Properties

Label 680.2.l.a.101.5
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.5
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.a.101.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27109 - 0.619947i) q^{2} +3.03317 q^{3} +(1.23133 + 1.57602i) q^{4} +1.00000 q^{5} +(-3.85542 - 1.88040i) q^{6} -1.14609i q^{7} +(-0.588085 - 2.76661i) q^{8} +6.20011 q^{9} +(-1.27109 - 0.619947i) q^{10} +1.02326 q^{11} +(3.73483 + 4.78032i) q^{12} -5.48640i q^{13} +(-0.710516 + 1.45678i) q^{14} +3.03317 q^{15} +(-0.967647 + 3.88119i) q^{16} +(-3.36364 + 2.38451i) q^{17} +(-7.88088 - 3.84374i) q^{18} -0.131183i q^{19} +(1.23133 + 1.57602i) q^{20} -3.47629i q^{21} +(-1.30066 - 0.634370i) q^{22} -2.38954i q^{23} +(-1.78376 - 8.39161i) q^{24} +1.00000 q^{25} +(-3.40127 + 6.97369i) q^{26} +9.70646 q^{27} +(1.80626 - 1.41122i) q^{28} +3.08229 q^{29} +(-3.85542 - 1.88040i) q^{30} +0.752428i q^{31} +(3.63610 - 4.33345i) q^{32} +3.10373 q^{33} +(5.75376 - 0.945646i) q^{34} -1.14609i q^{35} +(7.63438 + 9.77146i) q^{36} -7.71836 q^{37} +(-0.0813267 + 0.166745i) q^{38} -16.6412i q^{39} +(-0.588085 - 2.76661i) q^{40} +6.10135i q^{41} +(-2.15511 + 4.41867i) q^{42} +9.64227i q^{43} +(1.25998 + 1.61268i) q^{44} +6.20011 q^{45} +(-1.48139 + 3.03732i) q^{46} -3.00424 q^{47} +(-2.93503 + 11.7723i) q^{48} +5.68647 q^{49} +(-1.27109 - 0.619947i) q^{50} +(-10.2025 + 7.23263i) q^{51} +(8.64664 - 6.75557i) q^{52} +13.4640i q^{53} +(-12.3378 - 6.01749i) q^{54} +1.02326 q^{55} +(-3.17079 + 0.673999i) q^{56} -0.397901i q^{57} +(-3.91786 - 1.91086i) q^{58} +10.0052i q^{59} +(3.73483 + 4.78032i) q^{60} +3.72365 q^{61} +(0.466465 - 0.956402i) q^{62} -7.10589i q^{63} +(-7.30831 + 3.25401i) q^{64} -5.48640i q^{65} +(-3.94512 - 1.92415i) q^{66} -3.72428i q^{67} +(-7.89979 - 2.36503i) q^{68} -7.24788i q^{69} +(-0.710516 + 1.45678i) q^{70} +6.62521i q^{71} +(-3.64619 - 17.1533i) q^{72} -14.9275i q^{73} +(9.81072 + 4.78498i) q^{74} +3.03317 q^{75} +(0.206747 - 0.161530i) q^{76} -1.17275i q^{77} +(-10.3166 + 21.1524i) q^{78} -13.7272i q^{79} +(-0.967647 + 3.88119i) q^{80} +10.8410 q^{81} +(3.78251 - 7.75535i) q^{82} -3.85242i q^{83} +(5.47868 - 4.28046i) q^{84} +(-3.36364 + 2.38451i) q^{85} +(5.97770 - 12.2562i) q^{86} +9.34909 q^{87} +(-0.601766 - 2.83098i) q^{88} -3.64410 q^{89} +(-7.88088 - 3.84374i) q^{90} -6.28791 q^{91} +(3.76595 - 2.94232i) q^{92} +2.28224i q^{93} +(3.81866 + 1.86247i) q^{94} -0.131183i q^{95} +(11.0289 - 13.1441i) q^{96} -3.73153i q^{97} +(-7.22801 - 3.52531i) q^{98} +6.34435 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} + 2 q^{4} + 36 q^{5} + 36 q^{9} - 8 q^{11} - 2 q^{12} + 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} + 2 q^{20} + 26 q^{24} + 36 q^{25} + 6 q^{26} - 16 q^{27} + 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27109 0.619947i −0.898795 0.438369i
\(3\) 3.03317 1.75120 0.875600 0.483037i \(-0.160466\pi\)
0.875600 + 0.483037i \(0.160466\pi\)
\(4\) 1.23133 + 1.57602i 0.615666 + 0.788008i
\(5\) 1.00000 0.447214
\(6\) −3.85542 1.88040i −1.57397 0.767671i
\(7\) 1.14609i 0.433182i −0.976262 0.216591i \(-0.930506\pi\)
0.976262 0.216591i \(-0.0694938\pi\)
\(8\) −0.588085 2.76661i −0.207919 0.978146i
\(9\) 6.20011 2.06670
\(10\) −1.27109 0.619947i −0.401953 0.196044i
\(11\) 1.02326 0.308526 0.154263 0.988030i \(-0.450700\pi\)
0.154263 + 0.988030i \(0.450700\pi\)
\(12\) 3.73483 + 4.78032i 1.07815 + 1.37996i
\(13\) 5.48640i 1.52165i −0.648956 0.760826i \(-0.724794\pi\)
0.648956 0.760826i \(-0.275206\pi\)
\(14\) −0.710516 + 1.45678i −0.189893 + 0.389342i
\(15\) 3.03317 0.783161
\(16\) −0.967647 + 3.88119i −0.241912 + 0.970298i
\(17\) −3.36364 + 2.38451i −0.815803 + 0.578329i
\(18\) −7.88088 3.84374i −1.85754 0.905978i
\(19\) 0.131183i 0.0300955i −0.999887 0.0150477i \(-0.995210\pi\)
0.999887 0.0150477i \(-0.00479003\pi\)
\(20\) 1.23133 + 1.57602i 0.275334 + 0.352408i
\(21\) 3.47629i 0.758588i
\(22\) −1.30066 0.634370i −0.277302 0.135248i
\(23\) 2.38954i 0.498254i −0.968471 0.249127i \(-0.919856\pi\)
0.968471 0.249127i \(-0.0801436\pi\)
\(24\) −1.78376 8.39161i −0.364109 1.71293i
\(25\) 1.00000 0.200000
\(26\) −3.40127 + 6.97369i −0.667045 + 1.36765i
\(27\) 9.70646 1.86801
\(28\) 1.80626 1.41122i 0.341351 0.266695i
\(29\) 3.08229 0.572366 0.286183 0.958175i \(-0.407613\pi\)
0.286183 + 0.958175i \(0.407613\pi\)
\(30\) −3.85542 1.88040i −0.703901 0.343313i
\(31\) 0.752428i 0.135140i 0.997715 + 0.0675700i \(0.0215246\pi\)
−0.997715 + 0.0675700i \(0.978475\pi\)
\(32\) 3.63610 4.33345i 0.642778 0.766053i
\(33\) 3.10373 0.540291
\(34\) 5.75376 0.945646i 0.986762 0.162177i
\(35\) 1.14609i 0.193725i
\(36\) 7.63438 + 9.77146i 1.27240 + 1.62858i
\(37\) −7.71836 −1.26889 −0.634445 0.772968i \(-0.718771\pi\)
−0.634445 + 0.772968i \(0.718771\pi\)
\(38\) −0.0813267 + 0.166745i −0.0131929 + 0.0270497i
\(39\) 16.6412i 2.66472i
\(40\) −0.588085 2.76661i −0.0929844 0.437440i
\(41\) 6.10135i 0.952871i 0.879210 + 0.476435i \(0.158071\pi\)
−0.879210 + 0.476435i \(0.841929\pi\)
\(42\) −2.15511 + 4.41867i −0.332541 + 0.681815i
\(43\) 9.64227i 1.47043i 0.677833 + 0.735216i \(0.262919\pi\)
−0.677833 + 0.735216i \(0.737081\pi\)
\(44\) 1.25998 + 1.61268i 0.189949 + 0.243121i
\(45\) 6.20011 0.924257
\(46\) −1.48139 + 3.03732i −0.218419 + 0.447828i
\(47\) −3.00424 −0.438214 −0.219107 0.975701i \(-0.570314\pi\)
−0.219107 + 0.975701i \(0.570314\pi\)
\(48\) −2.93503 + 11.7723i −0.423636 + 1.69919i
\(49\) 5.68647 0.812353
\(50\) −1.27109 0.619947i −0.179759 0.0876738i
\(51\) −10.2025 + 7.23263i −1.42864 + 1.01277i
\(52\) 8.64664 6.75557i 1.19907 0.936829i
\(53\) 13.4640i 1.84942i 0.380677 + 0.924708i \(0.375691\pi\)
−0.380677 + 0.924708i \(0.624309\pi\)
\(54\) −12.3378 6.01749i −1.67896 0.818877i
\(55\) 1.02326 0.137977
\(56\) −3.17079 + 0.673999i −0.423715 + 0.0900669i
\(57\) 0.397901i 0.0527032i
\(58\) −3.91786 1.91086i −0.514440 0.250908i
\(59\) 10.0052i 1.30257i 0.758835 + 0.651283i \(0.225769\pi\)
−0.758835 + 0.651283i \(0.774231\pi\)
\(60\) 3.73483 + 4.78032i 0.482165 + 0.617136i
\(61\) 3.72365 0.476765 0.238383 0.971171i \(-0.423383\pi\)
0.238383 + 0.971171i \(0.423383\pi\)
\(62\) 0.466465 0.956402i 0.0592411 0.121463i
\(63\) 7.10589i 0.895258i
\(64\) −7.30831 + 3.25401i −0.913539 + 0.406751i
\(65\) 5.48640i 0.680504i
\(66\) −3.94512 1.92415i −0.485611 0.236846i
\(67\) 3.72428i 0.454993i −0.973779 0.227497i \(-0.926946\pi\)
0.973779 0.227497i \(-0.0730541\pi\)
\(68\) −7.89979 2.36503i −0.957990 0.286802i
\(69\) 7.24788i 0.872542i
\(70\) −0.710516 + 1.45678i −0.0849229 + 0.174119i
\(71\) 6.62521i 0.786268i 0.919481 + 0.393134i \(0.128609\pi\)
−0.919481 + 0.393134i \(0.871391\pi\)
\(72\) −3.64619 17.1533i −0.429707 2.02154i
\(73\) 14.9275i 1.74713i −0.486708 0.873565i \(-0.661802\pi\)
0.486708 0.873565i \(-0.338198\pi\)
\(74\) 9.81072 + 4.78498i 1.14047 + 0.556242i
\(75\) 3.03317 0.350240
\(76\) 0.206747 0.161530i 0.0237155 0.0185288i
\(77\) 1.17275i 0.133648i
\(78\) −10.3166 + 21.1524i −1.16813 + 2.39504i
\(79\) 13.7272i 1.54443i −0.635358 0.772217i \(-0.719148\pi\)
0.635358 0.772217i \(-0.280852\pi\)
\(80\) −0.967647 + 3.88119i −0.108186 + 0.433931i
\(81\) 10.8410 1.20456
\(82\) 3.78251 7.75535i 0.417709 0.856436i
\(83\) 3.85242i 0.422858i −0.977393 0.211429i \(-0.932188\pi\)
0.977393 0.211429i \(-0.0678117\pi\)
\(84\) 5.47868 4.28046i 0.597773 0.467037i
\(85\) −3.36364 + 2.38451i −0.364838 + 0.258637i
\(86\) 5.97770 12.2562i 0.644592 1.32162i
\(87\) 9.34909 1.00233
\(88\) −0.601766 2.83098i −0.0641485 0.301783i
\(89\) −3.64410 −0.386274 −0.193137 0.981172i \(-0.561866\pi\)
−0.193137 + 0.981172i \(0.561866\pi\)
\(90\) −7.88088 3.84374i −0.830718 0.405166i
\(91\) −6.28791 −0.659152
\(92\) 3.76595 2.94232i 0.392628 0.306758i
\(93\) 2.28224i 0.236657i
\(94\) 3.81866 + 1.86247i 0.393864 + 0.192099i
\(95\) 0.131183i 0.0134591i
\(96\) 11.0289 13.1441i 1.12563 1.34151i
\(97\) 3.73153i 0.378880i −0.981892 0.189440i \(-0.939333\pi\)
0.981892 0.189440i \(-0.0606672\pi\)
\(98\) −7.22801 3.52531i −0.730139 0.356110i
\(99\) 6.34435 0.637631
\(100\) 1.23133 + 1.57602i 0.123133 + 0.157602i
\(101\) 12.0231i 1.19635i 0.801366 + 0.598174i \(0.204107\pi\)
−0.801366 + 0.598174i \(0.795893\pi\)
\(102\) 17.4521 2.86830i 1.72802 0.284004i
\(103\) −3.61534 −0.356230 −0.178115 0.984010i \(-0.557000\pi\)
−0.178115 + 0.984010i \(0.557000\pi\)
\(104\) −15.1787 + 3.22647i −1.48840 + 0.316381i
\(105\) 3.47629i 0.339251i
\(106\) 8.34694 17.1139i 0.810726 1.66225i
\(107\) 13.7464 1.32892 0.664459 0.747324i \(-0.268662\pi\)
0.664459 + 0.747324i \(0.268662\pi\)
\(108\) 11.9519 + 15.2975i 1.15007 + 1.47200i
\(109\) −16.8047 −1.60960 −0.804798 0.593549i \(-0.797726\pi\)
−0.804798 + 0.593549i \(0.797726\pi\)
\(110\) −1.30066 0.634370i −0.124013 0.0604848i
\(111\) −23.4111 −2.22208
\(112\) 4.44820 + 1.10901i 0.420316 + 0.104792i
\(113\) 2.53084i 0.238081i −0.992889 0.119041i \(-0.962018\pi\)
0.992889 0.119041i \(-0.0379818\pi\)
\(114\) −0.246677 + 0.505767i −0.0231035 + 0.0473694i
\(115\) 2.38954i 0.222826i
\(116\) 3.79532 + 4.85773i 0.352386 + 0.451029i
\(117\) 34.0162i 3.14480i
\(118\) 6.20269 12.7175i 0.571004 1.17074i
\(119\) 2.73287 + 3.85504i 0.250522 + 0.353391i
\(120\) −1.78376 8.39161i −0.162834 0.766045i
\(121\) −9.95293 −0.904812
\(122\) −4.73309 2.30847i −0.428514 0.208999i
\(123\) 18.5064i 1.66867i
\(124\) −1.18584 + 0.926488i −0.106491 + 0.0832010i
\(125\) 1.00000 0.0894427
\(126\) −4.40528 + 9.03221i −0.392453 + 0.804654i
\(127\) 9.53470 0.846068 0.423034 0.906114i \(-0.360965\pi\)
0.423034 + 0.906114i \(0.360965\pi\)
\(128\) 11.3068 + 0.394634i 0.999391 + 0.0348811i
\(129\) 29.2466i 2.57502i
\(130\) −3.40127 + 6.97369i −0.298312 + 0.611633i
\(131\) −18.4141 −1.60884 −0.804422 0.594059i \(-0.797525\pi\)
−0.804422 + 0.594059i \(0.797525\pi\)
\(132\) 3.82172 + 4.89153i 0.332638 + 0.425753i
\(133\) −0.150348 −0.0130368
\(134\) −2.30886 + 4.73389i −0.199455 + 0.408946i
\(135\) 9.70646 0.835399
\(136\) 8.57514 + 7.90361i 0.735312 + 0.677729i
\(137\) −13.1861 −1.12656 −0.563282 0.826264i \(-0.690462\pi\)
−0.563282 + 0.826264i \(0.690462\pi\)
\(138\) −4.49330 + 9.21270i −0.382495 + 0.784237i
\(139\) 16.9269 1.43572 0.717862 0.696185i \(-0.245121\pi\)
0.717862 + 0.696185i \(0.245121\pi\)
\(140\) 1.80626 1.41122i 0.152657 0.119270i
\(141\) −9.11237 −0.767400
\(142\) 4.10728 8.42123i 0.344675 0.706694i
\(143\) 5.61403i 0.469469i
\(144\) −5.99951 + 24.0638i −0.499959 + 2.00532i
\(145\) 3.08229 0.255970
\(146\) −9.25425 + 18.9742i −0.765887 + 1.57031i
\(147\) 17.2480 1.42259
\(148\) −9.50386 12.1643i −0.781212 0.999895i
\(149\) 11.7779i 0.964881i −0.875929 0.482441i \(-0.839750\pi\)
0.875929 0.482441i \(-0.160250\pi\)
\(150\) −3.85542 1.88040i −0.314794 0.153534i
\(151\) 2.90058 0.236046 0.118023 0.993011i \(-0.462344\pi\)
0.118023 + 0.993011i \(0.462344\pi\)
\(152\) −0.362933 + 0.0771469i −0.0294378 + 0.00625744i
\(153\) −20.8549 + 14.7842i −1.68602 + 1.19523i
\(154\) −0.727046 + 1.49068i −0.0585870 + 0.120122i
\(155\) 0.752428i 0.0604364i
\(156\) 26.2267 20.4908i 2.09982 1.64058i
\(157\) 9.13785i 0.729280i 0.931149 + 0.364640i \(0.118808\pi\)
−0.931149 + 0.364640i \(0.881192\pi\)
\(158\) −8.51016 + 17.4485i −0.677032 + 1.38813i
\(159\) 40.8384i 3.23870i
\(160\) 3.63610 4.33345i 0.287459 0.342589i
\(161\) −2.73863 −0.215835
\(162\) −13.7799 6.72084i −1.08265 0.528039i
\(163\) 22.3320 1.74917 0.874587 0.484868i \(-0.161132\pi\)
0.874587 + 0.484868i \(0.161132\pi\)
\(164\) −9.61582 + 7.51278i −0.750869 + 0.586650i
\(165\) 3.10373 0.241625
\(166\) −2.38830 + 4.89677i −0.185368 + 0.380063i
\(167\) 0.350738i 0.0271409i −0.999908 0.0135704i \(-0.995680\pi\)
0.999908 0.0135704i \(-0.00431974\pi\)
\(168\) −9.61755 + 2.04435i −0.742010 + 0.157725i
\(169\) −17.1005 −1.31543
\(170\) 5.75376 0.945646i 0.441293 0.0725277i
\(171\) 0.813350i 0.0621984i
\(172\) −15.1964 + 11.8728i −1.15871 + 0.905295i
\(173\) −21.6007 −1.64227 −0.821137 0.570731i \(-0.806660\pi\)
−0.821137 + 0.570731i \(0.806660\pi\)
\(174\) −11.8835 5.79594i −0.900888 0.439389i
\(175\) 1.14609i 0.0866364i
\(176\) −0.990158 + 3.97149i −0.0746360 + 0.299362i
\(177\) 30.3474i 2.28105i
\(178\) 4.63197 + 2.25915i 0.347181 + 0.169330i
\(179\) 20.4689i 1.52991i 0.644082 + 0.764957i \(0.277240\pi\)
−0.644082 + 0.764957i \(0.722760\pi\)
\(180\) 7.63438 + 9.77146i 0.569033 + 0.728322i
\(181\) −10.2177 −0.759472 −0.379736 0.925095i \(-0.623985\pi\)
−0.379736 + 0.925095i \(0.623985\pi\)
\(182\) 7.99249 + 3.89817i 0.592443 + 0.288952i
\(183\) 11.2945 0.834911
\(184\) −6.61094 + 1.40525i −0.487365 + 0.103597i
\(185\) −7.71836 −0.567465
\(186\) 1.41487 2.90093i 0.103743 0.212706i
\(187\) −3.44190 + 2.43999i −0.251696 + 0.178430i
\(188\) −3.69922 4.73473i −0.269793 0.345316i
\(189\) 11.1245i 0.809188i
\(190\) −0.0813267 + 0.166745i −0.00590006 + 0.0120970i
\(191\) −10.7086 −0.774847 −0.387424 0.921902i \(-0.626635\pi\)
−0.387424 + 0.921902i \(0.626635\pi\)
\(192\) −22.1673 + 9.86995i −1.59979 + 0.712303i
\(193\) 5.68548i 0.409250i −0.978840 0.204625i \(-0.934403\pi\)
0.978840 0.204625i \(-0.0655974\pi\)
\(194\) −2.31335 + 4.74311i −0.166089 + 0.340535i
\(195\) 16.6412i 1.19170i
\(196\) 7.00193 + 8.96197i 0.500138 + 0.640141i
\(197\) −18.1950 −1.29634 −0.648170 0.761496i \(-0.724465\pi\)
−0.648170 + 0.761496i \(0.724465\pi\)
\(198\) −8.06423 3.93316i −0.573100 0.279518i
\(199\) 6.43510i 0.456172i 0.973641 + 0.228086i \(0.0732468\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(200\) −0.588085 2.76661i −0.0415839 0.195629i
\(201\) 11.2964i 0.796785i
\(202\) 7.45371 15.2825i 0.524441 1.07527i
\(203\) 3.53258i 0.247939i
\(204\) −23.9614 7.17352i −1.67763 0.502247i
\(205\) 6.10135i 0.426137i
\(206\) 4.59542 + 2.24132i 0.320178 + 0.156160i
\(207\) 14.8154i 1.02974i
\(208\) 21.2938 + 5.30889i 1.47646 + 0.368105i
\(209\) 0.134235i 0.00928524i
\(210\) −2.15511 + 4.41867i −0.148717 + 0.304917i
\(211\) 0.0864097 0.00594869 0.00297434 0.999996i \(-0.499053\pi\)
0.00297434 + 0.999996i \(0.499053\pi\)
\(212\) −21.2194 + 16.5786i −1.45735 + 1.13862i
\(213\) 20.0954i 1.37691i
\(214\) −17.4729 8.52207i −1.19443 0.582556i
\(215\) 9.64227i 0.657597i
\(216\) −5.70822 26.8540i −0.388395 1.82719i
\(217\) 0.862351 0.0585402
\(218\) 21.3602 + 10.4180i 1.44670 + 0.705596i
\(219\) 45.2776i 3.05957i
\(220\) 1.25998 + 1.61268i 0.0849477 + 0.108727i
\(221\) 13.0824 + 18.4543i 0.880016 + 1.24137i
\(222\) 29.7576 + 14.5136i 1.99720 + 0.974091i
\(223\) 24.4718 1.63876 0.819378 0.573254i \(-0.194319\pi\)
0.819378 + 0.573254i \(0.194319\pi\)
\(224\) −4.96653 4.16730i −0.331840 0.278440i
\(225\) 6.20011 0.413340
\(226\) −1.56898 + 3.21692i −0.104367 + 0.213986i
\(227\) −1.45822 −0.0967854 −0.0483927 0.998828i \(-0.515410\pi\)
−0.0483927 + 0.998828i \(0.515410\pi\)
\(228\) 0.627097 0.489948i 0.0415305 0.0324476i
\(229\) 15.5745i 1.02919i 0.857434 + 0.514595i \(0.172058\pi\)
−0.857434 + 0.514595i \(0.827942\pi\)
\(230\) −1.48139 + 3.03732i −0.0976799 + 0.200275i
\(231\) 3.55716i 0.234044i
\(232\) −1.81265 8.52750i −0.119006 0.559858i
\(233\) 27.4971i 1.80140i −0.434445 0.900698i \(-0.643055\pi\)
0.434445 0.900698i \(-0.356945\pi\)
\(234\) −21.0883 + 43.2376i −1.37858 + 2.82653i
\(235\) −3.00424 −0.195975
\(236\) −15.7683 + 12.3197i −1.02643 + 0.801945i
\(237\) 41.6370i 2.70461i
\(238\) −1.08380 6.59434i −0.0702521 0.427447i
\(239\) 24.6460 1.59422 0.797109 0.603836i \(-0.206362\pi\)
0.797109 + 0.603836i \(0.206362\pi\)
\(240\) −2.93503 + 11.7723i −0.189456 + 0.759899i
\(241\) 4.94166i 0.318320i 0.987253 + 0.159160i \(0.0508786\pi\)
−0.987253 + 0.159160i \(0.949121\pi\)
\(242\) 12.6511 + 6.17029i 0.813241 + 0.396641i
\(243\) 3.76319 0.241409
\(244\) 4.58505 + 5.86853i 0.293528 + 0.375694i
\(245\) 5.68647 0.363295
\(246\) 11.4730 23.5233i 0.731492 1.49979i
\(247\) −0.719723 −0.0457949
\(248\) 2.08168 0.442491i 0.132187 0.0280982i
\(249\) 11.6850i 0.740509i
\(250\) −1.27109 0.619947i −0.0803907 0.0392089i
\(251\) 14.0131i 0.884498i −0.896892 0.442249i \(-0.854181\pi\)
0.896892 0.442249i \(-0.145819\pi\)
\(252\) 11.1990 8.74970i 0.705470 0.551180i
\(253\) 2.44513i 0.153724i
\(254\) −12.1194 5.91101i −0.760441 0.370890i
\(255\) −10.2025 + 7.23263i −0.638905 + 0.452925i
\(256\) −14.1273 7.51125i −0.882957 0.469453i
\(257\) 4.66350 0.290901 0.145451 0.989366i \(-0.453537\pi\)
0.145451 + 0.989366i \(0.453537\pi\)
\(258\) 18.1314 37.1750i 1.12881 2.31442i
\(259\) 8.84595i 0.549661i
\(260\) 8.64664 6.75557i 0.536242 0.418963i
\(261\) 19.1105 1.18291
\(262\) 23.4059 + 11.4157i 1.44602 + 0.705267i
\(263\) 14.1307 0.871339 0.435669 0.900107i \(-0.356512\pi\)
0.435669 + 0.900107i \(0.356512\pi\)
\(264\) −1.82526 8.58683i −0.112337 0.528483i
\(265\) 13.4640i 0.827084i
\(266\) 0.191106 + 0.0932078i 0.0117174 + 0.00571494i
\(267\) −11.0532 −0.676443
\(268\) 5.86952 4.58582i 0.358538 0.280124i
\(269\) 8.14611 0.496677 0.248339 0.968673i \(-0.420115\pi\)
0.248339 + 0.968673i \(0.420115\pi\)
\(270\) −12.3378 6.01749i −0.750853 0.366213i
\(271\) −15.1993 −0.923289 −0.461644 0.887065i \(-0.652740\pi\)
−0.461644 + 0.887065i \(0.652740\pi\)
\(272\) −5.99994 15.3623i −0.363800 0.931477i
\(273\) −19.0723 −1.15431
\(274\) 16.7607 + 8.17469i 1.01255 + 0.493851i
\(275\) 1.02326 0.0617052
\(276\) 11.4228 8.92454i 0.687570 0.537194i
\(277\) −8.47445 −0.509180 −0.254590 0.967049i \(-0.581941\pi\)
−0.254590 + 0.967049i \(0.581941\pi\)
\(278\) −21.5156 10.4938i −1.29042 0.629377i
\(279\) 4.66513i 0.279294i
\(280\) −3.17079 + 0.673999i −0.189491 + 0.0402792i
\(281\) −18.0326 −1.07574 −0.537868 0.843029i \(-0.680770\pi\)
−0.537868 + 0.843029i \(0.680770\pi\)
\(282\) 11.5826 + 5.64919i 0.689735 + 0.336404i
\(283\) −19.9346 −1.18499 −0.592493 0.805576i \(-0.701856\pi\)
−0.592493 + 0.805576i \(0.701856\pi\)
\(284\) −10.4414 + 8.15783i −0.619585 + 0.484078i
\(285\) 0.397901i 0.0235696i
\(286\) −3.48040 + 7.13593i −0.205801 + 0.421957i
\(287\) 6.99271 0.412766
\(288\) 22.5442 26.8678i 1.32843 1.58320i
\(289\) 5.62819 16.0413i 0.331070 0.943606i
\(290\) −3.91786 1.91086i −0.230065 0.112209i
\(291\) 11.3184i 0.663494i
\(292\) 23.5259 18.3807i 1.37675 1.07565i
\(293\) 7.57931i 0.442788i 0.975184 + 0.221394i \(0.0710607\pi\)
−0.975184 + 0.221394i \(0.928939\pi\)
\(294\) −21.9238 10.6929i −1.27862 0.623621i
\(295\) 10.0052i 0.582525i
\(296\) 4.53905 + 21.3537i 0.263827 + 1.24116i
\(297\) 9.93227 0.576329
\(298\) −7.30166 + 14.9707i −0.422974 + 0.867230i
\(299\) −13.1100 −0.758169
\(300\) 3.73483 + 4.78032i 0.215631 + 0.275992i
\(301\) 11.0509 0.636965
\(302\) −3.68689 1.79821i −0.212157 0.103475i
\(303\) 36.4682i 2.09504i
\(304\) 0.509147 + 0.126939i 0.0292016 + 0.00728045i
\(305\) 3.72365 0.213216
\(306\) 35.6739 5.86311i 2.03934 0.335171i
\(307\) 19.8260i 1.13153i 0.824567 + 0.565765i \(0.191419\pi\)
−0.824567 + 0.565765i \(0.808581\pi\)
\(308\) 1.84828 1.44405i 0.105315 0.0822824i
\(309\) −10.9659 −0.623830
\(310\) 0.466465 0.956402i 0.0264934 0.0543200i
\(311\) 16.7810i 0.951565i 0.879563 + 0.475782i \(0.157835\pi\)
−0.879563 + 0.475782i \(0.842165\pi\)
\(312\) −46.0397 + 9.78641i −2.60648 + 0.554047i
\(313\) 10.1370i 0.572979i −0.958083 0.286490i \(-0.907512\pi\)
0.958083 0.286490i \(-0.0924884\pi\)
\(314\) 5.66498 11.6150i 0.319694 0.655473i
\(315\) 7.10589i 0.400372i
\(316\) 21.6343 16.9028i 1.21703 0.950855i
\(317\) 16.3655 0.919177 0.459589 0.888132i \(-0.347997\pi\)
0.459589 + 0.888132i \(0.347997\pi\)
\(318\) 25.3177 51.9093i 1.41974 2.91093i
\(319\) 3.15400 0.176590
\(320\) −7.30831 + 3.25401i −0.408547 + 0.181905i
\(321\) 41.6953 2.32720
\(322\) 3.48105 + 1.69781i 0.193991 + 0.0946151i
\(323\) 0.312808 + 0.441254i 0.0174051 + 0.0245520i
\(324\) 13.3489 + 17.0856i 0.741603 + 0.949199i
\(325\) 5.48640i 0.304330i
\(326\) −28.3859 13.8446i −1.57215 0.766784i
\(327\) −50.9714 −2.81872
\(328\) 16.8801 3.58811i 0.932047 0.198120i
\(329\) 3.44314i 0.189826i
\(330\) −3.94512 1.92415i −0.217172 0.105921i
\(331\) 25.3181i 1.39161i −0.718232 0.695804i \(-0.755048\pi\)
0.718232 0.695804i \(-0.244952\pi\)
\(332\) 6.07147 4.74360i 0.333215 0.260339i
\(333\) −47.8547 −2.62242
\(334\) −0.217439 + 0.445818i −0.0118977 + 0.0243941i
\(335\) 3.72428i 0.203479i
\(336\) 13.4921 + 3.36382i 0.736057 + 0.183511i
\(337\) 13.6016i 0.740928i 0.928847 + 0.370464i \(0.120801\pi\)
−0.928847 + 0.370464i \(0.879199\pi\)
\(338\) 21.7363 + 10.6014i 1.18230 + 0.576642i
\(339\) 7.67645i 0.416928i
\(340\) −7.89979 2.36503i −0.428426 0.128262i
\(341\) 0.769932i 0.0416942i
\(342\) −0.504234 + 1.03384i −0.0272658 + 0.0559036i
\(343\) 14.5399i 0.785079i
\(344\) 26.6764 5.67047i 1.43830 0.305731i
\(345\) 7.24788i 0.390213i
\(346\) 27.4565 + 13.3913i 1.47607 + 0.719922i
\(347\) 2.58624 0.138837 0.0694183 0.997588i \(-0.477886\pi\)
0.0694183 + 0.997588i \(0.477886\pi\)
\(348\) 11.5118 + 14.7343i 0.617099 + 0.789842i
\(349\) 14.5552i 0.779123i −0.921000 0.389561i \(-0.872627\pi\)
0.921000 0.389561i \(-0.127373\pi\)
\(350\) −0.710516 + 1.45678i −0.0379787 + 0.0778684i
\(351\) 53.2535i 2.84246i
\(352\) 3.72069 4.43427i 0.198313 0.236347i
\(353\) 12.1646 0.647456 0.323728 0.946150i \(-0.395064\pi\)
0.323728 + 0.946150i \(0.395064\pi\)
\(354\) 18.8138 38.5743i 0.999943 2.05020i
\(355\) 6.62521i 0.351630i
\(356\) −4.48709 5.74316i −0.237816 0.304387i
\(357\) 8.28925 + 11.6930i 0.438714 + 0.618859i
\(358\) 12.6896 26.0177i 0.670666 1.37508i
\(359\) 2.79598 0.147566 0.0737830 0.997274i \(-0.476493\pi\)
0.0737830 + 0.997274i \(0.476493\pi\)
\(360\) −3.64619 17.1533i −0.192171 0.904059i
\(361\) 18.9828 0.999094
\(362\) 12.9875 + 6.33440i 0.682610 + 0.332929i
\(363\) −30.1889 −1.58451
\(364\) −7.74250 9.90984i −0.405817 0.519417i
\(365\) 14.9275i 0.781340i
\(366\) −14.3563 7.00197i −0.750414 0.365999i
\(367\) 8.02582i 0.418944i 0.977815 + 0.209472i \(0.0671746\pi\)
−0.977815 + 0.209472i \(0.932825\pi\)
\(368\) 9.27427 + 2.31223i 0.483455 + 0.120533i
\(369\) 37.8290i 1.96930i
\(370\) 9.81072 + 4.78498i 0.510035 + 0.248759i
\(371\) 15.4309 0.801134
\(372\) −3.59684 + 2.81019i −0.186488 + 0.145702i
\(373\) 7.11793i 0.368553i 0.982874 + 0.184276i \(0.0589941\pi\)
−0.982874 + 0.184276i \(0.941006\pi\)
\(374\) 5.88762 0.967646i 0.304441 0.0500358i
\(375\) 3.03317 0.156632
\(376\) 1.76675 + 8.31158i 0.0911131 + 0.428637i
\(377\) 16.9106i 0.870943i
\(378\) −6.89660 + 14.1402i −0.354723 + 0.727294i
\(379\) 6.32540 0.324914 0.162457 0.986716i \(-0.448058\pi\)
0.162457 + 0.986716i \(0.448058\pi\)
\(380\) 0.206747 0.161530i 0.0106059 0.00828631i
\(381\) 28.9203 1.48163
\(382\) 13.6116 + 6.63877i 0.696429 + 0.339669i
\(383\) 2.87869 0.147094 0.0735472 0.997292i \(-0.476568\pi\)
0.0735472 + 0.997292i \(0.476568\pi\)
\(384\) 34.2955 + 1.19699i 1.75013 + 0.0610837i
\(385\) 1.17275i 0.0597691i
\(386\) −3.52469 + 7.22674i −0.179402 + 0.367832i
\(387\) 59.7831i 3.03895i
\(388\) 5.88095 4.59475i 0.298560 0.233263i
\(389\) 0.0104623i 0.000530459i −1.00000 0.000265230i \(-0.999916\pi\)
1.00000 0.000265230i \(-8.44253e-5\pi\)
\(390\) −10.3166 + 21.1524i −0.522403 + 1.07109i
\(391\) 5.69789 + 8.03757i 0.288155 + 0.406477i
\(392\) −3.34413 15.7323i −0.168904 0.794600i
\(393\) −55.8529 −2.81741
\(394\) 23.1274 + 11.2799i 1.16514 + 0.568275i
\(395\) 13.7272i 0.690692i
\(396\) 7.81199 + 9.99879i 0.392567 + 0.502458i
\(397\) −10.7463 −0.539343 −0.269672 0.962952i \(-0.586915\pi\)
−0.269672 + 0.962952i \(0.586915\pi\)
\(398\) 3.98942 8.17959i 0.199972 0.410006i
\(399\) −0.456031 −0.0228301
\(400\) −0.967647 + 3.88119i −0.0483823 + 0.194060i
\(401\) 17.1586i 0.856858i −0.903575 0.428429i \(-0.859067\pi\)
0.903575 0.428429i \(-0.140933\pi\)
\(402\) −7.00315 + 14.3587i −0.349285 + 0.716146i
\(403\) 4.12811 0.205636
\(404\) −18.9487 + 14.8045i −0.942731 + 0.736550i
\(405\) 10.8410 0.538694
\(406\) −2.19001 + 4.49023i −0.108689 + 0.222846i
\(407\) −7.89792 −0.391486
\(408\) 26.0098 + 23.9730i 1.28768 + 1.18684i
\(409\) −24.4746 −1.21019 −0.605096 0.796153i \(-0.706865\pi\)
−0.605096 + 0.796153i \(0.706865\pi\)
\(410\) 3.78251 7.75535i 0.186805 0.383010i
\(411\) −39.9957 −1.97284
\(412\) −4.45168 5.69783i −0.219319 0.280712i
\(413\) 11.4669 0.564248
\(414\) −9.18477 + 18.8317i −0.451407 + 0.925528i
\(415\) 3.85242i 0.189108i
\(416\) −23.7750 19.9491i −1.16567 0.978084i
\(417\) 51.3422 2.51424
\(418\) −0.0832187 + 0.170625i −0.00407036 + 0.00834553i
\(419\) 31.5503 1.54133 0.770667 0.637238i \(-0.219923\pi\)
0.770667 + 0.637238i \(0.219923\pi\)
\(420\) 5.47868 4.28046i 0.267332 0.208865i
\(421\) 34.3300i 1.67314i −0.547858 0.836571i \(-0.684557\pi\)
0.547858 0.836571i \(-0.315443\pi\)
\(422\) −0.109834 0.0535694i −0.00534665 0.00260772i
\(423\) −18.6266 −0.905657
\(424\) 37.2496 7.91795i 1.80900 0.384530i
\(425\) −3.36364 + 2.38451i −0.163161 + 0.115666i
\(426\) 12.4581 25.5430i 0.603596 1.23756i
\(427\) 4.26765i 0.206526i
\(428\) 16.9264 + 21.6646i 0.818170 + 1.04720i
\(429\) 17.0283i 0.822134i
\(430\) 5.97770 12.2562i 0.288270 0.591045i
\(431\) 23.6707i 1.14018i −0.821584 0.570088i \(-0.806909\pi\)
0.821584 0.570088i \(-0.193091\pi\)
\(432\) −9.39242 + 37.6726i −0.451893 + 1.81253i
\(433\) −35.0893 −1.68628 −0.843142 0.537691i \(-0.819297\pi\)
−0.843142 + 0.537691i \(0.819297\pi\)
\(434\) −1.09612 0.534612i −0.0526156 0.0256622i
\(435\) 9.34909 0.448255
\(436\) −20.6921 26.4844i −0.990973 1.26837i
\(437\) −0.313468 −0.0149952
\(438\) −28.0697 + 57.5518i −1.34122 + 2.74993i
\(439\) 23.9757i 1.14430i −0.820150 0.572149i \(-0.806110\pi\)
0.820150 0.572149i \(-0.193890\pi\)
\(440\) −0.601766 2.83098i −0.0286881 0.134962i
\(441\) 35.2567 1.67889
\(442\) −5.18819 31.5674i −0.246777 1.50151i
\(443\) 2.98605i 0.141872i 0.997481 + 0.0709358i \(0.0225985\pi\)
−0.997481 + 0.0709358i \(0.977401\pi\)
\(444\) −28.8268 36.8962i −1.36806 1.75102i
\(445\) −3.64410 −0.172747
\(446\) −31.1059 15.1712i −1.47291 0.718379i
\(447\) 35.7243i 1.68970i
\(448\) 3.72939 + 8.37600i 0.176197 + 0.395729i
\(449\) 23.9517i 1.13035i −0.824970 0.565176i \(-0.808808\pi\)
0.824970 0.565176i \(-0.191192\pi\)
\(450\) −7.88088 3.84374i −0.371508 0.181196i
\(451\) 6.24329i 0.293985i
\(452\) 3.98864 3.11630i 0.187610 0.146578i
\(453\) 8.79794 0.413363
\(454\) 1.85353 + 0.904019i 0.0869903 + 0.0424277i
\(455\) −6.28791 −0.294782
\(456\) −1.10084 + 0.233999i −0.0515515 + 0.0109580i
\(457\) −18.6341 −0.871666 −0.435833 0.900027i \(-0.643546\pi\)
−0.435833 + 0.900027i \(0.643546\pi\)
\(458\) 9.65534 19.7965i 0.451165 0.925031i
\(459\) −32.6491 + 23.1452i −1.52393 + 1.08032i
\(460\) 3.76595 2.94232i 0.175589 0.137186i
\(461\) 13.9508i 0.649753i 0.945756 + 0.324877i \(0.105323\pi\)
−0.945756 + 0.324877i \(0.894677\pi\)
\(462\) −2.20525 + 4.52147i −0.102598 + 0.210358i
\(463\) −20.8212 −0.967644 −0.483822 0.875166i \(-0.660752\pi\)
−0.483822 + 0.875166i \(0.660752\pi\)
\(464\) −2.98257 + 11.9630i −0.138462 + 0.555366i
\(465\) 2.28224i 0.105836i
\(466\) −17.0468 + 34.9513i −0.789676 + 1.61909i
\(467\) 16.4551i 0.761453i −0.924688 0.380726i \(-0.875674\pi\)
0.924688 0.380726i \(-0.124326\pi\)
\(468\) 53.6101 41.8853i 2.47813 1.93615i
\(469\) −4.26837 −0.197095
\(470\) 3.81866 + 1.86247i 0.176141 + 0.0859094i
\(471\) 27.7166i 1.27712i
\(472\) 27.6805 5.88391i 1.27410 0.270829i
\(473\) 9.86659i 0.453666i
\(474\) −25.8127 + 52.9243i −1.18562 + 2.43089i
\(475\) 0.131183i 0.00601910i
\(476\) −2.71054 + 9.05388i −0.124237 + 0.414984i
\(477\) 83.4780i 3.82219i
\(478\) −31.3272 15.2792i −1.43287 0.698855i
\(479\) 4.95366i 0.226338i −0.993576 0.113169i \(-0.963900\pi\)
0.993576 0.113169i \(-0.0361002\pi\)
\(480\) 11.0289 13.1441i 0.503398 0.599942i
\(481\) 42.3460i 1.93081i
\(482\) 3.06357 6.28128i 0.139542 0.286105i
\(483\) −8.30674 −0.377970
\(484\) −12.2554 15.6860i −0.557062 0.712998i
\(485\) 3.73153i 0.169440i
\(486\) −4.78335 2.33298i −0.216977 0.105826i
\(487\) 38.6316i 1.75057i −0.483611 0.875283i \(-0.660675\pi\)
0.483611 0.875283i \(-0.339325\pi\)
\(488\) −2.18982 10.3019i −0.0991287 0.466346i
\(489\) 67.7366 3.06315
\(490\) −7.22801 3.52531i −0.326528 0.159257i
\(491\) 34.3423i 1.54985i 0.632054 + 0.774924i \(0.282212\pi\)
−0.632054 + 0.774924i \(0.717788\pi\)
\(492\) −29.1664 + 22.7875i −1.31492 + 1.02734i
\(493\) −10.3677 + 7.34975i −0.466938 + 0.331016i
\(494\) 0.914832 + 0.446190i 0.0411602 + 0.0200750i
\(495\) 6.34435 0.285157
\(496\) −2.92032 0.728084i −0.131126 0.0326919i
\(497\) 7.59310 0.340597
\(498\) −7.24410 + 14.8527i −0.324616 + 0.665566i
\(499\) 12.3584 0.553240 0.276620 0.960979i \(-0.410786\pi\)
0.276620 + 0.960979i \(0.410786\pi\)
\(500\) 1.23133 + 1.57602i 0.0550668 + 0.0704815i
\(501\) 1.06385i 0.0475291i
\(502\) −8.68737 + 17.8119i −0.387736 + 0.794983i
\(503\) 41.3000i 1.84147i 0.390183 + 0.920737i \(0.372412\pi\)
−0.390183 + 0.920737i \(0.627588\pi\)
\(504\) −19.6593 + 4.17887i −0.875693 + 0.186142i
\(505\) 12.0231i 0.535023i
\(506\) −1.51585 + 3.10798i −0.0673879 + 0.138167i
\(507\) −51.8688 −2.30357
\(508\) 11.7404 + 15.0268i 0.520895 + 0.666708i
\(509\) 27.2031i 1.20576i 0.797833 + 0.602878i \(0.205980\pi\)
−0.797833 + 0.602878i \(0.794020\pi\)
\(510\) 17.4521 2.86830i 0.772793 0.127011i
\(511\) −17.1083 −0.756825
\(512\) 13.3005 + 18.3056i 0.587804 + 0.809003i
\(513\) 1.27332i 0.0562186i
\(514\) −5.92773 2.89113i −0.261461 0.127522i
\(515\) −3.61534 −0.159311
\(516\) −46.0931 + 36.0123i −2.02914 + 1.58535i
\(517\) −3.07413 −0.135200
\(518\) 5.48402 11.2440i 0.240954 0.494032i
\(519\) −65.5187 −2.87595
\(520\) −15.1787 + 3.22647i −0.665632 + 0.141490i
\(521\) 28.1207i 1.23199i −0.787750 0.615995i \(-0.788754\pi\)
0.787750 0.615995i \(-0.211246\pi\)
\(522\) −24.2911 11.8475i −1.06319 0.518551i
\(523\) 39.9777i 1.74810i −0.485834 0.874051i \(-0.661484\pi\)
0.485834 0.874051i \(-0.338516\pi\)
\(524\) −22.6738 29.0208i −0.990510 1.26778i
\(525\) 3.47629i 0.151718i
\(526\) −17.9614 8.76031i −0.783155 0.381968i
\(527\) −1.79417 2.53090i −0.0781554 0.110248i
\(528\) −3.00332 + 12.0462i −0.130703 + 0.524243i
\(529\) 17.2901 0.751743
\(530\) 8.34694 17.1139i 0.362568 0.743379i
\(531\) 62.0333i 2.69202i
\(532\) −0.185128 0.236951i −0.00802632 0.0102731i
\(533\) 33.4744 1.44994
\(534\) 14.0496 + 6.85238i 0.607983 + 0.296531i
\(535\) 13.7464 0.594311
\(536\) −10.3037 + 2.19019i −0.445050 + 0.0946020i
\(537\) 62.0855i 2.67919i
\(538\) −10.3544 5.05016i −0.446411 0.217728i
\(539\) 5.81877 0.250632
\(540\) 11.9519 + 15.2975i 0.514326 + 0.658301i
\(541\) 26.3948 1.13480 0.567401 0.823442i \(-0.307949\pi\)
0.567401 + 0.823442i \(0.307949\pi\)
\(542\) 19.3196 + 9.42273i 0.829848 + 0.404741i
\(543\) −30.9919 −1.32999
\(544\) −1.89737 + 23.2465i −0.0813492 + 0.996686i
\(545\) −16.8047 −0.719833
\(546\) 24.2426 + 11.8238i 1.03749 + 0.506012i
\(547\) −3.38133 −0.144575 −0.0722877 0.997384i \(-0.523030\pi\)
−0.0722877 + 0.997384i \(0.523030\pi\)
\(548\) −16.2365 20.7815i −0.693587 0.887742i
\(549\) 23.0871 0.985331
\(550\) −1.30066 0.634370i −0.0554603 0.0270496i
\(551\) 0.404344i 0.0172256i
\(552\) −20.0521 + 4.26237i −0.853474 + 0.181419i
\(553\) −15.7327 −0.669021
\(554\) 10.7718 + 5.25371i 0.457649 + 0.223209i
\(555\) −23.4111 −0.993745
\(556\) 20.8427 + 26.6771i 0.883926 + 1.13136i
\(557\) 6.09342i 0.258187i −0.991632 0.129093i \(-0.958793\pi\)
0.991632 0.129093i \(-0.0412067\pi\)
\(558\) 2.89213 5.92979i 0.122434 0.251028i
\(559\) 52.9013 2.23749
\(560\) 4.44820 + 1.10901i 0.187971 + 0.0468643i
\(561\) −10.4399 + 7.40089i −0.440771 + 0.312466i
\(562\) 22.9211 + 11.1793i 0.966867 + 0.471569i
\(563\) 41.4270i 1.74594i −0.487774 0.872970i \(-0.662191\pi\)
0.487774 0.872970i \(-0.337809\pi\)
\(564\) −11.2203 14.3612i −0.472462 0.604717i
\(565\) 2.53084i 0.106473i
\(566\) 25.3386 + 12.3584i 1.06506 + 0.519461i
\(567\) 12.4248i 0.521792i
\(568\) 18.3294 3.89619i 0.769085 0.163480i
\(569\) −1.99334 −0.0835653 −0.0417827 0.999127i \(-0.513304\pi\)
−0.0417827 + 0.999127i \(0.513304\pi\)
\(570\) −0.246677 + 0.505767i −0.0103322 + 0.0211842i
\(571\) −12.1058 −0.506614 −0.253307 0.967386i \(-0.581518\pi\)
−0.253307 + 0.967386i \(0.581518\pi\)
\(572\) 8.84780 6.91273i 0.369945 0.289036i
\(573\) −32.4810 −1.35691
\(574\) −8.88835 4.33511i −0.370992 0.180944i
\(575\) 2.38954i 0.0996508i
\(576\) −45.3123 + 20.1752i −1.88801 + 0.840633i
\(577\) 19.1678 0.797967 0.398984 0.916958i \(-0.369363\pi\)
0.398984 + 0.916958i \(0.369363\pi\)
\(578\) −17.0987 + 16.9007i −0.711212 + 0.702978i
\(579\) 17.2450i 0.716678i
\(580\) 3.79532 + 4.85773i 0.157592 + 0.201706i
\(581\) −4.41523 −0.183174
\(582\) −7.01679 + 14.3866i −0.290855 + 0.596346i
\(583\) 13.7772i 0.570593i
\(584\) −41.2986 + 8.77863i −1.70895 + 0.363262i
\(585\) 34.0162i 1.40640i
\(586\) 4.69877 9.63397i 0.194104 0.397976i
\(587\) 16.6238i 0.686137i −0.939310 0.343068i \(-0.888534\pi\)
0.939310 0.343068i \(-0.111466\pi\)
\(588\) 21.2380 + 27.1832i 0.875842 + 1.12101i
\(589\) 0.0987059 0.00406710
\(590\) 6.20269 12.7175i 0.255361 0.523571i
\(591\) −55.1885 −2.27015
\(592\) 7.46865 29.9565i 0.306959 1.23120i
\(593\) 24.6362 1.01169 0.505844 0.862625i \(-0.331181\pi\)
0.505844 + 0.862625i \(0.331181\pi\)
\(594\) −12.6248 6.15748i −0.518002 0.252645i
\(595\) 2.73287 + 3.85504i 0.112037 + 0.158041i
\(596\) 18.5621 14.5025i 0.760333 0.594044i
\(597\) 19.5188i 0.798849i
\(598\) 16.6639 + 8.12749i 0.681439 + 0.332358i
\(599\) 0.908614 0.0371249 0.0185625 0.999828i \(-0.494091\pi\)
0.0185625 + 0.999828i \(0.494091\pi\)
\(600\) −1.78376 8.39161i −0.0728217 0.342586i
\(601\) 25.0001i 1.01977i −0.860241 0.509887i \(-0.829687\pi\)
0.860241 0.509887i \(-0.170313\pi\)
\(602\) −14.0467 6.85099i −0.572501 0.279225i
\(603\) 23.0909i 0.940336i
\(604\) 3.57157 + 4.57136i 0.145325 + 0.186006i
\(605\) −9.95293 −0.404644
\(606\) 22.6084 46.3543i 0.918402 1.88302i
\(607\) 36.9035i 1.49787i 0.662645 + 0.748933i \(0.269434\pi\)
−0.662645 + 0.748933i \(0.730566\pi\)
\(608\) −0.568476 0.476995i −0.0230547 0.0193447i
\(609\) 10.7149i 0.434190i
\(610\) −4.73309 2.30847i −0.191637 0.0934672i
\(611\) 16.4825i 0.666809i
\(612\) −48.9795 14.6634i −1.97988 0.592734i
\(613\) 6.42995i 0.259703i −0.991533 0.129852i \(-0.958550\pi\)
0.991533 0.129852i \(-0.0414501\pi\)
\(614\) 12.2911 25.2006i 0.496027 1.01701i
\(615\) 18.5064i 0.746251i
\(616\) −3.24456 + 0.689679i −0.130727 + 0.0277880i
\(617\) 14.0811i 0.566883i −0.958989 0.283442i \(-0.908524\pi\)
0.958989 0.283442i \(-0.0914762\pi\)
\(618\) 13.9387 + 6.79830i 0.560696 + 0.273468i
\(619\) −0.313074 −0.0125835 −0.00629176 0.999980i \(-0.502003\pi\)
−0.00629176 + 0.999980i \(0.502003\pi\)
\(620\) −1.18584 + 0.926488i −0.0476244 + 0.0372086i
\(621\) 23.1940i 0.930743i
\(622\) 10.4033 21.3302i 0.417136 0.855262i
\(623\) 4.17647i 0.167327i
\(624\) 64.5875 + 16.1028i 2.58557 + 0.644626i
\(625\) 1.00000 0.0400000
\(626\) −6.28443 + 12.8851i −0.251176 + 0.514991i
\(627\) 0.407158i 0.0162603i
\(628\) −14.4014 + 11.2517i −0.574678 + 0.448993i
\(629\) 25.9618 18.4045i 1.03517 0.733837i
\(630\) −4.40528 + 9.03221i −0.175510 + 0.359852i
\(631\) 47.2286 1.88014 0.940070 0.340982i \(-0.110759\pi\)
0.940070 + 0.340982i \(0.110759\pi\)
\(632\) −37.9780 + 8.07278i −1.51068 + 0.321118i
\(633\) 0.262095 0.0104173
\(634\) −20.8020 10.1457i −0.826152 0.402939i
\(635\) 9.53470 0.378373
\(636\) −64.3620 + 50.2856i −2.55212 + 1.99396i
\(637\) 31.1982i 1.23612i
\(638\) −4.00901 1.95531i −0.158718 0.0774115i
\(639\) 41.0770i 1.62498i
\(640\) 11.3068 + 0.394634i 0.446941 + 0.0155993i
\(641\) 33.8478i 1.33691i 0.743754 + 0.668453i \(0.233043\pi\)
−0.743754 + 0.668453i \(0.766957\pi\)
\(642\) −52.9984 25.8489i −2.09168 1.02017i
\(643\) 12.8818 0.508008 0.254004 0.967203i \(-0.418252\pi\)
0.254004 + 0.967203i \(0.418252\pi\)
\(644\) −3.37217 4.31613i −0.132882 0.170079i
\(645\) 29.2466i 1.15158i
\(646\) −0.124053 0.754797i −0.00488080 0.0296971i
\(647\) −12.8495 −0.505166 −0.252583 0.967575i \(-0.581280\pi\)
−0.252583 + 0.967575i \(0.581280\pi\)
\(648\) −6.37543 29.9929i −0.250450 1.17823i
\(649\) 10.2380i 0.401875i
\(650\) −3.40127 + 6.97369i −0.133409 + 0.273531i
\(651\) 2.61565 0.102516
\(652\) 27.4980 + 35.1955i 1.07691 + 1.37836i
\(653\) 35.7866 1.40044 0.700219 0.713928i \(-0.253086\pi\)
0.700219 + 0.713928i \(0.253086\pi\)
\(654\) 64.7891 + 31.5996i 2.53346 + 1.23564i
\(655\) −18.4141 −0.719497
\(656\) −23.6805 5.90395i −0.924569 0.230511i
\(657\) 92.5520i 3.61080i
\(658\) 2.13456 4.37653i 0.0832139 0.170615i
\(659\) 31.8870i 1.24214i −0.783754 0.621071i \(-0.786698\pi\)
0.783754 0.621071i \(-0.213302\pi\)
\(660\) 3.82172 + 4.89153i 0.148760 + 0.190403i
\(661\) 4.27000i 0.166084i −0.996546 0.0830420i \(-0.973536\pi\)
0.996546 0.0830420i \(-0.0264636\pi\)
\(662\) −15.6959 + 32.1815i −0.610037 + 1.25077i
\(663\) 39.6811 + 55.9749i 1.54108 + 2.17389i
\(664\) −10.6582 + 2.26555i −0.413617 + 0.0879204i
\(665\) −0.150348 −0.00583024
\(666\) 60.8275 + 29.6674i 2.35702 + 1.14959i
\(667\) 7.36525i 0.285184i
\(668\) 0.552768 0.431874i 0.0213872 0.0167097i
\(669\) 74.2272 2.86979
\(670\) −2.30886 + 4.73389i −0.0891989 + 0.182886i
\(671\) 3.81028 0.147094
\(672\) −15.0643 12.6401i −0.581119 0.487603i
\(673\) 48.6589i 1.87566i 0.347089 + 0.937832i \(0.387170\pi\)
−0.347089 + 0.937832i \(0.612830\pi\)
\(674\) 8.43229 17.2889i 0.324800 0.665942i
\(675\) 9.70646 0.373602
\(676\) −21.0564 26.9507i −0.809862 1.03657i
\(677\) 13.6262 0.523698 0.261849 0.965109i \(-0.415668\pi\)
0.261849 + 0.965109i \(0.415668\pi\)
\(678\) −4.75899 + 9.75745i −0.182768 + 0.374733i
\(679\) −4.27668 −0.164124
\(680\) 8.57514 + 7.90361i 0.328841 + 0.303090i
\(681\) −4.42302 −0.169491
\(682\) 0.477317 0.978652i 0.0182774 0.0374745i
\(683\) −4.24075 −0.162268 −0.0811339 0.996703i \(-0.525854\pi\)
−0.0811339 + 0.996703i \(0.525854\pi\)
\(684\) 1.28185 1.00150i 0.0490128 0.0382934i
\(685\) −13.1861 −0.503815
\(686\) −9.01394 + 18.4814i −0.344154 + 0.705625i
\(687\) 47.2400i 1.80232i
\(688\) −37.4235 9.33031i −1.42676 0.355715i
\(689\) 73.8686 2.81417
\(690\) −4.49330 + 9.21270i −0.171057 + 0.350721i
\(691\) 37.5781 1.42954 0.714769 0.699361i \(-0.246532\pi\)
0.714769 + 0.699361i \(0.246532\pi\)
\(692\) −26.5977 34.0431i −1.01109 1.29412i
\(693\) 7.27120i 0.276210i
\(694\) −3.28734 1.60333i −0.124786 0.0608616i
\(695\) 16.9269 0.642075
\(696\) −5.49806 25.8653i −0.208403 0.980423i
\(697\) −14.5487 20.5228i −0.551073 0.777355i
\(698\) −9.02346 + 18.5010i −0.341543 + 0.700272i
\(699\) 83.4034i 3.15461i
\(700\) 1.80626 1.41122i 0.0682701 0.0533390i
\(701\) 24.2590i 0.916249i 0.888888 + 0.458124i \(0.151479\pi\)
−0.888888 + 0.458124i \(0.848521\pi\)
\(702\) −33.0143 + 67.6899i −1.24605 + 2.55479i
\(703\) 1.01252i 0.0381879i
\(704\) −7.47834 + 3.32971i −0.281850 + 0.125493i
\(705\) −9.11237 −0.343192
\(706\) −15.4623 7.54141i −0.581931 0.283825i
\(707\) 13.7796 0.518236
\(708\) −47.8280 + 37.3678i −1.79749 + 1.40437i
\(709\) −21.6792 −0.814181 −0.407090 0.913388i \(-0.633457\pi\)
−0.407090 + 0.913388i \(0.633457\pi\)
\(710\) 4.10728 8.42123i 0.154144 0.316043i
\(711\) 85.1103i 3.19189i
\(712\) 2.14304 + 10.0818i 0.0803138 + 0.377832i
\(713\) 1.79796 0.0673340
\(714\) −3.28734 20.0017i −0.123026 0.748546i
\(715\) 5.61403i 0.209953i
\(716\) −32.2592 + 25.2039i −1.20558 + 0.941915i
\(717\) 74.7555 2.79179
\(718\) −3.55393 1.73336i −0.132632 0.0646883i
\(719\) 23.9297i 0.892427i −0.894926 0.446214i \(-0.852772\pi\)
0.894926 0.446214i \(-0.147228\pi\)
\(720\) −5.99951 + 24.0638i −0.223589 + 0.896805i
\(721\) 4.14351i 0.154312i
\(722\) −24.1288 11.7683i −0.897981 0.437972i
\(723\) 14.9889i 0.557442i
\(724\) −12.5813 16.1032i −0.467581 0.598470i
\(725\) 3.08229 0.114473
\(726\) 38.3728 + 18.7155i 1.42415 + 0.694598i
\(727\) −5.88741 −0.218352 −0.109176 0.994022i \(-0.534821\pi\)
−0.109176 + 0.994022i \(0.534821\pi\)
\(728\) 3.69783 + 17.3962i 0.137051 + 0.644747i
\(729\) −21.1086 −0.781800
\(730\) −9.25425 + 18.9742i −0.342515 + 0.702265i
\(731\) −22.9921 32.4332i −0.850394 1.19958i
\(732\) 13.9072 + 17.8002i 0.514026 + 0.657916i
\(733\) 17.0070i 0.628167i 0.949395 + 0.314084i \(0.101697\pi\)
−0.949395 + 0.314084i \(0.898303\pi\)
\(734\) 4.97558 10.2015i 0.183652 0.376545i
\(735\) 17.2480 0.636203
\(736\) −10.3550 8.68861i −0.381689 0.320266i
\(737\) 3.81093i 0.140377i
\(738\) 23.4520 48.0840i 0.863280 1.77000i
\(739\) 26.7139i 0.982687i 0.870966 + 0.491344i \(0.163494\pi\)
−0.870966 + 0.491344i \(0.836506\pi\)
\(740\) −9.50386 12.1643i −0.349369 0.447167i
\(741\) −2.18304 −0.0801960
\(742\) −19.6141 9.56636i −0.720055 0.351192i
\(743\) 49.2505i 1.80683i −0.428771 0.903413i \(-0.641053\pi\)
0.428771 0.903413i \(-0.358947\pi\)
\(744\) 6.31408 1.34215i 0.231485 0.0492056i
\(745\) 11.7779i 0.431508i
\(746\) 4.41274 9.04752i 0.161562 0.331253i
\(747\) 23.8854i 0.873921i
\(748\) −8.08357 2.42005i −0.295565 0.0884857i
\(749\) 15.7547i 0.575664i
\(750\) −3.85542 1.88040i −0.140780 0.0686626i
\(751\) 9.44928i 0.344809i 0.985026 + 0.172405i \(0.0551537\pi\)
−0.985026 + 0.172405i \(0.944846\pi\)
\(752\) 2.90704 11.6600i 0.106009 0.425198i
\(753\) 42.5040i 1.54893i
\(754\) −10.4837 + 21.4949i −0.381794 + 0.782799i
\(755\) 2.90058 0.105563
\(756\) 17.5324 13.6979i 0.637646 0.498189i
\(757\) 1.63895i 0.0595685i 0.999556 + 0.0297843i \(0.00948203\pi\)
−0.999556 + 0.0297843i \(0.990518\pi\)
\(758\) −8.04015 3.92142i −0.292031 0.142432i
\(759\) 7.41650i 0.269202i
\(760\) −0.362933 + 0.0771469i −0.0131650 + 0.00279841i
\(761\) 28.2428 1.02380 0.511901 0.859044i \(-0.328941\pi\)
0.511901 + 0.859044i \(0.328941\pi\)
\(762\) −36.7603 17.9291i −1.33169 0.649502i
\(763\) 19.2597i 0.697248i
\(764\) −13.1858 16.8769i −0.477047 0.610585i
\(765\) −20.8549 + 14.7842i −0.754012 + 0.534525i
\(766\) −3.65908 1.78464i −0.132208 0.0644816i
\(767\) 54.8925 1.98205
\(768\) −42.8505 22.7829i −1.54624 0.822106i
\(769\) 5.94202 0.214275 0.107137 0.994244i \(-0.465832\pi\)
0.107137 + 0.994244i \(0.465832\pi\)
\(770\) −0.727046 + 1.49068i −0.0262009 + 0.0537202i
\(771\) 14.1452 0.509427
\(772\) 8.96040 7.00071i 0.322492 0.251961i
\(773\) 20.5173i 0.737957i 0.929438 + 0.368978i \(0.120292\pi\)
−0.929438 + 0.368978i \(0.879708\pi\)
\(774\) 37.0624 75.9896i 1.33218 2.73139i
\(775\) 0.752428i 0.0270280i
\(776\) −10.3237 + 2.19446i −0.370600 + 0.0787765i
\(777\) 26.8312i 0.962566i
\(778\) −0.00648607 + 0.0132985i −0.000232537 + 0.000476774i
\(779\) 0.800395 0.0286771
\(780\) 26.2267 20.4908i 0.939067 0.733688i
\(781\) 6.77935i 0.242584i
\(782\) −2.25966 13.7489i −0.0808053 0.491658i
\(783\) 29.9181 1.06919
\(784\) −5.50250 + 22.0703i −0.196518 + 0.788225i
\(785\) 9.13785i 0.326144i
\(786\) 70.9940 + 34.6258i 2.53227 + 1.23506i
\(787\) 30.1991 1.07648 0.538241 0.842791i \(-0.319089\pi\)
0.538241 + 0.842791i \(0.319089\pi\)
\(788\) −22.4041 28.6756i −0.798112 1.02153i
\(789\) 42.8609 1.52589
\(790\) −8.51016 + 17.4485i −0.302778 + 0.620791i
\(791\) −2.90057 −0.103132
\(792\) −3.73102 17.5524i −0.132576 0.623696i
\(793\) 20.4294i 0.725471i
\(794\) 13.6595 + 6.66216i 0.484759 + 0.236431i
\(795\) 40.8384i 1.44839i
\(796\) −10.1418 + 7.92375i −0.359467 + 0.280850i
\(797\) 24.2150i 0.857738i 0.903367 + 0.428869i \(0.141088\pi\)
−0.903367 + 0.428869i \(0.858912\pi\)
\(798\) 0.579655 + 0.282715i 0.0205196 + 0.0100080i
\(799\) 10.1052 7.16365i 0.357496 0.253432i
\(800\) 3.63610 4.33345i 0.128556 0.153211i
\(801\) −22.5938 −0.798313
\(802\) −10.6374 + 21.8101i −0.375620 + 0.770140i
\(803\) 15.2748i 0.539035i
\(804\) 17.8032 13.9096i 0.627872 0.490553i
\(805\) −2.73863 −0.0965242
\(806\) −5.24720 2.55921i −0.184825 0.0901444i
\(807\) 24.7085 0.869781
\(808\) 33.2634 7.07063i 1.17020 0.248744i
\(809\) 42.8270i 1.50572i −0.658183 0.752858i \(-0.728675\pi\)
0.658183 0.752858i \(-0.271325\pi\)
\(810\) −13.7799 6.72084i −0.484175 0.236146i
\(811\) 35.3651 1.24184 0.620919 0.783875i \(-0.286760\pi\)
0.620919 + 0.783875i \(0.286760\pi\)
\(812\) 5.56740 4.34978i 0.195378 0.152647i
\(813\) −46.1019 −1.61686
\(814\) 10.0390 + 4.89630i 0.351865 + 0.171615i
\(815\) 22.3320 0.782255
\(816\) −18.1988 46.5965i −0.637086 1.63120i
\(817\) 1.26490 0.0442534
\(818\) 31.1094 + 15.1730i 1.08771 + 0.530510i
\(819\) −38.9857 −1.36227
\(820\) −9.61582 + 7.51278i −0.335799 + 0.262358i
\(821\) −40.2892 −1.40610 −0.703051 0.711139i \(-0.748179\pi\)
−0.703051 + 0.711139i \(0.748179\pi\)
\(822\) 50.8380 + 24.7952i 1.77318 + 0.864832i
\(823\) 15.8735i 0.553315i 0.960969 + 0.276658i \(0.0892268\pi\)
−0.960969 + 0.276658i \(0.910773\pi\)
\(824\) 2.12613 + 10.0023i 0.0740672 + 0.348445i
\(825\) 3.10373 0.108058
\(826\) −14.5754 7.10885i −0.507143 0.247349i
\(827\) −50.7719 −1.76551 −0.882756 0.469833i \(-0.844314\pi\)
−0.882756 + 0.469833i \(0.844314\pi\)
\(828\) 23.3493 18.2427i 0.811445 0.633977i
\(829\) 17.3126i 0.601290i −0.953736 0.300645i \(-0.902798\pi\)
0.953736 0.300645i \(-0.0972019\pi\)
\(830\) −2.38830 + 4.89677i −0.0828990 + 0.169969i
\(831\) −25.7044 −0.891677
\(832\) 17.8528 + 40.0963i 0.618934 + 1.39009i
\(833\) −19.1273 + 13.5595i −0.662721 + 0.469808i
\(834\) −65.2605 31.8295i −2.25979 1.10216i
\(835\) 0.350738i 0.0121378i
\(836\) 0.211557 0.165288i 0.00731684 0.00571660i
\(837\) 7.30341i 0.252443i
\(838\) −40.1033 19.5595i −1.38534 0.675673i
\(839\) 37.2470i 1.28591i −0.765904 0.642955i \(-0.777708\pi\)
0.765904 0.642955i \(-0.222292\pi\)
\(840\) −9.61755 + 2.04435i −0.331837 + 0.0705369i
\(841\) −19.4995 −0.672397
\(842\) −21.2828 + 43.6365i −0.733453 + 1.50381i
\(843\) −54.6960 −1.88383
\(844\) 0.106399 + 0.136183i 0.00366240 + 0.00468761i
\(845\) −17.1005 −0.588276
\(846\) 23.6761 + 11.5475i 0.814000 + 0.397012i
\(847\) 11.4070i 0.391948i
\(848\) −52.2562 13.0284i −1.79449 0.447395i
\(849\) −60.4648 −2.07515
\(850\) 5.75376 0.945646i 0.197352 0.0324354i
\(851\) 18.4433i 0.632230i
\(852\) −31.6706 + 24.7441i −1.08502 + 0.847718i
\(853\) 23.8943 0.818125 0.409062 0.912506i \(-0.365856\pi\)
0.409062 + 0.912506i \(0.365856\pi\)
\(854\) −2.64572 + 5.42456i −0.0905345 + 0.185625i
\(855\) 0.813350i 0.0278160i
\(856\) −8.08408 38.0311i −0.276308 1.29988i
\(857\) 22.7277i 0.776363i −0.921583 0.388181i \(-0.873103\pi\)
0.921583 0.388181i \(-0.126897\pi\)
\(858\) −10.5566 + 21.6445i −0.360398 + 0.738930i
\(859\) 48.5724i 1.65727i 0.559790 + 0.828635i \(0.310882\pi\)
−0.559790 + 0.828635i \(0.689118\pi\)
\(860\) −15.1964 + 11.8728i −0.518192 + 0.404860i
\(861\) 21.2100 0.722836
\(862\) −14.6746 + 30.0875i −0.499818 + 1.02478i
\(863\) 32.4151 1.10342 0.551711 0.834035i \(-0.313975\pi\)
0.551711 + 0.834035i \(0.313975\pi\)
\(864\) 35.2936 42.0624i 1.20071 1.43099i
\(865\) −21.6007 −0.734447
\(866\) 44.6016 + 21.7535i 1.51562 + 0.739214i
\(867\) 17.0713 48.6560i 0.579770 1.65244i
\(868\) 1.06184 + 1.35908i 0.0360412 + 0.0461301i
\(869\) 14.0466i 0.476498i
\(870\) −11.8835 5.79594i −0.402889 0.196501i
\(871\) −20.4329 −0.692342
\(872\) 9.88257 + 46.4920i 0.334666 + 1.57442i
\(873\) 23.1359i 0.783032i
\(874\) 0.398445 + 0.194333i 0.0134776 + 0.00657343i
\(875\) 1.14609i 0.0387450i
\(876\) 71.3581 55.7517i 2.41097 1.88367i
\(877\) −48.4637 −1.63650 −0.818252 0.574860i \(-0.805056\pi\)
−0.818252 + 0.574860i \(0.805056\pi\)
\(878\) −14.8637 + 30.4752i −0.501624 + 1.02849i
\(879\) 22.9893i 0.775410i
\(880\) −0.990158 + 3.97149i −0.0333782 + 0.133879i
\(881\) 19.3636i 0.652377i −0.945305 0.326188i \(-0.894236\pi\)
0.945305 0.326188i \(-0.105764\pi\)
\(882\) −44.8144 21.8573i −1.50898 0.735974i
\(883\) 48.0780i 1.61795i 0.587841 + 0.808977i \(0.299978\pi\)
−0.587841 + 0.808977i \(0.700022\pi\)
\(884\) −12.9755 + 43.3414i −0.436412 + 1.45773i
\(885\) 30.3474i 1.02012i
\(886\) 1.85119 3.79553i 0.0621921 0.127513i
\(887\) 57.0934i 1.91701i 0.285078 + 0.958504i \(0.407981\pi\)
−0.285078 + 0.958504i \(0.592019\pi\)
\(888\) 13.7677 + 64.7694i 0.462014 + 2.17352i
\(889\) 10.9276i 0.366501i
\(890\) 4.63197 + 2.25915i 0.155264 + 0.0757268i
\(891\) 11.0932 0.371636
\(892\) 30.1329 + 38.5680i 1.00893 + 1.29135i
\(893\) 0.394106i 0.0131883i
\(894\) −22.1472 + 45.4087i −0.740712 + 1.51869i
\(895\) 20.4689i 0.684198i
\(896\) 0.452287 12.9587i 0.0151098 0.432918i
\(897\) −39.7647 −1.32771
\(898\) −14.8488 + 30.4448i −0.495511 + 1.01595i
\(899\) 2.31920i 0.0773496i
\(900\) 7.63438 + 9.77146i 0.254479 + 0.325715i
\(901\) −32.1050 45.2879i −1.06957 1.50876i
\(902\) 3.87051 7.93578i 0.128874 0.264233i
\(903\) 33.5193 1.11545
\(904\) −7.00185 + 1.48835i −0.232878 + 0.0495017i
\(905\) −10.2177 −0.339646
\(906\) −11.1830 5.45426i −0.371529 0.181206i
\(907\) 2.35855 0.0783144 0.0391572 0.999233i \(-0.487533\pi\)
0.0391572 + 0.999233i \(0.487533\pi\)
\(908\) −1.79555 2.29818i −0.0595874 0.0762676i
\(909\) 74.5448i 2.47249i
\(910\) 7.99249 + 3.89817i 0.264949 + 0.129223i
\(911\) 36.5217i 1.21002i −0.796218 0.605009i \(-0.793169\pi\)
0.796218 0.605009i \(-0.206831\pi\)
\(912\) 1.54433 + 0.385027i 0.0511379 + 0.0127495i
\(913\) 3.94204i 0.130463i
\(914\) 23.6856 + 11.5522i 0.783450 + 0.382111i
\(915\) 11.2945 0.373384
\(916\) −24.5456 + 19.1773i −0.811009 + 0.633637i
\(917\) 21.1042i 0.696922i
\(918\) 55.8486 9.17887i 1.84328 0.302948i
\(919\) 28.1923 0.929978 0.464989 0.885317i \(-0.346058\pi\)
0.464989 + 0.885317i \(0.346058\pi\)
\(920\) −6.61094 + 1.40525i −0.217956 + 0.0463298i
\(921\) 60.1356i 1.98153i
\(922\) 8.64875 17.7327i 0.284832 0.583995i
\(923\) 36.3485 1.19643
\(924\) 5.60614 4.38004i 0.184428 0.144093i
\(925\) −7.71836 −0.253778
\(926\) 26.4656 + 12.9081i 0.869714 + 0.424185i
\(927\) −22.4155 −0.736222
\(928\) 11.2075 13.3569i 0.367904 0.438463i
\(929\) 13.5645i 0.445038i 0.974928 + 0.222519i \(0.0714280\pi\)
−0.974928 + 0.222519i \(0.928572\pi\)
\(930\) 1.41487 2.90093i 0.0463953 0.0951252i
\(931\) 0.745970i 0.0244482i
\(932\) 43.3359 33.8581i 1.41951 1.10906i
\(933\) 50.8997i 1.66638i
\(934\) −10.2013 + 20.9159i −0.333797 + 0.684390i
\(935\) −3.44190 + 2.43999i −0.112562 + 0.0797961i
\(936\) −94.1098 + 20.0044i −3.07608 + 0.653865i
\(937\) −36.5498 −1.19403 −0.597015 0.802230i \(-0.703647\pi\)
−0.597015 + 0.802230i \(0.703647\pi\)
\(938\) 5.42547 + 2.64616i 0.177148 + 0.0864003i
\(939\) 30.7473i 1.00340i
\(940\) −3.69922 4.73473i −0.120655 0.154430i
\(941\) −12.6597 −0.412695 −0.206347 0.978479i \(-0.566158\pi\)
−0.206347 + 0.978479i \(0.566158\pi\)
\(942\) 17.1828 35.2303i 0.559847 1.14787i
\(943\) 14.5794 0.474772
\(944\) −38.8321 9.68150i −1.26388 0.315106i
\(945\) 11.1245i 0.361880i
\(946\) 6.11677 12.5413i 0.198873 0.407753i
\(947\) −15.4599 −0.502378 −0.251189 0.967938i \(-0.580822\pi\)
−0.251189 + 0.967938i \(0.580822\pi\)
\(948\) 65.6205 51.2689i 2.13126 1.66514i
\(949\) −81.8981 −2.65852
\(950\) −0.0813267 + 0.166745i −0.00263859 + 0.00540994i
\(951\) 49.6393 1.60966
\(952\) 9.05826 9.82789i 0.293580 0.318524i
\(953\) 36.0503 1.16778 0.583891 0.811832i \(-0.301529\pi\)
0.583891 + 0.811832i \(0.301529\pi\)
\(954\) 51.7519 106.108i 1.67553 3.43537i
\(955\) −10.7086 −0.346522
\(956\) 30.3474 + 38.8425i 0.981505 + 1.25626i
\(957\) 9.56660 0.309244
\(958\) −3.07101 + 6.29654i −0.0992197 + 0.203432i
\(959\) 15.1125i 0.488007i
\(960\) −22.1673 + 9.86995i −0.715448 + 0.318551i
\(961\) 30.4339 0.981737
\(962\) 26.2523 53.8255i 0.846407 1.73540i
\(963\) 85.2294 2.74648
\(964\) −7.78813 + 6.08482i −0.250839 + 0.195979i
\(965\) 5.68548i 0.183022i
\(966\) 10.5586 + 5.14974i 0.339717 + 0.165690i
\(967\) −41.1709 −1.32397 −0.661984 0.749518i \(-0.730285\pi\)
−0.661984 + 0.749518i \(0.730285\pi\)
\(968\) 5.85317 + 27.5359i 0.188128 + 0.885038i
\(969\) 0.948799 + 1.33840i 0.0304798 + 0.0429955i
\(970\) −2.31335 + 4.74311i −0.0742773 + 0.152292i
\(971\) 28.5053i 0.914777i 0.889267 + 0.457389i \(0.151215\pi\)
−0.889267 + 0.457389i \(0.848785\pi\)
\(972\) 4.63373 + 5.93084i 0.148627 + 0.190232i
\(973\) 19.3998i 0.621930i
\(974\) −23.9496 + 49.1042i −0.767393 + 1.57340i
\(975\) 16.6412i 0.532944i
\(976\) −3.60318 + 14.4522i −0.115335 + 0.462604i
\(977\) −15.7285 −0.503198 −0.251599 0.967832i \(-0.580956\pi\)
−0.251599 + 0.967832i \(0.580956\pi\)
\(978\) −86.0992 41.9931i −2.75315 1.34279i
\(979\) −3.72888 −0.119175
\(980\) 7.00193 + 8.96197i 0.223669 + 0.286280i
\(981\) −104.191 −3.32655
\(982\) 21.2904 43.6522i 0.679405 1.39300i
\(983\) 24.3987i 0.778196i −0.921196 0.389098i \(-0.872787\pi\)
0.921196 0.389098i \(-0.127213\pi\)
\(984\) 51.2001 10.8833i 1.63220 0.346948i
\(985\) −18.1950 −0.579741
\(986\) 17.7347 2.91475i 0.564789 0.0928246i
\(987\) 10.4436i 0.332424i
\(988\) −0.886217 1.13429i −0.0281943 0.0360867i
\(989\) 23.0406 0.732649
\(990\) −8.06423 3.93316i −0.256298 0.125004i
\(991\) 6.73788i 0.214036i 0.994257 + 0.107018i \(0.0341302\pi\)
−0.994257 + 0.107018i \(0.965870\pi\)
\(992\) 3.26061 + 2.73590i 0.103524 + 0.0868649i
\(993\) 76.7940i 2.43698i
\(994\) −9.65150 4.70732i −0.306127 0.149307i
\(995\) 6.43510i 0.204007i
\(996\) 18.4158 14.3881i 0.583527 0.455906i
\(997\) 49.0657 1.55393 0.776964 0.629545i \(-0.216759\pi\)
0.776964 + 0.629545i \(0.216759\pi\)
\(998\) −15.7087 7.66158i −0.497249 0.242523i
\(999\) −74.9180 −2.37030
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.a.101.5 36
4.3 odd 2 2720.2.l.b.2481.2 36
8.3 odd 2 2720.2.l.a.2481.36 36
8.5 even 2 680.2.l.b.101.6 yes 36
17.16 even 2 680.2.l.b.101.5 yes 36
68.67 odd 2 2720.2.l.a.2481.35 36
136.67 odd 2 2720.2.l.b.2481.1 36
136.101 even 2 inner 680.2.l.a.101.6 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.5 36 1.1 even 1 trivial
680.2.l.a.101.6 yes 36 136.101 even 2 inner
680.2.l.b.101.5 yes 36 17.16 even 2
680.2.l.b.101.6 yes 36 8.5 even 2
2720.2.l.a.2481.35 36 68.67 odd 2
2720.2.l.a.2481.36 36 8.3 odd 2
2720.2.l.b.2481.1 36 136.67 odd 2
2720.2.l.b.2481.2 36 4.3 odd 2