Properties

Label 680.2.l.b.101.1
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.1
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.b.101.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40871 - 0.124621i) q^{2} -0.904376 q^{3} +(1.96894 + 0.351110i) q^{4} -1.00000 q^{5} +(1.27400 + 0.112704i) q^{6} -1.75754i q^{7} +(-2.72991 - 0.739983i) q^{8} -2.18210 q^{9} +(1.40871 + 0.124621i) q^{10} +0.717225 q^{11} +(-1.78066 - 0.317535i) q^{12} +2.57144i q^{13} +(-0.219025 + 2.47586i) q^{14} +0.904376 q^{15} +(3.75344 + 1.38263i) q^{16} +(0.409071 - 4.10276i) q^{17} +(3.07396 + 0.271936i) q^{18} +6.22808i q^{19} +(-1.96894 - 0.351110i) q^{20} +1.58947i q^{21} +(-1.01036 - 0.0893812i) q^{22} -2.65384i q^{23} +(2.46887 + 0.669223i) q^{24} +1.00000 q^{25} +(0.320455 - 3.62242i) q^{26} +4.68657 q^{27} +(0.617088 - 3.46048i) q^{28} +2.07726 q^{29} +(-1.27400 - 0.112704i) q^{30} +5.63218i q^{31} +(-5.11522 - 2.41548i) q^{32} -0.648641 q^{33} +(-1.08755 + 5.72863i) q^{34} +1.75754i q^{35} +(-4.29643 - 0.766158i) q^{36} -7.18400 q^{37} +(0.776148 - 8.77357i) q^{38} -2.32555i q^{39} +(2.72991 + 0.739983i) q^{40} +5.90642i q^{41} +(0.198081 - 2.23911i) q^{42} +8.86558i q^{43} +(1.41217 + 0.251825i) q^{44} +2.18210 q^{45} +(-0.330724 + 3.73850i) q^{46} +4.38251 q^{47} +(-3.39452 - 1.25041i) q^{48} +3.91107 q^{49} +(-1.40871 - 0.124621i) q^{50} +(-0.369954 + 3.71044i) q^{51} +(-0.902856 + 5.06301i) q^{52} -2.07945i q^{53} +(-6.60203 - 0.584044i) q^{54} -0.717225 q^{55} +(-1.30055 + 4.79792i) q^{56} -5.63252i q^{57} +(-2.92627 - 0.258870i) q^{58} +4.37190i q^{59} +(1.78066 + 0.317535i) q^{60} +9.54524 q^{61} +(0.701887 - 7.93412i) q^{62} +3.83513i q^{63} +(6.90485 + 4.04018i) q^{64} -2.57144i q^{65} +(0.913748 + 0.0808341i) q^{66} +14.7376i q^{67} +(2.24595 - 7.93446i) q^{68} +2.40007i q^{69} +(0.219025 - 2.47586i) q^{70} +12.3522i q^{71} +(5.95696 + 1.61472i) q^{72} +6.23316i q^{73} +(10.1202 + 0.895276i) q^{74} -0.904376 q^{75} +(-2.18674 + 12.2627i) q^{76} -1.26055i q^{77} +(-0.289811 + 3.27602i) q^{78} -3.03636i q^{79} +(-3.75344 - 1.38263i) q^{80} +2.30790 q^{81} +(0.736063 - 8.32045i) q^{82} +9.62582i q^{83} +(-0.558079 + 3.12958i) q^{84} +(-0.409071 + 4.10276i) q^{85} +(1.10483 - 12.4890i) q^{86} -1.87863 q^{87} +(-1.95796 - 0.530734i) q^{88} +1.67001 q^{89} +(-3.07396 - 0.271936i) q^{90} +4.51940 q^{91} +(0.931790 - 5.22526i) q^{92} -5.09361i q^{93} +(-6.17369 - 0.546151i) q^{94} -6.22808i q^{95} +(4.62608 + 2.18450i) q^{96} -11.0949i q^{97} +(-5.50957 - 0.487400i) q^{98} -1.56506 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{3} + 2 q^{4} - 36 q^{5} + 36 q^{9} + 8 q^{11} + 2 q^{12} - 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} - 2 q^{20} - 26 q^{24} + 36 q^{25} + 6 q^{26} + 16 q^{27} - 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40871 0.124621i −0.996110 0.0881202i
\(3\) −0.904376 −0.522142 −0.261071 0.965320i \(-0.584076\pi\)
−0.261071 + 0.965320i \(0.584076\pi\)
\(4\) 1.96894 + 0.351110i 0.984470 + 0.175555i
\(5\) −1.00000 −0.447214
\(6\) 1.27400 + 0.112704i 0.520110 + 0.0460112i
\(7\) 1.75754i 0.664286i −0.943229 0.332143i \(-0.892228\pi\)
0.943229 0.332143i \(-0.107772\pi\)
\(8\) −2.72991 0.739983i −0.965170 0.261623i
\(9\) −2.18210 −0.727368
\(10\) 1.40871 + 0.124621i 0.445474 + 0.0394085i
\(11\) 0.717225 0.216252 0.108126 0.994137i \(-0.465515\pi\)
0.108126 + 0.994137i \(0.465515\pi\)
\(12\) −1.78066 0.317535i −0.514032 0.0916644i
\(13\) 2.57144i 0.713189i 0.934259 + 0.356594i \(0.116062\pi\)
−0.934259 + 0.356594i \(0.883938\pi\)
\(14\) −0.219025 + 2.47586i −0.0585370 + 0.661702i
\(15\) 0.904376 0.233509
\(16\) 3.75344 + 1.38263i 0.938361 + 0.345657i
\(17\) 0.409071 4.10276i 0.0992143 0.995066i
\(18\) 3.07396 + 0.271936i 0.724539 + 0.0640958i
\(19\) 6.22808i 1.42882i 0.699728 + 0.714409i \(0.253304\pi\)
−0.699728 + 0.714409i \(0.746696\pi\)
\(20\) −1.96894 0.351110i −0.440268 0.0785105i
\(21\) 1.58947i 0.346851i
\(22\) −1.01036 0.0893812i −0.215410 0.0190561i
\(23\) 2.65384i 0.553365i −0.960961 0.276682i \(-0.910765\pi\)
0.960961 0.276682i \(-0.0892350\pi\)
\(24\) 2.46887 + 0.669223i 0.503955 + 0.136604i
\(25\) 1.00000 0.200000
\(26\) 0.320455 3.62242i 0.0628463 0.710414i
\(27\) 4.68657 0.901931
\(28\) 0.617088 3.46048i 0.116619 0.653970i
\(29\) 2.07726 0.385738 0.192869 0.981225i \(-0.438221\pi\)
0.192869 + 0.981225i \(0.438221\pi\)
\(30\) −1.27400 0.112704i −0.232600 0.0205768i
\(31\) 5.63218i 1.01157i 0.862660 + 0.505785i \(0.168797\pi\)
−0.862660 + 0.505785i \(0.831203\pi\)
\(32\) −5.11522 2.41548i −0.904251 0.427001i
\(33\) −0.648641 −0.112914
\(34\) −1.08755 + 5.72863i −0.186514 + 0.982452i
\(35\) 1.75754i 0.297078i
\(36\) −4.29643 0.766158i −0.716072 0.127693i
\(37\) −7.18400 −1.18104 −0.590521 0.807022i \(-0.701078\pi\)
−0.590521 + 0.807022i \(0.701078\pi\)
\(38\) 0.776148 8.77357i 0.125908 1.42326i
\(39\) 2.32555i 0.372385i
\(40\) 2.72991 + 0.739983i 0.431637 + 0.117002i
\(41\) 5.90642i 0.922428i 0.887289 + 0.461214i \(0.152586\pi\)
−0.887289 + 0.461214i \(0.847414\pi\)
\(42\) 0.198081 2.23911i 0.0305646 0.345502i
\(43\) 8.86558i 1.35199i 0.736907 + 0.675994i \(0.236285\pi\)
−0.736907 + 0.675994i \(0.763715\pi\)
\(44\) 1.41217 + 0.251825i 0.212893 + 0.0379640i
\(45\) 2.18210 0.325289
\(46\) −0.330724 + 3.73850i −0.0487626 + 0.551212i
\(47\) 4.38251 0.639254 0.319627 0.947543i \(-0.396442\pi\)
0.319627 + 0.947543i \(0.396442\pi\)
\(48\) −3.39452 1.25041i −0.489957 0.180482i
\(49\) 3.91107 0.558724
\(50\) −1.40871 0.124621i −0.199222 0.0176240i
\(51\) −0.369954 + 3.71044i −0.0518039 + 0.519565i
\(52\) −0.902856 + 5.06301i −0.125204 + 0.702113i
\(53\) 2.07945i 0.285634i −0.989749 0.142817i \(-0.954384\pi\)
0.989749 0.142817i \(-0.0456161\pi\)
\(54\) −6.60203 0.584044i −0.898422 0.0794783i
\(55\) −0.717225 −0.0967106
\(56\) −1.30055 + 4.79792i −0.173793 + 0.641149i
\(57\) 5.63252i 0.746045i
\(58\) −2.92627 0.258870i −0.384237 0.0339913i
\(59\) 4.37190i 0.569173i 0.958650 + 0.284587i \(0.0918564\pi\)
−0.958650 + 0.284587i \(0.908144\pi\)
\(60\) 1.78066 + 0.317535i 0.229882 + 0.0409936i
\(61\) 9.54524 1.22214 0.611071 0.791576i \(-0.290739\pi\)
0.611071 + 0.791576i \(0.290739\pi\)
\(62\) 0.701887 7.93412i 0.0891397 1.00763i
\(63\) 3.83513i 0.483181i
\(64\) 6.90485 + 4.04018i 0.863106 + 0.505022i
\(65\) 2.57144i 0.318948i
\(66\) 0.913748 + 0.0808341i 0.112475 + 0.00994999i
\(67\) 14.7376i 1.80049i 0.435387 + 0.900244i \(0.356612\pi\)
−0.435387 + 0.900244i \(0.643388\pi\)
\(68\) 2.24595 7.93446i 0.272362 0.962195i
\(69\) 2.40007i 0.288935i
\(70\) 0.219025 2.47586i 0.0261786 0.295922i
\(71\) 12.3522i 1.46594i 0.680262 + 0.732969i \(0.261866\pi\)
−0.680262 + 0.732969i \(0.738134\pi\)
\(72\) 5.95696 + 1.61472i 0.702034 + 0.190297i
\(73\) 6.23316i 0.729536i 0.931098 + 0.364768i \(0.118852\pi\)
−0.931098 + 0.364768i \(0.881148\pi\)
\(74\) 10.1202 + 0.895276i 1.17645 + 0.104074i
\(75\) −0.904376 −0.104428
\(76\) −2.18674 + 12.2627i −0.250836 + 1.40663i
\(77\) 1.26055i 0.143653i
\(78\) −0.289811 + 3.27602i −0.0328147 + 0.370937i
\(79\) 3.03636i 0.341617i −0.985304 0.170808i \(-0.945362\pi\)
0.985304 0.170808i \(-0.0546379\pi\)
\(80\) −3.75344 1.38263i −0.419648 0.154582i
\(81\) 2.30790 0.256433
\(82\) 0.736063 8.32045i 0.0812846 0.918840i
\(83\) 9.62582i 1.05657i 0.849067 + 0.528286i \(0.177165\pi\)
−0.849067 + 0.528286i \(0.822835\pi\)
\(84\) −0.558079 + 3.12958i −0.0608914 + 0.341465i
\(85\) −0.409071 + 4.10276i −0.0443700 + 0.445007i
\(86\) 1.10483 12.4890i 0.119137 1.34673i
\(87\) −1.87863 −0.201410
\(88\) −1.95796 0.530734i −0.208719 0.0565765i
\(89\) 1.67001 0.177021 0.0885105 0.996075i \(-0.471789\pi\)
0.0885105 + 0.996075i \(0.471789\pi\)
\(90\) −3.07396 0.271936i −0.324024 0.0286645i
\(91\) 4.51940 0.473761
\(92\) 0.931790 5.22526i 0.0971458 0.544771i
\(93\) 5.09361i 0.528183i
\(94\) −6.17369 0.546151i −0.636768 0.0563312i
\(95\) 6.22808i 0.638987i
\(96\) 4.62608 + 2.18450i 0.472147 + 0.222955i
\(97\) 11.0949i 1.12652i −0.826280 0.563260i \(-0.809547\pi\)
0.826280 0.563260i \(-0.190453\pi\)
\(98\) −5.50957 0.487400i −0.556550 0.0492349i
\(99\) −1.56506 −0.157295
\(100\) 1.96894 + 0.351110i 0.196894 + 0.0351110i
\(101\) 7.52075i 0.748343i −0.927360 0.374171i \(-0.877927\pi\)
0.927360 0.374171i \(-0.122073\pi\)
\(102\) 0.983556 5.18084i 0.0973866 0.512979i
\(103\) 8.56331 0.843768 0.421884 0.906650i \(-0.361369\pi\)
0.421884 + 0.906650i \(0.361369\pi\)
\(104\) 1.90282 7.01980i 0.186587 0.688348i
\(105\) 1.58947i 0.155117i
\(106\) −0.259143 + 2.92935i −0.0251702 + 0.284523i
\(107\) −10.6065 −1.02537 −0.512684 0.858578i \(-0.671349\pi\)
−0.512684 + 0.858578i \(0.671349\pi\)
\(108\) 9.22757 + 1.64550i 0.887923 + 0.158338i
\(109\) −7.78258 −0.745436 −0.372718 0.927945i \(-0.621574\pi\)
−0.372718 + 0.927945i \(0.621574\pi\)
\(110\) 1.01036 + 0.0893812i 0.0963344 + 0.00852216i
\(111\) 6.49703 0.616671
\(112\) 2.43002 6.59681i 0.229615 0.623340i
\(113\) 14.8231i 1.39444i 0.716857 + 0.697220i \(0.245580\pi\)
−0.716857 + 0.697220i \(0.754420\pi\)
\(114\) −0.701929 + 7.93460i −0.0657417 + 0.743143i
\(115\) 2.65384i 0.247472i
\(116\) 4.09000 + 0.729347i 0.379747 + 0.0677181i
\(117\) 5.61115i 0.518751i
\(118\) 0.544830 6.15875i 0.0501557 0.566959i
\(119\) −7.21075 0.718957i −0.661009 0.0659067i
\(120\) −2.46887 0.669223i −0.225376 0.0610914i
\(121\) −10.4856 −0.953235
\(122\) −13.4465 1.18953i −1.21739 0.107695i
\(123\) 5.34162i 0.481638i
\(124\) −1.97751 + 11.0894i −0.177586 + 0.995860i
\(125\) −1.00000 −0.0894427
\(126\) 0.477937 5.40259i 0.0425780 0.481301i
\(127\) −1.35226 −0.119993 −0.0599967 0.998199i \(-0.519109\pi\)
−0.0599967 + 0.998199i \(0.519109\pi\)
\(128\) −9.22346 6.55194i −0.815246 0.579115i
\(129\) 8.01781i 0.705929i
\(130\) −0.320455 + 3.62242i −0.0281057 + 0.317707i
\(131\) −5.97685 −0.522200 −0.261100 0.965312i \(-0.584085\pi\)
−0.261100 + 0.965312i \(0.584085\pi\)
\(132\) −1.27713 0.227744i −0.111160 0.0198226i
\(133\) 10.9461 0.949144
\(134\) 1.83661 20.7611i 0.158659 1.79348i
\(135\) −4.68657 −0.403356
\(136\) −4.15270 + 10.8975i −0.356091 + 0.934451i
\(137\) −7.66306 −0.654700 −0.327350 0.944903i \(-0.606156\pi\)
−0.327350 + 0.944903i \(0.606156\pi\)
\(138\) 0.299099 3.38101i 0.0254610 0.287811i
\(139\) 5.03224 0.426829 0.213415 0.976962i \(-0.431542\pi\)
0.213415 + 0.976962i \(0.431542\pi\)
\(140\) −0.617088 + 3.46048i −0.0521534 + 0.292464i
\(141\) −3.96343 −0.333781
\(142\) 1.53934 17.4007i 0.129179 1.46024i
\(143\) 1.84430i 0.154228i
\(144\) −8.19041 3.01704i −0.682534 0.251420i
\(145\) −2.07726 −0.172507
\(146\) 0.776781 8.78072i 0.0642868 0.726698i
\(147\) −3.53707 −0.291733
\(148\) −14.1449 2.52237i −1.16270 0.207338i
\(149\) 13.0486i 1.06898i −0.845175 0.534490i \(-0.820504\pi\)
0.845175 0.534490i \(-0.179496\pi\)
\(150\) 1.27400 + 0.112704i 0.104022 + 0.00920224i
\(151\) 7.85674 0.639372 0.319686 0.947524i \(-0.396423\pi\)
0.319686 + 0.947524i \(0.396423\pi\)
\(152\) 4.60867 17.0021i 0.373813 1.37905i
\(153\) −0.892636 + 8.95266i −0.0721653 + 0.723779i
\(154\) −0.157091 + 1.77575i −0.0126587 + 0.143094i
\(155\) 5.63218i 0.452388i
\(156\) 0.816521 4.57886i 0.0653740 0.366602i
\(157\) 19.8136i 1.58129i −0.612272 0.790647i \(-0.709744\pi\)
0.612272 0.790647i \(-0.290256\pi\)
\(158\) −0.378393 + 4.27735i −0.0301033 + 0.340288i
\(159\) 1.88060i 0.149142i
\(160\) 5.11522 + 2.41548i 0.404393 + 0.190960i
\(161\) −4.66423 −0.367592
\(162\) −3.25116 0.287612i −0.255435 0.0225969i
\(163\) 22.9485 1.79747 0.898734 0.438494i \(-0.144488\pi\)
0.898734 + 0.438494i \(0.144488\pi\)
\(164\) −2.07380 + 11.6294i −0.161937 + 0.908103i
\(165\) 0.648641 0.0504966
\(166\) 1.19958 13.5600i 0.0931053 1.05246i
\(167\) 13.0081i 1.00660i −0.864112 0.503299i \(-0.832119\pi\)
0.864112 0.503299i \(-0.167881\pi\)
\(168\) 1.17618 4.33912i 0.0907445 0.334771i
\(169\) 6.38771 0.491362
\(170\) 1.08755 5.72863i 0.0834115 0.439366i
\(171\) 13.5903i 1.03928i
\(172\) −3.11279 + 17.4558i −0.237348 + 1.33099i
\(173\) −8.74738 −0.665051 −0.332525 0.943094i \(-0.607901\pi\)
−0.332525 + 0.943094i \(0.607901\pi\)
\(174\) 2.64644 + 0.234116i 0.200626 + 0.0177483i
\(175\) 1.75754i 0.132857i
\(176\) 2.69206 + 0.991655i 0.202922 + 0.0747488i
\(177\) 3.95384i 0.297189i
\(178\) −2.35257 0.208118i −0.176332 0.0155991i
\(179\) 0.482753i 0.0360827i 0.999837 + 0.0180413i \(0.00574304\pi\)
−0.999837 + 0.0180413i \(0.994257\pi\)
\(180\) 4.29643 + 0.766158i 0.320237 + 0.0571060i
\(181\) −24.8523 −1.84726 −0.923628 0.383290i \(-0.874791\pi\)
−0.923628 + 0.383290i \(0.874791\pi\)
\(182\) −6.36653 0.563210i −0.471918 0.0417479i
\(183\) −8.63248 −0.638131
\(184\) −1.96380 + 7.24476i −0.144773 + 0.534091i
\(185\) 7.18400 0.528178
\(186\) −0.634769 + 7.17543i −0.0465435 + 0.526128i
\(187\) 0.293396 2.94260i 0.0214552 0.215185i
\(188\) 8.62889 + 1.53874i 0.629327 + 0.112224i
\(189\) 8.23681i 0.599140i
\(190\) −0.776148 + 8.77357i −0.0563077 + 0.636501i
\(191\) −17.2186 −1.24590 −0.622948 0.782263i \(-0.714065\pi\)
−0.622948 + 0.782263i \(0.714065\pi\)
\(192\) −6.24458 3.65384i −0.450664 0.263693i
\(193\) 11.7447i 0.845400i 0.906270 + 0.422700i \(0.138918\pi\)
−0.906270 + 0.422700i \(0.861082\pi\)
\(194\) −1.38266 + 15.6296i −0.0992691 + 1.12214i
\(195\) 2.32555i 0.166536i
\(196\) 7.70065 + 1.37321i 0.550047 + 0.0980866i
\(197\) 16.3796 1.16700 0.583499 0.812114i \(-0.301683\pi\)
0.583499 + 0.812114i \(0.301683\pi\)
\(198\) 2.20472 + 0.195039i 0.156683 + 0.0138608i
\(199\) 0.773803i 0.0548534i −0.999624 0.0274267i \(-0.991269\pi\)
0.999624 0.0274267i \(-0.00873129\pi\)
\(200\) −2.72991 0.739983i −0.193034 0.0523247i
\(201\) 13.3283i 0.940109i
\(202\) −0.937242 + 10.5946i −0.0659441 + 0.745431i
\(203\) 3.65086i 0.256240i
\(204\) −2.03119 + 7.17573i −0.142212 + 0.502402i
\(205\) 5.90642i 0.412522i
\(206\) −12.0632 1.06717i −0.840485 0.0743530i
\(207\) 5.79096i 0.402500i
\(208\) −3.55534 + 9.65175i −0.246518 + 0.669228i
\(209\) 4.46693i 0.308984i
\(210\) −0.198081 + 2.23911i −0.0136689 + 0.154513i
\(211\) 8.99659 0.619351 0.309675 0.950842i \(-0.399780\pi\)
0.309675 + 0.950842i \(0.399780\pi\)
\(212\) 0.730115 4.09431i 0.0501445 0.281198i
\(213\) 11.1710i 0.765427i
\(214\) 14.9415 + 1.32179i 1.02138 + 0.0903556i
\(215\) 8.86558i 0.604627i
\(216\) −12.7939 3.46798i −0.870516 0.235966i
\(217\) 9.89876 0.671972
\(218\) 10.9634 + 0.969871i 0.742536 + 0.0656880i
\(219\) 5.63712i 0.380921i
\(220\) −1.41217 0.251825i −0.0952087 0.0169780i
\(221\) 10.5500 + 1.05190i 0.709670 + 0.0707585i
\(222\) −9.15245 0.809665i −0.614272 0.0543412i
\(223\) 7.45345 0.499120 0.249560 0.968359i \(-0.419714\pi\)
0.249560 + 0.968359i \(0.419714\pi\)
\(224\) −4.24529 + 8.99018i −0.283651 + 0.600682i
\(225\) −2.18210 −0.145474
\(226\) 1.84727 20.8815i 0.122878 1.38902i
\(227\) −0.132211 −0.00877512 −0.00438756 0.999990i \(-0.501397\pi\)
−0.00438756 + 0.999990i \(0.501397\pi\)
\(228\) 1.97763 11.0901i 0.130972 0.734459i
\(229\) 16.9264i 1.11853i −0.828989 0.559265i \(-0.811083\pi\)
0.828989 0.559265i \(-0.188917\pi\)
\(230\) 0.330724 3.73850i 0.0218073 0.246509i
\(231\) 1.14001i 0.0750071i
\(232\) −5.67075 1.53714i −0.372303 0.100918i
\(233\) 25.1111i 1.64508i 0.568704 + 0.822542i \(0.307445\pi\)
−0.568704 + 0.822542i \(0.692555\pi\)
\(234\) −0.699265 + 7.90449i −0.0457124 + 0.516733i
\(235\) −4.38251 −0.285883
\(236\) −1.53502 + 8.60801i −0.0999211 + 0.560334i
\(237\) 2.74601i 0.178372i
\(238\) 10.0683 + 1.91141i 0.652630 + 0.123898i
\(239\) −4.26360 −0.275789 −0.137895 0.990447i \(-0.544034\pi\)
−0.137895 + 0.990447i \(0.544034\pi\)
\(240\) 3.39452 + 1.25041i 0.219116 + 0.0807139i
\(241\) 11.2076i 0.721948i −0.932576 0.360974i \(-0.882444\pi\)
0.932576 0.360974i \(-0.117556\pi\)
\(242\) 14.7712 + 1.30672i 0.949527 + 0.0839993i
\(243\) −16.1469 −1.03582
\(244\) 18.7940 + 3.35142i 1.20316 + 0.214553i
\(245\) −3.91107 −0.249869
\(246\) −0.665677 + 7.52481i −0.0424420 + 0.479764i
\(247\) −16.0151 −1.01902
\(248\) 4.16772 15.3754i 0.264650 0.976337i
\(249\) 8.70536i 0.551680i
\(250\) 1.40871 + 0.124621i 0.0890948 + 0.00788171i
\(251\) 6.42175i 0.405338i −0.979247 0.202669i \(-0.935039\pi\)
0.979247 0.202669i \(-0.0649615\pi\)
\(252\) −1.34655 + 7.55113i −0.0848247 + 0.475677i
\(253\) 1.90340i 0.119666i
\(254\) 1.90494 + 0.168519i 0.119527 + 0.0105738i
\(255\) 0.369954 3.71044i 0.0231674 0.232357i
\(256\) 12.1767 + 10.3792i 0.761043 + 0.648702i
\(257\) −17.7073 −1.10455 −0.552275 0.833662i \(-0.686240\pi\)
−0.552275 + 0.833662i \(0.686240\pi\)
\(258\) −0.999186 + 11.2948i −0.0622066 + 0.703183i
\(259\) 12.6261i 0.784550i
\(260\) 0.902856 5.06301i 0.0559928 0.313994i
\(261\) −4.53280 −0.280574
\(262\) 8.41966 + 0.744840i 0.520169 + 0.0460164i
\(263\) 10.3401 0.637600 0.318800 0.947822i \(-0.396720\pi\)
0.318800 + 0.947822i \(0.396720\pi\)
\(264\) 1.77073 + 0.479983i 0.108981 + 0.0295409i
\(265\) 2.07945i 0.127740i
\(266\) −15.4199 1.36411i −0.945452 0.0836388i
\(267\) −1.51032 −0.0924300
\(268\) −5.17452 + 29.0175i −0.316084 + 1.77252i
\(269\) 8.42558 0.513717 0.256858 0.966449i \(-0.417313\pi\)
0.256858 + 0.966449i \(0.417313\pi\)
\(270\) 6.60203 + 0.584044i 0.401787 + 0.0355438i
\(271\) 9.28221 0.563854 0.281927 0.959436i \(-0.409026\pi\)
0.281927 + 0.959436i \(0.409026\pi\)
\(272\) 7.20801 14.8339i 0.437050 0.899437i
\(273\) −4.08723 −0.247370
\(274\) 10.7950 + 0.954977i 0.652153 + 0.0576922i
\(275\) 0.717225 0.0432503
\(276\) −0.842688 + 4.72560i −0.0507239 + 0.284447i
\(277\) −3.96273 −0.238097 −0.119049 0.992888i \(-0.537984\pi\)
−0.119049 + 0.992888i \(0.537984\pi\)
\(278\) −7.08898 0.627122i −0.425169 0.0376123i
\(279\) 12.2900i 0.735784i
\(280\) 1.30055 4.79792i 0.0777225 0.286731i
\(281\) 25.2571 1.50671 0.753355 0.657614i \(-0.228434\pi\)
0.753355 + 0.657614i \(0.228434\pi\)
\(282\) 5.58334 + 0.493926i 0.332483 + 0.0294129i
\(283\) −30.7028 −1.82509 −0.912546 0.408974i \(-0.865887\pi\)
−0.912546 + 0.408974i \(0.865887\pi\)
\(284\) −4.33698 + 24.3208i −0.257353 + 1.44317i
\(285\) 5.63252i 0.333642i
\(286\) 0.229838 2.59809i 0.0135906 0.153628i
\(287\) 10.3808 0.612756
\(288\) 11.1619 + 5.27083i 0.657724 + 0.310587i
\(289\) −16.6653 3.35664i −0.980313 0.197450i
\(290\) 2.92627 + 0.258870i 0.171836 + 0.0152014i
\(291\) 10.0340i 0.588203i
\(292\) −2.18852 + 12.2727i −0.128074 + 0.718206i
\(293\) 21.7331i 1.26966i 0.772651 + 0.634831i \(0.218930\pi\)
−0.772651 + 0.634831i \(0.781070\pi\)
\(294\) 4.98272 + 0.440793i 0.290598 + 0.0257076i
\(295\) 4.37190i 0.254542i
\(296\) 19.6117 + 5.31604i 1.13991 + 0.308988i
\(297\) 3.36133 0.195044
\(298\) −1.62612 + 18.3817i −0.0941988 + 1.06482i
\(299\) 6.82419 0.394653
\(300\) −1.78066 0.317535i −0.102806 0.0183329i
\(301\) 15.5816 0.898107
\(302\) −11.0679 0.979112i −0.636885 0.0563416i
\(303\) 6.80158i 0.390741i
\(304\) −8.61110 + 23.3767i −0.493881 + 1.34075i
\(305\) −9.54524 −0.546559
\(306\) 2.37315 12.5005i 0.135664 0.714605i
\(307\) 18.9502i 1.08154i 0.841169 + 0.540772i \(0.181868\pi\)
−0.841169 + 0.540772i \(0.818132\pi\)
\(308\) 0.442591 2.48194i 0.0252190 0.141422i
\(309\) −7.74445 −0.440566
\(310\) −0.701887 + 7.93412i −0.0398645 + 0.450628i
\(311\) 16.5791i 0.940113i 0.882636 + 0.470057i \(0.155767\pi\)
−0.882636 + 0.470057i \(0.844233\pi\)
\(312\) −1.72086 + 6.34854i −0.0974248 + 0.359415i
\(313\) 17.0105i 0.961488i 0.876861 + 0.480744i \(0.159633\pi\)
−0.876861 + 0.480744i \(0.840367\pi\)
\(314\) −2.46918 + 27.9116i −0.139344 + 1.57514i
\(315\) 3.83513i 0.216085i
\(316\) 1.06609 5.97840i 0.0599725 0.336312i
\(317\) −30.0644 −1.68858 −0.844292 0.535883i \(-0.819979\pi\)
−0.844292 + 0.535883i \(0.819979\pi\)
\(318\) 0.234362 2.64923i 0.0131424 0.148561i
\(319\) 1.48987 0.0834164
\(320\) −6.90485 4.04018i −0.385993 0.225853i
\(321\) 9.59224 0.535387
\(322\) 6.57055 + 0.581259i 0.366162 + 0.0323923i
\(323\) 25.5523 + 2.54772i 1.42177 + 0.141759i
\(324\) 4.54411 + 0.810324i 0.252450 + 0.0450180i
\(325\) 2.57144i 0.142638i
\(326\) −32.3279 2.85986i −1.79048 0.158393i
\(327\) 7.03838 0.389223
\(328\) 4.37065 16.1240i 0.241329 0.890300i
\(329\) 7.70241i 0.424648i
\(330\) −0.913748 0.0808341i −0.0503002 0.00444977i
\(331\) 1.30704i 0.0718413i −0.999355 0.0359207i \(-0.988564\pi\)
0.999355 0.0359207i \(-0.0114364\pi\)
\(332\) −3.37972 + 18.9527i −0.185486 + 1.04016i
\(333\) 15.6762 0.859053
\(334\) −1.62108 + 18.3247i −0.0887016 + 1.00268i
\(335\) 14.7376i 0.805202i
\(336\) −2.19765 + 5.96600i −0.119892 + 0.325472i
\(337\) 12.4553i 0.678483i 0.940699 + 0.339242i \(0.110170\pi\)
−0.940699 + 0.339242i \(0.889830\pi\)
\(338\) −8.99844 0.796041i −0.489451 0.0432989i
\(339\) 13.4056i 0.728095i
\(340\) −2.24595 + 7.93446i −0.121804 + 0.430307i
\(341\) 4.03954i 0.218754i
\(342\) −1.69364 + 19.1448i −0.0915813 + 1.03523i
\(343\) 19.1766i 1.03544i
\(344\) 6.56038 24.2023i 0.353712 1.30490i
\(345\) 2.40007i 0.129216i
\(346\) 12.3225 + 1.09011i 0.662464 + 0.0586044i
\(347\) 21.0177 1.12829 0.564144 0.825676i \(-0.309206\pi\)
0.564144 + 0.825676i \(0.309206\pi\)
\(348\) −3.69890 0.659603i −0.198282 0.0353585i
\(349\) 7.99875i 0.428163i 0.976816 + 0.214082i \(0.0686759\pi\)
−0.976816 + 0.214082i \(0.931324\pi\)
\(350\) −0.219025 + 2.47586i −0.0117074 + 0.132340i
\(351\) 12.0512i 0.643247i
\(352\) −3.66876 1.73244i −0.195546 0.0923395i
\(353\) 17.1563 0.913136 0.456568 0.889688i \(-0.349078\pi\)
0.456568 + 0.889688i \(0.349078\pi\)
\(354\) −0.492731 + 5.56983i −0.0261884 + 0.296033i
\(355\) 12.3522i 0.655588i
\(356\) 3.28815 + 0.586357i 0.174272 + 0.0310769i
\(357\) 6.52123 + 0.650207i 0.345140 + 0.0344126i
\(358\) 0.0601610 0.680060i 0.00317961 0.0359423i
\(359\) 37.3318 1.97030 0.985150 0.171697i \(-0.0549250\pi\)
0.985150 + 0.171697i \(0.0549250\pi\)
\(360\) −5.95696 1.61472i −0.313959 0.0851032i
\(361\) −19.7889 −1.04152
\(362\) 35.0097 + 3.09711i 1.84007 + 0.162781i
\(363\) 9.48291 0.497724
\(364\) 8.89841 + 1.58680i 0.466404 + 0.0831711i
\(365\) 6.23316i 0.326258i
\(366\) 12.1607 + 1.07579i 0.635649 + 0.0562322i
\(367\) 9.74596i 0.508735i 0.967108 + 0.254367i \(0.0818673\pi\)
−0.967108 + 0.254367i \(0.918133\pi\)
\(368\) 3.66928 9.96105i 0.191274 0.519256i
\(369\) 12.8884i 0.670945i
\(370\) −10.1202 0.895276i −0.526124 0.0465432i
\(371\) −3.65471 −0.189743
\(372\) 1.78841 10.0290i 0.0927250 0.519980i
\(373\) 15.1227i 0.783023i −0.920173 0.391511i \(-0.871952\pi\)
0.920173 0.391511i \(-0.128048\pi\)
\(374\) −0.780020 + 4.10872i −0.0403339 + 0.212457i
\(375\) 0.904376 0.0467018
\(376\) −11.9639 3.24298i −0.616989 0.167244i
\(377\) 5.34155i 0.275104i
\(378\) −1.02648 + 11.6033i −0.0527963 + 0.596809i
\(379\) −23.1594 −1.18962 −0.594810 0.803866i \(-0.702773\pi\)
−0.594810 + 0.803866i \(0.702773\pi\)
\(380\) 2.18674 12.2627i 0.112177 0.629063i
\(381\) 1.22295 0.0626535
\(382\) 24.2561 + 2.14580i 1.24105 + 0.109789i
\(383\) −31.4086 −1.60490 −0.802452 0.596716i \(-0.796472\pi\)
−0.802452 + 0.596716i \(0.796472\pi\)
\(384\) 8.34147 + 5.92541i 0.425674 + 0.302380i
\(385\) 1.26055i 0.0642435i
\(386\) 1.46363 16.5449i 0.0744968 0.842112i
\(387\) 19.3456i 0.983393i
\(388\) 3.89554 21.8452i 0.197766 1.10902i
\(389\) 30.5468i 1.54879i 0.632705 + 0.774393i \(0.281945\pi\)
−0.632705 + 0.774393i \(0.718055\pi\)
\(390\) 0.289811 3.27602i 0.0146752 0.165888i
\(391\) −10.8881 1.08561i −0.550634 0.0549017i
\(392\) −10.6769 2.89412i −0.539264 0.146175i
\(393\) 5.40532 0.272662
\(394\) −23.0741 2.04124i −1.16246 0.102836i
\(395\) 3.03636i 0.152776i
\(396\) −3.08151 0.549508i −0.154852 0.0276138i
\(397\) 0.678969 0.0340765 0.0170382 0.999855i \(-0.494576\pi\)
0.0170382 + 0.999855i \(0.494576\pi\)
\(398\) −0.0964319 + 1.09007i −0.00483370 + 0.0546401i
\(399\) −9.89936 −0.495588
\(400\) 3.75344 + 1.38263i 0.187672 + 0.0691313i
\(401\) 14.3974i 0.718973i −0.933150 0.359486i \(-0.882952\pi\)
0.933150 0.359486i \(-0.117048\pi\)
\(402\) −1.66099 + 18.7758i −0.0828426 + 0.936452i
\(403\) −14.4828 −0.721440
\(404\) 2.64061 14.8079i 0.131375 0.736721i
\(405\) −2.30790 −0.114680
\(406\) −0.454973 + 5.14302i −0.0225800 + 0.255244i
\(407\) −5.15255 −0.255402
\(408\) 3.75560 9.85541i 0.185930 0.487916i
\(409\) −9.63143 −0.476243 −0.238122 0.971235i \(-0.576532\pi\)
−0.238122 + 0.971235i \(0.576532\pi\)
\(410\) −0.736063 + 8.32045i −0.0363516 + 0.410918i
\(411\) 6.93029 0.341846
\(412\) 16.8606 + 3.00666i 0.830664 + 0.148127i
\(413\) 7.68378 0.378094
\(414\) 0.721674 8.15780i 0.0354684 0.400934i
\(415\) 9.62582i 0.472513i
\(416\) 6.21126 13.1535i 0.304532 0.644902i
\(417\) −4.55104 −0.222865
\(418\) 0.556673 6.29262i 0.0272277 0.307782i
\(419\) −27.1118 −1.32450 −0.662248 0.749285i \(-0.730398\pi\)
−0.662248 + 0.749285i \(0.730398\pi\)
\(420\) 0.558079 3.12958i 0.0272315 0.152708i
\(421\) 4.48792i 0.218728i 0.994002 + 0.109364i \(0.0348814\pi\)
−0.994002 + 0.109364i \(0.965119\pi\)
\(422\) −12.6736 1.12116i −0.616941 0.0545773i
\(423\) −9.56309 −0.464973
\(424\) −1.53876 + 5.67672i −0.0747287 + 0.275686i
\(425\) 0.409071 4.10276i 0.0198429 0.199013i
\(426\) −1.39214 + 15.7368i −0.0674496 + 0.762450i
\(427\) 16.7761i 0.811852i
\(428\) −20.8835 3.72404i −1.00944 0.180008i
\(429\) 1.66794i 0.0805289i
\(430\) −1.10483 + 12.4890i −0.0532799 + 0.602275i
\(431\) 24.5110i 1.18065i 0.807164 + 0.590327i \(0.201001\pi\)
−0.807164 + 0.590327i \(0.798999\pi\)
\(432\) 17.5908 + 6.47978i 0.846337 + 0.311758i
\(433\) 25.1872 1.21042 0.605210 0.796066i \(-0.293089\pi\)
0.605210 + 0.796066i \(0.293089\pi\)
\(434\) −13.9445 1.23359i −0.669358 0.0592143i
\(435\) 1.87863 0.0900732
\(436\) −15.3234 2.73254i −0.733859 0.130865i
\(437\) 16.5283 0.790658
\(438\) −0.702502 + 7.94107i −0.0335668 + 0.379439i
\(439\) 7.47936i 0.356970i 0.983943 + 0.178485i \(0.0571197\pi\)
−0.983943 + 0.178485i \(0.942880\pi\)
\(440\) 1.95796 + 0.530734i 0.0933422 + 0.0253018i
\(441\) −8.53436 −0.406398
\(442\) −14.7308 2.79657i −0.700674 0.133019i
\(443\) 20.3792i 0.968243i −0.875001 0.484122i \(-0.839139\pi\)
0.875001 0.484122i \(-0.160861\pi\)
\(444\) 12.7923 + 2.28117i 0.607094 + 0.108260i
\(445\) −1.67001 −0.0791662
\(446\) −10.4998 0.928854i −0.497178 0.0439825i
\(447\) 11.8008i 0.558159i
\(448\) 7.10076 12.1355i 0.335479 0.573350i
\(449\) 36.6973i 1.73185i −0.500171 0.865927i \(-0.666730\pi\)
0.500171 0.865927i \(-0.333270\pi\)
\(450\) 3.07396 + 0.271936i 0.144908 + 0.0128192i
\(451\) 4.23624i 0.199477i
\(452\) −5.20453 + 29.1858i −0.244801 + 1.37278i
\(453\) −7.10544 −0.333843
\(454\) 0.186247 + 0.0164762i 0.00874098 + 0.000773265i
\(455\) −4.51940 −0.211873
\(456\) −4.16797 + 15.3763i −0.195183 + 0.720061i
\(457\) 13.1520 0.615223 0.307611 0.951512i \(-0.400470\pi\)
0.307611 + 0.951512i \(0.400470\pi\)
\(458\) −2.10938 + 23.8445i −0.0985651 + 1.11418i
\(459\) 1.91714 19.2279i 0.0894844 0.897481i
\(460\) −0.931790 + 5.22526i −0.0434449 + 0.243629i
\(461\) 25.5335i 1.18921i 0.804017 + 0.594607i \(0.202692\pi\)
−0.804017 + 0.594607i \(0.797308\pi\)
\(462\) 0.142069 1.60595i 0.00660964 0.0747154i
\(463\) −17.3855 −0.807973 −0.403986 0.914765i \(-0.632376\pi\)
−0.403986 + 0.914765i \(0.632376\pi\)
\(464\) 7.79689 + 2.87208i 0.361962 + 0.133333i
\(465\) 5.09361i 0.236210i
\(466\) 3.12937 35.3743i 0.144965 1.63869i
\(467\) 5.00606i 0.231653i 0.993269 + 0.115826i \(0.0369516\pi\)
−0.993269 + 0.115826i \(0.963048\pi\)
\(468\) 1.97013 11.0480i 0.0910692 0.510694i
\(469\) 25.9019 1.19604
\(470\) 6.17369 + 0.546151i 0.284771 + 0.0251921i
\(471\) 17.9189i 0.825659i
\(472\) 3.23513 11.9349i 0.148909 0.549349i
\(473\) 6.35861i 0.292369i
\(474\) 0.342210 3.86833i 0.0157182 0.177678i
\(475\) 6.22808i 0.285764i
\(476\) −13.9451 3.94735i −0.639173 0.180926i
\(477\) 4.53758i 0.207761i
\(478\) 6.00618 + 0.531333i 0.274716 + 0.0243026i
\(479\) 16.7452i 0.765106i −0.923934 0.382553i \(-0.875045\pi\)
0.923934 0.382553i \(-0.124955\pi\)
\(480\) −4.62608 2.18450i −0.211151 0.0997084i
\(481\) 18.4732i 0.842306i
\(482\) −1.39671 + 15.7883i −0.0636182 + 0.719139i
\(483\) 4.21821 0.191935
\(484\) −20.6455 3.68159i −0.938431 0.167345i
\(485\) 11.0949i 0.503795i
\(486\) 22.7463 + 2.01224i 1.03180 + 0.0912771i
\(487\) 38.5664i 1.74761i 0.486277 + 0.873804i \(0.338354\pi\)
−0.486277 + 0.873804i \(0.661646\pi\)
\(488\) −26.0577 7.06331i −1.17958 0.319741i
\(489\) −20.7541 −0.938533
\(490\) 5.50957 + 0.487400i 0.248897 + 0.0220185i
\(491\) 18.7491i 0.846135i −0.906098 0.423067i \(-0.860953\pi\)
0.906098 0.423067i \(-0.139047\pi\)
\(492\) 1.87550 10.5173i 0.0845539 0.474158i
\(493\) 0.849748 8.52252i 0.0382707 0.383835i
\(494\) 22.5607 + 1.99582i 1.01505 + 0.0897960i
\(495\) 1.56506 0.0703442
\(496\) −7.78721 + 21.1401i −0.349656 + 0.949218i
\(497\) 21.7095 0.973803
\(498\) −1.08487 + 12.2633i −0.0486141 + 0.549534i
\(499\) 28.0822 1.25713 0.628567 0.777756i \(-0.283642\pi\)
0.628567 + 0.777756i \(0.283642\pi\)
\(500\) −1.96894 0.351110i −0.0880536 0.0157021i
\(501\) 11.7642i 0.525586i
\(502\) −0.800284 + 9.04640i −0.0357184 + 0.403761i
\(503\) 20.7157i 0.923666i −0.886967 0.461833i \(-0.847192\pi\)
0.886967 0.461833i \(-0.152808\pi\)
\(504\) 2.83793 10.4696i 0.126411 0.466351i
\(505\) 7.52075i 0.334669i
\(506\) −0.237204 + 2.68135i −0.0105450 + 0.119200i
\(507\) −5.77689 −0.256560
\(508\) −2.66251 0.474790i −0.118130 0.0210654i
\(509\) 3.50632i 0.155415i 0.996976 + 0.0777074i \(0.0247600\pi\)
−0.996976 + 0.0777074i \(0.975240\pi\)
\(510\) −0.983556 + 5.18084i −0.0435526 + 0.229411i
\(511\) 10.9550 0.484621
\(512\) −15.8600 16.1388i −0.700919 0.713241i
\(513\) 29.1883i 1.28870i
\(514\) 24.9445 + 2.20670i 1.10025 + 0.0973331i
\(515\) −8.56331 −0.377344
\(516\) 2.81513 15.7866i 0.123929 0.694966i
\(517\) 3.14324 0.138240
\(518\) 1.57348 17.7866i 0.0691347 0.781498i
\(519\) 7.91092 0.347251
\(520\) −1.90282 + 7.01980i −0.0834442 + 0.307839i
\(521\) 12.4668i 0.546179i 0.961989 + 0.273090i \(0.0880455\pi\)
−0.961989 + 0.273090i \(0.911954\pi\)
\(522\) 6.38542 + 0.564882i 0.279482 + 0.0247242i
\(523\) 15.3090i 0.669414i −0.942322 0.334707i \(-0.891363\pi\)
0.942322 0.334707i \(-0.108637\pi\)
\(524\) −11.7681 2.09853i −0.514090 0.0916747i
\(525\) 1.58947i 0.0693703i
\(526\) −14.5663 1.28860i −0.635120 0.0561854i
\(527\) 23.1075 + 2.30396i 1.00658 + 0.100362i
\(528\) −2.43464 0.896828i −0.105954 0.0390294i
\(529\) 15.9571 0.693788
\(530\) 0.259143 2.92935i 0.0112564 0.127243i
\(531\) 9.53995i 0.413999i
\(532\) 21.5521 + 3.84327i 0.934404 + 0.166627i
\(533\) −15.1880 −0.657865
\(534\) 2.12760 + 0.188217i 0.0920704 + 0.00814495i
\(535\) 10.6065 0.458558
\(536\) 10.9056 40.2324i 0.471050 1.73778i
\(537\) 0.436590i 0.0188403i
\(538\) −11.8692 1.05000i −0.511718 0.0452688i
\(539\) 2.80512 0.120825
\(540\) −9.22757 1.64550i −0.397091 0.0708110i
\(541\) −25.4426 −1.09386 −0.546932 0.837177i \(-0.684204\pi\)
−0.546932 + 0.837177i \(0.684204\pi\)
\(542\) −13.0760 1.15676i −0.561661 0.0496869i
\(543\) 22.4758 0.964529
\(544\) −12.0026 + 19.9984i −0.514608 + 0.857425i
\(545\) 7.78258 0.333369
\(546\) 5.75773 + 0.509354i 0.246408 + 0.0217983i
\(547\) 21.2156 0.907113 0.453557 0.891227i \(-0.350155\pi\)
0.453557 + 0.891227i \(0.350155\pi\)
\(548\) −15.0881 2.69057i −0.644532 0.114936i
\(549\) −20.8287 −0.888948
\(550\) −1.01036 0.0893812i −0.0430821 0.00381123i
\(551\) 12.9373i 0.551150i
\(552\) 1.77601 6.55199i 0.0755921 0.278871i
\(553\) −5.33651 −0.226931
\(554\) 5.58235 + 0.493839i 0.237171 + 0.0209812i
\(555\) −6.49703 −0.275784
\(556\) 9.90818 + 1.76687i 0.420200 + 0.0749319i
\(557\) 39.0833i 1.65601i 0.560719 + 0.828006i \(0.310525\pi\)
−0.560719 + 0.828006i \(0.689475\pi\)
\(558\) −1.53159 + 17.3131i −0.0648374 + 0.732921i
\(559\) −22.7973 −0.964222
\(560\) −2.43002 + 6.59681i −0.102687 + 0.278766i
\(561\) −0.265340 + 2.66122i −0.0112027 + 0.112357i
\(562\) −35.5799 3.14756i −1.50085 0.132772i
\(563\) 2.62335i 0.110561i 0.998471 + 0.0552804i \(0.0176053\pi\)
−0.998471 + 0.0552804i \(0.982395\pi\)
\(564\) −7.80376 1.39160i −0.328597 0.0585969i
\(565\) 14.8231i 0.623612i
\(566\) 43.2514 + 3.82621i 1.81799 + 0.160827i
\(567\) 4.05621i 0.170345i
\(568\) 9.14043 33.7205i 0.383524 1.41488i
\(569\) −17.6521 −0.740013 −0.370007 0.929029i \(-0.620645\pi\)
−0.370007 + 0.929029i \(0.620645\pi\)
\(570\) 0.701929 7.93460i 0.0294006 0.332344i
\(571\) −21.1270 −0.884137 −0.442068 0.896981i \(-0.645755\pi\)
−0.442068 + 0.896981i \(0.645755\pi\)
\(572\) −0.647551 + 3.63132i −0.0270755 + 0.151833i
\(573\) 15.5721 0.650534
\(574\) −14.6235 1.29366i −0.610373 0.0539962i
\(575\) 2.65384i 0.110673i
\(576\) −15.0671 8.81609i −0.627796 0.367337i
\(577\) −8.17093 −0.340160 −0.170080 0.985430i \(-0.554403\pi\)
−0.170080 + 0.985430i \(0.554403\pi\)
\(578\) 23.0583 + 6.80539i 0.959100 + 0.283067i
\(579\) 10.6216i 0.441419i
\(580\) −4.09000 0.729347i −0.169828 0.0302845i
\(581\) 16.9177 0.701866
\(582\) 1.25044 14.1350i 0.0518325 0.585915i
\(583\) 1.49143i 0.0617689i
\(584\) 4.61243 17.0160i 0.190864 0.704126i
\(585\) 5.61115i 0.231992i
\(586\) 2.70840 30.6157i 0.111883 1.26472i
\(587\) 0.0917506i 0.00378695i −0.999998 0.00189348i \(-0.999397\pi\)
0.999998 0.00189348i \(-0.000602713\pi\)
\(588\) −6.96428 1.24190i −0.287202 0.0512151i
\(589\) −35.0777 −1.44535
\(590\) −0.544830 + 6.15875i −0.0224303 + 0.253552i
\(591\) −14.8133 −0.609338
\(592\) −26.9647 9.93279i −1.10824 0.408235i
\(593\) −33.3289 −1.36865 −0.684327 0.729175i \(-0.739904\pi\)
−0.684327 + 0.729175i \(0.739904\pi\)
\(594\) −4.73514 0.418891i −0.194285 0.0171873i
\(595\) 7.21075 + 0.718957i 0.295612 + 0.0294744i
\(596\) 4.58148 25.6918i 0.187665 1.05238i
\(597\) 0.699809i 0.0286413i
\(598\) −9.61333 0.850436i −0.393118 0.0347769i
\(599\) 1.24959 0.0510568 0.0255284 0.999674i \(-0.491873\pi\)
0.0255284 + 0.999674i \(0.491873\pi\)
\(600\) 2.46887 + 0.669223i 0.100791 + 0.0273209i
\(601\) 41.3209i 1.68551i −0.538295 0.842757i \(-0.680931\pi\)
0.538295 0.842757i \(-0.319069\pi\)
\(602\) −21.9499 1.94179i −0.894613 0.0791413i
\(603\) 32.1590i 1.30962i
\(604\) 15.4694 + 2.75857i 0.629442 + 0.112245i
\(605\) 10.4856 0.426300
\(606\) 0.847618 9.58147i 0.0344321 0.389221i
\(607\) 18.9355i 0.768569i 0.923215 + 0.384285i \(0.125552\pi\)
−0.923215 + 0.384285i \(0.874448\pi\)
\(608\) 15.0438 31.8580i 0.610106 1.29201i
\(609\) 3.30175i 0.133794i
\(610\) 13.4465 + 1.18953i 0.544432 + 0.0481629i
\(611\) 11.2693i 0.455909i
\(612\) −4.90091 + 17.3138i −0.198108 + 0.699870i
\(613\) 20.5022i 0.828074i 0.910260 + 0.414037i \(0.135882\pi\)
−0.910260 + 0.414037i \(0.864118\pi\)
\(614\) 2.36159 26.6954i 0.0953059 1.07734i
\(615\) 5.34162i 0.215395i
\(616\) −0.932785 + 3.44119i −0.0375830 + 0.138649i
\(617\) 9.37330i 0.377355i −0.982039 0.188677i \(-0.939580\pi\)
0.982039 0.188677i \(-0.0604201\pi\)
\(618\) 10.9097 + 0.965119i 0.438852 + 0.0388228i
\(619\) 27.6976 1.11326 0.556630 0.830760i \(-0.312094\pi\)
0.556630 + 0.830760i \(0.312094\pi\)
\(620\) 1.97751 11.0894i 0.0794188 0.445362i
\(621\) 12.4374i 0.499097i
\(622\) 2.06610 23.3551i 0.0828430 0.936456i
\(623\) 2.93511i 0.117593i
\(624\) 3.21536 8.72881i 0.128717 0.349432i
\(625\) 1.00000 0.0400000
\(626\) 2.11986 23.9628i 0.0847265 0.957747i
\(627\) 4.03979i 0.161333i
\(628\) 6.95673 39.0117i 0.277604 1.55674i
\(629\) −2.93877 + 29.4742i −0.117176 + 1.17522i
\(630\) −0.477937 + 5.40259i −0.0190414 + 0.215244i
\(631\) 6.20893 0.247174 0.123587 0.992334i \(-0.460560\pi\)
0.123587 + 0.992334i \(0.460560\pi\)
\(632\) −2.24685 + 8.28899i −0.0893750 + 0.329718i
\(633\) −8.13630 −0.323389
\(634\) 42.3521 + 3.74665i 1.68202 + 0.148798i
\(635\) 1.35226 0.0536626
\(636\) −0.660298 + 3.70280i −0.0261825 + 0.146825i
\(637\) 10.0571i 0.398476i
\(638\) −2.09879 0.185668i −0.0830919 0.00735067i
\(639\) 26.9538i 1.06628i
\(640\) 9.22346 + 6.55194i 0.364589 + 0.258988i
\(641\) 12.7659i 0.504223i −0.967698 0.252112i \(-0.918875\pi\)
0.967698 0.252112i \(-0.0811250\pi\)
\(642\) −13.5127 1.19539i −0.533304 0.0471784i
\(643\) −13.2948 −0.524296 −0.262148 0.965028i \(-0.584431\pi\)
−0.262148 + 0.965028i \(0.584431\pi\)
\(644\) −9.18358 1.63765i −0.361884 0.0645326i
\(645\) 8.01781i 0.315701i
\(646\) −35.6784 6.77336i −1.40375 0.266494i
\(647\) −13.9961 −0.550242 −0.275121 0.961410i \(-0.588718\pi\)
−0.275121 + 0.961410i \(0.588718\pi\)
\(648\) −6.30035 1.70780i −0.247501 0.0670889i
\(649\) 3.13564i 0.123085i
\(650\) 0.320455 3.62242i 0.0125693 0.142083i
\(651\) −8.95220 −0.350864
\(652\) 45.1843 + 8.05745i 1.76955 + 0.315554i
\(653\) −17.3694 −0.679717 −0.339859 0.940477i \(-0.610379\pi\)
−0.339859 + 0.940477i \(0.610379\pi\)
\(654\) −9.91504 0.877128i −0.387709 0.0342984i
\(655\) 5.97685 0.233535
\(656\) −8.16638 + 22.1694i −0.318844 + 0.865571i
\(657\) 13.6014i 0.530641i
\(658\) −0.959881 + 10.8505i −0.0374200 + 0.422996i
\(659\) 25.0689i 0.976546i 0.872691 + 0.488273i \(0.162373\pi\)
−0.872691 + 0.488273i \(0.837627\pi\)
\(660\) 1.27713 + 0.227744i 0.0497124 + 0.00886492i
\(661\) 29.5549i 1.14955i −0.818310 0.574777i \(-0.805089\pi\)
0.818310 0.574777i \(-0.194911\pi\)
\(662\) −0.162884 + 1.84124i −0.00633067 + 0.0715619i
\(663\) −9.54116 0.951313i −0.370548 0.0369459i
\(664\) 7.12295 26.2777i 0.276424 1.01977i
\(665\) −10.9461 −0.424470
\(666\) −22.0833 1.95359i −0.855711 0.0756999i
\(667\) 5.51273i 0.213454i
\(668\) 4.56727 25.6122i 0.176713 0.990965i
\(669\) −6.74071 −0.260611
\(670\) −1.83661 + 20.7611i −0.0709546 + 0.802070i
\(671\) 6.84608 0.264290
\(672\) 3.83934 8.13050i 0.148106 0.313641i
\(673\) 23.9965i 0.924996i 0.886620 + 0.462498i \(0.153047\pi\)
−0.886620 + 0.462498i \(0.846953\pi\)
\(674\) 1.55219 17.5459i 0.0597881 0.675844i
\(675\) 4.68657 0.180386
\(676\) 12.5770 + 2.24278i 0.483731 + 0.0862609i
\(677\) −3.14369 −0.120822 −0.0604109 0.998174i \(-0.519241\pi\)
−0.0604109 + 0.998174i \(0.519241\pi\)
\(678\) −1.67062 + 18.8847i −0.0641599 + 0.725262i
\(679\) −19.4997 −0.748331
\(680\) 4.15270 10.8975i 0.159249 0.417899i
\(681\) 0.119568 0.00458185
\(682\) 0.503411 5.69055i 0.0192766 0.217903i
\(683\) 20.6098 0.788613 0.394306 0.918979i \(-0.370985\pi\)
0.394306 + 0.918979i \(0.370985\pi\)
\(684\) 4.77169 26.7585i 0.182450 1.02314i
\(685\) 7.66306 0.292791
\(686\) −2.38980 + 27.0143i −0.0912431 + 1.03141i
\(687\) 15.3078i 0.584031i
\(688\) −12.2578 + 33.2764i −0.467324 + 1.26865i
\(689\) 5.34718 0.203711
\(690\) −0.299099 + 3.38101i −0.0113865 + 0.128713i
\(691\) −32.1189 −1.22186 −0.610931 0.791684i \(-0.709205\pi\)
−0.610931 + 0.791684i \(0.709205\pi\)
\(692\) −17.2231 3.07129i −0.654723 0.116753i
\(693\) 2.75065i 0.104489i
\(694\) −29.6079 2.61924i −1.12390 0.0994250i
\(695\) −5.03224 −0.190884
\(696\) 5.12848 + 1.39015i 0.194395 + 0.0526935i
\(697\) 24.2327 + 2.41615i 0.917877 + 0.0915180i
\(698\) 0.996811 11.2679i 0.0377298 0.426498i
\(699\) 22.7099i 0.858967i
\(700\) 0.617088 3.46048i 0.0233237 0.130794i
\(701\) 40.4674i 1.52843i 0.644961 + 0.764216i \(0.276874\pi\)
−0.644961 + 0.764216i \(0.723126\pi\)
\(702\) 1.50183 16.9767i 0.0566830 0.640744i
\(703\) 44.7425i 1.68750i
\(704\) 4.95233 + 2.89772i 0.186648 + 0.109212i
\(705\) 3.96343 0.149272
\(706\) −24.1682 2.13803i −0.909584 0.0804657i
\(707\) −13.2180 −0.497114
\(708\) 1.38823 7.78488i 0.0521730 0.292574i
\(709\) 35.1050 1.31840 0.659198 0.751970i \(-0.270896\pi\)
0.659198 + 0.751970i \(0.270896\pi\)
\(710\) −1.53934 + 17.4007i −0.0577705 + 0.653037i
\(711\) 6.62565i 0.248481i
\(712\) −4.55899 1.23578i −0.170855 0.0463129i
\(713\) 14.9469 0.559767
\(714\) −9.10550 1.72864i −0.340765 0.0646925i
\(715\) 1.84430i 0.0689729i
\(716\) −0.169499 + 0.950511i −0.00633448 + 0.0355223i
\(717\) 3.85589 0.144001
\(718\) −52.5898 4.65232i −1.96263 0.173623i
\(719\) 7.74025i 0.288663i −0.989529 0.144331i \(-0.953897\pi\)
0.989529 0.144331i \(-0.0461031\pi\)
\(720\) 8.19041 + 3.01704i 0.305238 + 0.112438i
\(721\) 15.0503i 0.560503i
\(722\) 27.8769 + 2.46611i 1.03747 + 0.0917792i
\(723\) 10.1359i 0.376959i
\(724\) −48.9327 8.72588i −1.81857 0.324295i
\(725\) 2.07726 0.0771476
\(726\) −13.3587 1.18177i −0.495787 0.0438595i
\(727\) 11.3615 0.421375 0.210688 0.977553i \(-0.432430\pi\)
0.210688 + 0.977553i \(0.432430\pi\)
\(728\) −12.3376 3.34428i −0.457260 0.123947i
\(729\) 7.67919 0.284414
\(730\) −0.776781 + 8.78072i −0.0287499 + 0.324989i
\(731\) 36.3734 + 3.62665i 1.34532 + 0.134136i
\(732\) −16.9968 3.03095i −0.628221 0.112027i
\(733\) 17.6468i 0.651800i −0.945404 0.325900i \(-0.894333\pi\)
0.945404 0.325900i \(-0.105667\pi\)
\(734\) 1.21455 13.7292i 0.0448298 0.506756i
\(735\) 3.53707 0.130467
\(736\) −6.41031 + 13.5750i −0.236287 + 0.500381i
\(737\) 10.5702i 0.389358i
\(738\) −1.60617 + 18.1561i −0.0591238 + 0.668335i
\(739\) 44.2571i 1.62802i 0.580848 + 0.814012i \(0.302721\pi\)
−0.580848 + 0.814012i \(0.697279\pi\)
\(740\) 14.1449 + 2.52237i 0.519975 + 0.0927242i
\(741\) 14.4837 0.532071
\(742\) 5.14843 + 0.455453i 0.189005 + 0.0167202i
\(743\) 44.8655i 1.64595i −0.568075 0.822977i \(-0.692312\pi\)
0.568075 0.822977i \(-0.307688\pi\)
\(744\) −3.76918 + 13.9051i −0.138185 + 0.509786i
\(745\) 13.0486i 0.478063i
\(746\) −1.88460 + 21.3035i −0.0690001 + 0.779977i
\(747\) 21.0046i 0.768517i
\(748\) 1.61086 5.69080i 0.0588987 0.208076i
\(749\) 18.6413i 0.681137i
\(750\) −1.27400 0.112704i −0.0465201 0.00411537i
\(751\) 21.4310i 0.782028i −0.920385 0.391014i \(-0.872124\pi\)
0.920385 0.391014i \(-0.127876\pi\)
\(752\) 16.4495 + 6.05937i 0.599851 + 0.220963i
\(753\) 5.80768i 0.211644i
\(754\) 0.665668 7.52471i 0.0242422 0.274034i
\(755\) −7.85674 −0.285936
\(756\) 2.89202 16.2178i 0.105182 0.589835i
\(757\) 20.0107i 0.727300i −0.931536 0.363650i \(-0.881530\pi\)
0.931536 0.363650i \(-0.118470\pi\)
\(758\) 32.6250 + 2.88615i 1.18499 + 0.104830i
\(759\) 1.72139i 0.0624826i
\(760\) −4.60867 + 17.0021i −0.167174 + 0.616731i
\(761\) 29.0248 1.05215 0.526075 0.850438i \(-0.323663\pi\)
0.526075 + 0.850438i \(0.323663\pi\)
\(762\) −1.72278 0.152405i −0.0624098 0.00552104i
\(763\) 13.6782i 0.495183i
\(764\) −33.9024 6.04563i −1.22655 0.218723i
\(765\) 0.892636 8.95266i 0.0322733 0.323684i
\(766\) 44.2457 + 3.91416i 1.59866 + 0.141424i
\(767\) −11.2421 −0.405928
\(768\) −11.0123 9.38672i −0.397372 0.338714i
\(769\) 37.7396 1.36093 0.680463 0.732783i \(-0.261779\pi\)
0.680463 + 0.732783i \(0.261779\pi\)
\(770\) 0.157091 1.77575i 0.00566115 0.0639936i
\(771\) 16.0140 0.576731
\(772\) −4.12367 + 23.1246i −0.148414 + 0.832271i
\(773\) 44.6557i 1.60615i 0.595875 + 0.803077i \(0.296805\pi\)
−0.595875 + 0.803077i \(0.703195\pi\)
\(774\) −2.41087 + 27.2524i −0.0866568 + 0.979567i
\(775\) 5.63218i 0.202314i
\(776\) −8.21006 + 30.2882i −0.294724 + 1.08728i
\(777\) 11.4188i 0.409646i
\(778\) 3.80677 43.0317i 0.136479 1.54276i
\(779\) −36.7856 −1.31798
\(780\) −0.816521 + 4.57886i −0.0292362 + 0.163949i
\(781\) 8.85932i 0.317011i
\(782\) 15.2029 + 2.88619i 0.543654 + 0.103210i
\(783\) 9.73524 0.347909
\(784\) 14.6800 + 5.40755i 0.524285 + 0.193127i
\(785\) 19.8136i 0.707176i
\(786\) −7.61454 0.673615i −0.271602 0.0240271i
\(787\) −27.0086 −0.962754 −0.481377 0.876514i \(-0.659863\pi\)
−0.481377 + 0.876514i \(0.659863\pi\)
\(788\) 32.2504 + 5.75103i 1.14887 + 0.204872i
\(789\) −9.35137 −0.332918
\(790\) 0.378393 4.27735i 0.0134626 0.152181i
\(791\) 26.0521 0.926307
\(792\) 4.27248 + 1.15812i 0.151816 + 0.0411519i
\(793\) 24.5450i 0.871618i
\(794\) −0.956472 0.0846136i −0.0339439 0.00300283i
\(795\) 1.88060i 0.0666982i
\(796\) 0.271690 1.52357i 0.00962978 0.0540016i
\(797\) 28.4535i 1.00787i 0.863740 + 0.503937i \(0.168116\pi\)
−0.863740 + 0.503937i \(0.831884\pi\)
\(798\) 13.9453 + 1.23367i 0.493660 + 0.0436713i
\(799\) 1.79276 17.9804i 0.0634232 0.636100i
\(800\) −5.11522 2.41548i −0.180850 0.0854001i
\(801\) −3.64414 −0.128759
\(802\) −1.79422 + 20.2818i −0.0633560 + 0.716176i
\(803\) 4.47058i 0.157763i
\(804\) 4.67971 26.2427i 0.165041 0.925509i
\(805\) 4.66423 0.164392
\(806\) 20.4021 + 1.80486i 0.718633 + 0.0635734i
\(807\) −7.61989 −0.268233
\(808\) −5.56523 + 20.5310i −0.195784 + 0.722278i
\(809\) 21.6976i 0.762848i −0.924400 0.381424i \(-0.875434\pi\)
0.924400 0.381424i \(-0.124566\pi\)
\(810\) 3.25116 + 0.287612i 0.114234 + 0.0101056i
\(811\) 34.4705 1.21042 0.605212 0.796064i \(-0.293088\pi\)
0.605212 + 0.796064i \(0.293088\pi\)
\(812\) 1.28185 7.18833i 0.0449842 0.252261i
\(813\) −8.39461 −0.294412
\(814\) 7.25845 + 0.642114i 0.254409 + 0.0225061i
\(815\) −22.9485 −0.803852
\(816\) −6.51875 + 13.4154i −0.228202 + 0.469633i
\(817\) −55.2155 −1.93175
\(818\) 13.5679 + 1.20028i 0.474391 + 0.0419667i
\(819\) −9.86179 −0.344599
\(820\) 2.07380 11.6294i 0.0724203 0.406116i
\(821\) 34.5521 1.20588 0.602939 0.797787i \(-0.293996\pi\)
0.602939 + 0.797787i \(0.293996\pi\)
\(822\) −9.76278 0.863658i −0.340516 0.0301235i
\(823\) 0.161550i 0.00563129i 0.999996 + 0.00281564i \(0.000896248\pi\)
−0.999996 + 0.00281564i \(0.999104\pi\)
\(824\) −23.3771 6.33670i −0.814379 0.220749i
\(825\) −0.648641 −0.0225828
\(826\) −10.8242 0.957558i −0.376623 0.0333177i
\(827\) −18.0714 −0.628403 −0.314201 0.949356i \(-0.601737\pi\)
−0.314201 + 0.949356i \(0.601737\pi\)
\(828\) −2.03326 + 11.4021i −0.0706608 + 0.396249i
\(829\) 2.09842i 0.0728810i −0.999336 0.0364405i \(-0.988398\pi\)
0.999336 0.0364405i \(-0.0116019\pi\)
\(830\) −1.19958 + 13.5600i −0.0416379 + 0.470675i
\(831\) 3.58380 0.124321
\(832\) −10.3891 + 17.7554i −0.360176 + 0.615558i
\(833\) 1.59990 16.0462i 0.0554334 0.555967i
\(834\) 6.41110 + 0.567154i 0.221998 + 0.0196389i
\(835\) 13.0081i 0.450164i
\(836\) −1.56838 + 8.79512i −0.0542437 + 0.304186i
\(837\) 26.3956i 0.912366i
\(838\) 38.1927 + 3.37869i 1.31934 + 0.116715i
\(839\) 6.97568i 0.240827i 0.992724 + 0.120414i \(0.0384221\pi\)
−0.992724 + 0.120414i \(0.961578\pi\)
\(840\) −1.17618 + 4.33912i −0.0405822 + 0.149714i
\(841\) −24.6850 −0.851206
\(842\) 0.559288 6.32219i 0.0192744 0.217877i
\(843\) −22.8419 −0.786716
\(844\) 17.7137 + 3.15879i 0.609732 + 0.108730i
\(845\) −6.38771 −0.219744
\(846\) 13.4716 + 1.19176i 0.463164 + 0.0409735i
\(847\) 18.4288i 0.633221i
\(848\) 2.87510 7.80510i 0.0987315 0.268028i
\(849\) 27.7669 0.952956
\(850\) −1.08755 + 5.72863i −0.0373027 + 0.196490i
\(851\) 19.0652i 0.653547i
\(852\) 3.92226 21.9951i 0.134374 0.753540i
\(853\) 18.0141 0.616792 0.308396 0.951258i \(-0.400208\pi\)
0.308396 + 0.951258i \(0.400208\pi\)
\(854\) −2.09065 + 23.6327i −0.0715406 + 0.808694i
\(855\) 13.5903i 0.464779i
\(856\) 28.9548 + 7.84862i 0.989654 + 0.268260i
\(857\) 17.8746i 0.610586i 0.952259 + 0.305293i \(0.0987543\pi\)
−0.952259 + 0.305293i \(0.901246\pi\)
\(858\) −0.207860 + 2.34965i −0.00709622 + 0.0802156i
\(859\) 45.2623i 1.54433i −0.635422 0.772165i \(-0.719174\pi\)
0.635422 0.772165i \(-0.280826\pi\)
\(860\) 3.11279 17.4558i 0.106145 0.595237i
\(861\) −9.38810 −0.319946
\(862\) 3.05458 34.5289i 0.104039 1.17606i
\(863\) 42.4859 1.44624 0.723118 0.690725i \(-0.242708\pi\)
0.723118 + 0.690725i \(0.242708\pi\)
\(864\) −23.9728 11.3203i −0.815572 0.385125i
\(865\) 8.74738 0.297420
\(866\) −35.4815 3.13885i −1.20571 0.106662i
\(867\) 15.0717 + 3.03566i 0.511862 + 0.103097i
\(868\) 19.4901 + 3.47555i 0.661536 + 0.117968i
\(869\) 2.17775i 0.0738752i
\(870\) −2.64644 0.234116i −0.0897228 0.00793727i
\(871\) −37.8969 −1.28409
\(872\) 21.2458 + 5.75898i 0.719472 + 0.195024i
\(873\) 24.2103i 0.819395i
\(874\) −23.2837 2.05977i −0.787582 0.0696729i
\(875\) 1.75754i 0.0594156i
\(876\) 1.97925 11.0991i 0.0668725 0.375005i
\(877\) 50.0618 1.69047 0.845234 0.534396i \(-0.179461\pi\)
0.845234 + 0.534396i \(0.179461\pi\)
\(878\) 0.932084 10.5363i 0.0314563 0.355582i
\(879\) 19.6549i 0.662943i
\(880\) −2.69206 0.991655i −0.0907495 0.0334287i
\(881\) 38.0490i 1.28190i 0.767582 + 0.640951i \(0.221460\pi\)
−0.767582 + 0.640951i \(0.778540\pi\)
\(882\) 12.0225 + 1.06356i 0.404817 + 0.0358119i
\(883\) 18.1342i 0.610264i 0.952310 + 0.305132i \(0.0987005\pi\)
−0.952310 + 0.305132i \(0.901299\pi\)
\(884\) 20.4030 + 5.77533i 0.686226 + 0.194246i
\(885\) 3.95384i 0.132907i
\(886\) −2.53967 + 28.7084i −0.0853218 + 0.964477i
\(887\) 4.00490i 0.134471i 0.997737 + 0.0672357i \(0.0214179\pi\)
−0.997737 + 0.0672357i \(0.978582\pi\)
\(888\) −17.7363 4.80770i −0.595193 0.161336i
\(889\) 2.37664i 0.0797099i
\(890\) 2.35257 + 0.208118i 0.0788582 + 0.00697614i
\(891\) 1.65528 0.0554540
\(892\) 14.6754 + 2.61698i 0.491368 + 0.0876228i
\(893\) 27.2946i 0.913378i
\(894\) 1.47063 16.6239i 0.0491851 0.555988i
\(895\) 0.482753i 0.0161367i
\(896\) −11.5153 + 16.2106i −0.384698 + 0.541557i
\(897\) −6.17164 −0.206065
\(898\) −4.57325 + 51.6959i −0.152611 + 1.72512i
\(899\) 11.6995i 0.390201i
\(900\) −4.29643 0.766158i −0.143214 0.0255386i
\(901\) −8.53149 0.850643i −0.284225 0.0283390i
\(902\) 0.527923 5.96764i 0.0175779 0.198701i
\(903\) −14.0916 −0.468939
\(904\) 10.9688 40.4658i 0.364818 1.34587i
\(905\) 24.8523 0.826118
\(906\) 10.0095 + 0.885485i 0.332544 + 0.0294183i
\(907\) 23.5118 0.780697 0.390348 0.920667i \(-0.372355\pi\)
0.390348 + 0.920667i \(0.372355\pi\)
\(908\) −0.260315 0.0464204i −0.00863884 0.00154051i
\(909\) 16.4111i 0.544321i
\(910\) 6.36653 + 0.563210i 0.211048 + 0.0186702i
\(911\) 53.7169i 1.77972i 0.456233 + 0.889861i \(0.349199\pi\)
−0.456233 + 0.889861i \(0.650801\pi\)
\(912\) 7.78767 21.1413i 0.257876 0.700060i
\(913\) 6.90388i 0.228485i
\(914\) −18.5273 1.63901i −0.612829 0.0542135i
\(915\) 8.63248 0.285381
\(916\) 5.94303 33.3271i 0.196363 1.10116i
\(917\) 10.5045i 0.346890i
\(918\) −5.09689 + 26.8476i −0.168222 + 0.886104i
\(919\) 5.94427 0.196084 0.0980418 0.995182i \(-0.468742\pi\)
0.0980418 + 0.995182i \(0.468742\pi\)
\(920\) 1.96380 7.24476i 0.0647445 0.238853i
\(921\) 17.1381i 0.564719i
\(922\) 3.18200 35.9693i 0.104794 1.18459i
\(923\) −31.7630 −1.04549
\(924\) −0.400268 + 2.24461i −0.0131679 + 0.0738423i
\(925\) −7.18400 −0.236208
\(926\) 24.4912 + 2.16659i 0.804830 + 0.0711987i
\(927\) −18.6860 −0.613730
\(928\) −10.6257 5.01759i −0.348804 0.164710i
\(929\) 13.1296i 0.430768i −0.976529 0.215384i \(-0.930900\pi\)
0.976529 0.215384i \(-0.0691003\pi\)
\(930\) 0.634769 7.17543i 0.0208149 0.235292i
\(931\) 24.3584i 0.798315i
\(932\) −8.81676 + 49.4423i −0.288802 + 1.61954i
\(933\) 14.9937i 0.490872i
\(934\) 0.623859 7.05210i 0.0204133 0.230752i
\(935\) −0.293396 + 2.94260i −0.00959507 + 0.0962335i
\(936\) −4.15215 + 15.3179i −0.135717 + 0.500683i
\(937\) −8.76616 −0.286378 −0.143189 0.989695i \(-0.545736\pi\)
−0.143189 + 0.989695i \(0.545736\pi\)
\(938\) −36.4883 3.22791i −1.19139 0.105395i
\(939\) 15.3838i 0.502033i
\(940\) −8.62889 1.53874i −0.281443 0.0501882i
\(941\) −50.9012 −1.65933 −0.829666 0.558260i \(-0.811469\pi\)
−0.829666 + 0.558260i \(0.811469\pi\)
\(942\) 2.23307 25.2426i 0.0727572 0.822447i
\(943\) 15.6747 0.510439
\(944\) −6.04471 + 16.4097i −0.196739 + 0.534090i
\(945\) 8.23681i 0.267944i
\(946\) 0.792415 8.95746i 0.0257636 0.291232i
\(947\) −8.21859 −0.267068 −0.133534 0.991044i \(-0.542633\pi\)
−0.133534 + 0.991044i \(0.542633\pi\)
\(948\) −0.964150 + 5.40672i −0.0313141 + 0.175602i
\(949\) −16.0282 −0.520297
\(950\) 0.776148 8.77357i 0.0251816 0.284652i
\(951\) 27.1895 0.881680
\(952\) 19.1527 + 7.29852i 0.620743 + 0.236547i
\(953\) −6.78236 −0.219702 −0.109851 0.993948i \(-0.535037\pi\)
−0.109851 + 0.993948i \(0.535037\pi\)
\(954\) 0.565476 6.39214i 0.0183080 0.206953i
\(955\) 17.2186 0.557182
\(956\) −8.39476 1.49699i −0.271506 0.0484161i
\(957\) −1.34740 −0.0435552
\(958\) −2.08680 + 23.5891i −0.0674213 + 0.762130i
\(959\) 13.4681i 0.434908i
\(960\) 6.24458 + 3.65384i 0.201543 + 0.117927i
\(961\) −0.721472 −0.0232733
\(962\) −2.30215 + 26.0234i −0.0742242 + 0.839029i
\(963\) 23.1445 0.745820
\(964\) 3.93511 22.0672i 0.126741 0.710736i
\(965\) 11.7447i 0.378075i
\(966\) −5.94225 0.525677i −0.191189 0.0169134i
\(967\) 30.2045 0.971312 0.485656 0.874150i \(-0.338581\pi\)
0.485656 + 0.874150i \(0.338581\pi\)
\(968\) 28.6247 + 7.75916i 0.920034 + 0.249389i
\(969\) −23.1089 2.30410i −0.742365 0.0740184i
\(970\) 1.38266 15.6296i 0.0443945 0.501835i
\(971\) 10.6454i 0.341629i −0.985303 0.170814i \(-0.945360\pi\)
0.985303 0.170814i \(-0.0546398\pi\)
\(972\) −31.7923 5.66933i −1.01974 0.181844i
\(973\) 8.84434i 0.283537i
\(974\) 4.80617 54.3289i 0.154000 1.74081i
\(975\) 2.32555i 0.0744771i
\(976\) 35.8275 + 13.1975i 1.14681 + 0.422442i
\(977\) −1.11212 −0.0355799 −0.0177899 0.999842i \(-0.505663\pi\)
−0.0177899 + 0.999842i \(0.505663\pi\)
\(978\) 29.2366 + 2.58639i 0.934882 + 0.0827037i
\(979\) 1.19778 0.0382811
\(980\) −7.70065 1.37321i −0.245988 0.0438657i
\(981\) 16.9824 0.542206
\(982\) −2.33653 + 26.4121i −0.0745616 + 0.842843i
\(983\) 43.4117i 1.38462i −0.721602 0.692308i \(-0.756594\pi\)
0.721602 0.692308i \(-0.243406\pi\)
\(984\) −3.95271 + 14.5822i −0.126008 + 0.464863i
\(985\) −16.3796 −0.521897
\(986\) −2.25913 + 11.8999i −0.0719454 + 0.378969i
\(987\) 6.96588i 0.221726i
\(988\) −31.5328 5.62306i −1.00319 0.178893i
\(989\) 23.5279 0.748142
\(990\) −2.20472 0.195039i −0.0700706 0.00619875i
\(991\) 33.0273i 1.04915i −0.851366 0.524573i \(-0.824225\pi\)
0.851366 0.524573i \(-0.175775\pi\)
\(992\) 13.6044 28.8098i 0.431941 0.914713i
\(993\) 1.18205i 0.0375113i
\(994\) −30.5824 2.70545i −0.970015 0.0858117i
\(995\) 0.773803i 0.0245312i
\(996\) 3.05654 17.1403i 0.0968500 0.543112i
\(997\) −50.1430 −1.58804 −0.794022 0.607889i \(-0.792017\pi\)
−0.794022 + 0.607889i \(0.792017\pi\)
\(998\) −39.5598 3.49963i −1.25224 0.110779i
\(999\) −33.6683 −1.06522
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.b.101.1 yes 36
4.3 odd 2 2720.2.l.a.2481.23 36
8.3 odd 2 2720.2.l.b.2481.13 36
8.5 even 2 680.2.l.a.101.2 yes 36
17.16 even 2 680.2.l.a.101.1 36
68.67 odd 2 2720.2.l.b.2481.14 36
136.67 odd 2 2720.2.l.a.2481.24 36
136.101 even 2 inner 680.2.l.b.101.2 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.1 36 17.16 even 2
680.2.l.a.101.2 yes 36 8.5 even 2
680.2.l.b.101.1 yes 36 1.1 even 1 trivial
680.2.l.b.101.2 yes 36 136.101 even 2 inner
2720.2.l.a.2481.23 36 4.3 odd 2
2720.2.l.a.2481.24 36 136.67 odd 2
2720.2.l.b.2481.13 36 8.3 odd 2
2720.2.l.b.2481.14 36 68.67 odd 2