L(s) = 1 | + (1.68 + 1.68i)3-s + (2.22 + 0.179i)5-s + (−0.196 + 0.196i)7-s + 2.68i·9-s + (−0.480 − 0.480i)11-s + 5.44i·13-s + (3.45 + 4.05i)15-s + (−3.39 + 2.33i)17-s − 2.29i·19-s − 0.662·21-s + (5.23 − 5.23i)23-s + (4.93 + 0.798i)25-s + (0.532 − 0.532i)27-s + (−1.54 + 1.54i)29-s + (−0.282 + 0.282i)31-s + ⋯ |
L(s) = 1 | + (0.973 + 0.973i)3-s + (0.996 + 0.0801i)5-s + (−0.0742 + 0.0742i)7-s + 0.894i·9-s + (−0.144 − 0.144i)11-s + 1.50i·13-s + (0.892 + 1.04i)15-s + (−0.823 + 0.566i)17-s − 0.527i·19-s − 0.144·21-s + (1.09 − 1.09i)23-s + (0.987 + 0.159i)25-s + (0.102 − 0.102i)27-s + (−0.286 + 0.286i)29-s + (−0.0508 + 0.0508i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.375 - 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.375 - 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.95468 + 1.31650i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95468 + 1.31650i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.22 - 0.179i)T \) |
| 17 | \( 1 + (3.39 - 2.33i)T \) |
good | 3 | \( 1 + (-1.68 - 1.68i)T + 3iT^{2} \) |
| 7 | \( 1 + (0.196 - 0.196i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.480 + 0.480i)T + 11iT^{2} \) |
| 13 | \( 1 - 5.44iT - 13T^{2} \) |
| 19 | \( 1 + 2.29iT - 19T^{2} \) |
| 23 | \( 1 + (-5.23 + 5.23i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.54 - 1.54i)T - 29iT^{2} \) |
| 31 | \( 1 + (0.282 - 0.282i)T - 31iT^{2} \) |
| 37 | \( 1 + (5.09 + 5.09i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.0550 - 0.0550i)T + 41iT^{2} \) |
| 43 | \( 1 - 6.98T + 43T^{2} \) |
| 47 | \( 1 + 3.42iT - 47T^{2} \) |
| 53 | \( 1 + 4.63T + 53T^{2} \) |
| 59 | \( 1 + 2.84iT - 59T^{2} \) |
| 61 | \( 1 + (10.3 + 10.3i)T + 61iT^{2} \) |
| 67 | \( 1 - 0.574iT - 67T^{2} \) |
| 71 | \( 1 + (-2.98 + 2.98i)T - 71iT^{2} \) |
| 73 | \( 1 + (-10.8 - 10.8i)T + 73iT^{2} \) |
| 79 | \( 1 + (9.61 + 9.61i)T + 79iT^{2} \) |
| 83 | \( 1 + 15.1T + 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 + (3.25 + 3.25i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60393865739812315512414674224, −9.483895327683342603391145852323, −9.116907259130053268549293098097, −8.514747505218796999225579170342, −7.03421744839410429082739748558, −6.25807841317014010934220656218, −4.94062367338223491991185710246, −4.16307437167747895810425579176, −2.93798201310391086898787784685, −1.97857610385703748956100889532,
1.27610387804497979092686504626, 2.45269091173925945583703568475, 3.26078156715609659776667534870, 5.00051747492920024044573544029, 5.91398634429413347932970050208, 6.99629414633322438962577453576, 7.67749228136520489660592934673, 8.583819923098347106600342051857, 9.318075288147779788507304804950, 10.19426399670056871302853556556