Properties

Label 680.2.z.d.89.11
Level $680$
Weight $2$
Character 680.89
Analytic conductor $5.430$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.11
Character \(\chi\) \(=\) 680.89
Dual form 680.2.z.d.489.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.68588 + 1.68588i) q^{3} +(2.22887 + 0.179214i) q^{5} +(-0.196476 + 0.196476i) q^{7} +2.68435i q^{9} +(-0.480221 - 0.480221i) q^{11} +5.44160i q^{13} +(3.45547 + 4.05974i) q^{15} +(-3.39647 + 2.33752i) q^{17} -2.29906i q^{19} -0.662468 q^{21} +(5.23411 - 5.23411i) q^{23} +(4.93576 + 0.798889i) q^{25} +(0.532143 - 0.532143i) q^{27} +(-1.54376 + 1.54376i) q^{29} +(-0.282886 + 0.282886i) q^{31} -1.61918i q^{33} +(-0.473131 + 0.402709i) q^{35} +(-5.09347 - 5.09347i) q^{37} +(-9.17386 + 9.17386i) q^{39} +(0.0550219 + 0.0550219i) q^{41} +6.98789 q^{43} +(-0.481072 + 5.98308i) q^{45} -3.42893i q^{47} +6.92279i q^{49} +(-9.66679 - 1.78524i) q^{51} -4.63380 q^{53} +(-0.984289 - 1.15641i) q^{55} +(3.87593 - 3.87593i) q^{57} -2.84666i q^{59} +(-10.3603 - 10.3603i) q^{61} +(-0.527410 - 0.527410i) q^{63} +(-0.975209 + 12.1286i) q^{65} +0.574878i q^{67} +17.6481 q^{69} +(2.98158 - 2.98158i) q^{71} +(10.8744 + 10.8744i) q^{73} +(6.97426 + 9.66791i) q^{75} +0.188703 q^{77} +(-9.61845 - 9.61845i) q^{79} +9.84731 q^{81} -15.1433 q^{83} +(-7.98921 + 4.60136i) q^{85} -5.20516 q^{87} +13.2264 q^{89} +(-1.06914 - 1.06914i) q^{91} -0.953820 q^{93} +(0.412023 - 5.12432i) q^{95} +(-3.25088 - 3.25088i) q^{97} +(1.28908 - 1.28908i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{11} - 2 q^{15} + 2 q^{17} - 12 q^{21} - 2 q^{23} + 10 q^{25} + 20 q^{27} + 10 q^{29} - 10 q^{31} + 22 q^{35} - 6 q^{37} + 8 q^{39} - 10 q^{41} + 32 q^{43} + 28 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.68588 + 1.68588i 0.973341 + 0.973341i 0.999654 0.0263131i \(-0.00837669\pi\)
−0.0263131 + 0.999654i \(0.508377\pi\)
\(4\) 0 0
\(5\) 2.22887 + 0.179214i 0.996783 + 0.0801468i
\(6\) 0 0
\(7\) −0.196476 + 0.196476i −0.0742609 + 0.0742609i −0.743262 0.669001i \(-0.766722\pi\)
0.669001 + 0.743262i \(0.266722\pi\)
\(8\) 0 0
\(9\) 2.68435i 0.894784i
\(10\) 0 0
\(11\) −0.480221 0.480221i −0.144792 0.144792i 0.630995 0.775787i \(-0.282647\pi\)
−0.775787 + 0.630995i \(0.782647\pi\)
\(12\) 0 0
\(13\) 5.44160i 1.50923i 0.656169 + 0.754614i \(0.272176\pi\)
−0.656169 + 0.754614i \(0.727824\pi\)
\(14\) 0 0
\(15\) 3.45547 + 4.05974i 0.892199 + 1.04822i
\(16\) 0 0
\(17\) −3.39647 + 2.33752i −0.823764 + 0.566933i
\(18\) 0 0
\(19\) 2.29906i 0.527441i −0.964599 0.263720i \(-0.915050\pi\)
0.964599 0.263720i \(-0.0849496\pi\)
\(20\) 0 0
\(21\) −0.662468 −0.144562
\(22\) 0 0
\(23\) 5.23411 5.23411i 1.09139 1.09139i 0.0960064 0.995381i \(-0.469393\pi\)
0.995381 0.0960064i \(-0.0306069\pi\)
\(24\) 0 0
\(25\) 4.93576 + 0.798889i 0.987153 + 0.159778i
\(26\) 0 0
\(27\) 0.532143 0.532143i 0.102411 0.102411i
\(28\) 0 0
\(29\) −1.54376 + 1.54376i −0.286669 + 0.286669i −0.835761 0.549093i \(-0.814973\pi\)
0.549093 + 0.835761i \(0.314973\pi\)
\(30\) 0 0
\(31\) −0.282886 + 0.282886i −0.0508077 + 0.0508077i −0.732054 0.681246i \(-0.761438\pi\)
0.681246 + 0.732054i \(0.261438\pi\)
\(32\) 0 0
\(33\) 1.61918i 0.281864i
\(34\) 0 0
\(35\) −0.473131 + 0.402709i −0.0799738 + 0.0680702i
\(36\) 0 0
\(37\) −5.09347 5.09347i −0.837361 0.837361i 0.151150 0.988511i \(-0.451702\pi\)
−0.988511 + 0.151150i \(0.951702\pi\)
\(38\) 0 0
\(39\) −9.17386 + 9.17386i −1.46899 + 1.46899i
\(40\) 0 0
\(41\) 0.0550219 + 0.0550219i 0.00859298 + 0.00859298i 0.711390 0.702797i \(-0.248066\pi\)
−0.702797 + 0.711390i \(0.748066\pi\)
\(42\) 0 0
\(43\) 6.98789 1.06564 0.532821 0.846228i \(-0.321132\pi\)
0.532821 + 0.846228i \(0.321132\pi\)
\(44\) 0 0
\(45\) −0.481072 + 5.98308i −0.0717140 + 0.891906i
\(46\) 0 0
\(47\) 3.42893i 0.500160i −0.968225 0.250080i \(-0.919543\pi\)
0.968225 0.250080i \(-0.0804570\pi\)
\(48\) 0 0
\(49\) 6.92279i 0.988971i
\(50\) 0 0
\(51\) −9.66679 1.78524i −1.35362 0.249984i
\(52\) 0 0
\(53\) −4.63380 −0.636502 −0.318251 0.948007i \(-0.603095\pi\)
−0.318251 + 0.948007i \(0.603095\pi\)
\(54\) 0 0
\(55\) −0.984289 1.15641i −0.132722 0.155931i
\(56\) 0 0
\(57\) 3.87593 3.87593i 0.513379 0.513379i
\(58\) 0 0
\(59\) 2.84666i 0.370604i −0.982682 0.185302i \(-0.940674\pi\)
0.982682 0.185302i \(-0.0593263\pi\)
\(60\) 0 0
\(61\) −10.3603 10.3603i −1.32650 1.32650i −0.908405 0.418091i \(-0.862699\pi\)
−0.418091 0.908405i \(-0.637301\pi\)
\(62\) 0 0
\(63\) −0.527410 0.527410i −0.0664475 0.0664475i
\(64\) 0 0
\(65\) −0.975209 + 12.1286i −0.120960 + 1.50437i
\(66\) 0 0
\(67\) 0.574878i 0.0702326i 0.999383 + 0.0351163i \(0.0111802\pi\)
−0.999383 + 0.0351163i \(0.988820\pi\)
\(68\) 0 0
\(69\) 17.6481 2.12458
\(70\) 0 0
\(71\) 2.98158 2.98158i 0.353848 0.353848i −0.507691 0.861539i \(-0.669501\pi\)
0.861539 + 0.507691i \(0.169501\pi\)
\(72\) 0 0
\(73\) 10.8744 + 10.8744i 1.27275 + 1.27275i 0.944640 + 0.328107i \(0.106411\pi\)
0.328107 + 0.944640i \(0.393589\pi\)
\(74\) 0 0
\(75\) 6.97426 + 9.66791i 0.805318 + 1.11635i
\(76\) 0 0
\(77\) 0.188703 0.0215048
\(78\) 0 0
\(79\) −9.61845 9.61845i −1.08216 1.08216i −0.996308 0.0858524i \(-0.972639\pi\)
−0.0858524 0.996308i \(-0.527361\pi\)
\(80\) 0 0
\(81\) 9.84731 1.09415
\(82\) 0 0
\(83\) −15.1433 −1.66219 −0.831095 0.556130i \(-0.812286\pi\)
−0.831095 + 0.556130i \(0.812286\pi\)
\(84\) 0 0
\(85\) −7.98921 + 4.60136i −0.866552 + 0.499087i
\(86\) 0 0
\(87\) −5.20516 −0.558052
\(88\) 0 0
\(89\) 13.2264 1.40199 0.700997 0.713164i \(-0.252739\pi\)
0.700997 + 0.713164i \(0.252739\pi\)
\(90\) 0 0
\(91\) −1.06914 1.06914i −0.112077 0.112077i
\(92\) 0 0
\(93\) −0.953820 −0.0989065
\(94\) 0 0
\(95\) 0.412023 5.12432i 0.0422727 0.525744i
\(96\) 0 0
\(97\) −3.25088 3.25088i −0.330077 0.330077i 0.522539 0.852616i \(-0.324985\pi\)
−0.852616 + 0.522539i \(0.824985\pi\)
\(98\) 0 0
\(99\) 1.28908 1.28908i 0.129558 0.129558i
\(100\) 0 0
\(101\) −5.20731 −0.518146 −0.259073 0.965858i \(-0.583417\pi\)
−0.259073 + 0.965858i \(0.583417\pi\)
\(102\) 0 0
\(103\) 0.662913i 0.0653187i −0.999467 0.0326594i \(-0.989602\pi\)
0.999467 0.0326594i \(-0.0103976\pi\)
\(104\) 0 0
\(105\) −1.47656 0.118723i −0.144097 0.0115862i
\(106\) 0 0
\(107\) 3.64288 + 3.64288i 0.352171 + 0.352171i 0.860917 0.508746i \(-0.169891\pi\)
−0.508746 + 0.860917i \(0.669891\pi\)
\(108\) 0 0
\(109\) 2.15718 + 2.15718i 0.206620 + 0.206620i 0.802829 0.596209i \(-0.203327\pi\)
−0.596209 + 0.802829i \(0.703327\pi\)
\(110\) 0 0
\(111\) 17.1739i 1.63007i
\(112\) 0 0
\(113\) 3.50766 3.50766i 0.329973 0.329973i −0.522603 0.852576i \(-0.675039\pi\)
0.852576 + 0.522603i \(0.175039\pi\)
\(114\) 0 0
\(115\) 12.6042 10.7281i 1.17535 1.00041i
\(116\) 0 0
\(117\) −14.6072 −1.35043
\(118\) 0 0
\(119\) 0.208057 1.12659i 0.0190725 0.103274i
\(120\) 0 0
\(121\) 10.5388i 0.958071i
\(122\) 0 0
\(123\) 0.185520i 0.0167278i
\(124\) 0 0
\(125\) 10.8580 + 2.66518i 0.971172 + 0.238381i
\(126\) 0 0
\(127\) −8.34577 −0.740567 −0.370284 0.928919i \(-0.620739\pi\)
−0.370284 + 0.928919i \(0.620739\pi\)
\(128\) 0 0
\(129\) 11.7807 + 11.7807i 1.03723 + 1.03723i
\(130\) 0 0
\(131\) 6.17119 6.17119i 0.539179 0.539179i −0.384109 0.923288i \(-0.625491\pi\)
0.923288 + 0.384109i \(0.125491\pi\)
\(132\) 0 0
\(133\) 0.451710 + 0.451710i 0.0391682 + 0.0391682i
\(134\) 0 0
\(135\) 1.28145 1.09071i 0.110289 0.0938736i
\(136\) 0 0
\(137\) 12.9981i 1.11050i −0.831683 0.555251i \(-0.812622\pi\)
0.831683 0.555251i \(-0.187378\pi\)
\(138\) 0 0
\(139\) 0.352402 0.352402i 0.0298903 0.0298903i −0.692004 0.721894i \(-0.743272\pi\)
0.721894 + 0.692004i \(0.243272\pi\)
\(140\) 0 0
\(141\) 5.78074 5.78074i 0.486827 0.486827i
\(142\) 0 0
\(143\) 2.61317 2.61317i 0.218524 0.218524i
\(144\) 0 0
\(145\) −3.71750 + 3.16418i −0.308722 + 0.262771i
\(146\) 0 0
\(147\) −11.6710 + 11.6710i −0.962605 + 0.962605i
\(148\) 0 0
\(149\) 2.46372 0.201836 0.100918 0.994895i \(-0.467822\pi\)
0.100918 + 0.994895i \(0.467822\pi\)
\(150\) 0 0
\(151\) 14.4751i 1.17797i −0.808145 0.588983i \(-0.799528\pi\)
0.808145 0.588983i \(-0.200472\pi\)
\(152\) 0 0
\(153\) −6.27474 9.11731i −0.507282 0.737091i
\(154\) 0 0
\(155\) −0.681213 + 0.579820i −0.0547164 + 0.0465722i
\(156\) 0 0
\(157\) 11.0195i 0.879455i 0.898131 + 0.439727i \(0.144925\pi\)
−0.898131 + 0.439727i \(0.855075\pi\)
\(158\) 0 0
\(159\) −7.81201 7.81201i −0.619533 0.619533i
\(160\) 0 0
\(161\) 2.05675i 0.162095i
\(162\) 0 0
\(163\) −9.83513 + 9.83513i −0.770347 + 0.770347i −0.978167 0.207820i \(-0.933363\pi\)
0.207820 + 0.978167i \(0.433363\pi\)
\(164\) 0 0
\(165\) 0.290180 3.60896i 0.0225905 0.280957i
\(166\) 0 0
\(167\) 11.6232 + 11.6232i 0.899431 + 0.899431i 0.995386 0.0959547i \(-0.0305904\pi\)
−0.0959547 + 0.995386i \(0.530590\pi\)
\(168\) 0 0
\(169\) −16.6110 −1.27777
\(170\) 0 0
\(171\) 6.17149 0.471945
\(172\) 0 0
\(173\) −1.77335 1.77335i −0.134825 0.134825i 0.636473 0.771299i \(-0.280392\pi\)
−0.771299 + 0.636473i \(0.780392\pi\)
\(174\) 0 0
\(175\) −1.12672 + 0.812796i −0.0851721 + 0.0614416i
\(176\) 0 0
\(177\) 4.79912 4.79912i 0.360724 0.360724i
\(178\) 0 0
\(179\) 11.5262i 0.861508i −0.902469 0.430754i \(-0.858248\pi\)
0.902469 0.430754i \(-0.141752\pi\)
\(180\) 0 0
\(181\) −13.8451 13.8451i −1.02910 1.02910i −0.999564 0.0295352i \(-0.990597\pi\)
−0.0295352 0.999564i \(-0.509403\pi\)
\(182\) 0 0
\(183\) 34.9322i 2.58227i
\(184\) 0 0
\(185\) −10.4399 12.2655i −0.767555 0.901779i
\(186\) 0 0
\(187\) 2.75358 + 0.508526i 0.201362 + 0.0371871i
\(188\) 0 0
\(189\) 0.209107i 0.0152103i
\(190\) 0 0
\(191\) −9.95000 −0.719957 −0.359978 0.932961i \(-0.617216\pi\)
−0.359978 + 0.932961i \(0.617216\pi\)
\(192\) 0 0
\(193\) −10.2596 + 10.2596i −0.738504 + 0.738504i −0.972289 0.233784i \(-0.924889\pi\)
0.233784 + 0.972289i \(0.424889\pi\)
\(194\) 0 0
\(195\) −22.0915 + 18.8033i −1.58200 + 1.34653i
\(196\) 0 0
\(197\) 6.54514 6.54514i 0.466322 0.466322i −0.434399 0.900721i \(-0.643039\pi\)
0.900721 + 0.434399i \(0.143039\pi\)
\(198\) 0 0
\(199\) −8.10781 + 8.10781i −0.574747 + 0.574747i −0.933451 0.358704i \(-0.883219\pi\)
0.358704 + 0.933451i \(0.383219\pi\)
\(200\) 0 0
\(201\) −0.969173 + 0.969173i −0.0683602 + 0.0683602i
\(202\) 0 0
\(203\) 0.606622i 0.0425765i
\(204\) 0 0
\(205\) 0.112776 + 0.132498i 0.00787663 + 0.00925403i
\(206\) 0 0
\(207\) 14.0502 + 14.0502i 0.976556 + 0.976556i
\(208\) 0 0
\(209\) −1.10406 + 1.10406i −0.0763691 + 0.0763691i
\(210\) 0 0
\(211\) 12.2709 + 12.2709i 0.844762 + 0.844762i 0.989474 0.144711i \(-0.0462254\pi\)
−0.144711 + 0.989474i \(0.546225\pi\)
\(212\) 0 0
\(213\) 10.0531 0.688829
\(214\) 0 0
\(215\) 15.5751 + 1.25232i 1.06221 + 0.0854078i
\(216\) 0 0
\(217\) 0.111160i 0.00754606i
\(218\) 0 0
\(219\) 36.6656i 2.47763i
\(220\) 0 0
\(221\) −12.7199 18.4822i −0.855631 1.24325i
\(222\) 0 0
\(223\) −29.5852 −1.98117 −0.990585 0.136902i \(-0.956285\pi\)
−0.990585 + 0.136902i \(0.956285\pi\)
\(224\) 0 0
\(225\) −2.14450 + 13.2493i −0.142967 + 0.883289i
\(226\) 0 0
\(227\) 14.8160 14.8160i 0.983373 0.983373i −0.0164907 0.999864i \(-0.505249\pi\)
0.999864 + 0.0164907i \(0.00524939\pi\)
\(228\) 0 0
\(229\) 1.19218i 0.0787816i −0.999224 0.0393908i \(-0.987458\pi\)
0.999224 0.0393908i \(-0.0125417\pi\)
\(230\) 0 0
\(231\) 0.318131 + 0.318131i 0.0209315 + 0.0209315i
\(232\) 0 0
\(233\) −7.58463 7.58463i −0.496886 0.496886i 0.413581 0.910467i \(-0.364278\pi\)
−0.910467 + 0.413581i \(0.864278\pi\)
\(234\) 0 0
\(235\) 0.614510 7.64265i 0.0400862 0.498552i
\(236\) 0 0
\(237\) 32.4310i 2.10662i
\(238\) 0 0
\(239\) 24.1886 1.56463 0.782314 0.622884i \(-0.214039\pi\)
0.782314 + 0.622884i \(0.214039\pi\)
\(240\) 0 0
\(241\) 1.03944 1.03944i 0.0669560 0.0669560i −0.672836 0.739792i \(-0.734924\pi\)
0.739792 + 0.672836i \(0.234924\pi\)
\(242\) 0 0
\(243\) 15.0049 + 15.0049i 0.962565 + 0.962565i
\(244\) 0 0
\(245\) −1.24066 + 15.4300i −0.0792628 + 0.985789i
\(246\) 0 0
\(247\) 12.5106 0.796028
\(248\) 0 0
\(249\) −25.5297 25.5297i −1.61788 1.61788i
\(250\) 0 0
\(251\) 5.23091 0.330172 0.165086 0.986279i \(-0.447210\pi\)
0.165086 + 0.986279i \(0.447210\pi\)
\(252\) 0 0
\(253\) −5.02705 −0.316048
\(254\) 0 0
\(255\) −21.2261 5.71151i −1.32923 0.357668i
\(256\) 0 0
\(257\) 3.10191 0.193492 0.0967460 0.995309i \(-0.469157\pi\)
0.0967460 + 0.995309i \(0.469157\pi\)
\(258\) 0 0
\(259\) 2.00149 0.124366
\(260\) 0 0
\(261\) −4.14399 4.14399i −0.256506 0.256506i
\(262\) 0 0
\(263\) 24.3804 1.50336 0.751681 0.659527i \(-0.229244\pi\)
0.751681 + 0.659527i \(0.229244\pi\)
\(264\) 0 0
\(265\) −10.3282 0.830441i −0.634454 0.0510136i
\(266\) 0 0
\(267\) 22.2980 + 22.2980i 1.36462 + 1.36462i
\(268\) 0 0
\(269\) −14.5159 + 14.5159i −0.885050 + 0.885050i −0.994043 0.108993i \(-0.965237\pi\)
0.108993 + 0.994043i \(0.465237\pi\)
\(270\) 0 0
\(271\) −17.8267 −1.08289 −0.541446 0.840736i \(-0.682123\pi\)
−0.541446 + 0.840736i \(0.682123\pi\)
\(272\) 0 0
\(273\) 3.60488i 0.218178i
\(274\) 0 0
\(275\) −1.98661 2.75390i −0.119797 0.166066i
\(276\) 0 0
\(277\) 14.9446 + 14.9446i 0.897931 + 0.897931i 0.995253 0.0973216i \(-0.0310275\pi\)
−0.0973216 + 0.995253i \(0.531028\pi\)
\(278\) 0 0
\(279\) −0.759364 0.759364i −0.0454620 0.0454620i
\(280\) 0 0
\(281\) 4.17777i 0.249225i 0.992205 + 0.124613i \(0.0397688\pi\)
−0.992205 + 0.124613i \(0.960231\pi\)
\(282\) 0 0
\(283\) −20.9070 + 20.9070i −1.24279 + 1.24279i −0.283953 + 0.958838i \(0.591646\pi\)
−0.958838 + 0.283953i \(0.908354\pi\)
\(284\) 0 0
\(285\) 9.33358 7.94434i 0.552873 0.470582i
\(286\) 0 0
\(287\) −0.0216210 −0.00127624
\(288\) 0 0
\(289\) 6.07196 15.8786i 0.357174 0.934038i
\(290\) 0 0
\(291\) 10.9612i 0.642555i
\(292\) 0 0
\(293\) 6.71528i 0.392311i 0.980573 + 0.196155i \(0.0628457\pi\)
−0.980573 + 0.196155i \(0.937154\pi\)
\(294\) 0 0
\(295\) 0.510161 6.34486i 0.0297027 0.369412i
\(296\) 0 0
\(297\) −0.511092 −0.0296566
\(298\) 0 0
\(299\) 28.4819 + 28.4819i 1.64715 + 1.64715i
\(300\) 0 0
\(301\) −1.37295 + 1.37295i −0.0791356 + 0.0791356i
\(302\) 0 0
\(303\) −8.77887 8.77887i −0.504333 0.504333i
\(304\) 0 0
\(305\) −21.2350 24.9484i −1.21591 1.42854i
\(306\) 0 0
\(307\) 28.5823i 1.63128i 0.578562 + 0.815638i \(0.303614\pi\)
−0.578562 + 0.815638i \(0.696386\pi\)
\(308\) 0 0
\(309\) 1.11759 1.11759i 0.0635774 0.0635774i
\(310\) 0 0
\(311\) 1.24431 1.24431i 0.0705582 0.0705582i −0.670947 0.741505i \(-0.734112\pi\)
0.741505 + 0.670947i \(0.234112\pi\)
\(312\) 0 0
\(313\) 7.33210 7.33210i 0.414435 0.414435i −0.468845 0.883280i \(-0.655330\pi\)
0.883280 + 0.468845i \(0.155330\pi\)
\(314\) 0 0
\(315\) −1.08101 1.27005i −0.0609082 0.0715593i
\(316\) 0 0
\(317\) 5.11957 5.11957i 0.287544 0.287544i −0.548564 0.836108i \(-0.684825\pi\)
0.836108 + 0.548564i \(0.184825\pi\)
\(318\) 0 0
\(319\) 1.48269 0.0830146
\(320\) 0 0
\(321\) 12.2829i 0.685564i
\(322\) 0 0
\(323\) 5.37411 + 7.80868i 0.299023 + 0.434487i
\(324\) 0 0
\(325\) −4.34724 + 26.8585i −0.241141 + 1.48984i
\(326\) 0 0
\(327\) 7.27348i 0.402224i
\(328\) 0 0
\(329\) 0.673702 + 0.673702i 0.0371424 + 0.0371424i
\(330\) 0 0
\(331\) 18.5705i 1.02073i 0.859958 + 0.510364i \(0.170489\pi\)
−0.859958 + 0.510364i \(0.829511\pi\)
\(332\) 0 0
\(333\) 13.6727 13.6727i 0.749257 0.749257i
\(334\) 0 0
\(335\) −0.103026 + 1.28133i −0.00562891 + 0.0700066i
\(336\) 0 0
\(337\) 6.82548 + 6.82548i 0.371808 + 0.371808i 0.868135 0.496328i \(-0.165319\pi\)
−0.496328 + 0.868135i \(0.665319\pi\)
\(338\) 0 0
\(339\) 11.8270 0.642352
\(340\) 0 0
\(341\) 0.271695 0.0147131
\(342\) 0 0
\(343\) −2.73549 2.73549i −0.147703 0.147703i
\(344\) 0 0
\(345\) 39.3354 + 3.16278i 2.11775 + 0.170278i
\(346\) 0 0
\(347\) −3.67442 + 3.67442i −0.197253 + 0.197253i −0.798821 0.601568i \(-0.794543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(348\) 0 0
\(349\) 18.5401i 0.992427i 0.868200 + 0.496214i \(0.165277\pi\)
−0.868200 + 0.496214i \(0.834723\pi\)
\(350\) 0 0
\(351\) 2.89571 + 2.89571i 0.154562 + 0.154562i
\(352\) 0 0
\(353\) 29.5665i 1.57367i 0.617166 + 0.786833i \(0.288281\pi\)
−0.617166 + 0.786833i \(0.711719\pi\)
\(354\) 0 0
\(355\) 7.17990 6.11122i 0.381069 0.324350i
\(356\) 0 0
\(357\) 2.25005 1.54853i 0.119085 0.0819571i
\(358\) 0 0
\(359\) 28.4722i 1.50271i −0.659900 0.751353i \(-0.729401\pi\)
0.659900 0.751353i \(-0.270599\pi\)
\(360\) 0 0
\(361\) 13.7143 0.721806
\(362\) 0 0
\(363\) 17.7671 17.7671i 0.932529 0.932529i
\(364\) 0 0
\(365\) 22.2888 + 26.1864i 1.16665 + 1.37066i
\(366\) 0 0
\(367\) −18.1404 + 18.1404i −0.946923 + 0.946923i −0.998661 0.0517378i \(-0.983524\pi\)
0.0517378 + 0.998661i \(0.483524\pi\)
\(368\) 0 0
\(369\) −0.147698 + 0.147698i −0.00768886 + 0.00768886i
\(370\) 0 0
\(371\) 0.910431 0.910431i 0.0472672 0.0472672i
\(372\) 0 0
\(373\) 27.1362i 1.40506i 0.711655 + 0.702529i \(0.247946\pi\)
−0.711655 + 0.702529i \(0.752054\pi\)
\(374\) 0 0
\(375\) 13.8121 + 22.7984i 0.713255 + 1.17731i
\(376\) 0 0
\(377\) −8.40051 8.40051i −0.432648 0.432648i
\(378\) 0 0
\(379\) 7.42612 7.42612i 0.381454 0.381454i −0.490172 0.871626i \(-0.663066\pi\)
0.871626 + 0.490172i \(0.163066\pi\)
\(380\) 0 0
\(381\) −14.0699 14.0699i −0.720824 0.720824i
\(382\) 0 0
\(383\) 10.3836 0.530576 0.265288 0.964169i \(-0.414533\pi\)
0.265288 + 0.964169i \(0.414533\pi\)
\(384\) 0 0
\(385\) 0.420596 + 0.0338182i 0.0214356 + 0.00172354i
\(386\) 0 0
\(387\) 18.7580i 0.953520i
\(388\) 0 0
\(389\) 0.386877i 0.0196155i −0.999952 0.00980773i \(-0.996878\pi\)
0.999952 0.00980773i \(-0.00312195\pi\)
\(390\) 0 0
\(391\) −5.54262 + 30.0123i −0.280302 + 1.51779i
\(392\) 0 0
\(393\) 20.8077 1.04961
\(394\) 0 0
\(395\) −19.7146 23.1621i −0.991947 1.16541i
\(396\) 0 0
\(397\) 21.6141 21.6141i 1.08478 1.08478i 0.0887256 0.996056i \(-0.471721\pi\)
0.996056 0.0887256i \(-0.0282794\pi\)
\(398\) 0 0
\(399\) 1.52305i 0.0762480i
\(400\) 0 0
\(401\) 22.5963 + 22.5963i 1.12840 + 1.12840i 0.990437 + 0.137968i \(0.0440571\pi\)
0.137968 + 0.990437i \(0.455943\pi\)
\(402\) 0 0
\(403\) −1.53935 1.53935i −0.0766805 0.0766805i
\(404\) 0 0
\(405\) 21.9484 + 1.76477i 1.09063 + 0.0876922i
\(406\) 0 0
\(407\) 4.89198i 0.242486i
\(408\) 0 0
\(409\) −32.8759 −1.62561 −0.812803 0.582538i \(-0.802060\pi\)
−0.812803 + 0.582538i \(0.802060\pi\)
\(410\) 0 0
\(411\) 21.9132 21.9132i 1.08090 1.08090i
\(412\) 0 0
\(413\) 0.559301 + 0.559301i 0.0275214 + 0.0275214i
\(414\) 0 0
\(415\) −33.7525 2.71388i −1.65684 0.133219i
\(416\) 0 0
\(417\) 1.18821 0.0581870
\(418\) 0 0
\(419\) 7.47234 + 7.47234i 0.365048 + 0.365048i 0.865667 0.500620i \(-0.166894\pi\)
−0.500620 + 0.865667i \(0.666894\pi\)
\(420\) 0 0
\(421\) −9.78077 −0.476685 −0.238343 0.971181i \(-0.576604\pi\)
−0.238343 + 0.971181i \(0.576604\pi\)
\(422\) 0 0
\(423\) 9.20445 0.447536
\(424\) 0 0
\(425\) −18.6316 + 8.82407i −0.903764 + 0.428030i
\(426\) 0 0
\(427\) 4.07108 0.197014
\(428\) 0 0
\(429\) 8.81095 0.425397
\(430\) 0 0
\(431\) −19.1797 19.1797i −0.923854 0.923854i 0.0734451 0.997299i \(-0.476601\pi\)
−0.997299 + 0.0734451i \(0.976601\pi\)
\(432\) 0 0
\(433\) −20.7341 −0.996418 −0.498209 0.867057i \(-0.666009\pi\)
−0.498209 + 0.867057i \(0.666009\pi\)
\(434\) 0 0
\(435\) −11.6017 0.932836i −0.556257 0.0447261i
\(436\) 0 0
\(437\) −12.0335 12.0335i −0.575642 0.575642i
\(438\) 0 0
\(439\) −24.8014 + 24.8014i −1.18371 + 1.18371i −0.204932 + 0.978776i \(0.565697\pi\)
−0.978776 + 0.204932i \(0.934303\pi\)
\(440\) 0 0
\(441\) −18.5832 −0.884915
\(442\) 0 0
\(443\) 12.2299i 0.581059i 0.956866 + 0.290530i \(0.0938315\pi\)
−0.956866 + 0.290530i \(0.906168\pi\)
\(444\) 0 0
\(445\) 29.4800 + 2.37035i 1.39748 + 0.112365i
\(446\) 0 0
\(447\) 4.15352 + 4.15352i 0.196455 + 0.196455i
\(448\) 0 0
\(449\) 16.6487 + 16.6487i 0.785703 + 0.785703i 0.980787 0.195084i \(-0.0624979\pi\)
−0.195084 + 0.980787i \(0.562498\pi\)
\(450\) 0 0
\(451\) 0.0528453i 0.00248839i
\(452\) 0 0
\(453\) 24.4032 24.4032i 1.14656 1.14656i
\(454\) 0 0
\(455\) −2.19138 2.57459i −0.102734 0.120699i
\(456\) 0 0
\(457\) −34.7063 −1.62349 −0.811747 0.584010i \(-0.801483\pi\)
−0.811747 + 0.584010i \(0.801483\pi\)
\(458\) 0 0
\(459\) −0.563508 + 3.05130i −0.0263023 + 0.142423i
\(460\) 0 0
\(461\) 41.9948i 1.95589i 0.208852 + 0.977947i \(0.433027\pi\)
−0.208852 + 0.977947i \(0.566973\pi\)
\(462\) 0 0
\(463\) 24.8042i 1.15275i −0.817186 0.576373i \(-0.804467\pi\)
0.817186 0.576373i \(-0.195533\pi\)
\(464\) 0 0
\(465\) −2.12594 0.170937i −0.0985883 0.00792704i
\(466\) 0 0
\(467\) −38.3301 −1.77371 −0.886853 0.462051i \(-0.847114\pi\)
−0.886853 + 0.462051i \(0.847114\pi\)
\(468\) 0 0
\(469\) −0.112950 0.112950i −0.00521553 0.00521553i
\(470\) 0 0
\(471\) −18.5776 + 18.5776i −0.856009 + 0.856009i
\(472\) 0 0
\(473\) −3.35573 3.35573i −0.154297 0.154297i
\(474\) 0 0
\(475\) 1.83669 11.3476i 0.0842733 0.520664i
\(476\) 0 0
\(477\) 12.4388i 0.569532i
\(478\) 0 0
\(479\) 21.4212 21.4212i 0.978761 0.978761i −0.0210181 0.999779i \(-0.506691\pi\)
0.999779 + 0.0210181i \(0.00669077\pi\)
\(480\) 0 0
\(481\) 27.7166 27.7166i 1.26377 1.26377i
\(482\) 0 0
\(483\) −3.46743 + 3.46743i −0.157773 + 0.157773i
\(484\) 0 0
\(485\) −6.66320 7.82841i −0.302560 0.355470i
\(486\) 0 0
\(487\) 26.2816 26.2816i 1.19093 1.19093i 0.214126 0.976806i \(-0.431310\pi\)
0.976806 0.214126i \(-0.0686902\pi\)
\(488\) 0 0
\(489\) −33.1616 −1.49962
\(490\) 0 0
\(491\) 18.6045i 0.839610i 0.907614 + 0.419805i \(0.137902\pi\)
−0.907614 + 0.419805i \(0.862098\pi\)
\(492\) 0 0
\(493\) 1.63475 8.85189i 0.0736254 0.398669i
\(494\) 0 0
\(495\) 3.10422 2.64218i 0.139524 0.118757i
\(496\) 0 0
\(497\) 1.17162i 0.0525541i
\(498\) 0 0
\(499\) −26.5738 26.5738i −1.18961 1.18961i −0.977176 0.212432i \(-0.931862\pi\)
−0.212432 0.977176i \(-0.568138\pi\)
\(500\) 0 0
\(501\) 39.1906i 1.75091i
\(502\) 0 0
\(503\) −25.6622 + 25.6622i −1.14422 + 1.14422i −0.156549 + 0.987670i \(0.550037\pi\)
−0.987670 + 0.156549i \(0.949963\pi\)
\(504\) 0 0
\(505\) −11.6064 0.933220i −0.516480 0.0415278i
\(506\) 0 0
\(507\) −28.0041 28.0041i −1.24371 1.24371i
\(508\) 0 0
\(509\) −23.7125 −1.05104 −0.525519 0.850782i \(-0.676129\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(510\) 0 0
\(511\) −4.27310 −0.189031
\(512\) 0 0
\(513\) −1.22343 1.22343i −0.0540157 0.0540157i
\(514\) 0 0
\(515\) 0.118803 1.47755i 0.00523508 0.0651086i
\(516\) 0 0
\(517\) −1.64664 + 1.64664i −0.0724192 + 0.0724192i
\(518\) 0 0
\(519\) 5.97928i 0.262461i
\(520\) 0 0
\(521\) 1.85454 + 1.85454i 0.0812489 + 0.0812489i 0.746563 0.665314i \(-0.231703\pi\)
−0.665314 + 0.746563i \(0.731703\pi\)
\(522\) 0 0
\(523\) 15.1083i 0.660641i 0.943869 + 0.330320i \(0.107157\pi\)
−0.943869 + 0.330320i \(0.892843\pi\)
\(524\) 0 0
\(525\) −3.26978 0.529238i −0.142705 0.0230979i
\(526\) 0 0
\(527\) 0.299559 1.62206i 0.0130490 0.0706582i
\(528\) 0 0
\(529\) 31.7918i 1.38225i
\(530\) 0 0
\(531\) 7.64145 0.331611
\(532\) 0 0
\(533\) −0.299407 + 0.299407i −0.0129688 + 0.0129688i
\(534\) 0 0
\(535\) 7.46668 + 8.77239i 0.322813 + 0.379263i
\(536\) 0 0
\(537\) 19.4317 19.4317i 0.838541 0.838541i
\(538\) 0 0
\(539\) 3.32447 3.32447i 0.143195 0.143195i
\(540\) 0 0
\(541\) 9.13391 9.13391i 0.392697 0.392697i −0.482950 0.875648i \(-0.660435\pi\)
0.875648 + 0.482950i \(0.160435\pi\)
\(542\) 0 0
\(543\) 46.6823i 2.00333i
\(544\) 0 0
\(545\) 4.42149 + 5.19468i 0.189396 + 0.222516i
\(546\) 0 0
\(547\) −28.0616 28.0616i −1.19983 1.19983i −0.974218 0.225609i \(-0.927563\pi\)
−0.225609 0.974218i \(-0.572437\pi\)
\(548\) 0 0
\(549\) 27.8106 27.8106i 1.18693 1.18693i
\(550\) 0 0
\(551\) 3.54919 + 3.54919i 0.151201 + 0.151201i
\(552\) 0 0
\(553\) 3.77959 0.160724
\(554\) 0 0
\(555\) 3.07780 38.2785i 0.130645 1.62483i
\(556\) 0 0
\(557\) 20.0351i 0.848913i 0.905448 + 0.424456i \(0.139535\pi\)
−0.905448 + 0.424456i \(0.860465\pi\)
\(558\) 0 0
\(559\) 38.0253i 1.60830i
\(560\) 0 0
\(561\) 3.78488 + 5.49950i 0.159798 + 0.232189i
\(562\) 0 0
\(563\) 5.38746 0.227054 0.113527 0.993535i \(-0.463785\pi\)
0.113527 + 0.993535i \(0.463785\pi\)
\(564\) 0 0
\(565\) 8.44675 7.18951i 0.355358 0.302465i
\(566\) 0 0
\(567\) −1.93476 + 1.93476i −0.0812522 + 0.0812522i
\(568\) 0 0
\(569\) 14.4615i 0.606256i −0.952950 0.303128i \(-0.901969\pi\)
0.952950 0.303128i \(-0.0980309\pi\)
\(570\) 0 0
\(571\) −22.1103 22.1103i −0.925287 0.925287i 0.0721101 0.997397i \(-0.477027\pi\)
−0.997397 + 0.0721101i \(0.977027\pi\)
\(572\) 0 0
\(573\) −16.7745 16.7745i −0.700763 0.700763i
\(574\) 0 0
\(575\) 30.0158 21.6529i 1.25175 0.902987i
\(576\) 0 0
\(577\) 5.84065i 0.243150i −0.992582 0.121575i \(-0.961206\pi\)
0.992582 0.121575i \(-0.0387944\pi\)
\(578\) 0 0
\(579\) −34.5929 −1.43763
\(580\) 0 0
\(581\) 2.97529 2.97529i 0.123436 0.123436i
\(582\) 0 0
\(583\) 2.22525 + 2.22525i 0.0921603 + 0.0921603i
\(584\) 0 0
\(585\) −32.5576 2.61780i −1.34609 0.108233i
\(586\) 0 0
\(587\) 16.3276 0.673913 0.336956 0.941520i \(-0.390603\pi\)
0.336956 + 0.941520i \(0.390603\pi\)
\(588\) 0 0
\(589\) 0.650371 + 0.650371i 0.0267981 + 0.0267981i
\(590\) 0 0
\(591\) 22.0686 0.907780
\(592\) 0 0
\(593\) −18.8517 −0.774146 −0.387073 0.922049i \(-0.626514\pi\)
−0.387073 + 0.922049i \(0.626514\pi\)
\(594\) 0 0
\(595\) 0.665632 2.47374i 0.0272883 0.101414i
\(596\) 0 0
\(597\) −27.3375 −1.11885
\(598\) 0 0
\(599\) 27.7899 1.13546 0.567732 0.823214i \(-0.307821\pi\)
0.567732 + 0.823214i \(0.307821\pi\)
\(600\) 0 0
\(601\) 20.7225 + 20.7225i 0.845290 + 0.845290i 0.989541 0.144251i \(-0.0460772\pi\)
−0.144251 + 0.989541i \(0.546077\pi\)
\(602\) 0 0
\(603\) −1.54318 −0.0628430
\(604\) 0 0
\(605\) 1.88869 23.4896i 0.0767863 0.954989i
\(606\) 0 0
\(607\) 13.0560 + 13.0560i 0.529927 + 0.529927i 0.920550 0.390624i \(-0.127741\pi\)
−0.390624 + 0.920550i \(0.627741\pi\)
\(608\) 0 0
\(609\) 1.02269 1.02269i 0.0414415 0.0414415i
\(610\) 0 0
\(611\) 18.6589 0.754856
\(612\) 0 0
\(613\) 31.2958i 1.26402i 0.774958 + 0.632012i \(0.217771\pi\)
−0.774958 + 0.632012i \(0.782229\pi\)
\(614\) 0 0
\(615\) −0.0332477 + 0.413501i −0.00134068 + 0.0166740i
\(616\) 0 0
\(617\) −34.0753 34.0753i −1.37182 1.37182i −0.857744 0.514078i \(-0.828134\pi\)
−0.514078 0.857744i \(-0.671866\pi\)
\(618\) 0 0
\(619\) 20.4433 + 20.4433i 0.821684 + 0.821684i 0.986349 0.164666i \(-0.0526545\pi\)
−0.164666 + 0.986349i \(0.552654\pi\)
\(620\) 0 0
\(621\) 5.57059i 0.223540i
\(622\) 0 0
\(623\) −2.59867 + 2.59867i −0.104113 + 0.104113i
\(624\) 0 0
\(625\) 23.7236 + 7.88626i 0.948942 + 0.315450i
\(626\) 0 0
\(627\) −3.72260 −0.148666
\(628\) 0 0
\(629\) 29.2059 + 5.39369i 1.16452 + 0.215060i
\(630\) 0 0
\(631\) 13.0499i 0.519507i 0.965675 + 0.259754i \(0.0836414\pi\)
−0.965675 + 0.259754i \(0.916359\pi\)
\(632\) 0 0
\(633\) 41.3744i 1.64448i
\(634\) 0 0
\(635\) −18.6017 1.49568i −0.738185 0.0593541i
\(636\) 0 0
\(637\) −37.6711 −1.49258
\(638\) 0 0
\(639\) 8.00360 + 8.00360i 0.316618 + 0.316618i
\(640\) 0 0
\(641\) 0.449205 0.449205i 0.0177425 0.0177425i −0.698180 0.715922i \(-0.746006\pi\)
0.715922 + 0.698180i \(0.246006\pi\)
\(642\) 0 0
\(643\) 13.7523 + 13.7523i 0.542337 + 0.542337i 0.924213 0.381876i \(-0.124722\pi\)
−0.381876 + 0.924213i \(0.624722\pi\)
\(644\) 0 0
\(645\) 24.1465 + 28.3690i 0.950766 + 1.11703i
\(646\) 0 0
\(647\) 9.92104i 0.390036i −0.980800 0.195018i \(-0.937523\pi\)
0.980800 0.195018i \(-0.0624766\pi\)
\(648\) 0 0
\(649\) −1.36703 + 1.36703i −0.0536605 + 0.0536605i
\(650\) 0 0
\(651\) 0.187403 0.187403i 0.00734489 0.00734489i
\(652\) 0 0
\(653\) −26.0617 + 26.0617i −1.01987 + 1.01987i −0.0200765 + 0.999798i \(0.506391\pi\)
−0.999798 + 0.0200765i \(0.993609\pi\)
\(654\) 0 0
\(655\) 14.8608 12.6488i 0.580658 0.494231i
\(656\) 0 0
\(657\) −29.1906 + 29.1906i −1.13883 + 1.13883i
\(658\) 0 0
\(659\) −16.5253 −0.643732 −0.321866 0.946785i \(-0.604310\pi\)
−0.321866 + 0.946785i \(0.604310\pi\)
\(660\) 0 0
\(661\) 0.916882i 0.0356626i 0.999841 + 0.0178313i \(0.00567618\pi\)
−0.999841 + 0.0178313i \(0.994324\pi\)
\(662\) 0 0
\(663\) 9.71458 52.6028i 0.377283 2.04292i
\(664\) 0 0
\(665\) 0.925852 + 1.08776i 0.0359030 + 0.0421814i
\(666\) 0 0
\(667\) 16.1604i 0.625733i
\(668\) 0 0
\(669\) −49.8769 49.8769i −1.92835 1.92835i
\(670\) 0 0
\(671\) 9.95042i 0.384132i
\(672\) 0 0
\(673\) 0.894136 0.894136i 0.0344664 0.0344664i −0.689664 0.724130i \(-0.742242\pi\)
0.724130 + 0.689664i \(0.242242\pi\)
\(674\) 0 0
\(675\) 3.05166 2.20141i 0.117458 0.0847323i
\(676\) 0 0
\(677\) −8.83072 8.83072i −0.339392 0.339392i 0.516746 0.856138i \(-0.327143\pi\)
−0.856138 + 0.516746i \(0.827143\pi\)
\(678\) 0 0
\(679\) 1.27744 0.0490236
\(680\) 0 0
\(681\) 49.9559 1.91431
\(682\) 0 0
\(683\) 28.8758 + 28.8758i 1.10490 + 1.10490i 0.993810 + 0.111090i \(0.0354342\pi\)
0.111090 + 0.993810i \(0.464566\pi\)
\(684\) 0 0
\(685\) 2.32943 28.9711i 0.0890031 1.10693i
\(686\) 0 0
\(687\) 2.00987 2.00987i 0.0766814 0.0766814i
\(688\) 0 0
\(689\) 25.2153i 0.960626i
\(690\) 0 0
\(691\) 11.4578 + 11.4578i 0.435875 + 0.435875i 0.890621 0.454746i \(-0.150270\pi\)
−0.454746 + 0.890621i \(0.650270\pi\)
\(692\) 0 0
\(693\) 0.506547i 0.0192421i
\(694\) 0 0
\(695\) 0.848615 0.722304i 0.0321898 0.0273986i
\(696\) 0 0
\(697\) −0.315495 0.0582650i −0.0119502 0.00220694i
\(698\) 0 0
\(699\) 25.5735i 0.967278i
\(700\) 0 0
\(701\) −29.9171 −1.12995 −0.564977 0.825107i \(-0.691115\pi\)
−0.564977 + 0.825107i \(0.691115\pi\)
\(702\) 0 0
\(703\) −11.7102 + 11.7102i −0.441658 + 0.441658i
\(704\) 0 0
\(705\) 13.9205 11.8486i 0.524278 0.446243i
\(706\) 0 0
\(707\) 1.02311 1.02311i 0.0384780 0.0384780i
\(708\) 0 0
\(709\) 8.04944 8.04944i 0.302303 0.302303i −0.539611 0.841914i \(-0.681429\pi\)
0.841914 + 0.539611i \(0.181429\pi\)
\(710\) 0 0
\(711\) 25.8193 25.8193i 0.968300 0.968300i
\(712\) 0 0
\(713\) 2.96131i 0.110902i
\(714\) 0 0
\(715\) 6.29274 5.35611i 0.235335 0.200307i
\(716\) 0 0
\(717\) 40.7789 + 40.7789i 1.52292 + 1.52292i
\(718\) 0 0
\(719\) 20.9713 20.9713i 0.782096 0.782096i −0.198088 0.980184i \(-0.563473\pi\)
0.980184 + 0.198088i \(0.0634732\pi\)
\(720\) 0 0
\(721\) 0.130246 + 0.130246i 0.00485063 + 0.00485063i
\(722\) 0 0
\(723\) 3.50472 0.130342
\(724\) 0 0
\(725\) −8.85291 + 6.38633i −0.328789 + 0.237182i
\(726\) 0 0
\(727\) 1.70243i 0.0631397i 0.999502 + 0.0315699i \(0.0100507\pi\)
−0.999502 + 0.0315699i \(0.989949\pi\)
\(728\) 0 0
\(729\) 21.0509i 0.779662i
\(730\) 0 0
\(731\) −23.7341 + 16.3344i −0.877838 + 0.604148i
\(732\) 0 0
\(733\) 29.1568 1.07693 0.538465 0.842648i \(-0.319004\pi\)
0.538465 + 0.842648i \(0.319004\pi\)
\(734\) 0 0
\(735\) −28.1047 + 23.9215i −1.03666 + 0.882359i
\(736\) 0 0
\(737\) 0.276068 0.276068i 0.0101691 0.0101691i
\(738\) 0 0
\(739\) 33.3164i 1.22556i −0.790252 0.612782i \(-0.790050\pi\)
0.790252 0.612782i \(-0.209950\pi\)
\(740\) 0 0
\(741\) 21.0913 + 21.0913i 0.774807 + 0.774807i
\(742\) 0 0
\(743\) −25.3185 25.3185i −0.928844 0.928844i 0.0687874 0.997631i \(-0.478087\pi\)
−0.997631 + 0.0687874i \(0.978087\pi\)
\(744\) 0 0
\(745\) 5.49132 + 0.441532i 0.201187 + 0.0161765i
\(746\) 0 0
\(747\) 40.6499i 1.48730i
\(748\) 0 0
\(749\) −1.43148 −0.0523051
\(750\) 0 0
\(751\) −9.19571 + 9.19571i −0.335556 + 0.335556i −0.854692 0.519136i \(-0.826254\pi\)
0.519136 + 0.854692i \(0.326254\pi\)
\(752\) 0 0
\(753\) 8.81867 + 8.81867i 0.321370 + 0.321370i
\(754\) 0 0
\(755\) 2.59413 32.2632i 0.0944102 1.17418i
\(756\) 0 0
\(757\) −14.6086 −0.530960 −0.265480 0.964116i \(-0.585530\pi\)
−0.265480 + 0.964116i \(0.585530\pi\)
\(758\) 0 0
\(759\) −8.47499 8.47499i −0.307622 0.307622i
\(760\) 0 0
\(761\) 6.96389 0.252441 0.126220 0.992002i \(-0.459715\pi\)
0.126220 + 0.992002i \(0.459715\pi\)
\(762\) 0 0
\(763\) −0.847668 −0.0306876
\(764\) 0 0
\(765\) −12.3517 21.4459i −0.446575 0.775377i
\(766\) 0 0
\(767\) 15.4904 0.559326
\(768\) 0 0
\(769\) 41.0392 1.47991 0.739955 0.672656i \(-0.234847\pi\)
0.739955 + 0.672656i \(0.234847\pi\)
\(770\) 0 0
\(771\) 5.22944 + 5.22944i 0.188334 + 0.188334i
\(772\) 0 0
\(773\) −24.1208 −0.867565 −0.433783 0.901018i \(-0.642821\pi\)
−0.433783 + 0.901018i \(0.642821\pi\)
\(774\) 0 0
\(775\) −1.62225 + 1.17026i −0.0582730 + 0.0420371i
\(776\) 0 0
\(777\) 3.37426 + 3.37426i 0.121051 + 0.121051i
\(778\) 0 0
\(779\) 0.126499 0.126499i 0.00453228 0.00453228i
\(780\) 0 0
\(781\) −2.86363 −0.102469
\(782\) 0 0
\(783\) 1.64300i 0.0587160i
\(784\) 0 0
\(785\) −1.97485 + 24.5612i −0.0704855 + 0.876626i
\(786\) 0 0
\(787\) −25.1417 25.1417i −0.896205 0.896205i 0.0988933 0.995098i \(-0.468470\pi\)
−0.995098 + 0.0988933i \(0.968470\pi\)
\(788\) 0 0
\(789\) 41.1024 + 41.1024i 1.46328 + 1.46328i
\(790\) 0 0
\(791\) 1.37834i 0.0490081i
\(792\) 0 0
\(793\) 56.3764 56.3764i 2.00199 2.00199i
\(794\) 0 0
\(795\) −16.0120 18.8120i −0.567887 0.667194i
\(796\) 0 0
\(797\) −25.0727 −0.888120 −0.444060 0.895997i \(-0.646462\pi\)
−0.444060 + 0.895997i \(0.646462\pi\)
\(798\) 0 0
\(799\) 8.01520 + 11.6462i 0.283557 + 0.412014i
\(800\) 0 0
\(801\) 35.5043i 1.25448i
\(802\) 0 0
\(803\) 10.4442i 0.368567i
\(804\) 0 0
\(805\) −0.368598 + 4.58424i −0.0129914 + 0.161573i
\(806\) 0 0
\(807\) −48.9440 −1.72291
\(808\) 0 0
\(809\) 17.0926 + 17.0926i 0.600942 + 0.600942i 0.940563 0.339620i \(-0.110299\pi\)
−0.339620 + 0.940563i \(0.610299\pi\)
\(810\) 0 0
\(811\) −16.0708 + 16.0708i −0.564323 + 0.564323i −0.930533 0.366209i \(-0.880655\pi\)
0.366209 + 0.930533i \(0.380655\pi\)
\(812\) 0 0
\(813\) −30.0535 30.0535i −1.05402 1.05402i
\(814\) 0 0
\(815\) −23.6839 + 20.1587i −0.829610 + 0.706128i
\(816\) 0 0
\(817\) 16.0656i 0.562063i
\(818\) 0 0
\(819\) 2.86996 2.86996i 0.100284 0.100284i
\(820\) 0 0
\(821\) 7.46573 7.46573i 0.260556 0.260556i −0.564724 0.825280i \(-0.691017\pi\)
0.825280 + 0.564724i \(0.191017\pi\)
\(822\) 0 0
\(823\) −22.1139 + 22.1139i −0.770844 + 0.770844i −0.978254 0.207410i \(-0.933496\pi\)
0.207410 + 0.978254i \(0.433496\pi\)
\(824\) 0 0
\(825\) 1.29355 7.99191i 0.0450356 0.278243i
\(826\) 0 0
\(827\) 0.917838 0.917838i 0.0319164 0.0319164i −0.690969 0.722885i \(-0.742816\pi\)
0.722885 + 0.690969i \(0.242816\pi\)
\(828\) 0 0
\(829\) −19.9006 −0.691177 −0.345588 0.938386i \(-0.612321\pi\)
−0.345588 + 0.938386i \(0.612321\pi\)
\(830\) 0 0
\(831\) 50.3893i 1.74799i
\(832\) 0 0
\(833\) −16.1822 23.5130i −0.560680 0.814678i
\(834\) 0 0
\(835\) 23.8236 + 27.9897i 0.824451 + 0.968624i
\(836\) 0 0
\(837\) 0.301071i 0.0104065i
\(838\) 0 0
\(839\) −14.0278 14.0278i −0.484292 0.484292i 0.422207 0.906499i \(-0.361255\pi\)
−0.906499 + 0.422207i \(0.861255\pi\)
\(840\) 0 0
\(841\) 24.2336i 0.835642i
\(842\) 0 0
\(843\) −7.04320 + 7.04320i −0.242581 + 0.242581i
\(844\) 0 0
\(845\) −37.0239 2.97692i −1.27366 0.102409i
\(846\) 0 0
\(847\) 2.07062 + 2.07062i 0.0711472 + 0.0711472i
\(848\) 0 0
\(849\) −70.4931 −2.41932
\(850\) 0 0
\(851\) −53.3195 −1.82777
\(852\) 0 0
\(853\) 17.0219 + 17.0219i 0.582818 + 0.582818i 0.935677 0.352859i \(-0.114790\pi\)
−0.352859 + 0.935677i \(0.614790\pi\)
\(854\) 0 0
\(855\) 13.7555 + 1.10601i 0.470427 + 0.0378249i
\(856\) 0 0
\(857\) 21.8120 21.8120i 0.745085 0.745085i −0.228467 0.973552i \(-0.573371\pi\)
0.973552 + 0.228467i \(0.0733712\pi\)
\(858\) 0 0
\(859\) 50.8322i 1.73437i −0.497984 0.867186i \(-0.665926\pi\)
0.497984 0.867186i \(-0.334074\pi\)
\(860\) 0 0
\(861\) −0.0364502 0.0364502i −0.00124222 0.00124222i
\(862\) 0 0
\(863\) 13.3621i 0.454852i −0.973795 0.227426i \(-0.926969\pi\)
0.973795 0.227426i \(-0.0730309\pi\)
\(864\) 0 0
\(865\) −3.63476 4.27038i −0.123586 0.145197i
\(866\) 0 0
\(867\) 37.0060 16.5328i 1.25679 0.561485i
\(868\) 0 0
\(869\) 9.23795i 0.313376i
\(870\) 0 0
\(871\) −3.12826 −0.105997
\(872\) 0 0
\(873\) 8.72651 8.72651i 0.295348 0.295348i
\(874\) 0 0
\(875\) −2.65698 + 1.60970i −0.0898225 + 0.0544177i
\(876\) 0 0
\(877\) −1.68022 + 1.68022i −0.0567370 + 0.0567370i −0.734906 0.678169i \(-0.762774\pi\)
0.678169 + 0.734906i \(0.262774\pi\)
\(878\) 0 0
\(879\) −11.3211 + 11.3211i −0.381852 + 0.381852i
\(880\) 0 0
\(881\) 14.0859 14.0859i 0.474567 0.474567i −0.428822 0.903389i \(-0.641071\pi\)
0.903389 + 0.428822i \(0.141071\pi\)
\(882\) 0 0
\(883\) 26.6658i 0.897377i −0.893688 0.448689i \(-0.851891\pi\)
0.893688 0.448689i \(-0.148109\pi\)
\(884\) 0 0
\(885\) 11.5567 9.83657i 0.388474 0.330653i
\(886\) 0 0
\(887\) 17.0234 + 17.0234i 0.571590 + 0.571590i 0.932573 0.360982i \(-0.117559\pi\)
−0.360982 + 0.932573i \(0.617559\pi\)
\(888\) 0 0
\(889\) 1.63974 1.63974i 0.0549952 0.0549952i
\(890\) 0 0
\(891\) −4.72888 4.72888i −0.158423 0.158423i
\(892\) 0 0
\(893\) −7.88331 −0.263805
\(894\) 0 0
\(895\) 2.06565 25.6904i 0.0690471 0.858736i
\(896\) 0 0
\(897\) 96.0340i 3.20648i
\(898\) 0 0
\(899\) 0.873413i 0.0291300i
\(900\) 0 0
\(901\) 15.7386 10.8316i 0.524327 0.360854i
\(902\) 0 0
\(903\) −4.62925 −0.154052
\(904\) 0 0
\(905\) −28.3778 33.3402i −0.943309 1.10827i
\(906\) 0 0
\(907\) −2.43322 + 2.43322i −0.0807936 + 0.0807936i −0.746349 0.665555i \(-0.768195\pi\)
0.665555 + 0.746349i \(0.268195\pi\)
\(908\) 0 0
\(909\) 13.9782i 0.463629i
\(910\) 0 0
\(911\) −12.0319 12.0319i −0.398633 0.398633i 0.479118 0.877751i \(-0.340957\pi\)
−0.877751 + 0.479118i \(0.840957\pi\)
\(912\) 0 0
\(913\) 7.27211 + 7.27211i 0.240672 + 0.240672i
\(914\) 0 0
\(915\) 6.26033 77.8596i 0.206960 2.57396i
\(916\) 0 0
\(917\) 2.42498i 0.0800798i
\(918\) 0 0
\(919\) −38.9441 −1.28465 −0.642324 0.766433i \(-0.722030\pi\)
−0.642324 + 0.766433i \(0.722030\pi\)
\(920\) 0 0
\(921\) −48.1862 + 48.1862i −1.58779 + 1.58779i
\(922\) 0 0
\(923\) 16.2245 + 16.2245i 0.534037 + 0.534037i
\(924\) 0 0
\(925\) −21.0710 29.2093i −0.692812 0.960395i
\(926\) 0 0
\(927\) 1.77949 0.0584461
\(928\) 0 0
\(929\) 30.2215 + 30.2215i 0.991536 + 0.991536i 0.999964 0.00842808i \(-0.00268277\pi\)
−0.00842808 + 0.999964i \(0.502683\pi\)
\(930\) 0 0
\(931\) 15.9159 0.521623
\(932\) 0 0
\(933\) 4.19549 0.137354
\(934\) 0 0
\(935\) 6.04625 + 1.62692i 0.197734 + 0.0532059i
\(936\) 0 0
\(937\) 59.8100 1.95391 0.976953 0.213454i \(-0.0684714\pi\)
0.976953 + 0.213454i \(0.0684714\pi\)
\(938\) 0 0
\(939\) 24.7220 0.806773
\(940\) 0 0
\(941\) −17.2584 17.2584i −0.562607 0.562607i 0.367440 0.930047i \(-0.380234\pi\)
−0.930047 + 0.367440i \(0.880234\pi\)
\(942\) 0 0
\(943\) 0.575981 0.0187565
\(944\) 0 0
\(945\) −0.0374747 + 0.466072i −0.00121905 + 0.0151613i
\(946\) 0 0
\(947\) 33.8129 + 33.8129i 1.09877 + 1.09877i 0.994554 + 0.104219i \(0.0332342\pi\)
0.104219 + 0.994554i \(0.466766\pi\)
\(948\) 0 0
\(949\) −59.1739 + 59.1739i −1.92087 + 1.92087i
\(950\) 0 0
\(951\) 17.2619 0.559756
\(952\) 0 0
\(953\) 23.7253i 0.768539i 0.923221 + 0.384269i \(0.125547\pi\)
−0.923221 + 0.384269i \(0.874453\pi\)
\(954\) 0 0
\(955\) −22.1773 1.78318i −0.717641 0.0577022i
\(956\) 0 0
\(957\) 2.49963 + 2.49963i 0.0808015 + 0.0808015i
\(958\) 0 0
\(959\) 2.55381 + 2.55381i 0.0824668 + 0.0824668i
\(960\) 0 0
\(961\) 30.8400i 0.994837i
\(962\) 0 0
\(963\) −9.77878 + 9.77878i −0.315117 + 0.315117i
\(964\) 0 0
\(965\) −24.7061 + 21.0288i −0.795317 + 0.676940i
\(966\) 0 0
\(967\) 14.9120 0.479537 0.239769 0.970830i \(-0.422928\pi\)
0.239769 + 0.970830i \(0.422928\pi\)
\(968\) 0 0
\(969\) −4.10438 + 22.2245i −0.131852 + 0.713955i
\(970\) 0 0
\(971\) 39.3858i 1.26395i 0.774988 + 0.631976i \(0.217756\pi\)
−0.774988 + 0.631976i \(0.782244\pi\)
\(972\) 0 0
\(973\) 0.138477i 0.00443937i
\(974\) 0 0
\(975\) −52.6089 + 37.9511i −1.68483 + 1.21541i
\(976\) 0 0
\(977\) 31.2054 0.998349 0.499175 0.866501i \(-0.333637\pi\)
0.499175 + 0.866501i \(0.333637\pi\)
\(978\) 0 0
\(979\) −6.35158 6.35158i −0.202997 0.202997i
\(980\) 0 0
\(981\) −5.79063 + 5.79063i −0.184881 + 0.184881i
\(982\) 0 0
\(983\) 32.8444 + 32.8444i 1.04757 + 1.04757i 0.998810 + 0.0487626i \(0.0155278\pi\)
0.0487626 + 0.998810i \(0.484472\pi\)
\(984\) 0 0
\(985\) 15.7613 13.4153i 0.502196 0.427448i
\(986\) 0 0
\(987\) 2.27155i 0.0723044i
\(988\) 0 0
\(989\) 36.5754 36.5754i 1.16303 1.16303i
\(990\) 0 0
\(991\) 26.1464 26.1464i 0.830568 0.830568i −0.157026 0.987594i \(-0.550191\pi\)
0.987594 + 0.157026i \(0.0501907\pi\)
\(992\) 0 0
\(993\) −31.3076 + 31.3076i −0.993516 + 0.993516i
\(994\) 0 0
\(995\) −19.5243 + 16.6183i −0.618962 + 0.526834i
\(996\) 0 0
\(997\) 3.43513 3.43513i 0.108792 0.108792i −0.650616 0.759407i \(-0.725489\pi\)
0.759407 + 0.650616i \(0.225489\pi\)
\(998\) 0 0
\(999\) −5.42091 −0.171510
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.d.89.11 yes 26
5.4 even 2 680.2.z.c.89.3 26
17.13 even 4 680.2.z.c.489.3 yes 26
85.64 even 4 inner 680.2.z.d.489.11 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.c.89.3 26 5.4 even 2
680.2.z.c.489.3 yes 26 17.13 even 4
680.2.z.d.89.11 yes 26 1.1 even 1 trivial
680.2.z.d.489.11 yes 26 85.64 even 4 inner