi\)
\(450\) 0 0
\(451\) 5.71601i 0.269156i
\(452\) 0 0
\(453\) 3.36180 + 3.36180i 0.157951 + 0.157951i
\(454\) 0 0
\(455\) −29.9887 27.6717i −1.40589 1.29727i
\(456\) 0 0
\(457\) −26.8190 −1.25454 −0.627271 0.778801i \(-0.715828\pi\)
−0.627271 + 0.778801i \(0.715828\pi\)
\(458\) 0 0
\(459\) −2.27559 + 0.139491i −0.106216 + 0.00651086i
\(460\) 0 0
\(461\) 5.74080i 0.267376i −0.991023 0.133688i \(-0.957318\pi\)
0.991023 0.133688i \(-0.0426819\pi\)
\(462\) 0 0
\(463\) 14.5005i 0.673893i −0.941524 0.336947i \(-0.890606\pi\)
0.941524 0.336947i \(-0.109394\pi\)
\(464\) 0 0
\(465\) 1.03248 + 25.6946i 0.0478803 + 1.19156i
\(466\) 0 0
\(467\) 18.2661 0.845254 0.422627 0.906304i \(-0.361108\pi\)
0.422627 + 0.906304i \(0.361108\pi\)
\(468\) 0 0
\(469\) −37.4935 + 37.4935i −1.73129 + 1.73129i
\(470\) 0 0
\(471\) 1.14069 + 1.14069i 0.0525602 + 0.0525602i
\(472\) 0 0
\(473\) −17.8908 + 17.8908i −0.822619 + 0.822619i
\(474\) 0 0
\(475\) −0.189807 2.35797i −0.00870895 0.108191i
\(476\) 0 0
\(477\) 5.93867i 0.271913i
\(478\) 0 0
\(479\) −8.88340 8.88340i −0.405893 0.405893i 0.474411 0.880304i \(-0.342661\pi\)
−0.880304 + 0.474411i \(0.842661\pi\)
\(480\) 0 0
\(481\) 13.6158 + 13.6158i 0.620826 + 0.620826i
\(482\) 0 0
\(483\) 6.82676 + 6.82676i 0.310629 + 0.310629i
\(484\) 0 0
\(485\) 14.8610 + 13.7128i 0.674802 + 0.622666i
\(486\) 0 0
\(487\) 9.77900 + 9.77900i 0.443129 + 0.443129i 0.893062 0.449933i \(-0.148552\pi\)
−0.449933 + 0.893062i \(0.648552\pi\)
\(488\) 0 0
\(489\) −5.95028 −0.269081
\(490\) 0 0
\(491\) 30.9519i 1.39684i 0.715689 + 0.698419i \(0.246113\pi\)
−0.715689 + 0.698419i \(0.753887\pi\)
\(492\) 0 0
\(493\) −39.8618 + 2.44347i −1.79528 + 0.110048i
\(494\) 0 0
\(495\) −9.62303 + 10.4288i −0.432523 + 0.468738i
\(496\) 0 0
\(497\) 22.6727i 1.01701i
\(498\) 0 0
\(499\) −5.46055 + 5.46055i −0.244448 + 0.244448i −0.818687 0.574239i \(-0.805298\pi\)
0.574239 + 0.818687i \(0.305298\pi\)
\(500\) 0 0
\(501\) 2.14167i 0.0956828i
\(502\) 0 0
\(503\) −21.0635 21.0635i −0.939174 0.939174i 0.0590792 0.998253i \(-0.481184\pi\)
−0.998253 + 0.0590792i \(0.981184\pi\)
\(504\) 0 0
\(505\) −0.539881 13.4356i −0.0240244 0.597875i
\(506\) 0 0
\(507\) −17.0392 + 17.0392i −0.756739 + 0.756739i
\(508\) 0 0
\(509\) 35.6036 1.57810 0.789052 0.614326i \(-0.210572\pi\)
0.789052 + 0.614326i \(0.210572\pi\)
\(510\) 0 0
\(511\) −60.5062 −2.67663
\(512\) 0 0
\(513\) −0.184987 + 0.184987i −0.00816737 + 0.00816737i
\(514\) 0 0
\(515\) 14.9788 0.601893i 0.660045 0.0265226i
\(516\) 0 0
\(517\) −19.6086 19.6086i −0.862384 0.862384i
\(518\) 0 0
\(519\) 28.2130i 1.23841i
\(520\) 0 0
\(521\) −6.84403 + 6.84403i −0.299842 + 0.299842i −0.840952 0.541110i \(-0.818004\pi\)
0.541110 + 0.840952i \(0.318004\pi\)
\(522\) 0 0
\(523\) 0.0431523i 0.00188692i −1.00000 0.000943460i \(-0.999700\pi\)
1.00000 0.000943460i \(-0.000300313\pi\)
\(524\) 0 0
\(525\) −45.5209 + 3.66424i −1.98669 + 0.159921i
\(526\) 0 0
\(527\) 19.7032 1.20778i 0.858285 0.0526116i
\(528\) 0 0
\(529\) 21.8827i 0.951421i
\(530\) 0 0
\(531\) −17.9061 −0.777058
\(532\) 0 0
\(533\) −8.46619 8.46619i −0.366711 0.366711i
\(534\) 0 0
\(535\) −7.17014 6.61617i −0.309992 0.286042i
\(536\) 0 0
\(537\) 14.6986 + 14.6986i 0.634292 + 0.634292i
\(538\) 0 0
\(539\) 12.0836 + 12.0836i 0.520476 + 0.520476i
\(540\) 0 0
\(541\) −23.0154 23.0154i −0.989510 0.989510i 0.0104358 0.999946i \(-0.496678\pi\)
−0.999946 + 0.0104358i \(0.996678\pi\)
\(542\) 0 0
\(543\) 43.9841i 1.88754i
\(544\) 0 0
\(545\) −6.09375 5.62293i −0.261027 0.240860i
\(546\) 0 0
\(547\) 0.782615 0.782615i 0.0334622 0.0334622i −0.690178 0.723640i \(-0.742468\pi\)
0.723640 + 0.690178i \(0.242468\pi\)
\(548\) 0 0
\(549\) 0.982141 + 0.982141i 0.0419168 + 0.0419168i
\(550\) 0 0
\(551\) −3.24043 + 3.24043i −0.138047 + 0.138047i
\(552\) 0 0
\(553\) 31.6280 1.34496
\(554\) 0 0
\(555\) 21.5331 0.865265i 0.914030 0.0367284i
\(556\) 0 0
\(557\) 34.7140i 1.47088i 0.677591 + 0.735439i \(0.263024\pi\)
−0.677591 + 0.735439i \(0.736976\pi\)
\(558\) 0 0
\(559\) 52.9974i 2.24155i
\(560\) 0 0
\(561\) 16.9968 + 15.0334i 0.717607 + 0.634712i
\(562\) 0 0
\(563\) −12.9543 −0.545960 −0.272980 0.962020i \(-0.588009\pi\)
−0.272980 + 0.962020i \(0.588009\pi\)
\(564\) 0 0
\(565\) 24.4517 26.4990i 1.02869 1.11482i
\(566\) 0 0
\(567\) 25.9129 + 25.9129i 1.08824 + 1.08824i
\(568\) 0 0
\(569\) 26.9552i 1.13002i −0.825083 0.565011i \(-0.808872\pi\)
0.825083 0.565011i \(-0.191128\pi\)
\(570\) 0 0
\(571\) −3.02208 + 3.02208i −0.126470 + 0.126470i −0.767509 0.641039i \(-0.778504\pi\)
0.641039 + 0.767509i \(0.278504\pi\)
\(572\) 0 0
\(573\) 3.06776 3.06776i 0.128157 0.128157i
\(574\) 0 0
\(575\) −4.02497 3.42526i −0.167853 0.142843i
\(576\) 0 0
\(577\) 20.7612i 0.864302i −0.901801 0.432151i \(-0.857755\pi\)
0.901801 0.432151i \(-0.142245\pi\)
\(578\) 0 0
\(579\) 42.4198 1.76291
\(580\) 0 0
\(581\) 6.98978 + 6.98978i 0.289985 + 0.289985i
\(582\) 0 0
\(583\) 3.47361 3.47361i 0.143862 0.143862i
\(584\) 0 0
\(585\) 1.19341 + 29.6994i 0.0493415 + 1.22792i
\(586\) 0 0
\(587\) 40.6389 1.67735 0.838674 0.544634i \(-0.183331\pi\)
0.838674 + 0.544634i \(0.183331\pi\)
\(588\) 0 0
\(589\) 1.60171 1.60171i 0.0659972 0.0659972i
\(590\) 0 0
\(591\) −52.7216 −2.16868
\(592\) 0 0
\(593\) −12.4818 −0.512567 −0.256284 0.966602i \(-0.582498\pi\)
−0.256284 + 0.966602i \(0.582498\pi\)
\(594\) 0 0
\(595\) 3.54809 + 34.8768i 0.145457 + 1.42981i
\(596\) 0 0
\(597\) −22.2158 −0.909233
\(598\) 0 0
\(599\) −37.9426 −1.55029 −0.775147 0.631781i \(-0.782324\pi\)
−0.775147 + 0.631781i \(0.782324\pi\)
\(600\) 0 0
\(601\) 4.36278 4.36278i 0.177962 0.177962i −0.612505 0.790467i \(-0.709838\pi\)
0.790467 + 0.612505i \(0.209838\pi\)
\(602\) 0 0
\(603\) 38.6239 1.57289
\(604\) 0 0
\(605\) 12.8483 0.516285i 0.522360 0.0209900i
\(606\) 0 0
\(607\) −17.2199 + 17.2199i −0.698936 + 0.698936i −0.964181 0.265245i \(-0.914547\pi\)
0.265245 + 0.964181i \(0.414547\pi\)
\(608\) 0 0
\(609\) 62.5568 + 62.5568i 2.53493 + 2.53493i
\(610\) 0 0
\(611\) −58.0859 −2.34990
\(612\) 0 0
\(613\) 39.7179i 1.60419i 0.597196 + 0.802095i \(0.296281\pi\)
−0.597196 + 0.802095i \(0.703719\pi\)
\(614\) 0 0
\(615\) −13.3891 + 0.538016i −0.539903 + 0.0216949i
\(616\) 0 0
\(617\) −10.2837 + 10.2837i −0.414005 + 0.414005i −0.883131 0.469126i \(-0.844569\pi\)
0.469126 + 0.883131i \(0.344569\pi\)
\(618\) 0 0
\(619\) −20.8463 + 20.8463i −0.837884 + 0.837884i −0.988580 0.150696i \(-0.951849\pi\)
0.150696 + 0.988580i \(0.451849\pi\)
\(620\) 0 0
\(621\) 0.584482i 0.0234545i
\(622\) 0 0
\(623\) −24.5103 24.5103i −0.981983 0.981983i
\(624\) 0 0
\(625\) 24.6781 3.99888i 0.987124 0.159955i
\(626\) 0 0
\(627\) 2.60380 0.103986
\(628\) 0 0
\(629\) −1.01217 16.5121i −0.0403577 0.658380i
\(630\) 0 0
\(631\) 38.0577i 1.51505i −0.652805 0.757526i \(-0.726408\pi\)
0.652805 0.757526i \(-0.273592\pi\)
\(632\) 0 0
\(633\) 35.3677i 1.40574i
\(634\) 0 0
\(635\) 0.0705974 + 1.75690i 0.00280157 + 0.0697204i
\(636\) 0 0
\(637\) 35.7948 1.41824
\(638\) 0 0
\(639\) 11.6782 11.6782i 0.461981 0.461981i
\(640\) 0 0
\(641\) 15.0374 + 15.0374i 0.593940 + 0.593940i 0.938693 0.344753i \(-0.112037\pi\)
−0.344753 + 0.938693i \(0.612037\pi\)
\(642\) 0 0
\(643\) 19.0963 19.0963i 0.753083 0.753083i −0.221970 0.975053i \(-0.571249\pi\)
0.975053 + 0.221970i \(0.0712487\pi\)
\(644\) 0 0
\(645\) 43.5912 + 40.2233i 1.71640 + 1.58379i
\(646\) 0 0
\(647\) 11.0358i 0.433862i 0.976187 + 0.216931i \(0.0696047\pi\)
−0.976187 + 0.216931i \(0.930395\pi\)
\(648\) 0 0
\(649\) −10.4735 10.4735i −0.411121 0.411121i
\(650\) 0 0
\(651\) −30.9211 30.9211i −1.21189 1.21189i
\(652\) 0 0
\(653\) 20.3581 + 20.3581i 0.796673 + 0.796673i 0.982569 0.185897i \(-0.0595189\pi\)
−0.185897 + 0.982569i \(0.559519\pi\)
\(654\) 0 0
\(655\) 28.1846 30.5445i 1.10126 1.19347i
\(656\) 0 0
\(657\) 31.1652 + 31.1652i 1.21587 + 1.21587i
\(658\) 0 0
\(659\) −20.5022 −0.798653 −0.399327 0.916809i \(-0.630756\pi\)
−0.399327 + 0.916809i \(0.630756\pi\)
\(660\) 0 0
\(661\) 8.50686i 0.330879i −0.986220 0.165439i \(-0.947096\pi\)
0.986220 0.165439i \(-0.0529042\pi\)
\(662\) 0 0
\(663\) 47.4412 2.90808i 1.84246 0.112940i
\(664\) 0 0
\(665\) 2.95640 + 2.72799i 0.114644 + 0.105787i
\(666\) 0 0
\(667\) 10.2384i 0.396434i
\(668\) 0 0
\(669\) −19.3120 + 19.3120i −0.746645 + 0.746645i
\(670\) 0 0
\(671\) 1.14894i 0.0443542i
\(672\) 0 0
\(673\) 14.9441 + 14.9441i 0.576054 + 0.576054i 0.933814 0.357760i \(-0.116459\pi\)
−0.357760 + 0.933814i \(0.616459\pi\)
\(674\) 0 0
\(675\) −2.10552 1.79180i −0.0810416 0.0689666i
\(676\) 0 0
\(677\) 31.1078 31.1078i 1.19557 1.19557i 0.220092 0.975479i \(-0.429364\pi\)
0.975479 0.220092i \(-0.0706357\pi\)
\(678\) 0 0
\(679\) −34.3859 −1.31961
\(680\) 0 0
\(681\) −69.6391 −2.66858
\(682\) 0 0
\(683\) 6.45703 6.45703i 0.247071 0.247071i −0.572696 0.819768i \(-0.694103\pi\)
0.819768 + 0.572696i \(0.194103\pi\)
\(684\) 0 0
\(685\) 12.9861 0.521818i 0.496172 0.0199377i
\(686\) 0 0
\(687\) 3.60688 + 3.60688i 0.137611 + 0.137611i
\(688\) 0 0
\(689\) 10.2898i 0.392009i
\(690\) 0 0
\(691\) 22.7756 22.7756i 0.866424 0.866424i −0.125650 0.992075i \(-0.540102\pi\)
0.992075 + 0.125650i \(0.0401017\pi\)
\(692\) 0 0
\(693\) 24.1305i 0.916642i
\(694\) 0 0
\(695\) −17.6383 + 19.1152i −0.669060 + 0.725081i
\(696\) 0 0
\(697\) 0.629359 + 10.2671i 0.0238387 + 0.388894i
\(698\) 0 0
\(699\) 11.0256i 0.417028i
\(700\) 0 0
\(701\) −8.81649 −0.332994 −0.166497 0.986042i \(-0.553246\pi\)
−0.166497 + 0.986042i \(0.553246\pi\)
\(702\) 0 0
\(703\) −1.34230 1.34230i −0.0506257 0.0506257i
\(704\) 0 0
\(705\) −44.0853 + 47.7766i −1.66035 + 1.79937i
\(706\) 0 0
\(707\) 16.1685 + 16.1685i 0.608078 + 0.608078i
\(708\) 0 0
\(709\) 0.882611 + 0.882611i 0.0331472 + 0.0331472i 0.723486 0.690339i \(-0.242539\pi\)
−0.690339 + 0.723486i \(0.742539\pi\)
\(710\) 0 0
\(711\) −16.2908 16.2908i −0.610954 0.610954i
\(712\) 0 0
\(713\) 5.06073i 0.189526i
\(714\) 0 0
\(715\) −16.6736 + 18.0697i −0.623556 + 0.675767i
\(716\) 0 0
\(717\) −7.47222 + 7.47222i −0.279055 + 0.279055i
\(718\) 0 0
\(719\) 18.3862 + 18.3862i 0.685690 + 0.685690i 0.961276 0.275586i \(-0.0888720\pi\)
−0.275586 + 0.961276i \(0.588872\pi\)
\(720\) 0 0
\(721\) −18.0256 + 18.0256i −0.671309 + 0.671309i
\(722\) 0 0
\(723\) 9.07197 0.337390
\(724\) 0 0
\(725\) −36.8827 31.3872i −1.36979 1.16569i
\(726\) 0 0
\(727\) 41.1201i 1.52506i 0.646953 + 0.762530i \(0.276043\pi\)
−0.646953 + 0.762530i \(0.723957\pi\)
\(728\) 0 0
\(729\) 22.7096i 0.841098i
\(730\) 0 0
\(731\) 30.1656 34.1053i 1.11571 1.26143i
\(732\) 0 0
\(733\) 28.3930 1.04872 0.524360 0.851497i \(-0.324305\pi\)
0.524360 + 0.851497i \(0.324305\pi\)
\(734\) 0 0
\(735\) 27.1671 29.4418i 1.00207 1.08598i
\(736\) 0 0
\(737\) 22.5917 + 22.5917i 0.832174 + 0.832174i
\(738\) 0 0
\(739\) 40.0186i 1.47211i −0.676923 0.736053i \(-0.736687\pi\)
0.676923 0.736053i \(-0.263313\pi\)
\(740\) 0 0
\(741\) 3.85658 3.85658i 0.141675 0.141675i
\(742\) 0 0
\(743\) 25.2900 25.2900i 0.927800 0.927800i −0.0697638 0.997564i \(-0.522225\pi\)
0.997564 + 0.0697638i \(0.0222246\pi\)
\(744\) 0 0
\(745\) −1.95538 48.6618i −0.0716395 1.78283i
\(746\) 0 0
\(747\) 7.20053i 0.263454i
\(748\) 0 0
\(749\) 16.5905 0.606205
\(750\) 0 0
\(751\) −4.74161 4.74161i −0.173024 0.173024i 0.615283 0.788306i \(-0.289042\pi\)
−0.788306 + 0.615283i \(0.789042\pi\)
\(752\) 0 0
\(753\) −26.6029 + 26.6029i −0.969463 + 0.969463i
\(754\) 0 0
\(755\) 4.42223 0.177698i 0.160941 0.00646710i
\(756\) 0 0
\(757\) 7.39432 0.268751 0.134376 0.990930i \(-0.457097\pi\)
0.134376 + 0.990930i \(0.457097\pi\)
\(758\) 0 0
\(759\) 4.11346 4.11346i 0.149309 0.149309i
\(760\) 0 0
\(761\) −20.5436 −0.744704 −0.372352 0.928092i \(-0.621449\pi\)
−0.372352 + 0.928092i \(0.621449\pi\)
\(762\) 0 0
\(763\) 14.0999 0.510452
\(764\) 0 0
\(765\) 16.1366 19.7917i 0.583421 0.715571i
\(766\) 0 0
\(767\) −31.0254 −1.12026
\(768\) 0 0
\(769\) 10.4379 0.376399 0.188200 0.982131i \(-0.439735\pi\)
0.188200 + 0.982131i \(0.439735\pi\)
\(770\) 0 0
\(771\) −25.4505 + 25.4505i −0.916577 + 0.916577i
\(772\) 0 0
\(773\) −38.8806 −1.39844 −0.699220 0.714907i \(-0.746469\pi\)
−0.699220 + 0.714907i \(0.746469\pi\)
\(774\) 0 0
\(775\) 18.2307 + 15.5143i 0.654864 + 0.557291i
\(776\) 0 0
\(777\) −25.9131 + 25.9131i −0.929628 + 0.929628i
\(778\) 0 0
\(779\) 0.834631 + 0.834631i 0.0299038 + 0.0299038i
\(780\) 0 0
\(781\) 13.6614 0.488844
\(782\) 0 0
\(783\) 5.35588i 0.191404i
\(784\) 0 0
\(785\) 1.50050 0.0602947i 0.0535553 0.00215201i
\(786\) 0 0
\(787\) 33.6600 33.6600i 1.19985 1.19985i 0.225637 0.974211i \(-0.427554\pi\)
0.974211 0.225637i \(-0.0724464\pi\)
\(788\) 0 0
\(789\) −25.9277 + 25.9277i −0.923052 + 0.923052i
\(790\) 0 0
\(791\) 61.3144i 2.18009i
\(792\) 0 0
\(793\) 1.70173 + 1.70173i 0.0604302 + 0.0604302i
\(794\) 0 0
\(795\) −8.46350 7.80960i −0.300170 0.276978i
\(796\) 0 0
\(797\) −23.0211 −0.815448 −0.407724 0.913105i \(-0.633677\pi\)
−0.407724 + 0.913105i \(0.633677\pi\)
\(798\) 0 0
\(799\) 37.3799 + 33.0619i 1.32241 + 1.16965i
\(800\) 0 0
\(801\) 25.2493i 0.892140i
\(802\) 0 0
\(803\) 36.4579i 1.28657i
\(804\) 0 0
\(805\) 8.98016 0.360850i 0.316509 0.0127183i
\(806\) 0 0
\(807\) −65.0358 −2.28937
\(808\) 0 0
\(809\) −6.65071 + 6.65071i −0.233826 + 0.233826i −0.814288 0.580461i \(-0.802872\pi\)
0.580461 + 0.814288i \(0.302872\pi\)
\(810\) 0 0
\(811\) −6.08751 6.08751i −0.213761 0.213761i 0.592102 0.805863i \(-0.298298\pi\)
−0.805863 + 0.592102i \(0.798298\pi\)
\(812\) 0 0
\(813\) 37.0323 37.0323i 1.29878 1.29878i
\(814\) 0 0
\(815\) −3.75634 + 4.07086i −0.131579 + 0.142596i
\(816\) 0 0
\(817\) 5.22469i 0.182789i
\(818\) 0 0
\(819\) −35.7406 35.7406i −1.24888 1.24888i
\(820\) 0 0
\(821\) −14.4519 14.4519i −0.504374 0.504374i 0.408420 0.912794i \(-0.366080\pi\)
−0.912794 + 0.408420i \(0.866080\pi\)
\(822\) 0 0
\(823\) 10.0576 + 10.0576i 0.350587 + 0.350587i 0.860328 0.509741i \(-0.170259\pi\)
−0.509741 + 0.860328i \(0.670259\pi\)
\(824\) 0 0
\(825\) 2.20789 + 27.4286i 0.0768688 + 0.954940i
\(826\) 0 0
\(827\) −20.4402 20.4402i −0.710776 0.710776i 0.255922 0.966698i \(-0.417621\pi\)
−0.966698 + 0.255922i \(0.917621\pi\)
\(828\) 0 0
\(829\) 34.0549 1.18277 0.591387 0.806388i \(-0.298581\pi\)
0.591387 + 0.806388i \(0.298581\pi\)
\(830\) 0 0
\(831\) 5.51758i 0.191403i
\(832\) 0 0
\(833\) −23.0350 20.3741i −0.798114 0.705919i
\(834\) 0 0
\(835\) −1.46522 1.35201i −0.0507059 0.0467883i
\(836\) 0 0
\(837\) 2.64735i 0.0915057i
\(838\) 0 0
\(839\) 34.4736 34.4736i 1.19016 1.19016i 0.213140 0.977022i \(-0.431631\pi\)
0.977022 0.213140i \(-0.0683691\pi\)
\(840\) 0 0
\(841\) 64.8195i 2.23516i
\(842\) 0 0
\(843\) 2.64629 + 2.64629i 0.0911430 + 0.0911430i
\(844\) 0 0
\(845\) 0.900661 + 22.4140i 0.0309837 + 0.771065i
\(846\) 0 0
\(847\) −15.4618 + 15.4618i −0.531274 + 0.531274i
\(848\) 0 0
\(849\) 9.17158 0.314768
\(850\) 0 0
\(851\) −4.24110 −0.145383
\(852\) 0 0
\(853\) −34.2445 + 34.2445i −1.17251 + 1.17251i −0.190898 + 0.981610i \(0.561140\pi\)
−0.981610 + 0.190898i \(0.938860\pi\)
\(854\) 0 0
\(855\) −0.117651 2.92789i −0.00402359 0.100132i
\(856\) 0 0
\(857\) −34.3909 34.3909i −1.17477 1.17477i −0.981059 0.193712i \(-0.937947\pi\)
−0.193712 0.981059i \(-0.562053\pi\)
\(858\) 0 0
\(859\) 38.8535i 1.32566i 0.748768 + 0.662832i \(0.230646\pi\)
−0.748768 + 0.662832i \(0.769354\pi\)
\(860\) 0 0
\(861\) 16.1126 16.1126i 0.549116 0.549116i
\(862\) 0 0
\(863\) 18.6253i 0.634013i −0.948423 0.317006i \(-0.897322\pi\)
0.948423 0.317006i \(-0.102678\pi\)
\(864\) 0 0
\(865\) −19.3018 17.8105i −0.656281 0.605576i
\(866\) 0 0
\(867\) −32.1850 25.1316i −1.09306 0.853515i
\(868\) 0 0
\(869\) 19.0575i 0.646480i
\(870\) 0 0
\(871\) 66.9226 2.26759
\(872\) 0 0
\(873\) 17.7113 + 17.7113i 0.599438 + 0.599438i
\(874\) 0 0
\(875\) −26.2299 + 33.4561i −0.886733 + 1.13102i
\(876\) 0 0
\(877\) −24.8828 24.8828i −0.840232 0.840232i 0.148657 0.988889i \(-0.452505\pi\)
−0.988889 + 0.148657i \(0.952505\pi\)
\(878\) 0 0
\(879\) 22.3915 + 22.3915i 0.755247 + 0.755247i
\(880\) 0 0
\(881\) −11.8409 11.8409i −0.398928 0.398928i 0.478927 0.877855i \(-0.341026\pi\)
−0.877855 + 0.478927i \(0.841026\pi\)
\(882\) 0 0
\(883\) 40.6118i 1.36670i −0.730092 0.683349i \(-0.760523\pi\)
0.730092 0.683349i \(-0.239477\pi\)
\(884\) 0 0
\(885\) −23.5473 + 25.5189i −0.791533 + 0.857808i
\(886\) 0 0
\(887\) 18.2255 18.2255i 0.611952 0.611952i −0.331502 0.943454i \(-0.607555\pi\)
0.943454 + 0.331502i \(0.107555\pi\)
\(888\) 0 0
\(889\) −2.11427 2.11427i −0.0709102 0.0709102i
\(890\) 0 0
\(891\) 15.6138 15.6138i 0.523083 0.523083i
\(892\) 0 0
\(893\) 5.72634 0.191625
\(894\) 0 0
\(895\) 19.3351 0.776940i 0.646300 0.0259702i
\(896\) 0 0
\(897\) 12.1852i 0.406852i
\(898\) 0 0
\(899\) 46.3739i 1.54665i
\(900\) 0 0
\(901\) −5.85683 + 6.62175i −0.195119 + 0.220603i
\(902\) 0 0
\(903\) −100.863 −3.35651
\(904\) 0 0
\(905\) 30.0915 + 27.7666i 1.00028 + 0.922994i
\(906\) 0 0
\(907\) −8.72237 8.72237i −0.289621 0.289621i 0.547309 0.836931i \(-0.315652\pi\)
−0.836931 + 0.547309i \(0.815652\pi\)
\(908\) 0 0
\(909\) 16.6560i 0.552444i
\(910\) 0 0
\(911\) 2.80241 2.80241i 0.0928479 0.0928479i −0.659157 0.752005i \(-0.729087\pi\)
0.752005 + 0.659157i \(0.229087\pi\)
\(912\) 0 0
\(913\) 4.21169 4.21169i 0.139387 0.139387i
\(914\) 0 0
\(915\) 2.69126 0.108143i 0.0889703 0.00357509i
\(916\) 0 0
\(917\) 70.6751i 2.33390i
\(918\) 0 0
\(919\) 2.63743 0.0870007 0.0435004 0.999053i \(-0.486149\pi\)
0.0435004 + 0.999053i \(0.486149\pi\)
\(920\) 0 0
\(921\) −57.5669 57.5669i −1.89689 1.89689i
\(922\) 0 0
\(923\) 20.2344 20.2344i 0.666024 0.666024i
\(924\) 0 0
\(925\) 13.0016 15.2780i 0.427491 0.502339i
\(926\) 0 0
\(927\) 18.5691 0.609890
\(928\) 0 0
\(929\) 36.9557 36.9557i 1.21248 1.21248i 0.242268 0.970209i \(-0.422109\pi\)
0.970209 0.242268i \(-0.0778915\pi\)
\(930\) 0 0
\(931\) −3.52879 −0.115652
\(932\) 0 0
\(933\) −45.2601 −1.48175
\(934\) 0 0
\(935\) 21.0150 2.13790i 0.687263 0.0699167i
\(936\) 0 0
\(937\) −23.6381 −0.772224 −0.386112 0.922452i \(-0.626182\pi\)
−0.386112 + 0.922452i \(0.626182\pi\)
\(938\) 0 0
\(939\) −66.1093 −2.15740
\(940\) 0 0
\(941\) −32.4847 + 32.4847i −1.05897 + 1.05897i −0.0608209 + 0.998149i \(0.519372\pi\)
−0.998149 + 0.0608209i \(0.980628\pi\)
\(942\) 0 0
\(943\) 2.63709 0.0858755
\(944\) 0 0
\(945\) 4.69766 0.188766i 0.152815 0.00614055i
\(946\) 0 0
\(947\) −7.83973 + 7.83973i −0.254757 + 0.254757i −0.822918 0.568161i \(-0.807655\pi\)
0.568161 + 0.822918i \(0.307655\pi\)
\(948\) 0 0
\(949\) 53.9992 + 53.9992i 1.75289 + 1.75289i
\(950\) 0 0
\(951\) −0.713475 −0.0231360
\(952\) 0 0
\(953\) 46.1104i 1.49366i 0.665013 + 0.746832i \(0.268426\pi\)
−0.665013 + 0.746832i \(0.731574\pi\)
\(954\) 0 0
\(955\) −0.162156 4.03543i −0.00524723 0.130584i
\(956\) 0 0
\(957\) 37.6936 37.6936i 1.21846 1.21846i
\(958\) 0 0
\(959\) −15.6275 + 15.6275i −0.504639 + 0.504639i
\(960\) 0 0
\(961\) 8.07796i 0.260580i
\(962\) 0 0
\(963\) −8.54539 8.54539i −0.275371 0.275371i
\(964\) 0 0
\(965\) 26.7791 29.0213i 0.862050 0.934230i
\(966\) 0 0
\(967\) 45.1573 1.45216 0.726080 0.687610i \(-0.241340\pi\)
0.726080 + 0.687610i \(0.241340\pi\)
\(968\) 0 0
\(969\) −4.67694 + 0.286690i −0.150245 + 0.00920980i
\(970\) 0 0
\(971\) 1.04631i 0.0335776i −0.999859 0.0167888i \(-0.994656\pi\)
0.999859 0.0167888i \(-0.00534429\pi\)
\(972\) 0 0
\(973\) 44.2295i 1.41793i
\(974\) 0 0
\(975\) 43.8956 + 37.3553i 1.40579 + 1.19633i
\(976\) 0 0
\(977\) 38.9405 1.24582 0.622909 0.782294i \(-0.285951\pi\)
0.622909 + 0.782294i \(0.285951\pi\)
\(978\) 0 0
\(979\) −14.7686 + 14.7686i −0.472008 + 0.472008i
\(980\) 0 0
\(981\) −7.26254 7.26254i −0.231875 0.231875i
\(982\) 0 0
\(983\) −26.4018 + 26.4018i −0.842087 + 0.842087i −0.989130 0.147043i \(-0.953024\pi\)
0.147043 + 0.989130i \(0.453024\pi\)
\(984\) 0 0
\(985\) −33.2825 + 36.0693i −1.06047 + 1.14926i
\(986\) 0 0
\(987\) 110.547i 3.51876i
\(988\) 0 0
\(989\) −8.25394 8.25394i −0.262460 0.262460i
\(990\) 0 0
\(991\) 10.1211 + 10.1211i 0.321509 + 0.321509i 0.849346 0.527837i \(-0.176997\pi\)
−0.527837 + 0.849346i \(0.676997\pi\)
\(992\) 0 0
\(993\) 0.618760 + 0.618760i 0.0196358 + 0.0196358i
\(994\) 0 0
\(995\) −14.0246 + 15.1989i −0.444609 + 0.481836i
\(996\) 0 0
\(997\) −23.2456 23.2456i −0.736196 0.736196i 0.235644 0.971840i \(-0.424280\pi\)
−0.971840 + 0.235644i \(0.924280\pi\)
\(998\) 0 0
\(999\) −2.21859 −0.0701930
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.c.489.11 yes 26
5.4 even 2 680.2.z.d.489.3 yes 26
17.4 even 4 680.2.z.d.89.3 yes 26
85.4 even 4 inner 680.2.z.c.89.11 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.c.89.11 26 85.4 even 4 inner
680.2.z.c.489.11 yes 26 1.1 even 1 trivial
680.2.z.d.89.3 yes 26 17.4 even 4
680.2.z.d.489.3 yes 26 5.4 even 2